1
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
2
|
Liang L, Song J, Miao S, Xie Q, Li W, Huang H, Shen D, Zhang W. Modulation of lipid profile by secretory phospholipase A2 group IIA: Verification with a transgenic mouse model. Biochem Biophys Res Commun 2024; 712-713:149955. [PMID: 38640737 DOI: 10.1016/j.bbrc.2024.149955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.
Collapse
Affiliation(s)
- Ling Liang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Jing Song
- Laboratory Animal Center, Xiamen University, Xiamen, 361005, China
| | - Shisheng Miao
- Department of Cardiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Qiang Xie
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongyan Shen
- Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei Zhang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
3
|
Bai X, Wang S, Shu L, Cao Q, Hu H, Zhu Y, Chen C. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-ⅡA signaling in macrophages in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118006. [PMID: 38442806 DOI: 10.1016/j.jep.2024.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 μg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1β (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.
Collapse
Affiliation(s)
- Xufeng Bai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shuwen Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Limei Shu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qingyu Cao
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China
| | - Huiming Hu
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi, 330052, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Yanchen Zhu
- College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
4
|
Abstract
Within just a month of the first case of idiopathic pneumonia, on 30 January 2020, WHO declared the outbreak, a Public Health Emergency of International Concern. On 11 February 2019, the Internal Committee on Taxonomy of Virus (ICTV) announced the name of the novel virus as "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" and on 11 March 2020, WHO declared it a global pandemic. As a preventive measure, the government of several countries has imposed quarantine and isolation for preventing the further spread of disease. Both of these restrict outdoor activities, which can directly affect the lifestyle of citizens. Quarantine for the long term can result in increased lifestyle disease, mainly cardiovascular diseases, and obesity.
Collapse
Affiliation(s)
- Heena Rehman
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Md Iftekhar Ahmad
- Department of Pharmaceutics, Shri Gopichand College of Pharmacy, Baghpat, India
| |
Collapse
|
5
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
6
|
Bansal P, Singh N, Joshi J, Arora N, Gaur SN. Choline chloride attenuates the allergic airway disease by inhibiting the lysophosphatidylcholine induced response in mouse model. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100109. [PMID: 35707627 PMCID: PMC9188963 DOI: 10.1016/j.crphar.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Aims Allergic airway disease manifestation is induced by lysophosphatidylcholine (LPC) through CD1d-restricted Natural killer T (NKT) cells. Choline chloride (ChCl) and LPC both have the “choline” moiety in their structure and this may interplay the effect in allergic airway disease pathway. Main methods To test the hypothesis, mice were sensitized with cockroach extract (CE); challenged with CE or exposed to LPC and were given ChCl 1hr later. Key findings A significant increase in Airway hyperresponsiveness (AHR), total and differential cell count, Th2 cytokines, 8-isoprostanes level in bronchoalveolar lavage fluid (BALF) and inflammation score based on lung histology were observed on challenge with CE or exposure to LPC (p < 0.05) indicating LPC induced airway disease manifestation in mice. These parameters were reduced significantly after administering mice with ChCl (p < 0.05). The inflammatory parameters were significantly increased in LPC exposed mice, not sensitized with CE, which were significantly decreased when mice were administered with ChCl demonstrating its role in the inhibition of LPC induced allergic airway disease manifestation. Docking of CD1d with LPC and ChCl indicated the competitive inhibition of LPC induced effect by ChCl. This was validated in vivo in the form of decreased CD1d-restricted NKT cells in BALF and lung of the immunized mice on ChCl administration. There was no effect of ChCl administration on CD1d expression in BALF and lung cells. Significance This study shows that ChCl attenuates the allergic response by inhibiting the LPC induced- NKT cell mediated AHR, inflammation and oxidative stress by competitive inhibition to LPC in binding to CD1d. ChCl down regulates LPC (critical for allergic manifestation) induced response. Results were validated in cockroach extract immunized mice model. In silico studies indicate competitive inhibition to LPC by ChCl in binding to CD1d. In silico results were also validated in vivo in terms of CD1d-restricted NKT cells. Study explains the mechanism of ChCl action against allergic disease.
Collapse
Affiliation(s)
- Preeti Bansal
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Jayadev Joshi
- Microbial Biotechnology & Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Shailendera N. Gaur
- Department of Pulmonary Medicine, V.P.Chest Institue, Delhi University, Delhi, India
- Corresponding author. Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Liang L, Xie Q, Sun C, Wu Y, Zhang W, Li W. Phospholipase A2 group IIA correlates with circulating high-density lipoprotein cholesterol and modulates cholesterol efflux possibly through regulation of PPAR-γ/LXR-α/ABCA1 in macrophages. J Transl Med 2021; 19:484. [PMID: 34838043 PMCID: PMC8626914 DOI: 10.1186/s12967-021-03151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Secretory phospholipase A2 group IIA (sPLA2-IIA) is an independent risk factor for cardiovascular disease, but its role on high-density lipoprotein cholesterol (HDL-C) level has not been clarified. The aim of the present study was to explore the association between circulating sPLA2-IIA and HDL-C, and to evaluate if sPLA2-IIA enhances cholesterol efflux capacity through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ), liver X receptor α (LXR-α), and ATP-binding cassette A1 (ABCA1). Methods 131 patients with coronary artery disease were enrolled. The plasma level of sPLA2-IIA was tested with enzyme-linked immunosorbent assay kit, and serum lipids were assessed by biochemical analyzer. Human monocyte-macrophage cell line THP-1 was co-incubated with sPLA2-IIA in the presence/absence of selective PPAR-γ antagonist GW9662 in vitro. Real-time PCR and Western-blot were employed to measure the mRNA and protein expressions of PPAR-γ, LXR-α, and ABCA1, respectively. The cholesterol efflux was evaluated by using an assay kit. Results In subjects, circulating level of sPLA2-IIA was positively related with that of HDL-C (r = 0.196, p = 0.024). The plasma level of sPLA2-IIA was significantly higher in the high HDL-C (≥ 1.04 mmol/L) group (7477.828 pg/mL) than that in low HDL-C (< 1.04 mmol/L) group (5836.92 pg/mL, p = 0.004). For each increase of 1 pg/μl in sPLA2-IIA level, the adjusted odds ratio for HDL-C ≥ 1.04 mmol/L was 1.143. Co-incubation of THP-1 cells with sPLA2-IIA resulted in increased expressions of PPAR-γ, LXR-α, and ABCA1, as well as enhanced cholesterol efflux capacity, that were all reversed by administration of GW9662. Conclusions Circulating sPLA2-IIA was positively associated with HDL-C. PPAR-γ/LXR-α/ABCA1 might be responsible for sPLA2-IIA-regulated cholesterol efflux in macrophages. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03151-3.
Collapse
Affiliation(s)
- Ling Liang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Qiang Xie
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yuanhui Wu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China. .,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
8
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
9
|
Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics. Clin Chim Acta 2020; 513:34-42. [PMID: 33307061 DOI: 10.1016/j.cca.2020.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Lipid mediators play an essential role in the pathogenesis of asthma. Many studies on the differential expression of sphingolipids and fatty acid exist, but relatively few concerned about glycerophospholipid (GP) metabolites in asthma. Here, plasma samples from 20 healthy controls and 24 asthmatic patients were collected and analyzed. High-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) revealed that 29 GPs were identified and relatively quantified as differential metabolites for discriminating asthma patients and healthy subjects, consisting of six major subclasses of GPs. Moreover, a significant relevance was found between the selected metabolites and diagnostic and prognostic indicators of asthma. Remarkably, in subgroup analyses, plasma phosphatidic acid (PA), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) levels were higher in patients with eosinophilic asthma than non-eosinophilic asthma. Receiver-operating characteristic curve analysis revealed that the power of plasma PA and PG levels to distinguish between asthmatic patients and healthy subjects was strong (all areas under the curves > 0.9; P < 0.05). Our study characterized circulating GP metabolites in patients with asthma and explored their clinical relevance which may help to develop reliable biomarkers for early and accurate diagnosis based on lipid metabolites and provide novel insight into the role of GPs in asthma.
Collapse
|
10
|
Huo TG, Fang Y, Zhang YH, Feng C, Jiang H. Liver metabonomics study on the protective effect of glycyrrhetinic acid against realgar-induced liver injury. Chin J Nat Med 2020; 18:138-147. [PMID: 32172949 DOI: 10.1016/s1875-5364(20)30014-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 10/24/2022]
Abstract
Glycyrrhetinic acid (GA) is the bioactive ingredient in Glycyrrhizae Radix et Rhizoma. Our previous study has reported that GA has protective effect on realgar-induced hepatotoxicity. However, the details of the hepatoprotective mechanisms of GA on realgar-induced liver injury remain to be elucidated. In the study, mice were divided into control, GA-control, realgar, and co-treated groups. Their liver tissues were used for metabonomics study by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method. The results illustrate that GA significantly ameliorate the liver injury and metabolic perturbations caused by realgar. Some metabolites, such as phenylalanine, pyroglutamic acid (PGA), proline, carnitine, nicotinamide, choline, lysophosphatidylcholine (LPC) 16 : 0 and LPC 18 : 2 were found responsible for the hepatoprotective effect of GA. These metabolites are associated with the methylation metabolism of arsenic, cell membrane structure, energy metabolism and oxidative stress. From the results of this study, we infer that the potential hepatoprotective mechanism of GA on realgar-induced liver injury may be associated with reducing arsenic accumulation and its methylation metabolism in the liver, promoting the conjugation of arsenic and GSH to play detoxification effect, and ameliorating the liver metabolic perturbations caused by realgar.
Collapse
Affiliation(s)
- Tao-Guang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ying Fang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ying-Hua Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
12
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
13
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
14
|
Secreted Phospholipase A 2-IIA Modulates Transdifferentiation of Cardiac Fibroblast through EGFR Transactivation: An Inflammation-Fibrosis Link. Cells 2020; 9:cells9020396. [PMID: 32046347 PMCID: PMC7072256 DOI: 10.3390/cells9020396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) is a pro-inflammatory protein associated with cardiovascular disorders, whose functions and underlying mechanisms in cardiac remodelling are still under investigation. We herein study the role of sPLA2-IIA in cardiac fibroblast (CFs)-to-myofibroblast differentiation and fibrosis, two major features involved in cardiac remodelling, and also explore potential mechanisms involved. In a mice model of dilated cardiomyopathy (DCM) after autoimmune myocarditis, serum and cardiac sPLA2-IIA protein expression were found to be increased, together with elevated cardiac levels of the cross-linking enzyme lysyl oxidase (LOX) and reactive oxygen species (ROS) accumulation. Exogenous sPLA2-IIA treatment induced proliferation and differentiation of adult rat CFs. Molecular studies demonstrated that sPLA2-IIA promoted Src phosphorylation, shedding of the membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) ectodomain and EGFR phosphorylation, which triggered phosphorylation of ERK, P70S6K and rS6. This was also accompanied by an up-regulated expression of the bone morphogenic protein (BMP)-1, LOX and collagen I. ROS accumulation were also found to be increased in sPLA2-IIA-treated CFs. The presence of inhibitors of the Src/ADAMs-dependent HB-EGF shedding/EGFR pathway abolished the CF phenotype induced by sPLA2-IIA. In conclusion, sPLA2-IIA may promote myofibroblast differentiation through its ability to modulate EGFR transactivation and signalling as key mechanisms that underlie its biological and pro-fibrotic effects.
Collapse
|
15
|
Akinkuolie AO, Lawler PR, Chu AY, Caulfield M, Mu J, Ding B, Nyberg F, Glynn RJ, Ridker PM, Hurt-Camejo E, Chasman DI, Mora S. Group IIA Secretory Phospholipase A 2, Vascular Inflammation, and Incident Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 39:1182-1190. [PMID: 31070471 DOI: 10.1161/atvbaha.118.311894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective- Inflammation is a causal risk factor for cardiovascular disease (CVD). sPLA2-IIA (group IIA secretory phospholipase A2) plays an integral role in regulating vascular inflammation. Although studies investigated sPLA2-IIA in secondary prevention, we prospectively evaluated sPLA2-IIA mass and genetic variants with CVD events in a primary prevention population with chronic inflammation. Approach and Results- The JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin) randomized participants with LDL (low-density lipoprotein) <130 mg/dL and hsCRP (high-sensitivity C-reactive protein) ≥2 mg/L to high-intensity rosuvastatin versus placebo. Baseline and 1-year plasma sPLA2-IIA mass was measured (N=11 269 baseline; N=9620 1 year). We also identified genetic variants influencing sPLA2-IIA using genome-wide association and examined them with CVD. Three hundred thirteen incident CVD events occurred during follow-up. Baseline sPLA2-IIA mass (median, 25th-75th percentile: 3.81, 2.49-6.03 ng/mL) was associated with increased risk of CVD: risk factor-adjusted hazard ratio (95% CI; P) per SD increment: 1.22 (1.08-1.38; P=0.002). This remained significant (1.18; 1.04-1.35; P=0.01) after incrementally adjusting for hsCRP. Similar estimates were observed in rosuvastatin and placebo groups ( P treatment interaction>0.05). The rs11573156C variant in PLA2G2A (encoding sPLA2-IIA) had the strongest effect on sPLA2-II: median (25th-75th percentile, ng/mL) for CC and GG genotypes: 2.79 (1.97-4.01) and 7.38 (5.38-10.19), respectively; and had nonsignificant trend for higher CVD risk (hazard ratio, 1.11; 95% CI, 0.89-1.38; P=0.34). Conclusions- In the JUPITER population recruited on chronic inflammation, sPLA2-IIA mass was associated with CVD risk relating to vascular inflammation not fully reflected by hsCRP. Additional studies, including larger functional genetic and clinical studies, are needed to determine whether sPLA2-IIA may be a potential pharmacological target for primary prevention of CVD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT00239681.
Collapse
Affiliation(s)
- Akintunde O Akinkuolie
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (A.O.A.)
| | - Patrick R Lawler
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Peter Munk Cardiac Centre, Toronto General Hospital, ON, Canada (P.R.L.).,Heart and Stroke/Richard Lewar Centre for Excellence in Cardiovascular Research, University of Toronto, ON, Canada (P.R.L.)
| | - Audrey Y Chu
- Merck Research Laboratories, Boston, MA (A.Y.C.)
| | - Michael Caulfield
- Department of Endocrinology & CVD, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA (M.C., J.M.)
| | - Jianying Mu
- Department of Endocrinology & CVD, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA (M.C., J.M.)
| | - Bo Ding
- Medical Evidence & Observational Research, Global Medical Affairs (B.D., F.N.), AstraZeneca R&D, Mölndal, Sweden
| | - Fredrik Nyberg
- Medical Evidence & Observational Research, Global Medical Affairs (B.D., F.N.), AstraZeneca R&D, Mölndal, Sweden.,Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden (F.N.)
| | - Robert J Glynn
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA (R.J.G.)
| | - Paul M Ridker
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Cardiovascular Medicine (P.M.R., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Eva Hurt-Camejo
- Cardiovascular & Metabolic Diseases, Innovative Medicines (E.H.-C.), AstraZeneca R&D, Mölndal, Sweden.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (E.H.-C.)
| | - Daniel I Chasman
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Samia Mora
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Cardiovascular Medicine (P.M.R., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
16
|
Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, Liu Y, Ma Y, Luo H, Shang S, Zhang J, He F, Yu S, Gan L, Shi C, Li Y, Yang W, Liang H, Miao H. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 2018; 9:2574. [PMID: 29968710 PMCID: PMC6030061 DOI: 10.1038/s41467-018-04999-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Rongchen Shi
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Chen
- Department of General Surgery, PLA 324 Hospital, Chongqing, 400020, China
| | - Lili Zhang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Along Hou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyin Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yingzhe Liu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yue Ma
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Huan Luo
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Shenglan Shang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Jinyu Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Songtao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yongsheng Li
- Clinical Medicine Research Center & Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences & Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Yap WH, Ooi BK, Ahmed N, Lim YM. Maslinic acid modulates secreted phospholipase A2-IIA (sPLA2-IIA)-mediated inflammatory effects in macrophage foam cells formation. J Biosci 2018. [DOI: 10.1007/s12038-018-9745-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kuefner MS, Pham K, Redd JR, Stephenson EJ, Harvey I, Deng X, Bridges D, Boilard E, Elam MB, Park EA. Secretory phospholipase A 2 group IIA modulates insulin sensitivity and metabolism. J Lipid Res 2017; 58:1822-1833. [PMID: 28663239 DOI: 10.1194/jlr.m076141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Secretory phospholipase A2 group IIA (PLA2G2A) is a member of a family of secretory phospholipases that have been implicated in inflammation, atherogenesis, and antibacterial actions. Here, we evaluated the role of PLA2G2A in the metabolic response to a high fat diet. C57BL/6 (BL/6) mice do not express PLA2g2a due to a frameshift mutation. We fed BL/6 mice expressing the human PLA2G2A gene (IIA+ mice) a fat diet and assessed the physiologic response. After 10 weeks on the high fat diet, the BL/6 mice were obese, but the IIA+ mice did not gain weight or accumulate lipid. The lean mass in chow- and high fat-fed IIA+ mice was constant and similar to the BL/6 mice on a chow diet. Surprisingly, the IIA+ mice had an elevated metabolic rate, which was not due to differences in physical activity. The IIA+ mice were more insulin sensitive and glucose tolerant than the BL/6 mice, even when the IIA+ mice were provided the high fat diet. The IIA+ mice had increased expression of uncoupling protein 1 (UCP1), sirtuin 1 (SIRT1), and PPARγ coactivator 1α (PGC-1α) in brown adipose tissue (BAT), suggesting that PLA2G2A activates mitochondrial uncoupling in BAT. Our data indicate that PLA2G2A has a previously undiscovered impact on insulin sensitivity and metabolism.
Collapse
Affiliation(s)
- Michael S Kuefner
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Kevin Pham
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Jeanna R Redd
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Erin J Stephenson
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Innocence Harvey
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Xiong Deng
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Dave Bridges
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Faculté de Médecine de l'Université Laval, CHUQ Research Center and Division of Rheumatology, Quebec City, Canada
| | - Marshall B Elam
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Edwards A Park
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN .,Department of Veterans Affairs Medical Center, Memphis, TN
| |
Collapse
|
19
|
Xie Q, Zhang D. Effects of Statins and Xuezhikang on the Expression of Secretory Phospholipase A2, Group IIA in Rat Vascular Smooth Muscle Cells. Int Heart J 2017; 58:115-124. [PMID: 28123160 DOI: 10.1536/ihj.16-163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is a multifactorial vascular disease characterized by formation of inflammatory lesions. Secretory phospholipase A2, group IIA (sPLA2-IIA) is involved in this process and plays a critical role. However, the exact role of sPLA2-IIA in cardiovascular inflammation is more complicated and remains unclear. Furthermore, both statins and Xuezhikang (XZK) are widely used in the prevention and treatment of cardiovascular disease risk because of their pleiotropic effects on the cardiovascular system. However, their effects on sPLA2-IIA are still controversial. We investigated the regulation of sPLA2-IIA by rat thoracic aorta smooth muscle cells (VSMCs) in culture. Cells were first incubated with IL-1β alone to induce expression of sPLA2-IIA and then treated with several concentrations of statins or XZK for different times in the absence or presence of IL-1β. We tested the expression of sPLA2-IIA, including sPLA2-IIA mRNA, protein, as well as activity. We found that statins or IL-1β increase the expression of sPLA2-IIA in VSMCs and the effect is based on a synergetic relationship between them. However, for the first time, we observed that XZK effectively reduces sPLA2-IIA expression in IL-1β-treated VSMCs. Our findings may shine a new light on the clinical use of XZK and statins in the prevention and treatment of atherosclerosis-related thrombosis.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Cardiology, The First Hospital of Xiamen University
| | | |
Collapse
|
20
|
Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, Kang H, Huang L. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep 2016; 6:30053. [PMID: 27530451 PMCID: PMC4987643 DOI: 10.1038/srep30053] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/29/2016] [Indexed: 01/26/2023] Open
Abstract
The DNA methyltransferase-mediated proinflammatory activation of macrophages is causally linked to the development of atherosclerosis (AS). However, the role of DNMT1, a DNA methylation maintenance enzyme, in macrophage polarization and AS development remains obscure. Here, we established transgenic mice with macrophage-specific overexpression of DNMT1 (TgDNMT1) or PPAR-γ (TgPPAR-γ) to investigate their effects on AS progression in ApoE-knockout mice fed an atherogenic diet. Primary macrophages were extracted to study the role of the DNMT1/PPAR-γ pathway in regulating inflammatory cytokine production. We demonstrated that TgDNMT1 significantly increased proinflammatory cytokine production in macrophages and plasma, and it accelerated the progression of AS in the atherogenic diet-treated ApoE-knockout mice. Further, we found that the DNA methylation status of the proximal PPAR-γ promoter was regulated by DNMT1 in macrophages. Notably, additional TgPPAR-γ or pharmacological activation of PPAR-γ effectively prevented TgDNMT1-induced proinflammatory cytokine production in macrophages and AS development in the mouse model. Finally, we demonstrated that elevated DNMT1 was correlated with decreased PPAR-γ, and increased proinflammatory cytokine production in the peripheral blood monocytes isolated from the patients with AS, compared to those of healthy donors. Our findings shed light on a novel strategy for the prevention and therapy of AS.
Collapse
Affiliation(s)
- Jie Yu
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Youzhu Qiu
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shizhu Bian
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guozhu Chen
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyang Deng
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Huali Kang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of the PLA , Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
21
|
Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice. Clin Sci (Lond) 2016; 130:1257-68. [PMID: 27129186 DOI: 10.1042/cs20160192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice.
Collapse
|
22
|
Bansal P, Gaur SN, Arora N. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation. Sci Rep 2016; 6:27430. [PMID: 27282246 PMCID: PMC4901285 DOI: 10.1038/srep27430] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/18/2016] [Indexed: 01/05/2023] Open
Abstract
Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C(+)TCRβ(+) NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C(+)TCRβ(+) NKT cells.
Collapse
Affiliation(s)
- Preeti Bansal
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi
- Department of Biotechnology, University of Pune, Ganeshkhind, Pune 411 007, India
| | | | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi
| |
Collapse
|
23
|
Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, Xie G, Wang Z, Pang X, Ruan Z, Li J, Yu L, Xue B, Shi H, Shi C, Liang H. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun 2016; 7:11716. [PMID: 27189574 PMCID: PMC4873969 DOI: 10.1038/ncomms11716] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. ABHD5 is a co-activator of lipolysis. Here the authors show that in tumour-associated macrophages ABHD5 inhibits ROS-dependent induction of C/EBPɛ, which transcriptionally activates spermidine synthase, and that blocking ABHD5 delays colorectal cancer growth in mice by inhibiting spermidine production.
Collapse
Affiliation(s)
- Hongming Miao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xueli Pang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
24
|
Guijas C, Rodríguez JP, Rubio JM, Balboa MA, Balsinde J. Phospholipase A2 regulation of lipid droplet formation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1661-71. [PMID: 25450448 DOI: 10.1016/j.bbalip.2014.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
The classical regard of lipid droplets as mere static energy-storage organelles has evolved dramatically. Nowadays these organelles are known to participate in key processes of cell homeostasis, and their abnormal regulation is linked to several disorders including metabolic diseases (diabetes, obesity, atherosclerosis or hepatic steatosis), inflammatory responses in leukocytes, cancer development and neurodegenerative diseases. Hence, the importance of unraveling the cell mechanisms controlling lipid droplet biosynthesis, homeostasis and degradation seems evident Phospholipase A2s, a family of enzymes whose common feature is to hydrolyze the fatty acid present at the sn-2 position of phospholipids, play pivotal roles in cell signaling and inflammation. These enzymes have recently emerged as key regulators of lipid droplet homeostasis, regulating their formation at different levels. This review summarizes recent results on the roles that various phospholipase A2 forms play in the regulation of lipid droplet biogenesis under different conditions. These roles expand the already wide range of functions that these enzymes play in cell physiology and pathophysiology.
Collapse
|
25
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|
26
|
Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One 2014; 9:e93741. [PMID: 24718259 PMCID: PMC3981733 DOI: 10.1371/journal.pone.0093741] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
The snake venom MT-III is a group IIA secreted phospholipase A2 (sPLA2) enzyme with functional and structural similarities with mammalian pro-inflammatory sPLA2s of the same group. Previously, we demonstrated that MT-III directly activates the innate inflammatory response of macrophages, including release of inflammatory mediators and formation of lipid droplets (LDs). However, the mechanisms coordinating these processes remain unclear. In the present study, by using TLR2−/− or MyD88−/− or C57BL/6 (WT) male mice, we report that TLR2 and MyD88 signaling have a critical role in MT-III-induced inflammatory response in macrophages. MT-III caused a marked release of PGE2, PGD2, PGJ2, IL-1β and IL-10 and increased the number of LDs in WT macrophages. In MT-III-stimulated TLR2−/− macrophages, formation of LDs and release of eicosanoids and cytokines were abrogated. In MyD88−/− macrophages, MT-III-induced release of PGE2, IL-1β and IL-10 was abrogated, but release of PGD2 and PGJ2 was maintained. In addition, COX-2 protein expression seen in MT-III-stimulated WT macrophages was abolished in both TLR2−/− and MyD88−/− cells, while perilipin 2 expression was abolished only in MyD88−/− cells. We further demonstrated a reduction of saturated, monounsaturated and polyunsaturated fatty acids and a release of the TLR2 agonists palmitic and oleic acid from MT-III-stimulated WT macrophages compared with WT control cells, thus suggesting these fatty acids as major messengers for MT-III-induced engagement of TLR2/MyD88 signaling. Collectively, our findings identify for the first time a TLR2 and MyD88-dependent mechanism that underlies group IIA sPLA2-induced inflammatory response in macrophages.
Collapse
|
27
|
Ait-Oufella H, Herbin O, Lahoute C, Coatrieux C, Loyer X, Joffre J, Laurans L, Ramkhelawon B, Blanc-Brude O, Karabina S, Girard CA, Payré C, Yamamoto K, Binder CJ, Murakami M, Tedgui A, Lambeau G, Mallat Z. Group X Secreted Phospholipase A2 Limits the Development of Atherosclerosis in LDL Receptor–Null Mice. Arterioscler Thromb Vasc Biol 2013; 33:466-73. [DOI: 10.1161/atvbaha.112.300309] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Several secreted phospholipases A2 (sPLA2s), including group IIA, III, V, and X, have been linked to the development of atherosclerosis, which led to the clinical testing of A-002 (varespladib), a broad sPLA2 inhibitor for the treatment of coronary artery disease. Group X sPLA2 (PLA2G10) has the most potent hydrolyzing activity toward phosphatidylcholine and is believed to play a proatherogenic role.
Methods and Results—
Here, we show that
Ldlr
–/–
mice reconstituted with bone marrow from mouse group X–deficient mice (
Pla2g10
–/–
) unexpectedly display a doubling of plaque size compared with
Pla2g10
+/+
chimeric mice. Macrophages of
Pla2g10
–/–
mice are more susceptible to apoptosis in vitro, which is associated with a 4-fold increase of plaque necrotic core in vivo. In addition, chimeric
Pla2g10
–/–
mice show exaggerated T lymphocyte (Th)1 immune response, associated with enhanced T-cell infiltration in atherosclerotic plaques. Interestingly, overexpression of human PLA2G10 in murine bone marrow cells leads to significant reduction of Th1 response and to 50% reduction of lesion size.
Conclusion—
PLA2G10 expression in bone marrow cells controls a proatherogenic Th1 response and limits the development of atherosclerosis. The results may provide an explanation for the recently reported inefficacy of A-002 (varespladib) to treat patients with coronary artery disease. Indeed, A-002 is a nonselective sPLA2 inhibitor that inhibits both proatherogenic (groups IIA and V) and antiatherogenic (group X) sPLA2s. Our results suggest that selective targeting of individual sPLA2 enzymes may be a better strategy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Herbin
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Charlotte Lahoute
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christelle Coatrieux
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Xavier Loyer
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Jeremie Joffre
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ludivine Laurans
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Bhama Ramkhelawon
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Blanc-Brude
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Sonia Karabina
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christophe A. Girard
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christine Payré
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Kei Yamamoto
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christoph J. Binder
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Makoto Murakami
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Alain Tedgui
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Gérard Lambeau
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ziad Mallat
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| |
Collapse
|
28
|
Lind L, Simon T, Johansson L, Kotti S, Hansen T, Machecourt J, Ninio E, Tedgui A, Danchin N, Ahlström H, Mallat Z. Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur Heart J 2012; 33:2946-54. [PMID: 22711753 DOI: 10.1093/eurheartj/ehs132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS Secretory- and lipoprotein-associated phospholipases A2 (sPLA2 and Lp-PLA2) are enzymes both suggested to be of importance for atherosclerosis. We investigated relationships between the activities of these enzymes in the circulation and atherosclerosis as well as future clinical events. METHODS AND RESULTS The population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study included 1016 randomly selected subjects, all aged 70. The prevalence of carotid artery plaques was recorded by ultrasound (n= 954), and arterial stenosis was assessed by whole-body magnetic resonance angiography (WBMRA, n= 302). Secretory-associated phospholipase A2 [odds ratio 1.23 for 1 SD increase, 95% confidence interval (CI): 1.05-1.44, P= 0.007], but not Lp-PLA2 (P= 0.26), activity was significantly related to carotid atherosclerosis and to the amount of stenosis at WBMRA (P= 0.006) following adjustment for multiple risk factors (waist circumference, serum triglycerides, body mass index, C-reactive protein, high density lipoprotein-C, low density lipoprotein-C, triglycerides, GFR, fasting glucose, blood pressure, statin use, and exercise habits). Secretory-associated phospholipase A2 [hazard ratio (HR) 1.45 for 1 SD increase, 95% CI: 1.15-1.84, P= 0.001], but not Lp-PLA2 (HR 0.95, P= 0.55), activity was a significant risk factor for all-cause mortality (114 had died) during 7.0 years follow-up after adjustment for the risk factors described above. In a sample of 1029 post-myocardial infarction (MI) patients (French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction), sPLA2 (adjusted HR 1.32 for 1 unit increase, 95% CI: 1.02-1.71, P= 0.036), but not Lp-PLA2 (HR 1.03, P= 0.90), activity predicted death or recurrent MI during 1-year follow-up (n= 136 cases). CONCLUSION sPLA2 activity was related to atherosclerosis and predicted all-cause mortality in a sample of elderly subjects, as well as death or MI in post-MI patients.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Secreted phospholipase A2 group IIA is a neurotoxin released by stimulated human glial cells. Mol Cell Neurosci 2012; 49:430-8. [DOI: 10.1016/j.mcn.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
|
30
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 861] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
31
|
Yang H, Zhao X, Xu Y, Wang L, He Q, Lundberg YW. Matrix recruitment and calcium sequestration for spatial specific otoconia development. PLoS One 2011; 6:e20498. [PMID: 21655225 PMCID: PMC3105080 DOI: 10.1371/journal.pone.0020498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
Otoconia are bio-crystals anchored to the macular sensory epithelium of the utricle and saccule in the inner ear for motion sensing and bodily balance. Otoconia dislocation, degeneration and ectopic calcification can have detrimental effects on balance and vertigo/dizziness, yet the mechanism underlying otoconia formation is not fully understood. In this study, we show that selected matrix components are recruited to form the crystal matrix and sequester Ca(2+) for spatial specific formation of otoconia. Specifically, otoconin-90 (Oc90) binds otolin through both domains (TH and C1q) of otolin, but full-length otolin shows the strongest interaction. These proteins have much higher expression levels in the utricle and saccule than other inner ear epithelial tissues in mice. In vivo, the presence of Oc90 in wildtype (wt) mice leads to an enrichment of Ca(2+) in the luminal matrices of the utricle and saccule, whereas absence of Oc90 in the null mice leads to drastically reduced matrix-Ca(2+). In vitro, either Oc90 or otolin can increase the propensity of extracellular matrix to calcify in cell culture, and co-expression has a synergistic effect on calcification. Molecular modeling and sequence analysis predict structural features that may underlie the interaction and Ca(2+)-sequestering ability of these proteins. Together, the data provide a mechanism for the otoconial matrix assembly and the role of this matrix in accumulating micro-environmental Ca(2+) for efficient CaCO(3) crystallization, thus uncover a critical process governing spatial specific otoconia formation.
Collapse
Affiliation(s)
- Hua Yang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Xing Zhao
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Lili Wang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yunxia Wang Lundberg
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| |
Collapse
|
32
|
Mallat Z, Lambeau G, Tedgui A. Lipoprotein-associated and secreted phospholipases A₂ in cardiovascular disease: roles as biological effectors and biomarkers. Circulation 2010; 122:2183-200. [PMID: 21098459 DOI: 10.1161/circulationaha.110.936393] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ziad Mallat
- INSERM, Paris-Cardiovascular Research Center, Université Paris Descartes, UMR, Paris, France
| | | | | |
Collapse
|
33
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Suckling K. Phospholipase A2s: Developing drug targets for atherosclerosis. Atherosclerosis 2010; 212:357-66. [DOI: 10.1016/j.atherosclerosis.2010.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022]
|
35
|
Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE-/- mice. J Cardiovasc Pharmacol 2010; 53:60-5. [PMID: 19129734 DOI: 10.1097/fjc.0b013e318195bfbc] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The family of secretory phospholipase A2 (sPLA2) enzymes has been associated with inflammatory diseases and tissue injury including atherosclerosis. A-001 is a novel inhibitor of sPLA2 enzymes discovered by structure-based drug design, and A-002 is the orally bioavailable prodrug currently in clinical development. A-001 inhibited human and mouse sPLA2 group IIA, V, and X enzymes with IC50 values in the low nM range. A-002 (1 mg/kg) led to high serum levels of A-001 and inhibited PLA2 activity in transgenic mice overexpressing human sPLA2 group IIA in C57BL/6J background. In addition, the effects of A-002 on atherosclerosis in 2 ApoE mouse models were evaluated using en face analysis. (1) In a high-fat diet model, A-002 (30 and 90 mg/kg twice a day for 16 weeks) reduced aortic atherosclerosis by 50% (P < 0.05). Plasma total cholesterol was decreased (P < 0.05) by 1 month and remained lowered throughout the study. (2) In an accelerated atherosclerosis model, with angiotensin II-induced aortic lesions and aneurysms, A-002 (30 mg/kg twice a day) reduced aortic atherosclerosis by approximately 40% (P < 0.05) and attenuated aneurysm formation (P = 0.0096). Thus, A-002 was effective at significantly decreasing total cholesterol, atherogenesis, and aneurysm formation in these 2 ApoE mouse models.
Collapse
|
36
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
37
|
Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease. Mol Neurobiol 2010; 41:73-86. [PMID: 20195796 DOI: 10.1007/s12035-010-8107-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/04/2010] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Abeta) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Abeta. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Abeta in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A(2) (PLA(2)) and secretory PLA(2). In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Abeta NADPH oxidase and PLA(2) can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.
Collapse
|
38
|
Karakas M, Koenig W. Phospholipase A2 as a therapeutic target for atherosclerosis. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.09.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010; 12:125-69. [PMID: 19624272 DOI: 10.1089/ars.2009.2668] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are produced at low levels in mammalian cells by various metabolic processes, such as oxidative phosphorylation by the mitochondrial respiratory chain, NAD(P)H oxidases, and arachidonic acid oxidative metabolism. To maintain physiological redox balance, cells have endogenous antioxidant defenses regulated at the transcriptional level by Nrf2/ARE. Oxidative stress results when ROS production exceeds the cell's ability to detoxify ROS. Overproduction of ROS damages cellular components, including lipids, leading to decline in physiological function and cell death. Reaction of ROS with lipids produces oxidized phospholipids, which give rise to 4-hydroxynonenal, 4-oxo-2-nonenal, and acrolein. The brain is susceptible to oxidative damage due to its high lipid content and oxygen consumption. Neurodegenerative diseases (AD, ALS, bipolar disorder, epilepsy, Friedreich's ataxia, HD, MS, NBIA, NPC, PD, peroxisomal disorders, schizophrenia, Wallerian degeneration, Zellweger syndrome) and CNS traumas (stroke, TBI, SCI) are problems of vast clinical importance. Free iron can react with H(2)O(2) via the Fenton reaction, a primary cause of lipid peroxidation, and may be of particular importance for these CNS injuries and disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Atherosclerosis, the major risk factor for ischemic stroke, involves accumulation of oxidized LDL in the arteries, leading to foam cell formation and plaque development. This review will discuss the role of lipid oxidation/peroxidation in various CNS injuries/disorders.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3232, USA.
| | | |
Collapse
|
40
|
Sullivan CP, Seidl SE, Rich CB, Raymondjean M, Schreiber BM. Secretory phospholipase A2, group IIA is a novel serum amyloid A target gene: activation of smooth muscle cell expression by an interleukin-1 receptor-independent mechanism. J Biol Chem 2009; 285:565-75. [PMID: 19850938 DOI: 10.1074/jbc.m109.070565] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a multifactorial vascular disease characterized by formation of inflammatory lesions. Elevated circulating acute phase proteins indicate disease risk. Serum amyloid A (SAA) is one such marker but its function remains unclear. To determine the role of SAA on aortic smooth muscle cell gene expression, a preliminary screen of a number of genes was performed and a strong up-regulation of expression of secretory phospholipase A(2), group IIA (sPLA(2)) was identified. The SAA-induced increase in sPLA(2) was validated by real time PCR, Western blot analysis, and enzyme activity assays. Demonstrating that SAA increased expression of sPLA(2) heteronuclear RNA and that inhibiting transcription eliminated the effect of SAA on sPLA(2) mRNA suggested that the increase was transcriptional. Transient transfections and electrophoretic mobility shift assays identified CAAT enhancer-binding protein (C/EBP) and nuclear factor kappaB (NFkappaB) as key regulatory sites mediating the induction of sPLA(2). Moreover, SAA activated the inhibitor of NF-kappaB kinase (IKK) in cultured smooth muscle cells. Previous reports showed that interleukin (IL)-1beta up-regulates Pla2g2a gene transcription via C/EBPbeta and NFkappaB. Interestingly, SAA activated smooth muscle cell IL-1beta mRNA expression, however, blocking IL-1 receptors had no effect on SAA-mediated activation of sPLA(2) expression. Thus, the observed changes in sPLA(2) expression were not secondary to SAA-induced IL-1 receptor activation. The association of SAA with high density lipoprotein abrogated the SAA-induced increase in sPLA(2) expression. These data suggest that during atherogenesis, SAA can amplify the involvement of smooth muscle cells in vascular inflammation and that this can lead to deposition of sPLA(2) and subsequent local changes in lipid homeostasis.
Collapse
Affiliation(s)
- Christopher P Sullivan
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
41
|
Rosenson RS, Hislop C, McConnell D, Elliott M, Stasiv Y, Wang N, Waters DD. Effects of 1-H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a phase II double-blind, randomised, placebo-controlled trial. Lancet 2009; 373:649-58. [PMID: 19231633 DOI: 10.1016/s0140-6736(09)60403-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Secretory phospholipase A(2) (sPLA(2)) enzymes, produced and secreted in human blood vessels and hepatocytes, contribute to the development of atherosclerosis through mechanisms that are both dependent and independent of lipoprotein. We examined the effects of an sPLA(2) inhibitor on enzyme concentration and on plasma lipoproteins and inflammatory biomarkers in patients with coronary heart disease. METHODS Patients aged 18 years and older with stable coronary heart disease from the USA and Ukraine were eligible for enrolment in this phase II, randomised, double-blind, placebo-controlled, parallel-arm, dose-response study. 393 patients were randomly assigned by computer-generated sequence to receive either placebo (n=79) or one of four doses of an sPLA(2) inhibitor, A-002 (1-H-indole-3-glyoxamide; 50 mg [n=79], 100 mg [n=80], 250 mg [n=78], or 500 mg [n=77] twice daily), for 8 weeks. The primary endpoint was the change in sPLA(2) group IIA (sPLA(2)-IIA) concentration or activity from baseline to week 8. Analysis was by modified intention to treat (ITT). The ITT population consisted of all patients who received one dose of study treatment; data for patients who dropped out before the end of the study were carried forward from last observation. This trial is registered with ClinicalTrials.gov, number NCT00455546. FINDINGS All randomised patients received at least one dose and were included in the ITT population. Data for 45 patients were carried forward from last observation (36 in the A-002 group and nine in the placebo group); the main reason for dropout before completion was because of adverse events. 348 patients reached the primary endpoint (A-002 n=278, placebo n=70). Mean sPLA(2)-IIA concentration fell by 86.7%, from 157 pmol/L to 21 [corrected] pmol/L, in the overall active treatment group, and by 4.8%, from 157 pmol/L to 143 [corrected] pmol/L, in the placebo group (p<0.0001 treatment vs placebo). The reductions in sPLA(2)-IIA concentration in the A-002 groups were dose dependent (ranging from 69.2% in the 50 mg group to 95.8% in the 500 mg group) and differed significantly from placebo (p<0.0001 for all doses). In the 500 mg A-002 treatment group, there was one serious adverse event (exacerbation of underlying chronic obstructive pulmonary disease), but the proportion of patients reporting treatment-emergent adverse events did not differ from placebo. The main side-effects of the drug included headache (n=20), nausea (n=17), and diarrhoea (n=12). INTERPRETATION The reductions in sPLA(2)-IIA concentration suggest that A-002 might be an effective anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Robert S Rosenson
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Boyanovsky B, Zack M, Forrest K, Webb NR. The capacity of group V sPLA2 to increase atherogenicity of ApoE-/- and LDLR-/- mouse LDL in vitro predicts its atherogenic role in vivo. Arterioscler Thromb Vasc Biol 2009; 29:532-8. [PMID: 19164803 DOI: 10.1161/atvbaha.108.183038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE In vitro data indicate that human LDL modified by Group V secretory phospholipase A(2) (GV sPLA(2)) is proatherogenic. Consistent with this, gain and loss of function studies demonstrated that GV sPLA(2) promotes atherosclerosis in LDLR(-/-) mice. The current study investigates whether GV sPLA(2) promotes atherosclerotic processes in apoE(-/-) mice. METHODS AND RESULTS LDL (d=1.019 to 1.063) from apoE(-/-) and LDLR(-/-) mice fed chow or Western diet were hydrolyzed by GV sPLA(2). Phosphatidylcholine on LDL from LDLR(-/-) mice fed either a chow or Western diet was hydrolyzed to a greater extent (61.1+/-0.4% and 45.3+/-4.6%) than the corresponding fractions from apoE(-/-) mice (41.7+/-3.6% and 39.4+/-1.2%). ApoE(-/-) LDL induced macrophage foam cell formation in vitro without modification by GV sPLA(2), whereas hydrolysis of LDLR(-/-) LDL was a prerequisite for foam cell formation. In contrast to findings in LDLR(-/-) mice, GV sPLA(2) deficiency did not significantly reduce atherosclerosis in apoE(-/-) mice, although collagen content was significantly reduced in lesions of apoE(-/-) mice lacking GV sPLA(2). CONCLUSIONS The ability of GV sPLA(2) to promote atherosclerotic lipid deposition in apoE(-/-) and LDLR(-/-) mice may be related to its ability to increase the atherogenic potential of LDL from these mice as assessed in vitro.
Collapse
Affiliation(s)
- Boris Boyanovsky
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536-0200, USA
| | | | | | | |
Collapse
|
43
|
Future Role for Selective Phospholipase A2 Inhibitors in the Prevention of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2009; 23:93-101. [DOI: 10.1007/s10557-008-6148-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 12/21/2022]
|
44
|
Shaposhnik Z, Wang X, Trias J, Fraser H, Lusis AJ. The synergistic inhibition of atherogenesis in apoE-/- mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J Lipid Res 2008; 50:623-9. [PMID: 19029066 DOI: 10.1194/jlr.m800361-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) activity promotes foam cell formation, increases proinflammatory bioactive lipid levels, decreases HDL levels, increases atherosclerosis in transgenic mice, and is an independent marker of cardiovascular disease. The effects of the sPLA2 inhibitor A-002 (varespladib) and pravastatin as monotherapies and in combination on atherosclerosis, lipids, and paraoxonase (PON) activity in apoE(-/-) mice were investigated. Male apoE(-/-) mice were placed on a 12-week high-fat diet supplemented with A-002 alone or combined with pravastatin. Atherosclerotic lesions were examined for size and composition using en face analysis, Movat staining, anti-CD68, and anti-alpha actin antibodies. Plasma lipids and PON activity were measured. A-002 decreased atherosclerotic lesion area by approximately 75% while increasing fibrous cap size by over 200%. HDL levels increased 40% and plasma PON activity increased 80%. Pravastatin monotherapy had no effect on lesion size but when combined with A-002, decreased lesion area 50% and total cholesterol levels 18% more than A-002 alone. A-002, a sPLA2 inhibitor, acts synergistically with pravastatin to decrease atherosclerosis, possibly through decreased levels of systemic inflammation or decreased lipid levels. A-002 treatment also resulted in a profound increase in plasma PON activity and significantly larger fibrous caps, suggesting the formation of more stable plaque architecture.
Collapse
Affiliation(s)
- Zory Shaposhnik
- Division of Cardiology, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Introduction The secretory phospholipase A2 (sPLA2) family provides a seemingly endless array of potential biological functions that is only beginning to be appreciated. In humans, this family comprises 9 different members that vary in their tissue distribution, hydrolytic activity, and phospholipid substrate specificity. Through their lipase activity, these enzymes trigger various cell-signaling events to regulate cellular functions, directly kill bacteria, or modulate inflammatory responses. In addition, some sPLA2’s are high affinity ligands for cellular receptors. Objective This review merely scratches the surface of some of the actions of sPLA2s in innate immunity, inflammation, and atherosclerosis. The goal is to provide an overview of recent findings involving sPLA2s and to point to potential pathophysiologic mechanisms that may become targets for therapy.
Collapse
|
46
|
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008; 77:495-520. [PMID: 18405237 DOI: 10.1146/annurev.biochem.76.062405.154007] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases A(2) (PLA2s) are esterases that hydrolyze the sn-2 ester of glycerophospholipids and constitute one of the largest families of lipid hydrolyzing enzymes. The mammalian genome contains 10 enzymatically active secreted PLA2s (sPLA2s) and two sPLA2-related proteins devoid of lipolytic enzymatic activity. In addition to the well-established functions of one of these enzymes in digestion of dietary phospholipids and another in host defense against bacterial infections, accumulating evidence shows that some of these sPLA2s are involved in arachidonic acid release from cellular phospholipids for the biosynthesis of eicosanoids, especially during inflammation. More speculative results suggest the involvement of one or more sPLA2s in promoting atherosclerosis and cancer. In addition, the mammalian genome encodes several types of sPLA2-binding proteins, and mounting evidence shows that sPLA2s may have functions related to binding to cellular target proteins in a manner independent of their lipolytic enzymatic activity.
Collapse
Affiliation(s)
- Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
47
|
Divchev D, Grothusen C, Luchtefeld M, Thoenes M, Onono F, Koch R, Drexler H, Schieffer B. Impact of a combined treatment of angiotensin II type 1 receptor blockade and 3-hydroxy-3-methyl-glutaryl-CoA-reductase inhibition on secretory phospholipase A2-type IIA and low density lipoprotein oxidation in patients with coronary artery disease. Eur Heart J 2008; 29:1956-65. [DOI: 10.1093/eurheartj/ehn276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Curfs DMJ, Ghesquiere SAI, Vergouwe MN, van der Made I, Gijbels MJJ, Greaves DR, Verbeek JS, Hofker MH, de Winther MPJ. Macrophage secretory phospholipase A2 group X enhances anti-inflammatory responses, promotes lipid accumulation, and contributes to aberrant lung pathology. J Biol Chem 2008; 283:21640-8. [PMID: 18511424 DOI: 10.1074/jbc.m710584200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.
Collapse
Affiliation(s)
- Daniëlle M J Curfs
- Departments of Molecular Genetics and Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Phospholipases A2 in normal human conjunctiva and from patients with primary open-angle glaucoma and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol 2008; 246:739-46. [PMID: 18196260 DOI: 10.1007/s00417-007-0757-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/22/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Chronic situations like long-term use of topical medications induces conjunctival inflammation and is also a significant risk factor for failure of filtering surgery. We evaluated conjunctival expression of group IIA secretory PLA(2) (sPLA(2)-IIA), group V secretory PLA(2) (sPLA(2)-V), calcium-independent PLA(2) (iPLA(2)) and cytosolic PLA(2) (cPLA(2)). METHODS Samples were obtained from non-glaucomatous patients (control subjects), and patients with either primary open-angle glaucoma (POAG) or exfoliation glaucoma (ExG). All the glaucoma patients had been treated with antiglaucomatous medication, and underwent deep sclerectomy surgery. Antibodies against sPLA(2)-IIA, sPLA(2)-V, iPLA(2) and cPLA(2) were used for immunohistochemical staining of frozen tissue sections. RESULTS In the human conjunctiva of non-glaucomatous patients, immunostaining of sPLA(2)-IIA, sPLA(2)-V or cPLA(2) was low and positively stained cells were mainly localized in the surface of the epithelium. In contrast, iPLA(2) was found to predominate in human normal conjunctiva and it demonstrated strong labeling throughout the epithelium. The stromal staining of iPLA(2) was weak. Expression of sPLA(2)-IIA was significantly increased in stromal fibers of patients with POAG or ExG. No changes were found in levels of sPLA(2)-V, iPLA(2) or cPLA(2) between the patient groups and controls. CONCLUSIONS These findings demonstrate that sPLA(2)-IIA, sPLA(2)-V, iPLA(2) and cPLA(2) are expressed in the conjunctiva of non-glaucomatous patients. In the epithelium, sPLA(2)-IIA, sPLA(2)-V, and cPLA(2) may participate in protection against risks caused by mechanical wear and tear stress whereas iPLA(2) may regulate remodeling and maintenance of membrane phospholipids. sPLA(2)-IIA may also have the important role in the degradation of bacteria. In conjunctival stroma of POAG and ExG patients, sPLA(2)-IIA may play a role in the development of scar tissue after glaucoma filtration surgery.
Collapse
|
50
|
Abstract
Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice. Eicosapentaenoic acid supplementation provided improvement in schizophrenia patients, while the combination of (eicosapentaenoic acid + docosahexaenoic acid) provided benefit in bipolar disorders. The ketogenic diet where >90% of calories are derived from fat is an effective treatment for epilepsy. Understanding cytokine-induced changes in lipid metabolism will promote novel concepts and steer towards bench-to-bedside transition for therapies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI
- William S. Middleton Veterans Affairs Hospital, Madison, WI
| | - J. F. Hatcher
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|