1
|
Fu Y, Kim H, Lee DS, Han AR, Heine H, Zamyatina A, Kim HM. Structural insight into TLR4/MD-2 activation by synthetic LPS mimetics with distinct binding modes. Nat Commun 2025; 16:4164. [PMID: 40325026 PMCID: PMC12053604 DOI: 10.1038/s41467-025-59550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
The mammalian pattern-recognition receptor TLR4/MD-2 (Toll-like receptor 4/myeloid differentiation factor-2) can be activated by a wide variety of pathogen-associated and endogenous molecules, with Gram-negative bacterial lipopolysaccharide (LPS) being the primary natural TLR4 agonist. Activation of TLR4 triggers cellular signaling that enables the beneficial innate immune responses and enhances adaptive immunity, thereby emphasizing the potential of TLR4 agonists for the management of diseases with an immunopathological background and for use as vaccine adjuvants. Given the challenges associated with LPS-derived products, including structural complexity, heterogeneity, toxicity, and species specificity, synthetic molecules targeting TLR4/MD-2 offer a promising alternative. Here, we elucidate the structural basis for the recognition of synthetic LPS-mimicking glycolipids, Disaccharide Lipid A Mimetics (DLAMs), by human and mouse TLR4/MD-2 through cryo-EM structures of six dimeric [TLR4/MD-2/ligand]2 complexes resolved at 2.2-3.1 Å. We reveal that the specific binding modes of DLAMs, distinct from those of LPS, are essential for the species-independent TLR4 agonistic activity. DLAMs function as a molecular bridge, effectively induce the dimerization of TLR4/MD-2 complexes through specific carbohydrate structure-relevant ligand-protein interactions. Our findings reveal the distinct molecular modes of TLR4 activation, and provide a structural basis for the rationale design and development of innovative, highly potent TLR4-targeting immunotherapeutics and adjuvants.
Collapse
Affiliation(s)
- Yaoyao Fu
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong Sun Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Alla Zamyatina
- Department of Natural Sciences and Sustainable Resources, Institute of Organic Chemistry, BOKU University, Vienna, Austria.
| | - Ho Min Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
De Chiara S, De Simone Carone L, Cirella R, Andretta E, Silipo A, Molinaro A, Mercogliano M, Di Lorenzo F. Beyond the Toll-Like Receptor 4. Structure-Dependent Lipopolysaccharide Recognition Systems: How far are we? ChemMedChem 2025; 20:e202400780. [PMID: 39752323 PMCID: PMC11911305 DOI: 10.1002/cmdc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
With an enormous potential in immunology and vaccinology, lipopolysaccharides (LPSs) are among the most extensively studied bacteria-derived molecules. LPS centered studies are countless, and their results reverberate in all areas of the life sciences, including chemistry, biology, genetics, biophysics, and medicine. Most of these research activities are focused on the LPS-induced immune response activation by means of Myeloid Differentiation protein-2/Toll Like Receptor 4 (MD-2/TLR4) complex, which currently is the most largely explored LPS sensing pathway. However, the enormous structural variability of LPS allows interactions with numerous other receptors involved in a wide range of equally important immunological scenarios. In this review, we explore these additional LPS recognition systems, which operate within interconnected signaling cascades, highlighting their role in maintaining physiological homeostasis and their involvement in the development of severe human diseases. Understanding these pathways, their interconnections, and the crosstalk between them and TLR4/MD-2 is essential for guiding the development of pharmacologically active molecules that could specifically modulate the inflammatory response, paving the way to new strategies for combating immune-mediated diseases and resistant infections.
Collapse
Affiliation(s)
- Stefania De Chiara
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Luca De Simone Carone
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Roberta Cirella
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Emanuela Andretta
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Alba Silipo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| | - Antonio Molinaro
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
- Department of ChemistrySchool of ScienceOsaka University1-1 Osaka University MachikaneyamaToyonakaOsaka560-0043Japan
| | - Marcello Mercogliano
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Flaviana Di Lorenzo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| |
Collapse
|
3
|
Matsubara M, Bolton EE, Aoki-Kinoshita KF, Yamada I. Toward integration of glycan chemical databases: an algorithm and software tool for extracting sugars from chemical structures. Anal Bioanal Chem 2025; 417:945-956. [PMID: 39212696 PMCID: PMC11782307 DOI: 10.1007/s00216-024-05508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Integration of glycan-related databases between different research fields is essential in glycoscience. It requires knowledge across the breadth of science because most glycans exist as glycoconjugates. On the other hand, especially between chemistry and biology, glycan data has not been easy to integrate due to the huge variety of glycan structure representations. We have developed WURCS (Web 3.0 Unique Representation of Carbohydrate Structures) as a notation for representing all glycan structures uniquely for the purpose of integrating data across scientific data resources. While the integration of glycan data in the field of biology has been greatly advanced, in the field of chemistry, progress has been hampered due to the lack of appropriate rules to extract sugars from chemical structures. Thus, we developed a unique algorithm to determine the range of structures allowed to be considered as sugars from the structural formulae of compounds, and we developed software to extract sugars in WURCS format according to this algorithm. In this manuscript, we show that our algorithm can extract sugars from glycoconjugate molecules represented at the molecular level and can distinguish them from other biomolecules, such as amino acids, nucleic acids, and lipids. Available as software, MolWURCS is freely available and downloadable ( https://gitlab.com/glycoinfo/molwurcs ).
Collapse
Affiliation(s)
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Issaku Yamada
- The Noguchi Institute, Itabashi, Tokyo, 173-0003, Japan.
| |
Collapse
|
4
|
Aleem AM, Mitchener MM, Kingsley PJ, Rouzer CA, Marnett LJ. Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages. J Lipid Res 2024; 65:100615. [PMID: 39098584 PMCID: PMC11401187 DOI: 10.1016/j.jlr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
Collapse
Affiliation(s)
- Ansari M Aleem
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michelle M Mitchener
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Philip J Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carol A Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lawrence J Marnett
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Zhang T, Lyu J, Yang B, Yun SD, Scott E, Zhao M, Laganowsky A. Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids. Nat Commun 2024; 15:5946. [PMID: 39009687 PMCID: PMC11251056 DOI: 10.1038/s41467-024-50350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Bowei Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Huang D, Chen L, Wang Y, Wang Z, Wang J, Wang X. Characterization of a secondary hydroxy-acyltransferase for lipid A in Vibrio parahaemolyticus. Microbiol Res 2024; 283:127712. [PMID: 38593580 DOI: 10.1016/j.micres.2024.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.
Collapse
Affiliation(s)
- Danyang Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingyan Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Su Z, Chen A, Lipkowski J. Electrochemical and Infrared Studies of a Model Bilayer of the Outer Membrane of Gram-Negative Bacteria and its Interaction with polymyxin─the Last-Resort Antibiotic. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8248-8259. [PMID: 38578277 DOI: 10.1021/acs.langmuir.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A model bilayer of the outer membrane (OM) of Gram-negative bacteria, composed of lipid A and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), was assembled on the β-Tg modified gold (111) single crystal surface using a combination of Langmuir-Blodgett and Langmuir-Schaefer transfer. Electrochemical and spectroscopic methods were employed to study the properties of the model bilayer and its interaction with polymyxin. The model bilayer is stable on the gold surface in the transmembrane potential region between 0.0 and -0.7 V. The presence of Mg2+ coordinates with the phosphate and carboxylate groups in the leaflet of lipid A and stabilizes the structure of the model bilayer. Polymyxin causes the model bilayer leakage and damage in the transmembrane potential region between 0.2 and -0.4 V. At transmembrane potentials lower than -0.5 V, polymyxin does not affect the membrane integrity. Polymyxin binds to the phosphate and carboxylate groups in lipid A molecules and causes the increase of the tilt angle of acyl chains and the decrease of the tilt of the C═O bond. The results in this paper indicate that the antimicrobial activity of polymyxin depends on the transmembrane potential at the model bilayer and provides useful information for the development of new antibiotics.
Collapse
Affiliation(s)
- ZhangFei Su
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Salloum Z, Dauner K, Li YF, Verma N, Valdivieso-González D, Almendro-Vedia V, Zhang JD, Nakka K, Chen MX, McDonald J, Corley CD, Sorisky A, Song BL, López-Montero I, Luo J, Dilworth JF, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3. eLife 2024; 13:e85964. [PMID: 38602170 PMCID: PMC11186637 DOI: 10.7554/elife.85964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Statins are known to be anti-inflammatory, but the mechanism remains poorly understood. Here, we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the adenosine triphosphate (ATP) synthase in the inner mitochondrial membrane and changes the proton gradient in the mitochondria. This activates nuclear factor kappa-B (NF-κB) and Jmjd3 expression, which removes the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus lipopolysaccharide (M1), macrophages, either treated with statins in vitro or isolated from statin-fed mice, express lower levels proinflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL-4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
Affiliation(s)
- Zeina Salloum
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kristin Dauner
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Yun-feng Li
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Neha Verma
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - David Valdivieso-González
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - John D Zhang
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Mei Xi Chen
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Jeffrey McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Jie Luo
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Jeffrey F Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Xiaohui Zha
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Departments of Medicine and of Biochemistry, Microbiology & Immunology, University of OttawaOttawaCanada
| |
Collapse
|
9
|
Herrera-Marcos LV, Martínez-Beamonte R, Arnal C, Barranquero C, Puente-Lanzarote JJ, Lou-Bonafonte JM, Gonzalo-Romeo G, Mocciaro G, Jenkins B, Surra JC, Rodríguez-Yoldi MJ, Alastrué-Vera V, Letosa J, García-Gil A, Güemes A, Koulman A, Osada J. Lipidomic signatures discriminate subtle hepatic changes in the progression of porcine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G411-G425. [PMID: 38375587 DOI: 10.1152/ajpgi.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Recently, the development of nonalcoholic steatohepatitis (NASH) in common strains of pigs has been achieved using a diet high in saturated fat, fructose, cholesterol, and cholate and deficient in choline and methionine. The aim of the present work was to characterize the hepatic and plasma lipidomic changes that accompany the progression of NASH and its reversal by switching pigs back to a chow diet. One month of this extreme steatotic diet was sufficient to induce porcine NASH. The lipidomic platform using liquid chromatography-mass spectrometry analyzed 467 lipid species. Seven hepatic phospholipids [PC(30:0), PC(32:0), PC(33:0), PC(33:1), PC(34:0), PC(34:3) and PC(36:2)] significantly discriminated the time of dietary exposure, and PC(30:0), PC(33:0), PC(33:1) and PC(34:0) showed rapid adaptation in the reversion period. Three transcripts (CS, MAT1A, and SPP1) showed significant changes associated with hepatic triglycerides and PC(33:0). Plasma lipidomics revealed that these species [FA 16:0, FA 18:0, LPC(17:1), PA(40:5), PC(37:1), TG(45:0), TG(47:2) and TG(51:0)] were able to discriminate the time of dietary exposure. Among them, FA 16:0, FA 18:0, LPC(17:1) and PA(40:5) changed the trend in the reversion phase. Plasma LDL-cholesterol and IL12P40 were good parameters to study the progression of NASH, but their capacity was surpassed by hepatic [PC(33:0), PC(33:1), and PC(34:0)] or plasma lipid [FA 16:0, FA 18:0, and LPC(17:1)] species. Taken together, these lipid species can be used as biomarkers of metabolic changes in the progression and regression of NASH in this model. The lipid changes suggest that the development of NASH also affects peripheral lipid metabolism.NEW & NOTEWORTHY A NASH stage was obtained in crossbred pigs. Hepatic [PC(33:0), PC(33:1) and PC(34:0)] or plasma [FA 16:0, FA 18:0 and LPC(17:1)] species were sensitive parameters to detect subtle changes in development and regression of nonalcoholic steatohepatitis (NASH). These findings may delineate the liquid biopsy to detect subtle changes in progression or in treatments. Furthermore, phospholipid changes according to the insult-inducing NASH may play an important role in accepting or rejecting fatty livers in transplantation.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Puente-Lanzarote
- Servicio de Bioquímica Clínica, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Gonzalo-Romeo
- Servicio General de Apoyo a la Investigación, División de Experimentación Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriele Mocciaro
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Letosa
- Industrial Zootécnica Aragonesa S.L. (INZAR, S.L.), Zaragoza, Spain
| | - Agustín García-Gil
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Güemes
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
VanOtterloo LM, Macias LA, Powers MJ, Brodbelt JS, Trent MS. Characterization of Acinetobacter baumannii core oligosaccharide synthesis reveals novel aspects of lipooligosaccharide assembly. mBio 2024; 15:e0301323. [PMID: 38349180 PMCID: PMC10936431 DOI: 10.1128/mbio.03013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.
Collapse
Affiliation(s)
- Leah M. VanOtterloo
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | - Luis A. Macias
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Matthew J. Powers
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | | | - M. Stephen Trent
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Saiioum Z, Dauner K, Li YF, Verma N, Almendro-Vedia V, Valdivieso Gonzalez D, Zhang DJ, Nakka K, McDonald J, Sorisky A, Song BL, Lopez Montero I, Luo J, Dilworth J, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523264. [PMID: 36711703 PMCID: PMC9881925 DOI: 10.1101/2023.01.09.523264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stains are known to be anti-inflammatory, but the mechanism remains poorly understood. Here we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the ATP synthase in the inner mitochondrial membrane (IMM) and changes the proton gradient in the mitochondria. This activates NFkB and Jmjd3 expression to remove the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus LPS (M1), both macrophages treated with statins in vitro or isolated from statin-treated mice in vivo, express lower levels pro-inflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
|
12
|
Abe Y, Kofman ER, Ouyang Z, Cruz-Becerra G, Spann NJ, Seidman JS, Troutman TD, Stender JD, Taylor H, Fan W, Link VM, Shen Z, Sakai J, Downes M, Evans RM, Kadonaga JT, Rosenfeld MG, Glass CK. A TLR4/TRAF6-dependent signaling pathway mediates NCoR coactivator complex formation for inflammatory gene activation. Proc Natl Acad Sci U S A 2024; 121:e2316104121. [PMID: 38165941 PMCID: PMC10786282 DOI: 10.1073/pnas.2316104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1β complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1β coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1β complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Eric R. Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA92093
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Nathanael J. Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Ty D. Troutman
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH45229
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Havilah Taylor
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Verena M. Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Munich82152, Germany
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA92093
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - James T. Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Michael G. Rosenfeld
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
13
|
Bennett H, Troutman TD, Zhou E, Spann NJ, Link VM, Seidman JS, Nickl CK, Abe Y, Sakai M, Pasillas MP, Marlman JM, Guzman C, Hosseini M, Schnabl B, Glass CK. Discrimination of cell-intrinsic and environment-dependent effects of natural genetic variation on Kupffer cell epigenomes and transcriptomes. Nat Immunol 2023; 24:1825-1838. [PMID: 37735593 PMCID: PMC10602851 DOI: 10.1038/s41590-023-01631-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Noncoding genetic variation drives phenotypic diversity, but underlying mechanisms and affected cell types are incompletely understood. Here, investigation of effects of natural genetic variation on the epigenomes and transcriptomes of Kupffer cells derived from inbred mouse strains identified strain-specific environmental factors influencing Kupffer cell phenotypes, including leptin signaling in Kupffer cells from a steatohepatitis-resistant strain. Cell-autonomous and non-cell-autonomous effects of genetic variation were resolved by analysis of F1 hybrid mice and cells engrafted into an immunodeficient host. During homeostasis, non-cell-autonomous trans effects of genetic variation dominated control of Kupffer cells, while strain-specific responses to acute lipopolysaccharide injection were dominated by actions of cis-acting effects modifying response elements for lineage-determining and signal-dependent transcription factors. These findings demonstrate that epigenetic landscapes report on trans effects of genetic variation and serve as a resource for deeper analyses into genetic control of transcription in Kupffer cells and macrophages in vitro.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ty D Troutman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Division of Allergy and Immunology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Enchen Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jason S Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christian K Nickl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justin M Marlman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlos Guzman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Abe Y, Kofman ER, Almeida M, Ouyang Z, Ponte F, Mueller JR, Cruz-Becerra G, Sakai M, Prohaska TA, Spann NJ, Resende-Coelho A, Seidman JS, Stender JD, Taylor H, Fan W, Link VM, Cobo I, Schlachetzki JCM, Hamakubo T, Jepsen K, Sakai J, Downes M, Evans RM, Yeo GW, Kadonaga JT, Manolagas SC, Rosenfeld MG, Glass CK. RANK ligand converts the NCoR/HDAC3 co-repressor to a PGC1β- and RNA-dependent co-activator of osteoclast gene expression. Mol Cell 2023; 83:3421-3437.e11. [PMID: 37751740 PMCID: PMC10591845 DOI: 10.1016/j.molcel.2023.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1β with the NCoR/HDAC3 complex, resulting in the activation of PGC1β and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biochemistry and Molecular Biology, Nippon Medical School Hospital, Tokyo 113-8602, Japan
| | - Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason S Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Hoffmann A, Pacios K, Mühlemann R, Daumke R, Frank B, Kalman F. Application of a novel chemical assay for the quantification of endotoxins in bacterial bioreactor samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123839. [PMID: 37527605 DOI: 10.1016/j.jchromb.2023.123839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
A novel chemical assay, the so-called Kdo-DMB-liquid chromatography (LC) assay, was used for the accurate and cost-effective determination of the endotoxin content in supernatants of Gram-negative bacteria bioreactor samples. During mild acid hydrolysis, the endotoxin-specific sugar acid 3-deoxy-D-manno-oct-2-ulsonic acid (Kdo) is quantitatively released. Kdo is reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) to obtain the highly fluorescent derivate Kdo-DMB. It is separated from the reaction mixture by reversed phase-(U)HPLC and detected by fluorescence. From the Kdo content the endotoxin content of the sample is calculated. For three batch cultivations of Escherichia coli K12 and a fed-batch cultivation of Pseudomonas putida KT2440, the evolution of the endotoxin content in dependence on the cultivation time was monitored. Under optimal, constant cultivation conditions a linear correlation between the endotoxin content and the easy-to-access bioreactor parameters optical density at 600 nm and dry cell weight was found for both endotoxin kinds. Under stress cultivation conditions the E. coli K12 cultivation showed a stronger increase of the endotoxin content at harvest in comparison to optimal conditions. Optical density and dry cell weight may be used for production reactors as an economic real-time estimation tool to determine the endotoxin content at different cultivation time points and conditions. The optical density can further be used to establish straightforward sample dilution schemes for endotoxin quantification in samples of unknown endotoxin content. The endotoxin content [ng mL-1] measured by the Kdo-DMB-LC assay and the endotoxin activity [EU mL-1] obtained by the compendial Limulus Amoebocyte Lysate assay show a high correlation for the bacterial bioreactor samples tested.
Collapse
Affiliation(s)
- Anika Hoffmann
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Kevin Pacios
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Reto Mühlemann
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Franka Kalman
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland.
| |
Collapse
|
16
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
17
|
Di Leo R, Cuffaro D, Rossello A, Nuti E. Bacterial Zinc Metalloenzyme Inhibitors: Recent Advances and Future Perspectives. Molecules 2023; 28:molecules28114378. [PMID: 37298854 DOI: 10.3390/molecules28114378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Human deaths caused by Gram-negative bacteria keep rising due to the multidrug resistance (MDR) phenomenon. Therefore, it is a priority to develop novel antibiotics with different mechanisms of action. Several bacterial zinc metalloenzymes are becoming attractive targets since they do not show any similarities with the human endogenous zinc-metalloproteinases. In the last decades, there has been an increasing interest from both industry and academia in developing new inhibitors against those enzymes involved in lipid A biosynthesis, and bacteria nutrition and sporulation, e.g., UDP-[3-O-(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), thermolysin (TLN), and pseudolysin (PLN). Nevertheless, targeting these bacterial enzymes is harder than expected and the lack of good clinical candidates suggests that more effort is needed. This review gives an overview of bacterial zinc metalloenzyme inhibitors that have been synthesized so far, highlighting the structural features essential for inhibitory activity and the structure-activity relationships. Our discussion may stimulate and help further studies on bacterial zinc metalloenzyme inhibitors as possible novel antibacterial drugs.
Collapse
Affiliation(s)
- Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
18
|
Aleem AM, Kang W, Lin S, Milad M, Kingsley PJ, Crews BC, Uddin MJ, Rouzer CA, Marnett LJ. Ferroptosis Inhibitors Suppress Prostaglandin Synthesis in Lipopolysaccharide-Stimulated Macrophages. ACS Chem Biol 2023; 18:404-418. [PMID: 36638351 DOI: 10.1021/acschembio.2c00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Necrostatin-1 blocks ferroptosis via an unknown mechanism and necroptosis through inhibition of receptor-interacting protein kinase-1 (RIP1). We report that necrostatin-1 suppresses cyclooxygenase-2-dependent prostaglandin biosynthesis in lipopolysaccharide-treated RAW264.7 macrophages (IC50 ∼ 100 μM). This activity is shared by necrostatin-1i (IC50 ∼ 50 μM), which lacks RIP1 inhibitory activity, but not the RIP1 inhibitors necrostatin-1s or deschloronecrostatin-1s. Furthermore, we show that the potent ferroptosis inhibitors and related compounds ferrostatin-1, phenoxazine, phenothiazine, and 10-methylphenothiazine strongly inhibit cellular prostaglandin biosynthesis with IC50's in the range of 30 nM to 3.5 μM. None of the compounds inhibit lipopolysaccharide-mediated cyclooxygenase-2 protein induction. In the presence of activating hydroperoxides, the necrostatins and ferroptosis inhibitors range from low potency inhibition to stimulation of in vitro cyclooxygenase-2 activity; however, inhibitory potency is increased under conditions of low peroxide tone. The ferroptosis inhibitors are highly effective reducing substrates for cyclooxygenase-2's peroxidase activity, suggesting that they act by suppressing hydroperoxide-mediated activation of the cyclooxygenase active site. In contrast, for the necrostatins, cellular prostaglandin synthesis inhibition does not correlate with peroxidase-reducing activity but rather with the presence of a thiohydantoin substituent, which conveys the ability to reduce the endoperoxide intermediate prostaglandin H2 to prostaglandin F2α in vitro. This finding suggests that necrostatin-1 blocks cellular prostaglandin synthesis and ferroptosis via a redox mechanism distinct from action as a one-electron donor. The results indicate that a wide range of compounds derived from redox-active chemical scaffolds can block cellular prostaglandin biosynthesis.
Collapse
Affiliation(s)
- Ansari M Aleem
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Weixi Kang
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Shuyang Lin
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Matthew Milad
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Philip J Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brenda C Crews
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Md Jashim Uddin
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carol A Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
19
|
Huang D, Ji F, Tan X, Qiao J, Li H, Wang Z, Wang X. Free lipid A and full-length lipopolysaccharide coexist in Vibrio parahaemolyticus ATCC33846. Microb Pathog 2023; 174:105889. [PMID: 36435436 DOI: 10.1016/j.micpath.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Lipid A plays an important role in the pathogenicity and antimicrobial resistance of Vibrio parahaemolyticus, but little is known about the structure and biosynthesis of lipid A in V. parahaemolyticus. In this study, lipid A species were either directly extracted or obtained by the acid hydrolysis of lipopolysaccharide from V. parahaemolyticus ATCC33846 cells and analyzed by thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. Several lipid A species in V. parahaemolyticus cells were characterized, and two of these species were not connected to polysaccharides. One free lipid A species has the similar structure as the hexa-acylated lipid A in Escherichia coli, and the other is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain. Three lipid A species were isolated by the acid hydrolysis of lipopolysaccharide: the 1st one has the similar structure as the hexa-acylated lipid A in E. coli, the 2nd one is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain and a secondary 2-OH C12:0 acyl chain, and the 3rd one is equal to the 2nd species with a phosphoethanolamine modification. These results are important for understanding the biosynthesis of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Kuhlmann FM, Key PN, Hickerson SM, Turk J, Hsu FF, Beverley SM. Inositol phosphorylceramide synthase null Leishmania are viable and virulent in animal infections where salvage of host sphingomyelin predominates. J Biol Chem 2022; 298:102522. [PMID: 36162499 PMCID: PMC9637897 DOI: 10.1016/j.jbc.2022.102522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2-) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs-). Unexpectedly and unlike fungi where IPCS is essential, Δipcs- was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs- promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs-, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs- parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.
Collapse
Affiliation(s)
- F. Matthew Kuhlmann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA,Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Phillip N. Key
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Suzanne M. Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - John Turk
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA,For correspondence: Stephen M. Beverley
| |
Collapse
|
21
|
Yuan X, Xu W, Yan Z, Xu X, Chen Y, Chen S, Wang P. Andrographolide exerted anti-inflammatory effects thereby reducing sex hormone synthesis in LPS-induced female rats, but had no effect on hormone production in healthy ones. Front Pharmacol 2022; 13:980064. [PMID: 36188549 PMCID: PMC9520912 DOI: 10.3389/fphar.2022.980064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Females have higher inflammatory tolerance because they have some special sex-related anti-inflammatory pathways. Andrographolide, a diterpene lactone compound from Andrographis paniculata (Burm.f.) Nees, has a powerful anti-inflammatory effect. But whether andrographolide regulates sex-related anti-inflammatory pathways in females has yet to be reported. A non-targeted metabonomics method was employed to investigate the metabolic pathways of andrographolide in LPS-induced inflammatory female rats. Substances and genes were then selected out of gender-related pathways discovered by metabonomics experiments and their quantities or expressions were evaluated. Furthermore, the effects of andrographolide on these chemicals or genes in non-inflammatory female rats were also examined in order to investigate the cascade interaction between anti-inflammatory mechanisms and metabolites. The biomarkers of 24 metabolites in plasma were identified. Following pathway enrichment analysis, these metabolic markers were clustered into glycerophosphate, glycerolipids, inositol phosphate and steroid hormone synthesis pathways. Validation experiments confirmed that andrographolide lowered post-inflammatory female sex hormones such as progesterone, estradiol, corticosterone, and testosterone rather than increasing them. Andrographolide may have these effects via inhibiting the overexpression of CYP11a1 and StAR. However, andrographolide had no effect on the expression of these two genes or the four types of hormones in non-inflamed female rats. Similarly, andrographolide decreased TNF-α, IL-6 and IL-1β production in inflammatory rats but showed no effect on these inflammatory markers in non-inflammatory rats. LPS and other inflammatory cytokines promote hormone production, which in turn will prevent increased inflammation. Therefore, it may be hypothesized that andrographolide’s reduction of inflammatory cytokine is what generates its inhibitory action on sex hormones during inflammation. By blocking the activation of inflammatory pathways, andrographolide prevented the stimulation of inflammatory factors on the production of sex hormones. It does not, however, directly inhibit or enhance the synthesis of sex hormones.
Collapse
Affiliation(s)
| | - Wenhao Xu
- Panzhihua Central Hospital, Panzhihua, China
| | - Zijun Yan
- Panzhihua Central Hospital, Panzhihua, China
| | - Xingmeng Xu
- Panzhihua Central Hospital, Panzhihua, China
| | - Yanqing Chen
- Panzhihua Central Hospital, Panzhihua, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| | - Simin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| |
Collapse
|
22
|
Brace N, Megson IL, Rossi AG, Doherty MK, Whitfield PD. SILAC-based quantitative proteomics to investigate the eicosanoid associated inflammatory response in activated macrophages. J Inflamm (Lond) 2022; 19:12. [PMID: 36050729 PMCID: PMC9438320 DOI: 10.1186/s12950-022-00309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.
Collapse
Affiliation(s)
- Nicole Brace
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.
- Present Address: Glasgow Polyomics, Garscube Campus, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
23
|
Muralidharan S, Torta F, Lin MK, Olona A, Bagnati M, Moreno-Moral A, Ko JH, Ji S, Burla B, Wenk MR, Rodrigues HG, Petretto E, Behmoaras J. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Front Immunol 2022; 13:926220. [PMID: 35844525 PMCID: PMC9280915 DOI: 10.3389/fimmu.2022.926220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CE levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| | - Michelle K. Lin
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Antoni Olona
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Marta Bagnati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Jeong-Hun Ko
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hosana G. Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,MRC London Institute of Medical Sciences (LMC), Imperial College, London, United Kingdom,Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Jacques Behmoaras
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| |
Collapse
|
24
|
Dennis EA. Outtakes from My Journey through the World of LIPID MAPS. Molecules 2022; 27:3885. [PMID: 35745008 PMCID: PMC9228998 DOI: 10.3390/molecules27123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
My laboratory's research on lipids has focused on phospholipases and lipidomics and in many ways has evolved in parallel to the evolution of the lipid field over the past half century. I have reviewed our research elsewhere. Herein, I describe the "side stories" or "outtakes" that parallel the main story that focuses on our laboratory's research. I will emphasize the importance of community activities and describe how I came to initiate and lead the international effort on the Lipid Metabolites and Pathways Strategy (LIPID MAPS). Several of these side activities had a significant effect on discoveries in my laboratory research and its evolution as well as contributing significantly to the development of the LIPID MAPS initiative. These included experience and influences from serving as Editor-in-Chief of the Journal of Lipid Research and Chair and President of the Keystone Symposia on Cell and Molecular Biology as well as other experiences in organizing lipid conferences, teaching on lipid structure and mechanism, and earlier formative administrative and leadership experiences. The relevant influences are summarized herein.
Collapse
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0601, USA;
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
25
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
26
|
Wang J, Ma W, Fang Y, Liang H, Yang H, Wang Y, Dong X, Zhan Y, Wang X. Core Oligosaccharide Portion of Lipopolysaccharide Plays Important Roles in Multiple Antibiotic Resistance in Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0034121. [PMID: 34310209 PMCID: PMC8448134 DOI: 10.1128/aac.00341-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are intrinsically resistant to antibiotics due to the presence of the cell envelope, but the mechanisms of this resistance are still not fully understood. In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo2-lipid A, which lacks the core oligosaccharide portion of lipopolysaccharide (LPS). WJW04, WJW07, and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella, and fimbriae, respectively. WJW09, WJW010, and WJW011 cells cannot synthesize exopolysaccharide (EPS), flagella, and fimbria, respectively. Compared to the wild type (W3110), mutants WJW02, WJW04, WJW07, and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but the mutants WJW09, WJW010, and WJW011 did not. This indicates that the core oligosaccharide portion of lipopolysaccharide plays an important role in multiple antibiotic resistance in E. coli and that the first heptose in the core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and response behaviors to antibiotic stimulation. The results demonstrate the important role of lipopolysaccharide in the antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hao Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huiting Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Extraction of ADP-Heptose and Kdo2-Lipid A from E. coli Deficient in the Heptosyltransferase I Gene. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzymes involved in lipopolysaccharide (LPS) biosynthesis, including Heptosyltransferase I (HepI), are critical for maintaining the integrity of the bacterial cell wall, and therefore these LPS biosynthetic enzymes are validated targets for drug discovery to treat Gram-negative bacterial infections. Enzymes involved in the biosynthesis of lipopolysaccharides (LPSs) utilize substrates that are synthetically complex, with numerous stereocenters and site-specific glycosylation patterns. Due to the relatively complex substrate structures, characterization of these enzymes has necessitated strategies to generate bacterial cells with gene disruptions to enable the extraction of these substrates from large scale bacterial growths. Like many LPS biosynthetic enzymes, Heptosyltransferase I binds two substrates: the sugar acceptor substrate, Kdo2-Lipid A, and the sugar donor substrate, ADP-l-glycero-d-manno-heptose (ADPH). HepI characterization experiments require copious amounts of Kdo2-Lipid A and ADPH, and unsuccessful extractions of these two substrates can lead to serious delays in collection of data. While there are papers and theses with protocols for extraction of these substrates, they are often missing small details essential to the success of the extraction. Herein detailed protocols are given for extraction of ADPH and Kdo2-Lipid A (KLA) from E. coli, which have had proven success in the Taylor lab. Key steps in the extraction of ADPH are clearing the extract through ultracentrifugation and keeping all water that touches anything in the extraction, including filters, at a pH of 8.0. Key steps in the extraction of KLA are properly lysing the dried down cells before starting the extraction, maximizing yield by allowing precipitate to form overnight, appropriately washing the pellet with phenol and dissolving the KLA in 1% TEA using visual cues, rather than a specific volume. These protocols led to increased yield and a higher success rate of extractions thereby enabling the characterization of HepI.
Collapse
|
28
|
Shamie I, Duttke SH, Karottki KJLC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J, Lee GM, Glass CK, Kildegaard HF, Benner C, Lewis NE. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genom Bioinform 2021; 3:lqab061. [PMID: 34268494 PMCID: PMC8276764 DOI: 10.1093/nargab/lqab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
Collapse
Affiliation(s)
- Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego 92093, USA
| | - Karen J la Cour Karottki
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Anders H Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Hooman Hefzi
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Samuel J Roth
- Department of Medicine, University of California, San Diego 92093, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | | | | | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| |
Collapse
|
29
|
Abstract
Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium’s lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy.
Collapse
|
30
|
Analyses of Lipid A Diversity in Gram-Negative Intestinal Bacteria Using Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2021; 11:metabo11040197. [PMID: 33810392 PMCID: PMC8065654 DOI: 10.3390/metabo11040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Lipid A is a characteristic molecule of Gram-negative bacteria that elicits an immune response in mammalian cells. The presence of structurally diverse lipid A types in the human gut bacteria has been suggested before, and this appears associated with the immune response. However, lipid A structures and their quantitative heterogeneity have not been well characterized. In this study, a method of analysis for lipid A using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) was developed and applied to the analyses of Escherichia coli and Bacteroidetes strains. In general, phosphate compounds adsorb on stainless-steel piping and cause peak tailing, but the use of an ammonia-containing alkaline solvent produced sharp lipid A peaks with high sensitivity. The method was applied to E. coli strains, and revealed the accumulation of lipid A with abnormal acyl side chains in knockout strains as well as known diphosphoryl hexa-acylated lipid A in a wild-type strain. The analysis of nine representative strains of Bacteroidetes showed the presence of monophosphoryl penta-acylated lipid A characterized by a highly heterogeneous main acyl chain length. Comparison of the structures and amounts of lipid A among the strains suggested a relationship between lipid A profiles and the phylogenetic classification of the strains.
Collapse
|
31
|
Heine H, Adanitsch F, Peternelj TT, Haegman M, Kasper C, Ittig S, Beyaert R, Jerala R, Zamyatina A. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Front Immunol 2021; 12:631797. [PMID: 33815382 PMCID: PMC8012497 DOI: 10.3389/fimmu.2021.631797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer. The TLR4/MD-2 complex can recognize the terminal motif of Gram-negative bacterial lipopolysaccharide (LPS)—a glycophospholipid lipid A. Although immense progress in understanding the molecular basis of LPS-induced TLR4-mediated signaling has been achieved, gradual, and predictable TLR4 activation by structurally defined ligands has not yet been attained. We report on controllable modulation of cellular pro-inflammatory responses by application of novel synthetic glycolipids—disaccharide-based lipid A mimetics (DLAMs) having picomolar affinity for TLR4/MD-2. Using crystal structure inspired design we have developed endotoxin mimetics where the inherently flexible β(1 → 6)-linked diglucosamine backbone of lipid A is replaced by a conformationally restricted α,α-(1↔1)-linked disaccharide scaffold. The tertiary structure of the disaccharide skeleton of DLAMs mirrors the 3-dimensional shape of TLR4/MD-2 bound E. coli lipid A. Due to exceptional conformational rigidity of the sugar scaffold, the specific 3D organization of DLAM must be preserved upon interaction with proteins. These structural factors along with specific acylation and phosphorylation pattern can ensure picomolar affinity for TLR4 and permit efficient dimerization of TLR4/MD-2/DLAM complexes. Since the binding pose of lipid A in the binding pocket of MD-2 (±180°) is crucial for the expression of biological activity, the chemical structure of DLAMs was designed to permit a predefined binding orientation in the binding groove of MD-2, which ensured tailored and species-independent (human and mice) TLR4 activation. Manipulating phosphorylation and acylation pattern at the sugar moiety facing the secondary dimerization interface allowed for adjustable modulation of the TLR4-mediated signaling. Tailored modulation of cellular pro-inflammatory responses by distinct modifications of the molecular structure of DLAMs was attained in primary human and mouse immune cells, lung epithelial cells and TLR4 transfected HEK293 cells.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tina Tinkara Peternelj
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Simon Ittig
- Biozentrum University of Basel, Basel, Switzerland
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
32
|
Nguyen TT, Kosciolek T, Daly RE, Vázquez-Baeza Y, Swafford A, Knight R, Jeste DV. Gut microbiome in Schizophrenia: Altered functional pathways related to immune modulation and atherosclerotic risk. Brain Behav Immun 2021; 91:245-256. [PMID: 33098964 PMCID: PMC8023565 DOI: 10.1016/j.bbi.2020.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence has linked the gut microbiome changes to schizophrenia. However, there has been limited research into the functional pathways by which the gut microbiota contributes to the phenotype of persons with chronic schizophrenia. We characterized the composition and functional potential of the gut microbiota in 48 individuals with chronic schizophrenia and 48 matched (sequencing plate, age, sex, BMI, and antibiotic use) non-psychiatric comparison subjects (NCs) using 16S rRNA sequencing. Patients with schizophrenia demonstrated significant beta-diversity differences in microbial composition and predicted genetic functional potential compared to NCs. Alpha-diversity of taxa and functional pathways were not different between groups. Random forests analyses revealed that the microbiome predicts differentiation of patients with schizophrenia from NCs using taxa (75% accuracy) and functional profiles (67% accuracy for KEGG orthologs, 70% for MetaCyc pathways). We utilized a new compositionally-aware method incorporating reference frames to identify differentially abundant microbes and pathways, which revealed that Lachnospiraceae is associated with schizophrenia. Functional pathways related to trimethylamine-N-oxide reductase and Kdo2-lipid A biosynthesis were altered in schizophrenia. These metabolic pathways were associated with inflammatory cytokines and risk for coronary heart disease in schizophrenia. Findings suggest potential mechanisms by which the microbiota may impact the pathophysiology of the disease through modulation of functional pathways related to immune signaling/response and lipid and glucose regulation to be further investigated in future studies.
Collapse
Affiliation(s)
- Tanya T Nguyen
- Department of Psychiatry, University of California, San Diego, CA, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California, San Diego, CA, United States; Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rebecca E Daly
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, CA, United States
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, United States; Center for Microbiome Innovation, University of California, San Diego, CA, United States; Department of Computer Science and Engineering, University of California, San Diego, CA, United States; Department of Computer Science and Engineering, University of California, San Diego, CA, United States
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, CA, United States; Department of Pediatrics, University of California, San Diego, CA, United States; Center for Microbiome Innovation, University of California, San Diego, CA, United States; Department of Neurosciences, University of California, San Diego, CA, United States
| |
Collapse
|
33
|
Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nat Chem Biol 2020; 17:187-195. [PMID: 33199913 DOI: 10.1038/s41589-020-00694-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD β-taco domain, coupled with conformational changes on β-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the β-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the β-barrel and β-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.
Collapse
|
34
|
Arenas J, Pupo E, Phielix C, David D, Zariri A, Zamyatina A, Tommassen J, van der Ley P. Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity. Vaccines (Basel) 2020; 8:E594. [PMID: 33050234 PMCID: PMC7712016 DOI: 10.3390/vaccines8040594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties of the previous century and proved to be effective, showed considerable reactogenicity and were replaced by subunit vaccines around the turn of the century. However, there is a considerable increase in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor 4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new generation of whole-cell pertussis vaccines with acceptable side effects.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands;
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, 500017 Zaragoza, Spain
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), 3721 MA Bilthoven, The Netherlands; (E.P.); (C.P.); (D.D.); (A.Z.); (P.v.d.L.)
| | - Coen Phielix
- Institute for Translational Vaccinology (Intravacc), 3721 MA Bilthoven, The Netherlands; (E.P.); (C.P.); (D.D.); (A.Z.); (P.v.d.L.)
| | - Dionne David
- Institute for Translational Vaccinology (Intravacc), 3721 MA Bilthoven, The Netherlands; (E.P.); (C.P.); (D.D.); (A.Z.); (P.v.d.L.)
| | - Afshin Zariri
- Institute for Translational Vaccinology (Intravacc), 3721 MA Bilthoven, The Netherlands; (E.P.); (C.P.); (D.D.); (A.Z.); (P.v.d.L.)
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), 3721 MA Bilthoven, The Netherlands; (E.P.); (C.P.); (D.D.); (A.Z.); (P.v.d.L.)
| |
Collapse
|
35
|
Bucsella B, Hoffmann A, Zollinger M, Stephan F, Pattky M, Daumke R, Heiligtag FJ, Frank B, Bassas-Galia M, Zinn M, Kalman F. Novel RP-HPLC based assay for selective and sensitive endotoxin quantification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4621-4634. [PMID: 32924034 DOI: 10.1039/d0ay00872a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The paper presents a novel instrumental analytical endotoxin quantification assay. It uses common analytical laboratory equipment (HPLC-FLD) and allows quantifying endotoxins (ETs) in different matrices from about 109 EU per mL down to about 40 EU per mL (RSE based). Test results are obtained in concentration units (e.g. ng ET per mL), which can then be converted to commonly used endotoxin units (EU per mL) in case of known pyrogenic activity. During endotoxin hydrolysis, the endotoxin specific rare sugar acid KDO is obtained quantitatively. After that, KDO is stoichiometrically reacted with DMB, which results in a highly fluorescent derivative. The mixture is separated using RP-HPLC followed by KDO-DMB quantification with a fluorescence detector. Based on the KDO content, the endotoxin content in the sample is calculated. The developed assay is economic and has a small error. Its applicability was demonstrated in applied research. ETs were quantified in purified bacterial biopolymers, which were produced by Gram-negative bacteria. Results were compared to LAL results obtained for the same samples. A high correlation was found between the results of both methods. Further, the new assay was utilized with high success during the development of novel endotoxin specific depth filters, which allow efficient, economic and sustainable ET removal during DSP. Those examples demonstrate that the new assay has the potential to complement the animal-based biological LAL pyrogenic quantification tests, which are accepted today by the major health authorities worldwide for the release of commercial pharmaceutical products.
Collapse
Affiliation(s)
- Blanka Bucsella
- University of Zürich, Department of Chemistry, Winterthurerstr. 190, Zürich, CH-8057, Switzerland and HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Anika Hoffmann
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Mathieu Zollinger
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Fabio Stephan
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Martin Pattky
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | | | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | - Mònica Bassas-Galia
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| | - Manfred Zinn
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Franka Kalman
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| |
Collapse
|
36
|
Hahnefeld L, Kornstädt L, Kratz D, Ferreirós N, Geisslinger G, Pierre S, Scholich K. Lipidomic analysis of local inflammation models shows a specific systemic acute phase response to lipopolysaccharides. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158822. [PMID: 33010450 DOI: 10.1016/j.bbalip.2020.158822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
Abstract
Toll-like receptors (TLR) are crucial for recognizing bacterial, viral or fungal pathogens and to orchestrate the appropriate immune response. The widely expressed TLR2 and TLR4 differentially recognize various pathogens to initiate partly overlapping immune cascades. To better understand the physiological consequences of both immune responses, we performed comparative lipidomic analyses of local paw inflammation in mice induced by the TLR2 and TLR4 agonists, zymosan and lipopolysaccharide (LPS), respectively, which are commonly used in models for inflammation and inflammatory pain. Doses for both agonists were chosen to cause mechanical hypersensitivity with identical strength and duration. Lipidomic analysis showed 5 h after LPS or zymosan injection in both models an increase of ether-phosphatidylcholines (PC O) and their corresponding lyso species with additional lipids being increased only in response to LPS. However, zymosan induced stronger immune cell recruitment and edema formation as compared to LPS. Importantly, only in LPS-induced inflammation the lipid profile in the contralateral paw was altered. Fittingly, the plasma level of various cytokines and chemokines, including IL-1β and IL-6, were significantly increased only in LPS-treated mice. Accordingly LPS induced distinct changes in the lipid profiles of ipsilateral and contralateral paws. Here, oxydized fatty acids, phosphatidylcholines and phosphatidylethanolamines were uniquely upregulated on the contralateral side. Thus, both models cause increased levels of PC O and lyso-PC O lipids at the site of inflammation pointing at a common role in inflammation. Also, LPS initiates systemic changes, which can be detected by changes in the lipid profiles.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany.
| | - Lisa Kornstädt
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany.
| | - Daniel Kratz
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany.
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany.
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.
| | - Sandra Pierre
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany.
| | - Klaus Scholich
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.
| |
Collapse
|
37
|
Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, Kim J, Bae YS, Sviridov D, Corr M, Yaksh TL, Miller YI. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 2019; 23:2667-2677. [PMID: 29847797 DOI: 10.1016/j.celrep.2018.04.110] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/02/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP) reduces lipid raft abundance by augmenting the removal of excess cholesterol from the plasma membrane. Here, we report that AIBP prevents and reverses processes associated with neuroinflammatory-mediated spinal nociceptive processing. The mechanism involves AIBP binding to Toll-like receptor-4 (TLR4) and increased binding of AIBP to activated microglia, which mediates selective regulation of lipid rafts in inflammatory cells. AIBP-mediated lipid raft reductions downregulate LPS-induced TLR4 dimerization, inflammatory signaling, and expression of cytokines in microglia. In mice, intrathecal injections of AIBP reduce spinal myeloid cell lipid rafts, TLR4 dimerization, neuroinflammation, and glial activation. Intrathecal AIBP reverses established allodynia in mice in which pain states were induced by the chemotherapeutic cisplatin, intraplantar formalin, or intrathecal LPS, all of which are pro-nociceptive interventions known to be regulated by TLR4 signaling. These findings demonstrate a mechanism by which AIBP regulates neuroinflammation and suggest the therapeutic potential of AIBP in treating preexisting pain states.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eun Jung An
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Hann Low
- Department of Lipoproteins and Atherosclerosis, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Dina A Schneider
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roshni Ramachandran
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Dmitri Sviridov
- Department of Lipoproteins and Atherosclerosis, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Duttke SH, Chang MW, Heinz S, Benner C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res 2019; 29:1836-1846. [PMID: 31649059 PMCID: PMC6836739 DOI: 10.1101/gr.253492.119] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The spatial and temporal regulation of transcription initiation is pivotal for controlling gene expression. Here, we introduce capped-small RNA-seq (csRNA-seq), which uses total RNA as starting material to detect transcription start sites (TSSs) of both stable and unstable RNAs at single-nucleotide resolution. csRNA-seq is highly sensitive to acute changes in transcription and identifies an order of magnitude more regulated transcripts than does RNA-seq. Interrogating tissues from species across the eukaryotic kingdoms identified unstable transcripts resembling enhancer RNAs, pri-miRNAs, antisense transcripts, and promoter upstream transcripts in multicellular animals, plants, and fungi spanning 1.6 billion years of evolution. Integration of epigenomic data from these organisms revealed that histone H3 trimethylation (H3K4me3) was largely confined to TSSs of stable transcripts, whereas H3K27ac marked nucleosomes downstream from all active TSSs, suggesting an ancient role for posttranslational histone modifications in transcription. Our findings show that total RNA is sufficient to identify transcribed regulatory elements and capture the dynamics of initiated stable and unstable transcripts at single-nucleotide resolution in eukaryotes.
Collapse
Affiliation(s)
- Sascha H Duttke
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Zhou J, Gu X, Fan X, Zhou Y, Wang H, Si N, Yang J, Bian B, Zhao H. Anti-inflammatory and Regulatory Effects of Huanglian Jiedu Decoction on Lipid Homeostasis and the TLR4/MyD88 Signaling Pathway in LPS-Induced Zebrafish. Front Physiol 2019; 10:1241. [PMID: 31616320 PMCID: PMC6775191 DOI: 10.3389/fphys.2019.01241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Huanglian Jiedu decoction (HLJDD) has been used in the clinical treatment of inflammatory conditions. To clarify the mechanism of its comprehensive anti-inflammatory activities, the correlation between lipid homeostasis and the TLR4/MyD88 signaling pathway in zebrafish was established in the present study. In the lipopolysaccharide (LPS)-induced inflammation in zebrafish model, RT-PCR assays of five inflammatory cytokines and six targeted proteins were measured. Lipidomics analysis was conducted to identify potential lipid markers. HLJDD displayed strong efficacies, with a 61% anti-inflammatory rate at a concentration of 50 μg/mL. The activation of TLR4/MyD88 played an essential role in the inflammatory process. All protein indexes in the HLJDD group exhibited a tendency to reverse back to normal levels. Moreover, 79 potential pathological lipid biomarkers were identified. Compared with the model group, 61 therapeutic lipid biomarkers were detected in HLJDD group. Most perturbations of lipids were ameliorated by HLJDD, mainly through the glycerophospholipid metabolic pathway. In the visual network study, the corresponding lipoproteins such as PLA2, SGMS, and SMDP were observed as important intermediates between lipid homeostasis and the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria. Cell Res 2019; 29:711-724. [PMID: 31399697 PMCID: PMC6796875 DOI: 10.1038/s41422-019-0202-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Infections caused by drug-resistant “superbugs” pose an urgent public health threat due to the lack of effective drugs; however, certain mammalian proteins with intrinsic antibacterial activity might be underappreciated. Here, we reveal an antibacterial property against Gram-negative bacteria for factors VII, IX and X, three proteins with well-established roles in initiation of the coagulation cascade. These factors exert antibacterial function via their light chains (LCs). Unlike many antibacterial agents that target cell metabolism or the cytoplasmic membrane, the LCs act by hydrolyzing the major components of bacterial outer membrane, lipopolysaccharides, which are crucial for the survival of Gram-negative bacteria. The LC of factor VII exhibits in vitro efficacy towards all Gram-negative bacteria tested, including extensively drug-resistant (XDR) pathogens, at nanomolar concentrations. It is also highly effective in combating XDR Pseudomonas aeruginosa and Acinetobacter baumannii infections in vivo. Through decoding a unique mechanism whereby factors VII, IX and X behave as antimicrobial proteins, this study advances our understanding of the coagulation system in host defense, and suggests that these factors may participate in the pathogenesis of coagulation disorder-related diseases such as sepsis via their dual functions in blood coagulation and resistance to infection. Furthermore, this study may offer new strategies for combating Gram-negative “superbugs”.
Collapse
|
41
|
Klein DR, Powers MJ, Trent MS, Brodbelt JS. Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria. Anal Chem 2019; 91:9608-9615. [PMID: 31305072 PMCID: PMC6702669 DOI: 10.1021/acs.analchem.9b00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Modification of structures of lipooligosaccharides (LOS) represents one prevalent mechanism by which Gram-negative bacteria can become resistant to key antibiotics. Owing to the significant complexity of LOS, the structural characterization of these amphipathic lipids has largely focused on elucidation of the lipid A substructures. Analysis of intact LOS enables detection of core oligosaccharide modifications and gives insight into the heterogeneity that results from combinations of lipid A and oligosaccharide substructures. Top-down analysis of intact LOS also provides the opportunity to determine unknown oligosaccharide structures, which is particularly advantageous in the context of glycoconjugate vaccine development. Advances in mass spectrometry technologies, including the development of MSn capabilities and alternative ion activation techniques, have made top-down analysis an indispensable tool for structural characterization of complex biomolecules. Here we combine online chromatographic separations with MS3 utilizing ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). HCD generally provides information about the presence of labile modifications via neutral loss fragments in addition to the saccharide linkage arrangement, whereas UVPD gives more detailed insight about saccharide branching and the positions of nonstoichiometric modifications. This integrated approach was used to characterize LOS from Acinetobacter baumannii 1205 and 5075. Notably, MS3 analysis of A. baumannii 1205, an antibiotic-resistant strain, confirmed phosphoethanolamine and hexosamine modification of the lipid A substructure and further enabled derivation of a core oligosaccharide structure.
Collapse
Affiliation(s)
- Dustin R. Klein
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Matthew J. Powers
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | - M. Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | | |
Collapse
|
42
|
Andreev K, Martynowycz MW, Gidalevitz D. Peptoid drug discovery and optimization via surface X-ray scattering. Biopolymers 2019; 110:e23274. [PMID: 30892696 PMCID: PMC6661014 DOI: 10.1002/bip.23274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid-peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure-activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.
Collapse
Affiliation(s)
- Konstantin Andreev
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | | | - David Gidalevitz
- Center for the Molecular Study of Condensed Soft Matter and Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
43
|
Inhibition of spinal 15-LOX-1 attenuates TLR4-dependent, nonsteroidal anti-inflammatory drug-unresponsive hyperalgesia in male rats. Pain 2019; 159:2620-2629. [PMID: 30130298 DOI: 10.1097/j.pain.0000000000001373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia. The TLR4-induced hepoxilin production was also observed in primary spinal microglia, but not in astrocytes, and was accompanied by increased microglial expression of the 12/15-lipoxygenase enzyme 15-LOX-1. Intrathecal KLA-induced tactile allodynia was completely prevented by spinal pretreatment with the 12/15-lipoxygenase inhibitor CDC or a selective antibody targeting rat 15-LOX-1. Similarly, pretreatment with the selective inhibitors ML127 or ML351 both reduced activity of the rat homolog of 15-LOX-1 heterologously expressed in HEK-293T cells and completely abrogated nonsteroidal anti-inflammatory drug-unresponsive allodynia in vivo after IT KLA. Finally, spinal 12/15-lipoxygenase inhibition by nordihydroguaiaretic acid (NDGA) both prevents phase II formalin flinching and reverses formalin-induced persistent tactile allodynia. Taken together, these findings suggest that spinal TLR4-mediated hyperpathic states are mediated at least in part through activation of microglial 15-LOX-1.
Collapse
|
44
|
Jahagirdar S, Suarez-Diez M, Saccenti E. Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms. J Proteome Res 2019; 18:1099-1113. [PMID: 30663881 DOI: 10.1021/acs.jproteome.8b00781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.
Collapse
Affiliation(s)
- Sanjeevan Jahagirdar
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| |
Collapse
|
45
|
Fonseca GJ, Tao J, Westin EM, Duttke SH, Spann NJ, Strid T, Shen Z, Stender JD, Sakai M, Link VM, Benner C, Glass CK. Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nat Commun 2019; 10:414. [PMID: 30679424 PMCID: PMC6345992 DOI: 10.1038/s41467-018-08236-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
Mechanisms by which members of the AP-1 family of transcription factors play non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, here we investigate the molecular functions and genome-wide DNA binding patterns of AP-1 family members in primary and immortalized mouse macrophages. ChIP-sequencing shows overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yields dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions are confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.
Collapse
Affiliation(s)
- Gregory J Fonseca
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Emma M Westin
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tobias Strid
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Zeyang Shen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Verena M Link
- Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, 80539, Germany
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Glycerol-3-phosphate acyltransferases 3 and 4 direct glycerolipid synthesis and affect functionality in activated macrophages. Biochem J 2019; 476:85-99. [DOI: 10.1042/bcj20180381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
AbstractMacrophage classical M1 activation via TLR4 triggers a variety of responses to achieve the elimination of foreign pathogens. During this process, there is also an increase in lipid droplets which contain large quantities of triacylglycerol (TAG) and phospholipid (PL). The functional consequences of this increment in lipid mass are poorly understood. Here, we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). Using bone marrow-derived macrophages (BMDMs) treated with Kdo2-lipid A, we showed that glycerolipid synthesis is induced during macrophage activation. GPAT4 protein level and GPAT3/GPAT4 enzymatic activity increase during this process, and these two isoforms were required for the accumulation of cell TAG and PL. The phagocytic capacity of Gpat3−/− and Gpat4−/− BMDM was impaired. Additionally, inhibiting fatty acid β-oxidation reduced phagocytosis only partially, suggesting that lipid accumulation is not necessary for the energy requirements for phagocytosis. Finally, Gpat4−/− BMDM expressed and released more pro-inflammatory cytokines and chemokines after macrophage activation, suggesting a role for GPAT4 in suppressing inflammatory responses. Together, these results provide evidence that glycerolipid synthesis directed by GPAT4 is important for the attenuation of the inflammatory response in activated macrophages.
Collapse
|
47
|
Nilsson I, Prathapam R, Grove K, Lapointe G, Six DA. The sialic acid transporter NanT is necessary and sufficient for uptake of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and its azido analog in Escherichia coli. Mol Microbiol 2018; 110:204-218. [PMID: 30076772 DOI: 10.1111/mmi.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 01/31/2023]
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of lipopolysaccharides (LPS) in the Gram-negative bacterial outer membrane. Metabolic labeling of Escherichia coli LPS with 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3 ) has been reported but is inefficient. For optimization, it is important to understand how exogenous Kdo-N3 enters the cytoplasm. Based on similarities between Kdo and sialic acids, we proposed and verified that the sialic acid transporter NanT imports exogenous Kdo-N3 into E. coli. We demonstrated that E. coli ΔnanT were not labeled with Kdo-N3 , while expression of NanT in the ΔnanT mutant restored Kdo-N3 incorporation. Induced NanT expression in a strain lacking Kdo biosynthesis led to higher exogenous Kdo incorporation and restoration of full-length core-LPS, suggesting that NanT also transports Kdo. While Kdo-N3 incorporation was observed in strains having NanT, it was not detected in Pseudomonas aeruginosa and Acinetobacter baumannii, which lack nanT. However, heterologous expression of E. coli NanT in P. aeruginosa enabled Kdo-N3 incorporation and labeling, though this led to abnormal morphology and growth arrest. NanT seems to define which bacteria can be labeled with Kdo-N3 , provides opportunities to enhance Kdo-N3 labeling efficiency and spectrum, and raises the possibility of Kdo biosynthetic bypass where exogenous Kdo is present, perhaps even in vivo.
Collapse
Affiliation(s)
- Inga Nilsson
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Ramadevi Prathapam
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Kerri Grove
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Guillaume Lapointe
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - David A Six
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| |
Collapse
|
48
|
Chang WH, Ting HC, Chen WW, Chan JF, Hsu YHH. Omega-3 and omega-6 fatty acid differentially impact cardiolipin remodeling in activated macrophage. Lipids Health Dis 2018; 17:201. [PMID: 30153842 PMCID: PMC6114728 DOI: 10.1186/s12944-018-0845-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background The macrophage plays an important role in innate immunity to induce immune responses. Lipid replacement therapy has been shown to change the lipid compositions of mitochondria and potentially becomes an alternative to reduce the inflammatory response. Methods We examined the effects of omega-6 arachidonic acid (AA), omega-3 eicosapentaenoic acid (EPA), and omega-3 docosahexaenoic acid (DHA) supplementation on the activated the macrophage cell line RAW264.7 via KdO2-lipid A (KLA). The mitochondrial cardiolipin (CL) and monolysocardiolipin (MLCL) were analyzed by LC-MS. Results After macrophage activation by KLA, CL shifted to saturated species, but did not affect the quantity of CL. Inhibition of delta 6 desaturase also resulted in the same trend of CL species shift. We further examined the changes in CL and MLCL species induced by polyunsaturated fatty acid supplementation during inflammation. After supplementation of AA, EPA and DHA, the MLCL/CL ratio increased significantly in all treatments. The percentages of the long-chain species highly elevated and those of short-chain species reduced in both CL and MLCL. Conclusions Comparisons of AA, EPA and DHA supplementation revealed that the 20-carbon EPA (20:5) and AA (20:4) triggered higher incorporation and CL remodeling efficiency than 22-carbon DHA (22:6). EPA supplementation not only efficiently extended the chain length of CL but also increased the unsaturation of CL. Electronic supplementary material The online version of this article (10.1186/s12944-018-0845-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Wei-Wei Chen
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China. .,Life Science Research Center, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China.
| |
Collapse
|
49
|
Decano JL, Aikawa M. Dynamic Macrophages: Understanding Mechanisms of Activation as Guide to Therapy for Atherosclerotic Vascular Disease. Front Cardiovasc Med 2018; 5:97. [PMID: 30123798 PMCID: PMC6086112 DOI: 10.3389/fcvm.2018.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
An emerging theory is that macrophages are heterogenous; an attribute that allows them to change behavior and execute specific functions in disease processes. This review aims to describe the current understanding on factors that govern their phenotypic changes, and provide insights for intervention beyond managing classical risk factors. Evidence suggests that metabolic reprogramming of macrophages triggers either a pro-inflammatory, anti-inflammatory or pro-resolving behavior. Dynamic changes in bioenergetics, metabolome or influence from bioactive lipids may promote resolution or aggravation of inflammation. Direct cell-to-cell interactions with other immune cells can also influence macrophage activation. Both paracrine signaling and intercellular molecular interactions either co-stimulate or co-inhibit activation of macrophages as well as their paired immune cell collaborator. More pathways of activation can even be uncovered by inspecting macrophages in the single cell level, since differential expression in key gene regulators can be screened in higher resolution compared to conventional averaged gene expression readouts. All these emerging macrophage activation mechanisms may be further explored and consolidated by using approaches in network biology. Integrating these insights can unravel novel and safer drug targets through better understanding of the pro-inflammatory activation circuitry.
Collapse
Affiliation(s)
- Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
50
|
Crittenden CM, Morrison LJ, Fitzpatrick MD, Myers AP, Novelli ET, Rosenberg J, Akin LD, Srinivasa S, Shear JB, Brodbelt JS. Towards mapping electrostatic interactions between Kdo 2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. Analyst 2018; 143:3607-3618. [PMID: 29968868 PMCID: PMC6056329 DOI: 10.1039/c8an00652k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) have been known to act as multi-modal weapons against Gram-negative bacteria. As a new approach to investigate the nature of the interactions between CAMPs and the surfaces of bacteria, native mass spectrometry and two MS/MS strategies (ultraviolet photodissociation (UVPD) and higher energy collisional activation (HCD)) are used to examine formation and disassembly of saccharolipid·peptide complexes. Kdo2-lipid A (KLA) is used as a model saccharolipid to evaluate complexation with a series of cationic peptides (melittin and three analogs). Collisional activation of the KLA·peptide complexes results in the disruption of electrostatic interactions, resulting in apo-sequence ions with shifts in the distribution of ions compared to the fragmentation patterns of the apo-peptides. UVPD of the KLA·peptide complexes results in both apo- and holo-sequence ions of the peptides, the latter in which the KLA remains bound to the truncated peptide fragment despite cleavage of a covalent bond of the peptide backbone. Mapping both the N- and C-terminal holo-product ions gives insight into the peptide motifs (specifically an electropositive KRKR segment and a proline residue) that are responsible for mediating the electrostatic interactions between the cationic peptides and saccharolipid.
Collapse
Affiliation(s)
| | - Lindsay J Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Mignon D Fitzpatrick
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Allison P Myers
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Elisa T Novelli
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Lucas D Akin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Sorin Srinivasa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jason B Shear
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|