1
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
2
|
Balbuena E, Cheng J, Eroglu A. Carotenoids in orange carrots mitigate non-alcoholic fatty liver disease progression. Front Nutr 2022; 9:987103. [PMID: 36225879 PMCID: PMC9549209 DOI: 10.3389/fnut.2022.987103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Carotenoids are abundant in colored fruits and vegetables. Non-alcoholic fatty liver disease (NAFLD) is a global burden and risk factor for end-stage hepatic diseases. This study aims to compare the anti-NAFLD efficacy between carotenoid-rich and carotenoid-deficient vegetables. Materials and methods Male C57BL/6J mice were randomized to one of four experimental diets for 15 weeks (n = 12 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 60% calories from fat), HFD with 20% white carrot powders (HFD + WC), or with 20% orange carrot powders (HFD + OC). Results We observed that carotenoids in the orange carrots reduced HFD-induced weight gain, better than white carrots. Histological and triglyceride (TG) analyses revealed significantly decreased HFD-induced hepatic lipid deposition and TG content in the HFD + WC group, which was further reduced in the HFD + OC group. Western blot analysis demonstrated inconsistent changes of fatty acid synthesis-related proteins but significantly improved ACOX-1 and CPT-II, indicating that orange carrot carotenoids had the potential to inhibit NAFLD by improving β-oxidation. Further investigation showed significantly higher mRNA and protein levels of PPARα and its transcription factor activity. Conclusion Carotenoid-rich foods may display more potent efficacy in mitigating NAFLD than those with low carotenoid levels.
Collapse
Affiliation(s)
- Emilio Balbuena
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Abdulkerim Eroglu,
| |
Collapse
|
3
|
Jaiswal J, Srivastav AK, Patel R, Kumar U. Synthesis and physicochemical characterization of rhamnolipid fabricated fucoxanthin loaded bovine serum albumin nanoparticles supported by simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5468-5477. [PMID: 35355263 DOI: 10.1002/jsfa.11901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fucoxanthin is a hydrophobic carotenoid with many beneficial biological activities. However, due to low aqueous solubility their clinical efficacy is limited thus leading to poor oral bioavailability. To address this issue, we encapsulated fucoxanthin in rhamnolipid fabricated bovine serum albumin (BSA) loaded nanoparticles (LNPs) for improving solubility dependent bioavailability of fucoxanthin. RESULTS These synthesized LNPs were characterized by dynamic light scattering (DLS), ultraviolet (UV)-visible spectrophotometry, high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC). Our results showed that LNPs were spherical in shape with particle size around 180 nm along with positive zeta potential. The encapsulation efficiency and loading efficiency calculated for LNPs were 69.66 ± 1.5% and 14 ± 0.2%, respectively. The antioxidant assay of LNPs indicate high radical scavenging activity compared to pure fucoxanthin. Besides this, our release studies indicates that drug release occur from the matrix of nanocarrier system through diffusion based on concentration. Thus, these findings indicate successful encapsulation of fucoxanthin, with improved solubility thereby leading to increased bioavailability. This nano formulation is derived from components which are FDA approved that could be exploited for encapsulating other vital nutraceutical molecules. CONCLUSION Overall, our results showed successful synthesis of biodegradable nanocarrier for delivering fucoxanthin supported by molecular docking, molecular dynamics simulation and thermodynamics of free binding energy studies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | | | - Rahul Patel
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
4
|
Orlando P, Nartea A, Silvestri S, Marcheggiani F, Cirilli I, Dludla PV, Fiorini R, Pacetti D, Loizzo MR, Lucci P, Tiano L. Bioavailability Study of Isothiocyanates and Other Bioactive Compounds of Brassica oleracea L. var. Italica Boiled or Steamed: Functional Food or Dietary Supplement? Antioxidants (Basel) 2022; 11:antiox11020209. [PMID: 35204095 PMCID: PMC8868189 DOI: 10.3390/antiox11020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/07/2023] Open
Abstract
The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (β-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and β-carotene) and of phylloquinone was comparable. The lutein and β-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.
Collapse
Affiliation(s)
- Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ilenia Cirilli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Rosamaria Fiorini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Paolo Lucci
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Cheng J, Balbuena E, Miller B, Eroglu A. The Role of β-Carotene in Colonic Inflammation and Intestinal Barrier Integrity. Front Nutr 2021; 8:723480. [PMID: 34646849 PMCID: PMC8502815 DOI: 10.3389/fnut.2021.723480] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the in vitro epithelial cell model. Methods: We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression. Results: β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function. Conclusions: β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Emilio Balbuena
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Baxter Miller
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
7
|
Zhu J, Wang C, Gao J, Wu H, Sun Q. Aggregation of Fucoxanthin and Its Effects on Binding and Delivery Properties of Whey Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10412-10422. [PMID: 31464443 DOI: 10.1021/acs.jafc.9b03046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, aggregation of fucoxanthin (FX) and its effects on binding and delivery properties of whey proteins were explored. Initially, the H- and J-aggregates of FX were successfully prepared by adjusting the water/ethanol ratio and water-dripping rate. The transition from J- to H-aggregates was observed over the standing time. Then, the molecular arrangement of FX H-aggregates was analyzed using the point-dipole approximation model and molecular dynamics, showing that their intermolecular distance and angle were about 5.0-6.7 Å and -35° to 35°, respectively. The transformation of J- to H-aggregates was also observed during molecular dynamics, with a shortened intermolecular distance, a reduced solvent accessible surface area, an enhanced interaction force, and a narrowed dihedral angle. Further, the interactions of whey proteins with different forms of FX were investigated, indicating that both β-lactoglobulin and whey protein isolates could form complexes with the monomers, H-aggregates, and J-aggregates of FX. In terms of affinity, whey proteins bound FX monomers more strongly than aggregates. Furthermore, the complexes comprising whey proteins and monomeric FX had better delivery capabilities than aggregated FX, manifested in encapsulation efficiency, physical stability, and bioaccessibility.
Collapse
Affiliation(s)
- Junxiang Zhu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266001 , People's Republic of China
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Cong Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , Nanning 530006 , People's Republic of China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Hao Wu
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|
8
|
Effects on plasma carotenoids and consumer acceptance of a functional carrot-based product to supplement vegetable intake: A randomized clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Xi M, Dragsted LO. Biomarkers of seaweed intake. GENES & NUTRITION 2019; 14:24. [PMID: 31428206 PMCID: PMC6694598 DOI: 10.1186/s12263-019-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Moran NE, Mohn ES, Hason N, Erdman JW, Johnson EJ. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv Nutr 2018; 9:465-492. [PMID: 30032230 PMCID: PMC6054194 DOI: 10.1093/advances/nmy025] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental factors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution, and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Noor Hason
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
11
|
Šamec D, Urlić B, Salopek-Sondi B. Kale ( Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit Rev Food Sci Nutr 2018; 59:2411-2422. [PMID: 29557674 DOI: 10.1080/10408398.2018.1454400] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Kale (Brassica oleracea var. acephala) is a cruciferous vegetable, characterized by leaves along the stem, which, in recent years, have gained a great popularity as a ´superfood´. Consequently, in a popular culture it is listed in many ´lists of the healthiest vegetables´. Without the doubt, a scientific evidences support the fact that cruciferous vegetables included in human diet can positively affect health and well-being, but remains unclear why kale is declared superior in comparison with other cruciferous. It is questionable if this statement about kale is triggered by scientific evidence or by some other factors. Our review aims to bring an overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.
Collapse
Affiliation(s)
- Dunja Šamec
- a Ruđer Bošković Institute, Department for Molecular Biology , Zagreb , Croatia
| | - Branimir Urlić
- b Institute for Adriatic Crops and Karst Reclamation , Split , Croatia
| | | |
Collapse
|
12
|
Zhong S, Sandhu A, Edirisinghe I, Burton‐Freeman B. Characterization of Wild Blueberry Polyphenols Bioavailability and Kinetic Profile in Plasma over 24‐h Period in Human Subjects. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700405] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/30/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Siqiong Zhong
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Amandeep Sandhu
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Indika Edirisinghe
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Britt Burton‐Freeman
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
- Nutrition DepartmentUC Davis Davis USA
| |
Collapse
|
13
|
Zhu J, Sun X, Wang S, Xu Y, Wang D. Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Smith JW, Rogers RB, Jeon S, Rubakhin SS, Wang L, Sweedler JV, Neuringer M, Kuchan MJ, Erdman JW. Carrot solution culture bioproduction of uniformly labeled 13C-lutein and in vivo dosing in non-human primates. Exp Biol Med (Maywood) 2016; 242:305-315. [PMID: 27798119 DOI: 10.1177/1535370216675067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lutein is a xanthophyll abundant in nature and most commonly present in the human diet through consumption of leafy green vegetables. With zeaxanthin and meso-zeaxanthin, lutein is a component of the macular pigment of the retina, where it protects against photooxidation and age-related macular degeneration. Recent studies have suggested that lutein may positively impact cognition throughout the lifespan, but outside of the retina, the deposition, metabolism, and function(s) of lutein are poorly understood. Using a novel botanical cell culture system ( Daucus carota), the present study aimed to produce a stable isotope lutein tracer for use in future investigations of dietary lutein distribution and metabolism. Carrot cultivars were initiated into liquid solution culture, lutein production conditions optimized, and uniformly labeled 13C-glucose was provided as the sole media carbon source for four serial growth cycles. Lutein yield was 2.58 ± 0.24 µg/g, and mass spectrometry confirmed high enrichment of 13C: 64.9% of lutein was uniformly labeled and 100% of lutein was labeled on at least 37 of 40 possible carbons. Purification of carrot extracts yielded a lutein dose of 1.92 mg with 96.0 ± 0.60% purity. 13C-lutein signals were detectable in hepatic extracts of an adult rhesus macaque monkey ( Macaca mulatta) dosed with 13C-lutein, but not in hepatic samples collected from control animals. This novel botanical biofactory approach can be used to produce sufficient quantities of highly enriched and pure 13C-lutein doses for use in tracer studies investigating lutein distribution, metabolism, and function.
Collapse
Affiliation(s)
- Joshua W Smith
- 1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Randy B Rogers
- 2 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sookyoung Jeon
- 1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stanislav S Rubakhin
- 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lin Wang
- 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha Neuringer
- 4 Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - John W Erdman
- 1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,2 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Sandhu AK, Huang Y, Xiao D, Park E, Edirisinghe I, Burton-Freeman B. Pharmacokinetic Characterization and Bioavailability of Strawberry Anthocyanins Relative to Meal Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4891-4899. [PMID: 27255121 DOI: 10.1021/acs.jafc.6b00805] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasma strawberry anthocyanins were characterized in overweight (BMI: 26 ± 2 kg/m(2)) adults (n = 14) on the basis of meal timing. At each visit, subjects ingested three study drinks: two control and one strawberry drink. A strawberry drink was given at either 2 h before the breakfast meal (BM), with the meal (WM), or 2 h after the meal (AM), and control drinks were given at the alternative time points. Plasma anthocyanins and their metabolic conjugates were assessed hourly for 10 h using a triple-quadrupole liquid chromatography mass spectrometer. Maximum concentrations (Cmax), area under the curve (AUC), and bioavailability of pelargonidin-based anthocyanins determined from the main conjugated metabolite (pelargonidin glucuronide) were greater when a strawberry drink was consumed 2 h before the meal (BM) compared to consumption WM or AM (p < 0.05). Our results indicate that the timing of strawberry consumption relative to a meal impacts anthocyanin pharmacokinetic variables.
Collapse
Affiliation(s)
- Amandeep K Sandhu
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Yancui Huang
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Di Xiao
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Eunyoung Park
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Indika Edirisinghe
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
- Department of Nutrition, University of California , Davis, California 95616, United States
| |
Collapse
|
16
|
Moran NE, Novotny JA, Cichon MJ, Riedl KM, Rogers RB, Grainger EM, Schwartz SJ, Erdman JW, Clinton SK. Absorption and Distribution Kinetics of the 13C-Labeled Tomato Carotenoid Phytoene in Healthy Adults. J Nutr 2016; 146:368-76. [PMID: 26674763 PMCID: PMC4725433 DOI: 10.3945/jn.115.220525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Phytoene is a tomato carotenoid that may contribute to the apparent health benefits of tomato consumption. Although phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lycopene, suggesting the kinetics of phytoene and lycopene differ. OBJECTIVE The objective of this study was to characterize the kinetic parameters of phytoene absorption, distribution, and excretion in adults, to better understand why biodistribution of phytoene differs from lycopene. METHODS Four adults (2 males, 2 females) maintained a controlled phytoene diet (1-5 mg/d) for 42 d. On day 14, each consumed 3.2 mg (13)C-phytoene, produced using tomato cell suspension culture technology. Blood samples were collected at 0, 1-15, 17, 21, and 24 h and 2, 3, 4, 7, 10, 14, 17, 21, and 28 d after (13)C-phytoene consumption. Plasma-unlabeled and plasma-labeled phytoene concentrations were determined using ultra-HPLC-quadrupole time-of-flight-mass spectrometry, and data were fit to a 7-compartment carotenoid kinetic model using WinSAAM 3.0.7 software. RESULTS Subjects were compliant with a controlled phytoene diet, consuming a mean ± SE of 2.5 ± 0.6 mg/d, resulting in a plasma unlabeled phytoene concentration of 71 ± 14 nmol/L. A maximal plasma (13)C-phytoene concentration of 55.6 ± 5.9 nM was achieved 19.8 ± 9.2 h after consumption, and the plasma half-life was 2.3 ± 0.2 d. Compared with previous results for lycopene, phytoene bioavailability was nearly double at 58% ± 19%, the clearance rate from chylomicrons was slower, and the rates of deposition into and utilization by the slow turnover tissue compartment were nearly 3 times greater. CONCLUSIONS Although only differing from lycopene by 4 double bonds, phytoene exhibits markedly different kinetic characteristics in human plasma, providing insight into metabolic processes contributing to phytoene enrichment in plasma and tissues compared with lycopene. This trial was registered at clinicaltrials.gov as NCT01692340.
Collapse
Affiliation(s)
- Nancy E Moran
- The Ohio State University Comprehensive Cancer Center
| | | | | | - Kenneth M Riedl
- The Ohio State University Comprehensive Cancer Center,,Department of Food Science and Technology, and
| | - Randy B Rogers
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | | | - Steven J Schwartz
- The Ohio State University Comprehensive Cancer Center,,Department of Food Science and Technology, and
| | - John W Erdman
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Department of Internal Medicine-Division of Medical Oncology, The Ohio State University, Columbus, OH;
| |
Collapse
|
17
|
Komba S, Kotake-Nara E, Machida S. Fucoxanthin Derivatives: Synthesis and their Chemical Properties. J Oleo Sci 2015; 64:1009-18. [PMID: 26250423 DOI: 10.5650/jos.ess15039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel fucoxanthin derivatives that could change the size of mixed micelles were synthesized. The mixed micelles under consideration consist of a bile acid and some additives. To change the affinity against a bile acid, we designed the synthesis of a fucoxanthin-lithocholic acid complex. Lithocholic acid is one of the bile acids. The 3-OH on lithocholic acid was protected by a levulinyl group, and the protected lithocholic acid was selectively coupled via an ester linkage to the 3-OH on fucoxanthin to obtain levulinyl-protected lithocholyl fucoxanthin (LevLF). The levulinyl group was then selectively deprotected using hydrazine to obtain a lithocholyl fucoxanthin (LF). The average sizes of the micelles that contained these compounds (fucoxanthin, LevLF, and LF) with a bile acid (sodium taurocholate) were measured. The LevLF induced larger micelles than fucoxanthin or LF. Interestingly, the addition of 1-oleoyl-rac-glycerol induced a more efficient change in the micelle size. The large micelles grew larger, and the small micelles became smaller. Triple-mixed micelles with LevLF, sodium taurocholate, and 1-oleoyl-rac-glycerol formed the largest micelle with a diameter of 68 nm. On the other hand, triple-mixed micelles using LF, sodium taurocholate, and 1-oleoyl-rac-glycerol made the smallest micelles with diameters as low as 12 nm. We also investigated the hydrolysis of these compounds with enzymes (esterase from porcine liver, lipase from porcine pancreas, and cholesterol esterase from Pseudomonas sp.). The ester linkage between the lithocholic acid and fucoxanthin of LevLF was hydrolyzed with cholesterol esterase. In addition, the intestinal absorption was examined with Caco-2 cells, and no advantageous change in absorption efficiency was observed by chemically modifying the fucoxanthin unless different micelles sizes and increasing hydrophobicity are induced.
Collapse
Affiliation(s)
- Shiro Komba
- Biomolecular Engineering Laboratory, National Food Research Institute, NARO
| | | | | |
Collapse
|
18
|
La Frano MR, de Moura FF, Boy E, Lönnerdal B, Burri BJ. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr Rev 2014; 72:289-307. [PMID: 24689451 DOI: 10.1111/nure.12108] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
International research efforts, including those funded by HarvestPlus, a Challenge Program of the Consultative Group on International Agricultural Research (CGIAR), are focusing on conventional plant breeding to biofortify staple crops such as maize, rice, cassava, beans, wheat, sweet potatoes, and pearl millet to increase the concentrations of micronutrients that are commonly deficient in specific population groups of developing countries. The bioavailability of micronutrients in unfortified staple crops in developing regions is typically low, which raises questions about the efficacy of these crops to improve population micronutrient status. This review of recent studies of biofortified crops aims to assess the micronutrient bioavailability of biofortified staple crops in order to derive lessons that may help direct plant breeding and to infer the potential efficacy of food-based nutrition interventions. Although reducing the amounts of antinutrients and the conduction of food processing generally increases the bioavailability of micronutrients, antinutrients still possess important benefits, and food processing results in micronutrient loss. In general, biofortified foods with relatively higher micronutrient density have higher total absorption rates than nonbiofortified varieties. Thus, evidence supports the focus on efforts to breed plants with increased micronutrient concentrations in order to decrease the influence of inhibitors and to offset losses from processing.
Collapse
Affiliation(s)
- Michael R La Frano
- Department of Nutrition, University of California, Davis, Davis, California, USA; Western Human Nutrition Research Center, United States Department of Agriculture, Davis, California, USA
| | | | | | | | | |
Collapse
|
19
|
A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br J Nutr 2014; 111:2153-66. [PMID: 24513222 DOI: 10.1017/s0007114514000166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vitamin A equivalency of β-carotene (VEB) is defined as the amount of ingested β-carotene in μg that is absorbed and converted into 1 μg retinol (vitamin A) in the human body. The objective of the present review was to discuss the different estimates for VEB in various types of dietary food matrices. Different methods are discussed such as mass balance, dose-response and isotopic labelling. The VEB is currently estimated by the US Institute of Medicine (IOM) as 12:1 in a mixed diet and 2:1 in oil. For humans consuming β-carotene dissolved in oil, a VEB between 2:1 and 4:1 is feasible. A VEB of approximately 4:1 is applicable for biofortified cassava, yellow maize and Golden Rice, which are specially bred for human consumption in developing countries. We propose a range of 9:1-16:1 for VEB in a mixed diet that encompasses the IOM VEB of 12:1 and is realistic for a Western diet under Western conditions. For a 'prudent' (i.e. non-Western) diet including a variety of commonly consumed vegetables, a VEB could range from 9:1 to 28:1 in a mixed diet.
Collapse
|
20
|
Gleichenhagen M, Zimmermann BF, Herzig B, Janzik I, Jahnke S, Boner M, Stehle P, Galensa R. Intrinsic isotopic 13C labelling of polyphenols. Food Chem 2013; 141:2582-90. [DOI: 10.1016/j.foodchem.2013.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/17/2013] [Accepted: 05/16/2013] [Indexed: 01/27/2023]
|
21
|
Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose. Food Chem 2013; 139:631-9. [PMID: 23561155 DOI: 10.1016/j.foodchem.2013.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/21/2012] [Accepted: 01/10/2013] [Indexed: 01/26/2023]
Abstract
While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched (13)C-lycopene for human bioavailability and metabolism studies. To enhance the (13)C-enrichment and yields of labelled lycopene from the hp-1 tomato cell line, cultures were first grown in (13)C-glucose media for three serial batches and produced increasing proportions of uniformly labelled lycopene (14.3±1.2%, 39.6±0.5%, and 48.9±1.5%) with consistent yields (from 5.8 to 9 mg/L). An optimised 9-day-long (13)C-loading and 18-day-long labelling strategy developed based on glucose utilisation and lycopene yields, yielded (13)C-lycopene with 93% (13)C isotopic purity, and 55% of isotopomers were uniformly labelled. Furthermore, an optimised acetone and hexane extraction led to a fourfold increase in lycopene recovery from cultures compared to a standard extraction.
Collapse
|
22
|
Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, Komoto A, Maoka T, Tanino Y, Kanazawa K. Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr 2012; 107:1566-9. [PMID: 21920061 DOI: 10.1017/s0007114511004879] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dietary fucoxanthin has been reported to exert several physiological functions, and fucoxanthinol is considered to be the primary active metabolite of fucoxanthin. However, there is no information about the pharmacokinetics of fucoxanthinol in human subjects. In the present study, eighteen human volunteers were orally administered kombu extract containing 31 mg fucoxanthin, and their peripheral blood was collected 5 min before and 0·5, 1, 2, 4, 8 and 24 h after the treatment. Plasma fucoxanthinol concentrations were measured by HPLC, and the pharmacokinetics of fucoxanthinol were as follows: maximum concentration, 44·2 nmol/l; time at maximum concentration, 4 h; terminal half-time, 7·0 h; area under the curve (AUC) for 1-24 h, 578·7 nmol/l × h; AUC(∞), 663·7 nmol/l × h. In addition to fucoxanthinol, we also attempted to detect amarouciaxanthin A, a hepatic metabolite of fucoxanthinol, using HPLC, but it was not present in the volunteers' plasma. On the other hand, a peak that was suspected to represent the cis-isomer of fucoxanthinol was found in the HPLC chromatogram. By comparing the present results with those of a previous study using mice, we found that the bioavailability and metabolism of fucoxanthinol differ between human subjects and mice.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fleshman MK, Riedl KM, Novotny JA, Schwartz SJ, Harrison EH. An LC/MS method for d8-β-carotene and d4-retinyl esters: β-carotene absorption and its conversion to vitamin A in humans. J Lipid Res 2012; 53:820-7. [PMID: 22308509 DOI: 10.1194/jlr.d021139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intestinal absorption and metabolism of β-carotene is of vital importance in humans, especially in populations that obtain the majority of their vitamin A from provitamin A carotenoids. MS has provided a better understanding of the absorption of β-carotene, the most potent provitamin A carotenoid, through the use of stable isotopes of β-carotene. We report here an HPLC-MS method that eliminates the need for complicated sample preparation and allows us to detect and quantify newly absorbed d8-β-carotene as well as its d4-retinyl ester metabolites in human plasma and chylomicron fractions. Both retinoids and β-carotene were recovered in a single simple extraction that did not involve saponification, thus allowing subsequent quantitation of individual fatty acyl esters of retinol. Separation of d8-β-carotene and its d4-retinyl ester metabolites was achieved using the same C30 reversed-phase liquid chromatography followed by mass spectrometry in selected ion monitoring and negative atmospheric pressure chemical ionization modes, respectively. Total time for the two successive runs was 30 min. This HPLC-MS method allowed us to quantify the absorption of intact d8-β-carotene as well as its extent of conversion to d4-retinyl esters in humans after consumption of a single 5 mg dose of d8-β-carotene.
Collapse
Affiliation(s)
- Matthew K Fleshman
- Department of Human Nutrition, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
24
|
Gordon MH. Significance of dietary antioxidants for health. Int J Mol Sci 2011; 13:173-9. [PMID: 22312245 PMCID: PMC3269679 DOI: 10.3390/ijms13010173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 01/27/2023] Open
Abstract
Since evidence became available that free radicals were involved in mechanisms for the development of major diseases, including cardiovascular disease and cancer, there has been considerable research into the properties of natural dietary antioxidants. However, it has become clear that dietary antioxidants can only have beneficial effects in vivo by radical scavenging or effects on redox potential if they are present in tissues or bodily fluids at sufficient concentrations. For many dietary components, absorption is limited or metabolism into derivatives reduces the antioxidant capacity. For many dietary phytochemicals, direct antioxidant effects may be less important for health than other effects including effects on cell signalling or gene expression in vivo.
Collapse
Affiliation(s)
- Michael H Gordon
- Institute of Cardiovascular and Metabolic Research and Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights P.O. Box 226, Reading RG6 6AP, UK; E-Mail: ; Tel.: +44-118-3786723
| |
Collapse
|
25
|
Puiggròs F, Solà R, Bladé C, Salvadó MJ, Arola L. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. J Chromatogr A 2011; 1218:7399-414. [PMID: 21917262 DOI: 10.1016/j.chroma.2011.08.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 01/16/2023]
Abstract
Traditional dietary assessment methods, such as 24-h recalls, weighted food diaries and food frequency questionnaires (FFQs) are highly subjective and impair the assessment of successfully accomplished dietary interventions. Foodomic technologies offer promising methodologies for gathering scientific evidence from clinical trials with sensitive methods (e.g., GC-MS, LC-MS, CE, NMR) to detect and quantify markers of nutrient exposure or subtle changes in dietary patterns. This review provides a summary of recently developed foodomic methodologies for the detection of suggested biomarkers, including the food specificity for each suggested biomarker and a brief description of the key aspects of 24-h recalls that may affect marker detection and stability, such as mixed nutrients and cooking processes. The primary aim of this review is to contribute to the assessment of the metabolic effects of active ingredients and foods using cutting-edge methods to improve approaches to future nutritional programs tailored for health maintenance and disease prevention.
Collapse
Affiliation(s)
- Francesc Puiggròs
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | |
Collapse
|
26
|
Davidsson L, Tanumihardjo S. New frontiers in science and technology: nuclear techniques in nutrition. Am J Clin Nutr 2011; 94:691S-5S. [PMID: 21653797 PMCID: PMC3142739 DOI: 10.3945/ajcn.110.005819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward.
Collapse
Affiliation(s)
- Lena Davidsson
- Nutritional and Health-Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | | |
Collapse
|
27
|
Engelmann NJ, Clinton SK, Erdman JW. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Adv Nutr 2011; 2:51-61. [PMID: 22211189 PMCID: PMC3042793 DOI: 10.3945/an.110.000075] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are readily absorbed from tomato foods and tomato extracts by humans. Animal models of carotenoid absorption suggest preferential accumulation of PE and PF in some tissues. The reasonably high concentrations of PE and PF detected in serum and tissues relative to the concentrations in foods suggest that absorption or metabolism of these compounds may be different from that of LYC. Experimental studies, both in vitro and in vivo, suggest that PE and PF exhibit bioactivity but little is known about their impact in humans. Methods for producing isotopically labeled PE, PF, and LYC tracers from tomato plant cell culture offer a unique tool for further understanding the differential bioavailability and metabolism of these 3 prominent tomato carotenoids and how they may affect health.
Collapse
Affiliation(s)
- Nancy J. Engelmann
- Division of Nutritional Sciences University of Illinois-Urbana/Champaign, Urbana, IL 61801
| | - Steven K. Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - John W. Erdman
- Division of Nutritional Sciences University of Illinois-Urbana/Champaign, Urbana, IL 61801,Department of Food Science and Human Nutrition, University of Illinois-Urbana/Champaign, Urbana, IL 61801,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Arscott SA, Howe JA, Davis CR, Tanumihardjo SA. Carotenoid profiles in provitamin A-containing fruits and vegetables affect the bioefficacy in Mongolian gerbils. Exp Biol Med (Maywood) 2010; 235:839-48. [DOI: 10.1258/ebm.2010.009216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fruits and vegetables are rich sources of provitamin A carotenoids. We evaluated the vitamin A (VA) bioefficacy of a whole foods supplement (WFS) and its constituent green vegetables (Study 1) and a variety of fruits with varying ratios of provitamin A carotenoids (Study 2) in VA-depleted Mongolian gerbils ( n = 77/study). After feeding a VA-deficient diet for 4 and 6 weeks in Studies 1 and 2, respectively, customized diets, equalized for VA, were fed for 4 and 3 weeks, respectively. Both studies utilized negative and VA-positive control groups. In Study 1, liver VA was highest in the VA group (0.82 ± 0.16 μmol/liver, P < 0.05), followed by brussels sprouts (0.50 ± 0.15 μmol/liver), Betanat® ( β-carotene from Blakeslea trispora) (0.50 ± 0.12 μmol/liver) and spinach (0.47 ± 0.09 μmol/liver) groups, which did not differ from baseline. The WFS (0.44 ± 0.06 μmol/liver) and kale (0.43 ± 0.14 μmol/liver) groups had lower liver VA than the baseline group ( P < 0.05), but did not differ from the brussels sprouts, Betanat® and spinach groups. In Study 2, liver VA was highest in the orange (0.67 ± 0.18 μmol/liver), papaya (0.67 ± 0.15 μmol/liver) and VA (0.66 ± 0.14 μmol/liver) groups, followed by the mango (0.58 ± 0.09 μmol/liver) and tangerine (0.55 ± 0.15 μmol/liver) groups. These groups did not differ from baseline. The banana group (0.47 ± 0.15 μmol/liver) was unable to maintain baseline stores of VA and did not differ from the control (0.46 ± 0.13 μmol/liver). These fruits (except banana), vegetables and the WFS were able to prevent VA deficiency in Mongolian gerbils and could be an effective part of food-based interventions to support VA nutrition in developing countries and worldwide.
Collapse
Affiliation(s)
- Sara A Arscott
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706
| | - Julie A Howe
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706
- Agronomy and Soils Department, Auburn University, Auburn, AL 36849
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706
| |
Collapse
|
29
|
Vitamin A equivalency and apparent absorption of beta-carotene in ileostomy subjects using a dual-isotope dilution technique. Br J Nutr 2010; 103:1836-43. [PMID: 20132586 DOI: 10.1017/s0007114509993849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective was to quantify the vitamin A equivalency of beta-carotene in two diets using a dual-isotope dilution technique and the apparent beta-carotene absorption as measured by the oral-faecal balance technique. Seventeen healthy adults with an ileostomy completed the 4-week diet-controlled, cross-over intervention study. Each subject followed both diets for 2 weeks: a diet containing vegetables low in beta-carotene content with supplemental beta-carotene in salad dressing oil ('oil diet'; mean beta-carotene intake 3.1 mg/d) and a diet containing vegetables and fruits high in beta-carotene content ('mixed diet'; mean beta-carotene intake 7.6 mg/d). Daily each subject consumed a mean of 190 microg [13C10]beta-carotene and 195 microg [13C10]retinyl palmitate in oil capsules. The vitamin A equivalency of beta-carotene was calculated as the dose-corrected ratio of [13C5]retinol to [13C10]retinol in serum. Apparent absorption of beta-carotene was determined with oral-faecal balance. Isotopic data quantified a vitamin A equivalency of [13C10]beta-carotene in oil of 3.6:1 (95 % CI 2.8, 4.6) regardless of dietary matrices differences. The apparent absorption of (labelled and dietary) beta-carotene from the 'oil diet' (30 %) was 1.9-fold higher than from the 'mixed diet' (16 %). This extrinsic labelling technique can measure precisely the vitamin A equivalency of beta-carotene in oil capsules, but it does not represent the effect of different dietary matrices.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Recent developments in mass spectrometric methodology, in particular the widespread adoption of liquid chromatography/mass spectrometry, have presented investigators with new opportunities to investigate micronutrient absorption and metabolism. This review focuses on recent reports of the use of stable isotope techniques to facilitate research into vitamin uptake and utilization in humans. RECENT FINDINGS Stable isotopes are used principally in two ways, as analytical standards in isotope dilution assays and as tracers in studies of physiology. There have been a number of advances in both fields recently for almost all of the vitamins. In particular, the effects of food preparation and meal composition on vitamin bioavailability are being probed more widely than before. SUMMARY A considerable amount of method development has been reported. We now have the opportunity to consolidate our understanding of vitamin metabolism to better inform the dietary recommendations for optimal health.
Collapse
Affiliation(s)
- Leslie J C Bluck
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK.
| |
Collapse
|
31
|
Ho CC, de Moura FF, Kim SH, Burri BJ, Clifford AJ. A minute dose of 14C-{beta}-carotene is absorbed and converted to retinoids in humans. J Nutr 2009; 139:1480-6. [PMID: 19535418 PMCID: PMC2709301 DOI: 10.3945/jn.109.105114] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/13/2009] [Accepted: 05/24/2009] [Indexed: 11/14/2022] Open
Abstract
Our objective was to quantify the absorption and conversion to retinoids of a 1.01-nmol, 3.7-kBq oral dose of (14)C-beta-carotene in 8 healthy adults. The approach was to quantify, using AMS, the elimination of (14)C in feces for up to 16 d after dosing and in urine for up to 30 d after dosing. The levels of total (14)C in undiluted serial plasma samples were measured for up to 166 d after dosing. Also, the levels of (14)C in the retinyl ester (RE), retinol (ROH), and beta-carotene fractions that were isolated from undiluted plasma using HPLC were measured. The apparent digestibility of the (14)C was 53 +/- 13% (mean +/- SD), based on the mass balance data, and was generally consistent with the area under the curve for zero to infinite period of (14)C that was eliminated in the feces collections made up to 7.5 d after dosing. Metabolic fecal elimination, calculated as the slope per day (% (14)C-dose/collection from d 7.5 to the final day), was only 0.05 +/- 0.02%. The portion of the (14)C dose eliminated via urine was variable (6.5 +/- 5.2%). Participants [except participant 6 (P6)] had a distinct plasma peak of (14)C at 0.25 d post-dose, preceded by a shoulder at approximately 0.1 d, and followed by a broad (14)C peak that became indistinguishable from baseline at approximately 40 d. Plasma (14)C-RE accounted for most of the absorbed (14)C early after dosing and P1 had the longest delay in the first appearance of (14)C-RE in plasma. The data suggest that plasma RE should be considered in estimating the ROH activity equivalent of ingested beta-carotene.
Collapse
Affiliation(s)
- Charlene C Ho
- Department of Nutrition, University of California, Davis, CA 95616-8669, USA
| | | | | | | | | |
Collapse
|
32
|
Epriliati I, D'Arcy B, Gidley M. Nutriomic analysis of fresh and processed fruit products. 2. During in vitro simultaneous molecular passages using Caco-2 cell monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3377-3388. [PMID: 19290640 DOI: 10.1021/jf802226n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many studies have used Caco-2 cell monolayers as human intestinal absorption models. However, only a few studied digested foods, instead of pure standard compounds. Moreover, beneficial and nutritional molecules (nutriome) have not been investigated simultaneously. The present study explored nutriome passages from digest solution of fresh, dried, and juiced tomato, mango, and papaya using Caco-2 cell monolayers in apical-->basolateral directions. A validation method using complementary TEER and P(app) values or internal standard caffeine is recommended because physiologically passive diffusion is unlikely to happen. Sugars were transported into basolateral sides, resulting in potential glucose equivalent bioavailability of 2.26-75 mg h(-1)/100 g (WB). Using sugar passage rates (DB) of juices as 100% references, the rate order was tomato (49.8% dried; 89.5% fresh) > mango (56.8% dried; 22.8% fresh) > papaya (18.7% dried; 36.7% fresh). Major indications that phytochemical absorption does not occur in the small intestine were obtained from the bioassay condition selected. Apical organic acid levels decreased, which occasionally were transported into basolateral sides, whereas the disappearances of apical carotenoids and phenolics were not. Pectin substances were predicted to be responsible for the disappearances of bioactive compounds in those pectin-rich fruits. Further investigations on the role of pectin substances in intestinal passages are recommended.
Collapse
Affiliation(s)
- Indah Epriliati
- School of Land, Crop and Food Sciences, The University of Queensland, St. Lucia, Australia.
| | | | | |
Collapse
|
33
|
Howe JA, Valentine AR, Hull AK, Tanumihardjo SA. 13C natural abundance in serum retinol acts as a biomarker for increases in dietary provitamin A. Exp Biol Med (Maywood) 2009; 234:140-7. [PMID: 19116317 PMCID: PMC2693073 DOI: 10.3181/0806-rm-199] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The natural isotopic composition of 13C and 12C in tissues is largely determined by the diet. Sources of provitamin A carotenoids (e.g., vegetables) typically have a lower 13C to 12C ratio (13C:12C) than preformed vitamin A sources (i.e., dairy and meat) from corn-fed animals, which are prevalent in the US. The 13C:12C of serum retinol (13C:12C-retinol) was evaluated as a biomarker for vegetable intake in a 3-mo dietary intervention designed to promote weight-loss by increased vegetable consumption or reduced calorie and fat intake. Subjects were 21-50 y of age with a BMI between 30-40 kg/m2 and were enrolled from one geographic area in the US. The high vegetable group (n=20) was encouraged to increase daily vegetable and fruit consumption to 0.95 liter vegetables and 0.24-0.35 liter fruits. The caloric reduction group (n=17) was encouraged to lower caloric intake by 500 kcal and consume
Collapse
Affiliation(s)
- Julie A Howe
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
- Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
| | - Ashley R Valentine
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Angela K Hull
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
34
|
Vitamin A equivalency of β-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect. Br J Nutr 2008; 101:1837-45. [DOI: 10.1017/s0007114508131762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Data on the vitamin A equivalency of β-carotene in food are inconsistent. We quantified the vitamin A equivalency (μg) of β-carotene in two diets using the dual-isotope dilution technique and the oral–faecal balance technique. A diet-controlled, cross-over intervention study was conducted in twenty-four healthy adults. Each subject followed two diets for 3 weeks each: a diet containing vegetables low in β-carotene with supplemental β-carotene in salad dressing oil (‘oil diet’) and a diet containing vegetables and fruits high in β-carotene (‘mixed diet’). During all 6 weeks, each subject daily consumed a mean of 55 (sd 0·5) μg [13C10]β-carotene and 55 (sd 0·5) μg [13C10]retinyl palmitate in oil capsules. The vitamin A equivalency of β-carotene was calculated as the dose-corrected ratio of [13C5]retinol to [13C10]retinol in serum and from apparent absorption by oral–faecal balance. Isotopic data quantified a vitamin A equivalency of [13C10]β-carotene in oil of 3·4 μg (95 % CI 2·8, 3·9), thus the bio-efficacy of the β-carotene in oil was 28 % in the presence of both diets. However, data from oral–faecal balance estimated vitamin A equivalency as 6:1 μg (95 % CI 4, 7) for β-carotene in the ‘oil diet’. β-Carotene in the ‘oil diet’ had 2·9-fold higher vitamin A equivalency than β-carotene in the ‘mixed diet’. In conclusion, this extrinsic labelling technique cannot measure effects of mixed vegetables and fruits matrices, but can measure precisely the vitamin A equivalency of the β-carotene in oil capsules.
Collapse
|
35
|
Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Sánchez-Moreno C, de Ancos B, Martínez JA, Pérez-Sacristán B, Blanco-Navarro I. Modified-atmosphere packaging (MAP) does not affect the bioavailability of tocopherols and carotenoids from broccoli in humans: A cross-over study. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Breithaupt DE, Yahia EM, Velázquez FJV. Comparison of the absorption efficiency of alpha- and beta-cryptoxanthin in female Wistar rats. Br J Nutr 2007; 97:329-36. [PMID: 17298702 DOI: 10.1017/s0007114507336751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Xanthophylls, such as lutein and zeaxanthin, have received increasing interest in recent years because of positive correlations between their consumption and the prevention of eye diseases. Numerous human intervention studies have been conducted with lutein to estimate the bioavailability from different formulations. The present study was designed to obtain basic data on the absorbance efficiency of the monohydroxylated counterparts of lutein and zeaxanthin: alpha- and beta-cryptoxanthin. A corn-oil-based diet comprising beta-cryptoxanthin from papaya purée and alpha-cryptoxanthin from green carrot leaves was fed to five female Wistar rats for 8 consecutive days at a rate of 17.3 nmol/d and 9.2 nmol/d, respectively. The identity of the xanthophylls in the supplement was ascertained by LC-(APCI)MS analyses, and xanthophylls present in liver and plasma samples were determined by HPLC/diode array detector (DAD). The beta-cryptoxanthin concentrations of rat livers in the treatment group were statistically distinguishable (P < 0.01) from those present in the livers of the control group that were fed a basic diet. Alpha-cryptoxanthin, the second xanthophyll present in the supplement, was not found in rat livers in the treatment group. Plasma samples were free of xanthophylls. This is the first report proving that beta-cryptoxanthin has a higher absorption efficiency than alpha-cryptoxanthin in rats, at least from a minimally processed oil-based xanthophyll supplement.
Collapse
Affiliation(s)
- Dietmar E Breithaupt
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70593 Stuttgart, Germany.
| | | | | |
Collapse
|
37
|
Abstract
The assessment of carotenoid bioavailability has long been hampered by the limited knowledge of their absorption mechanisms. However, recent reports have elucidated important aspects of carotenoid digestion and absorption. Disruption of food matrix and increasing amounts of fat seem to enhance the absorption of carotenes to a larger extent than that of xanthophylls. Comparing different carotenoid species, xanthophylls seem to be more easily released from the food matrix and more efficiently micellized than the carotenes. On the other hand, carotenes are more efficiently taken up by the enterocytes. However, carotenoid emulsification and micellization steps are largely affected by the food matrix and dietary components, being the main determinant of carotenoid bioavailability from foodstuffs. Although the intestinal uptake of carotenoids has been thought to occur by simple diffusion, recent studies reported the existence of receptor-mediated transport of carotenoids in enterocytes. Comparisons between the intestinal absorption of a wide array of carotenoids would be useful to elucidate the absorption mechanism of each carotenoid species, in view of the recent indications that intestinal carotenoid uptake may involve the scavenger receptor class B type I and possibly other epithelial transporters. The unraveling of the whole mechanism underlying the absorption of carotenoids will be the challenge for future studies.
Collapse
Affiliation(s)
- Lina Yonekura
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
38
|
Ho CC, de Moura FF, Kim SH, Clifford AJ. Excentral cleavage of beta-carotene in vivo in a healthy man. Am J Clin Nutr 2007; 85:770-7. [PMID: 17344499 DOI: 10.1093/ajcn/85.3.770] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Excentral cleavage of beta-carotene to retinoids and apocarotenoids occurs in vitro and in animal models. Whether it occurs in humans is unclear. OBJECTIVE We tested the hypothesis of whether humans can cleave beta-carotene excentrally. DESIGN A healthy man was given an oral dose of all-trans [10,10',11,11'-(14)C]-beta-carotene (1.01 nmol; 100 nCi). Its fate and that of its metabolites were measured in serial plasma samples. Its fate in feces and urine was also measured over time. Selected plasma samples were spiked with reference standards of retinol, beta-apo-12'-carotenal, beta-apo-8'-carotenal, 13-cis-retinoic acid, all-trans-retinoic acid, beta-carotene-5,6-epoxide, all-trans-beta-carotene, and retinyl palmitate and subjected to reverse-phase HPLC fractionation. The plasma, plasma fractions, urine, and feces were measured for (14)C with the use of accelerator mass spectrometry. RESULTS Sixty-five percent of administered (14)C was absorbed, and 15.7% was eliminated in urine during the first 21 d after dosing. (14)C-beta-carotene and (14)C-retinyl palmitate appeared in plasma 0.25 d after the dose. (14)C-beta-carotene and (14)C-retinol both appeared at 0.5 d only. On day 3 after the dose, 2 large (14)C peaks appeared in plasma: one matched the retention time of beta-apo-8'-carotenal, and the other did not match any of the reference standards used. The delayed appearance of (14)C-beta-apo-8'-carotenal in plasma suggests that the excentral cleavage occurred after the (14)C-beta-apo-8'-carotene was absorbed into the body. CONCLUSION These data suggest that excentral cleavage of ingested beta-carotene occurs in vivo in humans. Confirmation of that possibility and further study to identify and characterize additional metabolites are needed.
Collapse
Affiliation(s)
- Charlene C Ho
- Department of Nutrition, University of California, Davis, CA 95616-8669, USA
| | | | | | | |
Collapse
|
39
|
Serrano J, Goñi I, Saura-Calixto F. Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res Int 2007. [DOI: 10.1016/j.foodres.2006.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Dueck TA, De Visser R, Poorter H, Persijn S, Gorissen A, De Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, Van Der Werf A. No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. THE NEW PHYTOLOGIST 2007; 175:29-35. [PMID: 17547664 DOI: 10.1111/j.1469-8137.2007.02103.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
* The results of a single publication stating that terrestrial plants emit methane has sparked a discussion in several scientific journals, but an independent test has not yet been performed. * Here it is shown, with the use of the stable isotope (13)C and a laser-based measuring technique, that there is no evidence for substantial aerobic methane emission by terrestrial plants, maximally 0.3% (0.4 ng g(-1) h(-1)) of the previously published values. * Data presented here indicate that the contribution of terrestrial plants to global methane emission is very small at best. * Therefore, a revision of carbon sequestration accounting practices based on the earlier reported contribution of methane from terrestrial vegetation is redundant.
Collapse
Affiliation(s)
- Tom A Dueck
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Ries De Visser
- IsoLife, PO Box 349, 6700 AH, Wageningen, the Netherlands
| | - Hendrik Poorter
- Plant Ecophysiology, Utrecht University, PO Box 800.84, 3508 TB, Utrecht, the Netherlands
| | - Stefan Persijn
- Molecular & Laser Physics, Radboud University, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | | | - Willem De Visser
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Ad Schapendonk
- Plant Dynamics, Englaan 8, 6703 EW, Wageningen, the Netherlands
| | - Jan Verhagen
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Jan Snel
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Frans J M Harren
- Molecular & Laser Physics, Radboud University, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | - Anthony K Y Ngai
- Molecular & Laser Physics, Radboud University, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | - Francel Verstappen
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | - Harro Bouwmeester
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | | | - Adrie Van Der Werf
- Plant Research International, PO Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
41
|
Schlatterer J, Breithaupt DE, Wolters M, Hahn A. Plasma responses in human subjects after ingestions of multiple doses of natural alpha-cryptoxanthin: a pilot study. Br J Nutr 2006; 96:371-6. [PMID: 16923233 DOI: 10.1079/bjn20061848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Xanthophylls have attracted a lot of interest since their health benefits were documented. Unfortunately, studying their intestinal absorption is often affected by high baseline levels present in the fasting plasma. As alpha-cryptoxanthin is rarely found in the traditional European diet, its concentration in human plasma is extremely low. A pilot human intervention study was designed using alpha-cryptoxanthin for the first time as a marker xanthophyll in a minimally formulated cellulose-based supplement. Alpha-cryptoxanthin was administered in gelatin soft-gel capsules in multiple doses of 156 microg/d to three male volunteers (age 27.3 (SD 4.7) years; BMI 21.6 (SD 0.3) kg/m(2)) for 16 d after a 2-week carotenoid depletion period. Fasting blood samples were taken before the intervention and after 3, 6, 9, 13 and 16 d. Plasma HPLC analyses allowed for determination of the concentration; liquid chromatography-MS in the single ion monitoring mode was used to confirm peak assignment. The concentrations of alpha-cryptoxanthin increased significantly after only 3 d of supplementation. The concentration-time plots showed a characteristic shape with a first maximum after day 6, a decline until day 9 and a gradual second rise until the end of the study. Standardisation of plasma alpha-cryptoxanthin concentrations to triacylglycerol or total cholesterol did not influence the characteristics. The maximum concentrations reached at the end of the intervention period ranged from 0.077 to 0.160 micromol/l. These results suggest a high intestinal absorption and an enrichment of alpha-cryptoxanthin in the plasma even from a minimally formulated cellulose-based supplement.
Collapse
Affiliation(s)
- Jörg Schlatterer
- Institute of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
42
|
Goñi I, Serrano J, Saura-Calixto F. Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:5382-7. [PMID: 16848521 DOI: 10.1021/jf0609835] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Epidemiological studies have consistently demonstrated that there is an association between carotenoid-rich food intakes with a low incidence in chronic diseases. Nevertheless, there is not an association between the intake of total dietary carotenoids and chronic health incidence in the European population, probably because of different carotenoid food sources and bioavailability. The objective of this study was to evaluate the small and large intestine bioaccessibilities of major dietary carotenoids from fruits and vegetables in a common diet. A bioaccessibility model that includes enzymatic digestion and in vitro colonic fermentation was employed. Lutein presented greater small intestine bioaccessibility (79%) than beta-carotene (27%) or lycopene (40%). With regard to large intestine bioaccessibility, similar amounts of lycopene and beta-carotene were released from the food matrix (57%), whereas small amounts of lutein (17%) were released. These results suggest that 91% of the beta-carotene, lutein, and lycopene contained in fruits and vegetables is available in the gut during the entire digestion process. Colonic fermentation is shown to be important for carotenoid availability in the gut.
Collapse
Affiliation(s)
- Isabel Goñi
- Nutrition and Gastrointestinal Health Unit, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
43
|
de Moura FF, Ho CC, Getachew G, Hickenbottom S, Clifford AJ. Kinetics of 14C distribution after tracer dose of 14C-lutein in an adult woman. Lipids 2005; 40:1069-73. [PMID: 16382580 DOI: 10.1007/s11745-005-1471-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lutein is an oxygenated carotenoid (xanthophyll) found in dark green leafy vegetables. High intakes of lutein may lower the risk of age-related macular degeneration. Current understanding of human lutein metabolism as it might occur in vivo is incomplete. Therefore, we conducted a feasibility study where we dosed a normal adult woman with 14C-lutein (125 nmol, 36 nCi 14C), dissolved in olive oil (0.5 g/kg body weight) and mixed in a banana shake. Blood, urine, and feces collected before the dose was administered served to establish baseline values. Thereafter, blood was collected for 63 d following the dose, while feces and urine were collected for 2 wk post-dose. The 14C contents in plasma, urine, and feces were measured by accelerator MS. The 14C first appeared in plasma 1 h after dosing and reached its highest level, approximately2.08% of dose/L plasma, at 14 h post-dose. The plasma pattern of 14C did not include a chylomicrons/VLDL (intestinal) peak like that when the same subject received 14C-beta-carotene (a previous test), suggesting that lutein was handled differently from beta-carotene by plasma lipoproteins. Lutein had an elimination half-life (t1/2) of approximately10 d. Forty-five percent of the dose of 14C was eliminated in feces and 10% in urine in the first 2 d after dosing. Quantifying human lutein metabolism is a fertile area for future research.
Collapse
Affiliation(s)
- Fabiana F de Moura
- Department of Nutrition, University of California Davis, 95616-8669, USA
| | | | | | | | | |
Collapse
|