1
|
Lin WL, Chien MM, Patchara S, Wang W, Faradina A, Huang SY, Tung TH, Tsai CS, Skalny AV, Tinkov AA, Chang CC, Chang JS. Essential trace element and phosphatidylcholine remodeling: Implications for body composition and insulin resistance. J Trace Elem Med Biol 2024; 85:127479. [PMID: 38878466 DOI: 10.1016/j.jtemb.2024.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR). METHODS Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults. Blood essential/probably essential trace elements and lipid metabolites were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULT AND CONCLUSION Except for LysoPC (O-18:0/0:0), an inverse V shape was observed between body weight and PC and LysoPC species. A Pearson correlation analysis showed that essential/probably-essential metals (Se, Cu, and Ni: r=-0.4∼-0.7) were negatively correlated with PC metabolites but positively correlated with LysoPC (O-18:0/0:0) (Se, Cu, and Ni: r=0.85-0.64). Quantile-g computation showed that one quantile increase in essential metals was associated with a 2.16-fold increase in serum Lp-PLA2 (β=2.16 (95 % confidence interval (CI): 0.34, 3.98), p=0.023), which are key enzymes involved in PC/Lyso PC metabolism. An interactive analysis showed that compared to those with the lowest levels (reference), individuals with the highest levels of serum PCs (pooled, M2) and the lowest essential/probably essential metals (M1) were associated with a healthier body composition and had a 76 % decreased risk of IR (odds ratio (OR)=0.24 (95 % CI: 0.06, 0.90), p<0.05). In contrast, increased exposure to LysoPC(O-18:0/0:0) (M2) and essential metals (M2) exhibited an 8.22-times highest risk of IR (OR= 8.22 (2.07, 32.57), p<0.05) as well as an altered body composition. In conclusion, overexposure to essential/probably essential trace elements may promote an unhealthy body weight and IR through modulating PC/LysoPC remodeling pathways.
Collapse
Affiliation(s)
- Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Mu-Ming Chien
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Sangopas Patchara
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Weu Wang
- Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11301, Taiwan, ROC; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan, ROC
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Te-Hsuan Tung
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan, ROC; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114202, Taiwan, ROC
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan, ROC; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Collage of Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan, ROC; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
2
|
Wagner MP, Chitnis CE. Lipid peroxidation and its repair in malaria parasites. Trends Parasitol 2023; 39:200-211. [PMID: 36642689 DOI: 10.1016/j.pt.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
During its life cycle, the human malaria parasite Plasmodium falciparum is subjected to elevated levels of oxidative stress that cause damage to membrane lipids, a process referred to as lipid peroxidation. Control and repair of lipid peroxidation is critical for survival of P. falciparum. Here, we present an introduction into lipid peroxidation and review the current knowledge about the control and repair of the damage caused by lipid peroxidation in P. falciparum blood stages. We also review the recent identification of host peroxiredoxin 6 (PRDX6), as a key lipid-peroxidation-repair enzyme in P. falciparum blood stages. Such critical host factors provide novel targets for development of drugs against malaria.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
3
|
Xue J, Allaband C, Zhou D, Poulsen O, Martino C, Jiang L, Tripathi A, Elijah E, Dorrestein PC, Knight R, Zarrinpar A, Haddad GG. Influence of Intermittent Hypoxia/Hypercapnia on Atherosclerosis, Gut Microbiome, and Metabolome. Front Physiol 2021; 12:663950. [PMID: 33897472 PMCID: PMC8060652 DOI: 10.3389/fphys.2021.663950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic state. Apolipoprotein E deficient mice (ApoE-/- ), treated with IH or IC on a high-fat diet (HFD) for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was significantly greater than IH and Air controls (aorta, IC 11.1 ± 0.7% vs. IH 7.6 ± 0.4%, p < 0.05 vs. Air 8.1 ± 0.8%, p < 0.05). In the pulmonary artery (PA), however, IH, IC, and Air were significantly different from each other in atherosclerotic formation with the largest lesion observed under IH (PA, IH 40.9 ± 2.0% vs. IC 20.1 ± 2.6% vs. Air 12.2 ± 1.5%, p < 0.05). The most differentially abundant microbial families (p < 0.001) were Peptostreptococcaceae, Ruminococcaceae, and Erysipelotrichaceae. The most differentially abundant metabolites (p < 0.001) were tauro-β-muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine (18:0). We conclude that IH and IC (a) modulate atherosclerosis progression differently in distinct vascular beds with IC, unlike IH, facilitating atherosclerosis in both aorta and PA and (b) promote an atherosclerotic luminal gut environment that is more evident in IH than IC. We speculate that the resulting changes in the gut metabolome and microbiome interact differently with distinct vascular beds.
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Program, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Dan Zhou
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Orit Poulsen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
| | - Lingjing Jiang
- Division of Biostatistics, University of California, San Diego, San Diego, CA, United States
| | - Anupriya Tripathi
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, San Diego, CA, United States
| | - Pieter C. Dorrestein
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, San Diego, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, VA San Diego, La Jolla, CA, United States
- Institute of Diabetes and Metabolic Health, University of California, San Diego, San Diego, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
4
|
Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: The story continues. Med Res Rev 2019; 40:79-134. [PMID: 31140638 PMCID: PMC6973114 DOI: 10.1002/med.21597] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is thought to play an important role in the pathogenesis of vascular diseases. Lipoprotein-associated phospholipase A2 (Lp-PLA2) mediates vascular inflammation through the regulation of lipid metabolism in blood, thus, it has been extensively investigated to identify its role in vascular inflammation-related diseases, mainly atherosclerosis. Although darapladib, the most advanced Lp-PLA2 inhibitor, failed to meet the primary endpoints of two large phase III trials in atherosclerosis patients cotreated with standard medical care, the research on Lp-PLA2 has not been terminated. Novel pathogenic, epidemiologic, genetic, and crystallographic studies regarding Lp-PLA2 have been reported recently, while novel inhibitors were identified through a fragment-based lead discovery strategy. More strikingly, recent clinical and preclinical studies revealed that Lp-PLA2 inhibition showed promising therapeutic effects in diabetic macular edema and Alzheimer's disease. In this review, we not only summarized the knowledge of Lp-PLA2 established in the past decades but also emphasized new findings in recent years. We hope this review could be valuable for helping researchers acquire a much deeper insight into the nature of Lp-PLA2, identify more potent and selective Lp-PLA2 inhibitors, and discover the potential indications of Lp-PLA2 inhibitors.
Collapse
Affiliation(s)
- Fubao Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Chaithra VH, Jacob SP, Lakshmikanth CL, Sumanth MS, Abhilasha KV, Chen CH, Thyagarajan A, Sahu RP, Travers JB, McIntyre TM, Kemparaju K, Marathe GK. Modulation of inflammatory platelet-activating factor (PAF) receptor by the acyl analogue of PAF. J Lipid Res 2018; 59:2063-2074. [PMID: 30139761 DOI: 10.1194/jlr.m085704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
Platelet-activating factor (PAF) is a potent inflammatory mediator that exerts its actions via the single PAF receptor (PAF-R). Cells that biosynthesize alkyl-PAF also make abundant amounts of the less potent PAF analogue acyl-PAF, which competes for PAF-R. Both PAF species are degraded by the plasma form of PAF acetylhydrolase (PAF-AH). We examined whether cogenerated acyl-PAF protects alkyl-PAF from systemic degradation by acting as a sacrificial substrate to enhance inflammatory stimulation or as an inhibitor to dampen PAF-R signaling. In ex vivo experiments both PAF species are prothrombotic in isolation, but acyl-PAF reduced the alkyl-PAF-induced stimulation of human platelets that express canonical PAF-R. In Swiss albino mice, alkyl-PAF causes sudden death, but this effect can also be suppressed by simultaneously administering boluses of acyl-PAF. When PAF-AH levels were incrementally elevated, the protective effect of acyl-PAF on alkyl-PAF-induced death was serially decreased. We conclude that, although acyl-PAF in isolation is mildly proinflammatory, in a pathophysiological setting abundant acyl-PAF suppresses the action of alkyl-PAF. These studies provide evidence for a previously unrecognized role for acyl-PAF as an inflammatory set-point modulator that regulates both PAF-R signaling and hydrolysis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Jeffery Bryant Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India .,and Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| |
Collapse
|
6
|
Karasawa K. Naturally Occurring Missense Mutation in Plasma PAF-AH Among the Japanese Population. Enzymes 2015; 38:117-43. [PMID: 26612650 DOI: 10.1016/bs.enz.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A single nucleotide polymorphism in the plasma PAF-AH enzyme, i.e., G994T, which causes the substitution of Val at amino acid 279 with Phe (V279F), has been found in the Japanese population. This enzyme preferentially degrades oxidatively modulated or truncated phospholipids; therefore, it has been suggested that this enzyme may prevent the accumulation of proinflammatory and proatherogenic oxidized phospholipids. This hypothesis is supported by the higher prevalence of the V279F mutation in patients with asthmatic and atherosclerotic diseases, as compared with healthy controls. This mutation is rare in the Caucasian population. The plasma PAF-AH mass and enzyme activity are distributed over a wide range in the plasma and they are positively correlated with low-density lipoprotein (LDL) cholesterol. However, several clinical studies in the Caucasian population have suggested that this enzyme has the opposite role. This enzyme plays an active role in the development and progression of atherosclerosis via proinflammatory and proatherogenic lysophosphatidylcholine and oxidized fatty acids produced through the oxidation of LDL by this enzyme. Thus, plasma PAF-AH is a unique enzyme with dual roles in human inflammatory diseases. In this chapter, on the basis of recent findings we describe the association between a naturally occurring missense mutation in plasma PAF-AH and human diseases especially including atherosclerosis and asthma.
Collapse
Affiliation(s)
- Ken Karasawa
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
| |
Collapse
|
7
|
Gao D, Willard B, Podrez EA. Analysis of covalent modifications of proteins by oxidized phospholipids using a novel method of peptide enrichment. Anal Chem 2014; 86:1254-62. [PMID: 24350680 DOI: 10.1021/ac4035949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free radical-induced oxidation of phospholipids contributes significantly to pathologies associated with inflammation and oxidative stress. Detection of covalent interaction between oxidized phospholipids (oxPL) and proteins by LC-MS/MS could provide valuable information about the molecular mechanisms of oxPL effects. However, such studies are very limited because of significant challenges in detection of the comparatively low levels of oxPL-protein adducts in complex biological systems. Current approaches have several limitations, most important of which is the inability to detect protein modifications by naturally occurring oxPL. We now report, for the first time, an enrichment method that can be applied to the global analysis of protein adducts with various naturally occurring oxPL in relevant biological systems. This method exploits intrinsic properties of peptides modified by oxPL, allowing highly efficient enrichment of oxPL-modified peptides from biological samples. Very low levels of oxPL-protein adducts (<2 ppm) were detected using this enrichment method in combination with LC-MS/MS. We applied the method to several model systems, including oxidation of high density lipoprotein (HDL) and interaction of human platelets with a specific oxPL, and demonstrated its extremely high efficiency and productivity. We report multiple new modifications of apolipoproteins in HDL and proteins in human platelets.
Collapse
Affiliation(s)
- Detao Gao
- Department of Molecular Cardiology, Cleveland Clinic, Lerner Research Institute , Cleveland, Ohio 44195, United States
| | | | | |
Collapse
|
8
|
Abstract
Oxidized PLs (OxPLs) generated in health and disease are now recognized as important mediators of cellular signalling. There is an increasing body of evidence showing that PL peroxidation is not only increased in vascular disorders, but is also a physiological event of relevance to coagulation, innate immunity, and self-tolerance. Nonenzymatically formed OxPLs generated during chronic inflammation is an uncontrolled event, generating hundreds of diverse structures, and prone to more deleterious bioactivities. In contrast, enzymatic formation of OxPLs is tightly regulated, involving receptors and intracellular signaling, acting as part of the normal physiological response to injury in order to restore homeostasis. In the present review, the major nonenzymatic OxPLs structures found during vascular inflammation are summarized, along with a brief description of their known biological activities. Also, we review what is currently known about enzymatic formation of OxPLs by acutely activated immune cells and their signaling actions under homeostatic and pathological conditions.
Collapse
Affiliation(s)
- Maceler Aldrovandi
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | |
Collapse
|
9
|
Pawlowic MC, Zhang K. Leishmania parasites possess a platelet-activating factor acetylhydrolase important for virulence. Mol Biochem Parasitol 2012; 186:11-20. [PMID: 22954769 DOI: 10.1016/j.molbiopara.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/03/2023]
Abstract
Leishmania parasites are intracellular protozoans capable of salvaging and remodeling lipids from the host. To understand the role of lipid metabolism in Leishmania virulence, it is necessary to characterize the enzymes involved in the uptake and turnover of phospholipids. This study focuses on a putative phospholipase A2 (PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) in Leishmania major. In mammals, PAF-AH is a subgroup of PLA2 catalyzing the hydrolysis/inactivation of platelet-activating factor (PAF), a potent mediator of many leukocyte functions. By immunofluorescence microscopy, L. major PLA2/PAF-AH is predominantly localized in the ER. While wild type L. major parasites are able to hydrolyze PAF, this activity is completely absent in the PLA2/PAF-AH-null mutants. Meanwhile, deletion of PLA2/PAF-AH had no significant effect on the turnover of common glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. PLA2/PAF-AH is not required for the growth of L. major parasites in culture, or the production of GPI-anchored virulence factors. Nonetheless, it does play a key role in the mammalian host as the PLA2/PAF-AH null mutants exhibit attenuated virulence in BALB/c mice. In conclusion, these data suggest that Leishmania parasites possess a functional PAF-AH and the degradation of PAF or PAF-like lipids is an important step in infection.
Collapse
Affiliation(s)
- Mattie C Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
10
|
Thomas CP, O'Donnell VB. Oxidized phospholipid signaling in immune cells. Curr Opin Pharmacol 2012; 12:471-7. [PMID: 22445283 DOI: 10.1016/j.coph.2012.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/18/2023]
Abstract
Oxidized phospholipids (oxPLs) that can be generated either enzymatically or non-enzymatically are fast becoming recognized as important signaling mediators of the immune system. Hundreds of structures exist, but only a small fraction have been studied in detail. Their known activities include regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling, and several have been detected in models of human and animal disease. In this review, the most studied structures of oxPLs will be summarized, along with descriptions of their known biological actions. Subsequently, the focus will be on the more recently described forms generated acutely by lipoxygenases (LOX) in human and murine immune cells.
Collapse
Affiliation(s)
- Christopher P Thomas
- Institute of Infection and Immunity, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK
| | | |
Collapse
|
11
|
O'Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:818-26. [PMID: 21835265 DOI: 10.1016/j.bbalip.2011.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
Oxidized phospholipids (OxPLs) are rapidly becoming recognized as important mediators of cellular and immune signaling. They are generated either enzymatically or non-enzymatically and 100s of structures exist of which only a small fraction have been analyzed to date. Pleiotropic activities, including regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling have been observed and some are detected in models of human and animal disease, including atherosclerosis and infection. More recently, the acute generation of specific oxidized phospholipids by cellular enzymes in immune cells was reported. Assays for analysis and quantification of OxPLs were first developed approx 15years ago, primarily for hydro(pero)xy-species. Many were based on monitoring a single precursor ion with/without LC separation, based on the PL headgroup. Others combined LC with monitoring precursor to product transitions, but were unable to provide information regarding position of oxidation on unsaturated sn-2 fatty acid due to sensitivity issues. More recently, LC/MS/MS methods for specific OxPLs have been reported that enable high sensitivity quantitation in biological samples. In this review, widely used methods for detecting and quantifying various classes of OxPL will be summarized, along with practical advice for their use. In particular, the focus will be on LC/MS/MS, which today is almost universally the method of choice.
Collapse
|
12
|
Lu FSH, Nielsen NS, Timm-Heinrich M, Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids 2010; 46:3-23. [PMID: 21088919 DOI: 10.1007/s11745-010-3496-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/26/2010] [Indexed: 12/15/2022]
Abstract
Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review was undertaken to provide the industry and academia with an overview of (1) the stability of MPL in different forms and their potential as liposomal material, and (2) the current applications and future prospects of MPL in both food and aquaculture industries with special emphasis on MPL in the liposomal form.
Collapse
Affiliation(s)
- F S Henna Lu
- Division of Seafood Research, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
13
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
14
|
Chen R, Chen X, Salomon RG, McIntyre TM. Platelet activation by low concentrations of intact oxidized LDL particles involves the PAF receptor. Arterioscler Thromb Vasc Biol 2008; 29:363-71. [PMID: 19112165 DOI: 10.1161/atvbaha.108.178731] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Mitochondrial depolarization aids platelet activation. Oxidized LDL (oxLDL) contains the medium length oxidatively truncated phospholipid hexadecyl azelaoyl-lysoPAF (HAz-LPAF) that disrupts mitochondrial function in nucleated cells, so oxLDL may augment platelet activation. METHODS AND RESULTS Flow cytometry showed intact oxLDL particles synergized with subthreshold amounts of soluble agonists to increase intracellular Ca2+, and initiate platelet aggregation and surface expression of activated gpIIb/IIIa and P-selectin. oxLDL also induced aggregation and increased intracellular Ca2+ in FURA2-labeled cells by itself at low, although not higher, concentrations. HAz-LPAF, alone and in combination with substimulatory amounts of thrombin, rapidly increased cytoplasmic Ca2+ and initiated aggregation. HAz-LPAF depolarized mitochondria in intact platelets, but this required concentrations beyond those that directly activated platelets. An unexpectedly large series of chemically pure truncated phospholipids generated by oxidative fragmentation of arachidonoyl-, docosahexaneoyl-, or linoleoyl alkyl phospholipids were platelet agonists. The PAF receptor, thought to effectively recognize only phospholipids with very short sn-2 residues, was essential for platelet activation because PAF receptor agonists blocked signaling by all these medium length phospholipids and oxLDL. CONCLUSIONS Intact oxLDL particles activate platelets through the PAF receptor, and the PAF receptor responds to a far wider range of oxidized phospholipids in oxLDL than anticipated.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
15
|
Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 2008; 156:1-12. [PMID: 18671956 DOI: 10.1016/j.chemphyslip.2008.07.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
The evidence that oxidized phospholipids play a role in signaling, apoptotic events and in age-related diseases is responsible for the increasing interest for the study of this subject. Phospholipid changes induced by oxidative reactions yield a huge number of structurally different oxidation products which difficult their isolation and characterization. Mass spectrometry (MS), and tandem mass spectrometry (MS/MS) using the soft ionization methods (electrospray and matrix-assisted laser desorption ionization) is one of the finest approaches for the study of oxidized phospholipids. Product ions in tandem mass spectra of oxidized phospholipids, allow identifying changes in the fatty acyl chain and specific features such as presence of new functional groups in the molecule and their location along the fatty acyl chain. This review describes the work published on the use of mass spectrometry in identifying oxidized phospholipids from the different classes.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Santiago, Aveiro, Portugal.
| | | | | |
Collapse
|
16
|
Tsoukatos DC, Brochériou I, Moussis V, Panopoulou CP, Christofidou ED, Koussissis S, Sismanidis S, Ninio E, Siminelakis S. Platelet-activating factor acetylhydrolase and transacetylase activities in human aorta and mammary artery. J Lipid Res 2008; 49:2240-9. [PMID: 18587071 PMCID: PMC2533414 DOI: 10.1194/jlr.m800188-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet-activating factor (PAF), the potent phospholipid mediator of inflammation, is involved in atherosclerosis. Platelet-activating factor-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF bioactivity, possesses both acetylhydrolase and transacetylase activities. In the present study, we measured acetylhydrolase and transacetylase activities in human atherogenic aorta and nonatherogenic mammary arteries. Immunohistochemistry analysis showed PAF-AH expression in the intima and the media of the aorta and in the media of mammary arteries. Acetylhydrolase and transacetylase activities were (mean +/- SE, n = 38): acetylhydrolase of aorta, 2.8 +/- 0.5 pmol/min/mg of tissue; transacetylase of aorta, 3.3 +/- 0.7 pmol/min/mg of tissue; acetylhydrolase of mammary artery, 1.4 +/- 0.3 pmol/min/mg of tissue (P < 0.004 as compared with acetylhydrolase of aorta); transacetylase of mammary artery, 0.8 +/- 0.2 pmol/min/mg of tissue (P < 0.03 as compared with acetylhydrolase of mammary artery). Lyso-PAF accumulation and an increase in PAF bioactivity were observed in the aorta of some patients. Reverse-phase HPLC and electrospray ionization mass spectrometry analysis revealed that 1-O-hexadecyl-2 acetyl-sn glycero-3-phosphocholine accounted for 60% of the PAF bioactivity and 1-O-hexadecyl-2-butanoyl-sn-glycerol-3-phosphocholine for 40% of the PAF bioactivity. The nonatherogenic properties of mammary arteries may in part be due to low PAF formation regulated by PAF-AH activity. In atherogenic aortas, an imbalance between PAF-AH and transacetylase activity, as well as lyso-PAF accumulation, may lead to unregulated PAF formation and to progression of atherosclerosis.
Collapse
|
17
|
Maruyama C, Yoneyama M, Suyama N, Yoshimi K, Teramoto A, Sakaki Y, Suto Y, Takahashi K, Araki R, Ishizaka Y, Yamakado M, Teramoto T. Differences in Serum Phospholipid Fatty Acid Compositions and Estimated Desaturase Activities between Japanese Men with and without Metabolic Syndrome. J Atheroscler Thromb 2008; 15:306-13. [PMID: 19060426 DOI: 10.5551/jat.e564] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chizuko Maruyama
- Department of Food and Nutrition, Faculty of Home Economics, Japan Women's University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Karasawa K. Clinical aspects of plasma platelet-activating factor-acetylhydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1359-72. [PMID: 17049457 DOI: 10.1016/j.bbalip.2006.06.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 06/15/2006] [Indexed: 11/25/2022]
Abstract
Plasma platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), which is characterized by tight association with plasma lipoproteins, degrades not only PAF but also phospholipids with oxidatively modified short fatty acyl chain esterified at the sn-2 position. Production and accumulation of these phospholipids are associated with the onset of inflammatory diseases and preventive role of this enzyme has been evidenced by many recent studies including prevalence of the genetic deficiency of the enzyme in the patients and therapeutic effects of treatment with recombinant protein or gene transfer. With respect to the atherosclerosis, however, it is not fully cleared whether this enzyme plays an anti-atherogenic role or pro-atherogenic role because plasma PAF-AH also might produce lysophosphatidylcholine (LysoPC) and oxidatively modified nonesterified fatty acids with potent pro-inflammatory and pro-atherogenic bioactivities. These dual roles of plasma PAF-AH might be regulated by the altered distribution of the enzyme between low density lipoprotein (LDL) and high density lipoprotein (HDL) particles because HDL-associated enzymes are considered to contribute to the protection of LDL from oxidative modification. This review focuses on the recent findings which address the role of this enzyme in the human diseases especially including asthma, septic shock and atherosclerosis.
Collapse
Affiliation(s)
- Ken Karasawa
- Laboratory of Molecular Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 199-0195, Japan.
| |
Collapse
|
19
|
Santiago HC, Braga Pires MF, Souza DG, Roffê E, Côrtes DF, Tafuri WL, Teixeira MM, Vieira LQ. Platelet activating factor receptor-deficient mice present delayed interferon-γ upregulation and high susceptibility to Leishmania amazonensis infection. Microbes Infect 2006; 8:2569-77. [PMID: 16938478 DOI: 10.1016/j.micinf.2006.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 06/03/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
We investigated the role of the platelet activation factor (PAF) receptor (PAFR) in the outcome of infection with Leishmania amazonensis. PAFR deficient (PAFR(-/-)) mice were infected with L. amazonensis and the course of infection was followed. We found that PAFR(-/-) mice in the C57BL/6 background were more susceptible to infection with L. amazonensis than the wild-type controls, as seen both by lesion size and parasite number at the site of infection. Interferon (IFN)-gamma production was delayed in PAFR(-/-) mice, and lower levels of Ccl5 were found in lesions. Expression of nitric oxide synthase-2 mRNA was found impaired in PAFR(-/-) associated with higher levels of arginase-1 mRNA. Moreover, higher levels of antibodies were produced in response to L. amazonensis by PAFR(-/-) mice. We conclude that signaling through the PAFR is essential for the ability of the murine host to control L. amazonensis infection by driving an adequate immune response.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Arginase/biosynthesis
- Chemokine CCL1
- Chemokine CCL5
- Chemokines, CC/analysis
- Disease Models, Animal
- Disease Susceptibility
- Gene Expression
- Histocytochemistry
- Immunoglobulin G/blood
- Interferon-gamma/biosynthesis
- Interleukin-10/analysis
- Leishmania mexicana/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type II/biosynthesis
- Platelet Membrane Glycoproteins/deficiency
- Platelet Membrane Glycoproteins/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Tumor Necrosis Factor-alpha/analysis
- Up-Regulation
Collapse
Affiliation(s)
- Helton C Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP 486, Av. Antonio Carlos 6627, Pampulha, CEP 30161-970 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|