1
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
2
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
3
|
Smith JW, Barlas RS, Mamas MA, Boekholdt SM, Mallat Z, Luben RN, Wareham NJ, Khaw KT, Myint PK. Association between serum secretory phospholipase A2 and risk of ischaemic stroke. Eur J Neurol 2021; 28:3650-3655. [PMID: 34216520 DOI: 10.1111/ene.15004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Previous literature has demonstrated an association between high serum levels of type II secretory phospholipase A2 (sPLA2) concentration and an increased risk of coronary artery disease. However, such association has not been established in terms of ischaemic stroke risk. The aim was to evaluate the association between both sPLA2 concentration and activity as continuous variables with risk of future ischaemic stroke. METHODS A nested case-control study was conducted using data from the European Prospective Investigation into Cancer-Norfolk study. Cases (n = 145) in the current study were participants who developed ischaemic stroke during follow-up, with controls (n = 290) matched in a 2:1 ratio based on age and sex. Statistical analyses were performed using SPSS (version 25.0) software. Logistic regression was used to determine odds ratios (OR) and corresponding 95% confidence intervals (95% CIs) for ischaemic stroke. RESULTS After adjusting for a wide array of cardiovascular confounders, sPLA2 activity was found to be associated with an increased risk of ischaemic stroke using both multiple imputations with chained equations and complete case analysis: OR 1.20 (95% CI 1.01-1.43) and OR 1.23 (95% CI 1.01-1.49), respectively. However, sPLA2 concentration was not found to be associated with increased risk of ischaemic stroke. CONCLUSIONS The activity of sPLA2, but not sPLA2 concentration, is associated with an increased risk of future ischaemic stroke. This finding may be significant in risk group stratification, allowing targeted prophylactic treatment, or the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Jed W Smith
- Ageing Clinical and Experimental Research, Institute of Applied Health Sciences, Aberdeen, UK
| | - Raphae S Barlas
- Ageing Clinical and Experimental Research, Institute of Applied Health Sciences, Aberdeen, UK
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Institute for Primary Care and Health Sciences, Stoke-on-Trent, UK
| | - S Matthijs Boekholdt
- Department of Cardiology and Vascular Medicine (M.B.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Robert N Luben
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Phyo K Myint
- Ageing Clinical and Experimental Research, Institute of Applied Health Sciences, Aberdeen, UK
| |
Collapse
|
4
|
Interface of Phospholipase Activity, Immune Cell Function, and Atherosclerosis. Biomolecules 2020; 10:biom10101449. [PMID: 33076403 PMCID: PMC7602611 DOI: 10.3390/biom10101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Phospholipases are a family of lipid-altering enzymes that can either reduce or increase bioactive lipid levels. Bioactive lipids elicit signaling responses, activate transcription factors, promote G-coupled-protein activity, and modulate membrane fluidity, which mediates cellular function. Phospholipases and the bioactive lipids they produce are important regulators of immune cell activity, dictating both pro-inflammatory and pro-resolving activity. During atherosclerosis, pro-inflammatory and pro-resolving activities govern atherosclerosis progression and regression, respectively. This review will look at the interface of phospholipase activity, immune cell function, and atherosclerosis.
Collapse
|
5
|
Borén J, Packard CJ, Taskinen MR. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front Endocrinol (Lausanne) 2020; 11:474. [PMID: 32849270 PMCID: PMC7399058 DOI: 10.3389/fendo.2020.00474] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. It is well-established based on evidence accrued during the last three decades that high plasma concentrations of cholesterol-rich atherogenic lipoproteins are causatively linked to CVD, and that lowering these reduces atherosclerotic cardiovascular events in humans (1-9). Historically, most attention has been on low-density lipoproteins (LDL) since these are the most abundant atherogenic lipoproteins in the circulation, and thus the main carrier of cholesterol into the artery wall. However, with the rise of obesity and insulin resistance in many populations, there is increasing interest in the role of triglyceride-rich lipoproteins (TRLs) and their metabolic remnants, with accumulating evidence showing they too are causatively linked to CVD. Plasma triglyceride, measured either in the fasting or non-fasting state, is a useful index of the abundance of TRLs and recent research into the biology and genetics of triglyceride heritability has provided new insight into the causal relationship of TRLs with CVD. Of the genetic factors known to influence plasma triglyceride levels variation in APOC3- the gene for apolipoprotein (apo) C-III - has emerged as being particularly important as a regulator of triglyceride transport and a novel therapeutic target to reduce dyslipidaemia and CVD risk (10).
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Jan Borén
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Benitez-Amaro A, Pallara C, Nasarre L, Rivas-Urbina A, Benitez S, Vea A, Bornachea O, de Gonzalo-Calvo D, Serra-Mir G, Villegas S, Prades R, Sanchez-Quesada JL, Chiva C, Sabido E, Tarragó T, Llorente-Cortés V. Molecular basis for the protective effects of low-density lipoprotein receptor-related protein 1 (LRP1)-derived peptides against LDL aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1302-1316. [PMID: 31077676 DOI: 10.1016/j.bbamem.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Chiara Pallara
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Laura Nasarre
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Angela Vea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Bornachea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - David de Gonzalo-Calvo
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - José Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER DIABETES y Enfermedades Metabólicas Asociadas (CIBERdem), Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabido
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain.
| |
Collapse
|
7
|
Floegel A, Kühn T, Sookthai D, Johnson T, Prehn C, Rolle-Kampczyk U, Otto W, Weikert C, Illig T, von Bergen M, Adamski J, Boeing H, Kaaks R, Pischon T. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 2017; 33:55-66. [PMID: 29181692 PMCID: PMC5803284 DOI: 10.1007/s10654-017-0333-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022]
Abstract
Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105 serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction (MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21–1.40 per one standard deviation increase in metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from 0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI. When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from 0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was consistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly metabolites of the arachidonic acid pathway are independently associated with risk of MI in healthy adults.
Collapse
Affiliation(s)
- Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. .,Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstraße 30, 28359, Bremen, Germany.
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Disorn Sookthai
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Prehn
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Wolfgang Otto
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Cornelia Weikert
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany.,Institute for Social Medicine, Epidemiology and Health Economics, Charité University Medical Center, Berlin, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,University of Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Pischon
- Molecular Epidemiology Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
8
|
Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A. Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. Prog Lipid Res 2017; 66:14-29. [PMID: 28104532 DOI: 10.1016/j.plipres.2017.01.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
Collapse
Affiliation(s)
- S Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK.
| | - V Pellegrinelli
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Campbell
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Oresic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI -20520 Turku, Finland
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
9
|
Sun CQ, Zhong CY, Sun WW, Xiao H, Zhu P, Lin YZ, Zhang CL, Gao H, Song ZY. Elevated Type II Secretory Phospholipase A2 Increases the Risk of Early Atherosclerosis in Patients with Newly Diagnosed Metabolic Syndrome. Sci Rep 2016; 6:34929. [PMID: 27941821 PMCID: PMC5150250 DOI: 10.1038/srep34929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022] Open
Abstract
A critical association between type II secretory phospholipase A2 (sPLA2-IIa) and established atherosclerotic cardiovascular disease has been demonstrated. However, the contribution of sPLA2-IIa to early atherosclerosis remains unknown. This study investigated the association between early-stage atherosclerosis and sPLA2-IIa in metabolic syndrome (MetS) patients. One hundred and thirty-six MetS patients and 120 age- and gender-matched subjects without MetS were included. Serum sPLA2-IIa protein levels and activity were measured using commercial kits. Circulating endothelial activation molecules (vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, and P-selectin), and carotid intima-media thickness (cIMT), were measured as parameters of vascular endothelial dysfunction and early atherosclerosis. MetS patients exhibited significantly higher sPLA2-IIa protein and activity levels than the controls. Both correlated positively with fasting blood glucose and waist circumference in MetS patients. Additionally, MetS patients exhibited strikingly higher levels of endothelial activation molecules and increased cIMT than controls. These levels correlated positively with serum sPLA2-IIa protein levels and activity. Moreover, multivariate analysis showed that high sPLA2-IIa protein and activity levels were independent risk factors of early atherosclerosis in MetS patients. This study demonstrates an independent association between early-stage atherosclerosis and increased levels of sPLA2-IIa, implying that increased sPLA2-IIa may predict early-stage atherosclerosis in MetS patients.
Collapse
Affiliation(s)
- Chang-Qing Sun
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China.,Department of Geriatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Chun-Yan Zhong
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wei-Wei Sun
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Hua Xiao
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Yi-Zhang Lin
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Chen-Liang Zhang
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Hao Gao
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
10
|
Ke LY, Chan HC, Chen CC, Lu J, Marathe GK, Chu CS, Chan HC, Wang CY, Tung YC, McIntyre TM, Yen JH, Chen CH. Enhanced Sphingomyelinase Activity Contributes to the Apoptotic Capacity of Electronegative Low-Density Lipoprotein. J Med Chem 2016; 59:1032-40. [DOI: 10.1021/acs.jmedchem.5b01534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Liang-Yin Ke
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Hua-Chen Chan
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Chih-Chieh Chen
- Institute
of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
| | - Jonathan Lu
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Gopal K. Marathe
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
- Department
of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India
| | | | | | | | | | - Thomas M. McIntyre
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
| | | | - Chu-Huang Chen
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
- New York Heart Research
Foundation, Mineola, New York 11501, United States
| |
Collapse
|
11
|
Pop D, Dădârlat A, Zdrenghea D. Novel cardiovascular risk markers in women with ischaemic heart disease. Cardiovasc J Afr 2015; 25:137-41. [PMID: 25000444 PMCID: PMC4120125 DOI: 10.5830/cvja-2014-014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/14/2014] [Indexed: 11/06/2022] Open
Abstract
Abstract The incidence of coronary heart disease in premenopausal women is lower than in men because of their hormonal protection. Angina pectoris occurs in women about 10 years later than in men. However, mortality from ischaemic heart disease remains higher in women than in men. Current studies are focusing on novel cardiovascular risk biomarkers because it seems that traditional cardiovascular risk factors and their assessment scores underestimate the risk in females. Increased plasma levels of these newly established biomarkers of risk have been found to worsen endothelial dysfunction and inflammation, both of which play a key role in the pathogenesis of microvascular angina, which is very common in women. These novel cardiovascular risk markers can be classified into three categories: inflammatory markers, markers of haemostasis, and other biomarkers.
Collapse
Affiliation(s)
- Dana Pop
- University of Medicine and Pharmacy Iuliu HaŢieganu, Cluj-Napoca, Romania.
| | - Alexandra Dădârlat
- University of Medicine and Pharmacy Iuliu HaŢieganu, Cluj-Napoca, Romania
| | - D Zdrenghea
- University of Medicine and Pharmacy Iuliu HaŢieganu, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Abstract
Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vana Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece ; Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
13
|
Sahmani M, Darabi M, Darabi M, Dabaghi T, Alizadeh SA, Najafipour R. The 763C>G Polymorphism of The Secretory PLA2IIa Gene Is Associated with Endometriosis in Iranian Women. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 8:437-44. [PMID: 25780526 PMCID: PMC4355930 DOI: 10.22074/ijfs.2015.4184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/28/2014] [Indexed: 11/15/2022]
Abstract
Background Endometriosis is a chronic gynecological disease resulting from complex
interactions between genetic, hormonal, environmental and oxidative stress and intrinsic
inflammatory components. The aim of this study was to investigate the potential association of the 763C>G polymorphism in the secretory phospholipase A2 group IIa gene
(PLA2G2A) with the risk of endometriosis in Iranian women. Materials and Methods Ninety seven patients with endometriosis along with 107 women who were negative for endometriosis after laparoscopy and laparatomy, and served as
the control group, were enrolled for this cross-sectional study. Samples were genotyped
using the polymerase chain reaction-restriction fragment length polymorphism method. Results Multivariate analysis was used to examine the association between the risk of endometriosis and the 763C>G polymorphism of PLA2G2A. Genotype distributions of PLA2G2A were significantly different between patients and the controls (p<0.001, OR=0.22, 95%
CI=0.21-0.39). Correlation analysis showed that there was a significant association between
the normal homozygous genotype and susceptibility to endometriosis (p<0.001). Conclusion The present study suggests that the 763C>G polymorphism of PLA2G2A plays
an important role as an independent factor in the risk of endometriosis in Iranian women.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Darabi
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Safar Ali Alizadeh
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
14
|
|
15
|
Abstract
Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further inroads into the understanding, detection and treatment of ischaemic heart disease.
Collapse
|
16
|
LysoPC and PAF Trigger Arachidonic Acid Release by Divergent Signaling Mechanisms in Monocytes. J Lipids 2011; 2011:532145. [PMID: 21912747 PMCID: PMC3170782 DOI: 10.1155/2011/532145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/29/2011] [Accepted: 05/28/2011] [Indexed: 11/17/2022] Open
Abstract
Oxidized low-density lipoproteins (LDLs) play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC). LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF) receptor. Here, we report that PAF triggers a pertussis toxin- (PTX-) sensitive intracellular signaling pathway leading to sequential activation of sPLA(2), PLD, cPLA(2), and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA(2), and a second parallel PTX-sensitive pathway activating cPLA(2) with concomitant activation of sPLA(2), all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.
Collapse
|
17
|
Hiukka A, Ståhlman M, Pettersson C, Levin M, Adiels M, Teneberg S, Leinonen ES, Hultén LM, Wiklund O, Orešič M, Olofsson SO, Taskinen MR, Ekroos K, Borén J. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 2009; 58:2018-26. [PMID: 19502413 PMCID: PMC2731525 DOI: 10.2337/db09-0206] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Apolipoprotein CIII (apoCIII) is an independent risk factor for cardiovascular disease, but the molecular mechanisms involved are poorly understood. We investigated potential proatherogenic properties of apoCIII-containing LDL from hypertriglyceridemic patients with type 2 diabetes. RESEARCH DESIGN AND METHODS LDL was isolated from control subjects, subjects with type 2 diabetes, and apoB transgenic mice. LDL-biglycan binding was analyzed with a solid-phase assay using immunoplates coated with biglycan. Lipid composition was analyzed with mass spectrometry. Hydrolysis of LDL by sphingomyelinase was analyzed after labeling plasma LDL with [(3)H]sphingomyelin. ApoCIII isoforms were quantified after isoelectric focusing. Human aortic endothelial cells were incubated with desialylated apoCIII or with LDL enriched with specific apoCIII isoforms. RESULTS We showed that enriching LDL with apoCIII only induced a small increase in LDL-proteoglycan binding, and this effect was dependent on a functional site A in apoB100. Our findings indicated that intrinsic characteristics of the diabetic LDL other than apoCIII are responsible for further increased proteoglycan binding of diabetic LDL with high-endogenous apoCIII, and we showed alterations in the lipid composition of diabetic LDL with high apoCIII. We also demonstrated that high apoCIII increased susceptibility of LDL to hydrolysis and aggregation by sphingomyelinases. In addition, we demonstrated that sialylation of apoCIII increased with increasing apoCIII content and that sialylation of apoCIII was essential for its proinflammatory properties. CONCLUSIONS We have demonstrated a number of features of apoCIII-containing LDL from hypertriglyceridemic patients with type 2 diabetes that could explain the proatherogenic role of apoCIII.
Collapse
Affiliation(s)
- Anne Hiukka
- Department of Medicine, Helsinki University Central Hospital and Biomedicum, Helsinki, Finland
| | - Marcus Ståhlman
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Camilla Pettersson
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Malin Levin
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Susanne Teneberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Eeva S. Leinonen
- Department of Medicine, Helsinki University Central Hospital and Biomedicum, Helsinki, Finland
| | - Lillemor Mattsson Hultén
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olov Wiklund
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Matej Orešič
- Technical Research Centre of Finland VTT, Espoo, Finland
| | - Sven-Olof Olofsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Department of Medicine, Helsinki University Central Hospital and Biomedicum, Helsinki, Finland
| | | | - Jan Borén
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory and the Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Corresponding author: Jan Borén,
| |
Collapse
|
18
|
Solakivi T, Kunnas T, Kärkkäinen S, Jaakkola O, Nikkari ST. Arachidonic acid increases matrix metalloproteinase 9 secretion and expression in human monocytic MonoMac 6 cells. Lipids Health Dis 2009; 8:11. [PMID: 19331685 PMCID: PMC2667508 DOI: 10.1186/1476-511x-8-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/30/2009] [Indexed: 01/26/2023] Open
Abstract
Background Dietary fatty acids may modulate inflammation in macrophages of the atherosclerotic plaque, affecting its stability. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) generally promotes inflammation, while the PUFAs of the n-3 series eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) are considered anti-inflammatory. We determined how these PUFAs influence MMP-9 expression and secretion by the human monocytic cell line (MonoMac 6) at baseline and after 24-hour exposure. MMP-9 protein was measured by zymography and relative levels of MMP-9 mRNA were determined using quantitative real time PCR. Results Supplementation with AA (but not the n-3 fatty acids) increased, in a dose-dependent manner, expression of MMP-9 protein. This stimulation was regulated at the mRNA level. MMP-9 secretion started after 1 h of incubation and could not be prevented by simultaneous presence of n-3 series fatty acids. Finally, the secretion could be attenuated by LY 294002, a specific phosphatidylinositol-3-kinase (PI3K) inhibitor and by SH-5, a selective Akt inhibitor, suggesting that activation of PI3K by AA leads to augmented and sustained MMP-9 production. Conclusion This study shows that of the PUFA studied, AA alone influences the expression of MMP-9, which might have implications in MMP-9 induced plaque rupture.
Collapse
Affiliation(s)
- Tiina Solakivi
- Department of Medical Biochemistry, University of Tampere Medical School, Finland.
| | | | | | | | | |
Collapse
|
19
|
Bergheanu SC, Reijmers T, Zwinderman AH, Bobeldijk I, Ramaker R, Liem AH, van der Greef J, Hankemeier T, Jukema JW. Lipidomic approach to evaluate rosuvastatin and atorvastatin at various dosages: investigating differential effects among statins. Curr Med Res Opin 2008; 24:2477-87. [PMID: 18655752 DOI: 10.1185/03007990802321709] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Lipid profiling (lipidomics) may be useful in revealing detailed information with regard to the effects on lipid metabolism, the cardiovascular risk and to differentiate between therapies. The aims of the present study were to: (1) analyze in depth the lipid changes induced by rosuvastatin and atorvastatin at different dosages; (2) compare differences between the two drugs with respect to the lipid profile change; (3) relate the findings with meaningful pathological mechanisms of coronary artery disease. RESEARCH DESIGN AND METHODS Liquid chromatography-mass spectrometry was applied to obtain the metabolite profiles of plasma samples taken from a prospectively defined subset (n=80) of participants in the RADAR study where a randomly assigned treatment with rosuvastatin or atorvastatin in increasing dosages was administered during an 18-week period. RESULTS A number of sphingomyelins (SPMs) and phosphatidylcholines (PCs) correlate with the different effects of the two statins on the LDL-C/HDL-C ratio. Rosuvastatin increased the plasma concentration of PCs after 6 and 18 weeks, while atorvastatin reduced the plasma concentrations of PCs at both timepoints and dosages (p<0.01 for between-treatment comparison). Both atorvastatin and rosuvastatin lowered plasma SPMs concentrations, but atorvastatin demonstrated a more pronounced effect with the highest dose (p=0.03). Rosuvastatin resulted in a significantly more effective lowering of the [SPMs/(SPMs + PCs)] ratio than atorvastatin at any dose/timepoint (p<0.05), a ratio reported to be of clinical importance in coronary artery disease. CONCLUSIONS The lipidomic technique has revealed that statins are different with regards to the effect on detailed lipid profile. The observed difference in lipids may be connected with different clinical outcomes as suggested by the [SPMs/(SPMs + PCs)] ratio.
Collapse
|
20
|
Tsao FHC, Shanmuganayagam D, Zachman DK, Khosravi M, Folts JD, Meyer KC. A continuous fluorescence assay for the determination of calcium-dependent secretory phospholipase A2 activity in serum. Clin Chim Acta 2007; 379:119-26. [PMID: 17292873 DOI: 10.1016/j.cca.2006.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/27/2006] [Accepted: 12/27/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Calcium-dependent secretory phospholipase A(2)-IIA (sPLA(2)-IIA) in the circulation is a marker of inflammation, associated with acute and chronic disease processes. We describe a quick, sensitive and reliable microplate continuous fluorescence assay for determining sPLA(2) activity in serum. METHODS Liposomes composed of a fluorescent probe and varying amounts of L-alpha-phosphatidylglycerol (PG) and 1,2-dioleoyl-L-alpha-phosphatidylcholine (DOPC) were used as substrates to determine the optimal protocol for sPLA(2) activity determination without interference from serum albumin and lipoproteins. RESULTS Hydrolysis of the labeled substrate by sPLA(2)-IIA, characterized by increase in fluorescence intensity (FI) and confirmed by end-product analysis, occurred in a time-, calcium-, and protein-dependent manner. Liposomes containing 100% PG were most suitable for measurement of sPLA(2) activity without interference from serum components; LDL produced a Ca(2+)-independent increase in FI when liposomes containing DOPC were used. The assay determined that sPLA(2) activity in serum spiked with sPLA(2)-IIA and illustrated that endogenous sPLA(2) activity was markedly higher in sera from patients with sepsis than in healthy subjects. Intra-assay and inter-assay CVs were in the ranges of 1.6-8.8% and 3.0-11.5%, respectively. CONCLUSIONS The described method has potential for rapid and sensitive screening of sPLA(2) activity in both clinical and research settings.
Collapse
Affiliation(s)
- Francis H C Tsao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Preiss S, Namgaladze D, Brüne B. Critical role for classical PKC in activating Akt by phospholipase A2-modified LDL in monocytic cells. Cardiovasc Res 2006; 73:833-40. [PMID: 17261275 DOI: 10.1016/j.cardiores.2006.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 12/05/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Modification of low density lipoprotein (LDL) by phospholipases confers pro-atherogenic properties, although signalling pathways of phospholipase-modified LDL (PLA-LDL) remain obscure. We questioned whether members of the protein kinase C (PKC) family are involved in PLA-LDL-induced Akt phosphorylation and survival of THP-1 monocytic cells. METHODS Akt phosphorylation in THP-1 cells was monitored by Western analysis. To modulate PKC expression cells were transfected with dominant-negative enhanced green fluorescent protein linked PKCalpha (PKCalpha-EGFP K368R) and PKCbeta (PKCbeta-EGFP K371M) constructs or with siRNA specific for PKCalpha/PKCbeta using nucleofection technology. Cell survival was assessed by Annexin V/propidium iodide staining or mitochondrial membrane potential measurement with 3,3'-dihexyloxacarbocyanine iodide (DiOC(6)) using flow cytometry. RESULTS Inhibitors of phospholipase C (PLC) or classical PKCs as well as PKC depletion following phorbol ester treatments, blocked Akt phosphorylation in response to PLA-LDL. In contrast, phosphatidylinositol 3-kinase (PI3K) activation by PLA-LDL was insensitive to PKC inhibition. Using RNA interference to knockdown PKCalpha and overexpression of dominant-negative PKCalpha as well as PKCbeta drastically lowered Akt phosphorylation after PLA-LDL. Moreover, inhibition of PKC attenuated a PLA-LDL-induced survival response towards oxidative stress in THP-1 cells. CONCLUSION We show that PKCalpha and PKCbeta are critical for PLA-LDL-induced Akt phosphorylation and survival in THP-1 monocytic cells.
Collapse
Affiliation(s)
- Stefan Preiss
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
22
|
Oestvang J, Johansen B. PhospholipaseA2: A key regulator of inflammatory signalling and a connector to fibrosis development in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1309-16. [PMID: 16904370 DOI: 10.1016/j.bbalip.2006.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 06/23/2006] [Accepted: 06/24/2006] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease that takes place in the intima of the arterial wall. It is characterized by activation of endothelial cells, proliferation of smooth muscle cells and macrophages, accumulation of lipoproteins, deposition of extracellular matrix components and enhanced lipolytic enzyme activity. Phospholipase A(2) (PLA(2)) has been postulated to play an important role in the inflammatory process of atherosclerosis, but its molecular mechanism is uncertain. The secretory PLA(2) is expressed at increased levels in an atherosclerotic plaque and may hydrolyze low-density lipoproteins (LDL). This action promotes the production of pro-inflammatory lipids such as lysophospholipids, unsaturated fatty acids and eicosanoids. The current review highlights recent findings on how LDL-derived lipid mediators, generated by sPLA_2 modification of LDL, regulate pro-inflammatory activation and intracellular signaling in macrophages. Moreover, the review discusses how PLA_2 enzymes regulate signalling that promotes collagen accumulation and fibrotic plaque development. PLA_2 could therefore function as a connector between inflammation and fibrosis, the latter being an endpoint of chronic inflammation.
Collapse
Affiliation(s)
- Janne Oestvang
- Department of Biology, Section for Molecular Biology and Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | |
Collapse
|
23
|
Wootton PTE, Drenos F, Cooper JA, Thompson SR, Stephens JW, Hurt-Camejo E, Wiklund O, Humphries SE, Talmud PJ. Tagging-SNP haplotype analysis of the secretory PLA2IIa gene PLA2G2A shows strong association with serum levels of sPLA2IIa: results from the UDACS study. Hum Mol Genet 2005; 15:355-61. [PMID: 16368710 DOI: 10.1093/hmg/ddi453] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent prospective analysis identified secretory phospholipase A(2)-IIa (sPLA(2)IIa) as a coronary artery disease (CAD) risk predictor. This study aimed to examine the relationship between serum levels of sPLA(2)IIa and variation in the sPLA(2)IIa gene (PLA2G2A) in a cohort of patients with Type II diabetes (T2D) mellitus. Six tagging single nucleotide polymorphisms (tSNPs) accounting for > 92% of the genetic variability in PLA2G2A were identified and distinguished six common haplotypes (frequencies > 5%). In the 523 Caucasian T2D patients, levels of sPLA(2)IIa, independent of CRP, were negatively correlated with total antioxidant status (P = 0.003) and high-density lipoprotein cholesterol (P = 0.006) in men and correlated with CAD status in women (P = 0.002) (Odds ratio of top two tertiles versus bottom = 2.50) [95% CI (1.13-5.53) P = 0.024]. Overall, tSNP haplotypes showed a highly significant association with sPLA(2)IIa levels (P < 0.0001), explaining 6.3% of the variance. The most common haplotype (frequency 14.2%) was associated with 53% higher sPLA(2)IIa levels [3.25 ng/ml (+/- 0.14)] compared with the combined other haplotypes [2.13 ng/ml (+/- 0.09), P < 0.00001]. Five of the six tSNPs were associated with significant effects on sPLA(2)IIa levels but the raising haplotype could not be distinguished by a single tSNP and none are likely to be functional. These data confirm the relationship between elevated sPLA(2)IIa levels and CAD risk reported in both cases: control and prospective analyses. The strong impact of PLA2G2A haplotypic variation on sPLA(2)IIa levels will help clarify the causality of this association.
Collapse
Affiliation(s)
- Peter T E Wootton
- Division of Cardiovascular Genetics, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London WC1E 6JF, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boekholdt SM, Keller TT, Wareham NJ, Luben R, Bingham SA, Day NE, Sandhu MS, Jukema JW, Kastelein JJP, Hack CE, Khaw KT. Serum Levels of Type II Secretory Phospholipase A2 and the Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women. Arterioscler Thromb Vasc Biol 2005; 25:839-46. [PMID: 15692105 DOI: 10.1161/01.atv.0000157933.19424.b7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To study the prospective relationship between serum levels of type II secretory phospholipase A2 (sPLA2) and the risk of future coronary artery disease (CAD) in apparently healthy men and women. METHODS AND RESULTS We conducted a prospective nested case-control study among apparently healthy men and women aged 45 to 79 years. Cases (n=1105) were people in whom fatal or nonfatal CAD developed during follow-up. Controls (n=2209) were matched by age, sex, and enrollment time. sPLA2 levels were significantly higher in cases than controls (9.5 ng/mL; interquartile range [IQR], 6.4 to 14.8 versus 8.3 ng/mL; IQR, 5.8 to 12.6; P<0.0001). sPLA2 plasma levels significantly correlated with age, body mass index, systolic blood pressure, high-density lipoprotein (HDL) cholesterol levels, and C-reactive protein (CRP) levels. Taking into account matching for sex and age and adjusting for body mass index, smoking, diabetes, systolic blood pressure, low-density lipoprotein cholesterol, HDL cholesterol, and CRP levels, the risk of future CAD was 1.34 (1.02 to 1.71; P=0.02) for people in the highest sPLA2 quartile, compared with those in the lowest (P for linearity=0.03). CONCLUSIONS Elevated levels of sPLA2 were associated with an increased risk of future CAD in apparently healthy individuals. The magnitude of the association was similar to that observed between CRP and CAD risk, and both associations were independent.
Collapse
|
25
|
Ghesquiere SAI, Gijbels MJJ, Anthonsen M, van Gorp PJJ, van der Made I, Johansen B, Hofker MH, de Winther MPJ. Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 2005; 46:201-10. [PMID: 15576846 DOI: 10.1194/jlr.m400253-jlr200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vessel wall characterized by the accumulation of lipid-laden macrophages and fibrotic material. The initiation of the disease is accompanied by the accumulation of modified lipoproteins in the vessel wall. Group IIa secretory phospholipase A2 (sPLA2 IIa) is a key candidate player in the enzymatic modification of low density lipoproteins. To study the role of sPLA2 IIa in macrophages during atherogenesis, transgenic mice were generated using the human sPLA2 IIa gene and the CD11b promoter. Bone marrow transplantation to LDL receptor-deficient mice was performed to study sPLA2 IIa in atherosclerosis. After 10 weeks of high-fat diet, mice overexpressing sPLA2 IIa in macrophages showed 2.3-fold larger lesions compared with control mice. Pathological examination revealed that sPLA2 IIa-expressing mice had increased collagen in their lesions, independent of lesion size. However, smooth muscle cells or fibroblasts in the lesions were not affected. Other parameters studied, including T-cells and cell turnover, were not significantly affected by overexpression of sPLA2 IIa in macrophages. These data clearly show that macrophage sPLA2 IIa is a proatherogenic factor and suggest that the enzyme regulates collagen production in the plaque and thus fibrotic cap development.
Collapse
Affiliation(s)
- Stijn A I Ghesquiere
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|