1
|
Liu S, Li X, Fan P, Gu Y, Yang A, Wang W, Zhou L, Chen H, Zheng F, Lin J, Xu Z, Zhao Q. The potential role of transcription factor sterol regulatory element binding proteins (SREBPs) in Alzheimer's disease. Biomed Pharmacother 2024; 180:117575. [PMID: 39442239 DOI: 10.1016/j.biopha.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are a series of cholesterol-related transcription factors. Their role in regulating brain cholesterol biosynthesis, amyloid accumulation, and tau tangles formation has been intensively studied in protein-protein interaction analysis based on genes in clinical databases. SREBPs play an important role in maintaining cholesterol homeostasis in the brain. There are three subtypes of SREBPs, SREBP-1a stimulates the expression of genes related to cholesterol and fatty acid synthesis, SREBP-1c stimulates adipogenesis, and SREBP-2 stimulates cholesterol synthase and LDL receptors. SREBP-2 is activated in response to cholesterol depletion and stimulates a compensatory upregulation of cholesterol uptake and synthesis. Previous studies have shown that inhibition of SREBP-2 reduces cholesterol and amyloid accumulation, and new research suggests that SREBPs play a multifaceted role in Alzheimer's disease. Here, we highlight the importance of SREBPs in AD, in terms of multiple pathways regulating cholesterol in the brain, and primarily demonstrate the potential of SREBP-2 inhibitors. There was a trend towards a significant increase in the expression levels of different SREBP isoforms in AD patients compared to healthy controls. Therefore, there is a close link between SREBPs and AD, and this review analyses the potential role of SREBPs in the treatment of AD. In addition, we systematically reviewed the research progress of SREBPs in AD, and this review will provide more innovative insights into the pathogenesis and treatment of AD and new strategies for drug development in AD.
Collapse
Affiliation(s)
- Siyuan Liu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Xinzhu Li
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Panpan Fan
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Yujia Gu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Aizhu Yang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Weiyi Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Lijun Zhou
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Huanhua Chen
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Fangyuan Zheng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Junjie Lin
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Zihua Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
3
|
Liu Q, Chen S, Tian R, Xue B, Li H, Guo M, Liu S, Yan M, You R, Wang L, Yang D, Wan M, Zhu H. 3β-hydroxysteroid-Δ24 reductase dampens anti-viral innate immune responses by targeting K27 ubiquitination of MAVS and STING. J Virol 2023; 97:e0151323. [PMID: 38032198 PMCID: PMC10734464 DOI: 10.1128/jvi.01513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Ming Yan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Ruina You
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- />Department of Pathogen Biology and Immunology, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
- Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
4
|
Zhang H, Chen S, Xu S, Li X. COTE1 Facilitates Intrahepatic Cholangiocarcinoma Progression via Beclin1-Dependent Autophagy Inhibition. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5491682. [PMID: 37780485 PMCID: PMC10541304 DOI: 10.1155/2023/5491682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
COTE1 was recently described as an oncogene in hepatocellular carcinoma and gastric cancer. However, the roles of COTE1 in intrahepatic cholangiocarcinoma (ICC) are little known. Our study is aimed at clarifying novel functions of COTE1 in ICC progression, including proliferation, invasion, and autophagy. By using quantitative real-time PCR, immunohistochemistry staining, and western blotting, we found that COTE1 expression was frequently upregulated in ICC tissues, compared to paracarcinoma tissues. High COTE1 expression was significantly correlated with aggressive clinical features and predicted poor prognosis of ICC patients. Functional experiments revealed that ectopic COTE1 expression promoted ICC cell proliferation, colony formation, cellular invasion, migration, and in vivo tumorigenicity; in contrast, COTE1 knockdown resulted in the opposite effects. At molecular mechanism in vitro and vivo, our study revealed that COTE1 overexpression suppressed autophagy via Beclin1 transcription inhibition; conversely, COTE1 silencing facilitated autophagy through promoting Beclin1 expression. Furthermore, the suppression of COTE1 knockdown on cellular growth and invasion was rescued/aggravated by Beclin1 inhibition/accumulation. Our data, for the first time, illustrate that COTE1 is an oncogene in ICC pathogenesis, and the ectopic COTE1 expression promotes ICC proliferation and invasion via Beclin1-dependent autophagy inhibition.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shu Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Sanrong Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiangcheng Li
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Yang XB, Zu HB, Zhao YF, Yao K. Agomelatine Prevents Amyloid Plaque Deposition, Tau Phosphorylation, and Neuroinflammation in APP/PS1 Mice. Front Aging Neurosci 2022; 13:766410. [PMID: 35153715 PMCID: PMC8828541 DOI: 10.3389/fnagi.2021.766410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Agomelatine, an agonist of melatonergic MT1 and MT2 receptors and a selective 5-hydroxytryptamine 2C receptor antagonist, is widely applied in treating depression and insomnia symptoms in several neurogenerative diseases. However, the neuroprotective effect of agomelatine in Alzheimer’s disease (AD) is less known. In this study, a total of 30 mice were randomly divided into three groups, namely, wild type (WT), APP/PS1, and agomelatine (50 mg/kg). After 30 days, the Morris water maze was performed to test the cognitive ability of mice. Then, all mice were sacrificed, and the hippocampus tissues were collected for ELISA, Western blot, and immunofluorescence analysis. In this study, we found that agomelatine attenuated spatial memory deficit, amyloid-β (Aβ) deposition, tau phosphorylation, and neuroinflammation in the hippocampus of APP/PS1 mice. Further study demonstrated that agomelatine treatment upregulated the protein expression of DHCR24 and downregulated P-Akt, P-mTOR, p-p70s6k, Hes1, and Notch1 expression. In summary, our results identified that agomelatine could improve cognitive impairment and ameliorate AD-like pathology in APP/PS1 mice via activating DHCR24 signaling and inhibiting Akt/mTOR and Hes1/Notch1 signaling pathway. Agomelatine may become a promising drug candidate in the therapy of AD.
Collapse
|
6
|
Schneidewind T, Brause A, Schölermann B, Sievers S, Pahl A, Sankar MG, Winzker M, Janning P, Kumar K, Ziegler S, Waldmann H. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem Biol 2021; 28:1780-1794.e5. [PMID: 34214450 DOI: 10.1016/j.chembiol.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.
Collapse
Affiliation(s)
- Tabea Schneidewind
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandra Brause
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Axel Pahl
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Muthukumar G Sankar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Michael Winzker
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Kamal Kumar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|
7
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Zhao Y, Lin X, Liu K, Tian Y, Zhang L, Wei W, Chen J. Promoter CpG methylation status affects ADRP gene expression level and intramuscular fat content in pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1729261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yongyan Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangsheng Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2020; 11:330-341. [PMID: 30892598 PMCID: PMC6734141 DOI: 10.1093/jmcb/mjz005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
The TP53 tumor suppressor gene encodes a DNA-binding transcription factor that regulates multiple cellular processes including cell growth and cell death. The ability of p53 to bind to DNA and activate transcription is tightly regulated by post-translational modifications and is dependent on a reducing cellular environment. Some p53 transcriptional target genes are involved in regulation of the cellular redox homeostasis, e.g. TIGAR and GLS2. A large fraction of human tumors carry TP53 mutations, most commonly missense mutations that lead to single amino acid substitutions in the core domain. Mutant p53 proteins can acquire so called gain-of-function activities and influence the cellular redox balance in various ways, for instance by binding of the Nrf2 transcription factor, a major regulator of cellular redox state. The DNA-binding core domain of p53 has 10 cysteine residues, three of which participate in holding a zinc atom that is critical for p53 structure and function. Several novel compounds that refold and reactivate missense mutant p53 bind to specific p53 cysteine residues. These compounds can also react with other thiols and target components of the cellular redox system, such as glutathione. Dual targeting of mutant p53 and redox homeostasis may allow more efficient treatment of cancer.
Collapse
Affiliation(s)
- Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Sophia Ceder
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| |
Collapse
|
10
|
Ni Q, Chen Z, Zheng Q, Xie D, Li JJ, Cheng S, Ma X. Epithelial V-like antigen 1 promotes hepatocellular carcinoma growth and metastasis via the ERBB-PI3K-AKT pathway. Cancer Sci 2020; 111:1500-1513. [PMID: 31997489 PMCID: PMC7226218 DOI: 10.1111/cas.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
The role of epithelial V‐like antigen 1 (EVA1) has been well studied in thymic development and homostasis; however, its putative relationship with cancer remains largely unknown. Therefore, here we investigated the role of EVA1 in hepatocellular carcinoma. Interestingly, EVA1 expression was significantly increased in hepatocellular carcinoma (HCC) and was also associated with a poor prognosis and recurrence in HCC patients. Overexpression of EVA1 promoted cell growth, invasion and migration in vitro. Consistently, knockdown of EVA1 expression inhibited proliferation and migration in vitro, while repressing metastasis of HCC cells in vivo. RNA‐seq analysis indicated that EVA1 is able to upregulate the expression of genes in the ERBB3‐PI3K pathway. Accordingly, an increased level of AKT phosphorylation was detected in HCC cells after EVA1 overexpression. LY294002, a PI3K inhibitor, inhibited AKT phosphorylation and rescued the tumor‐promoting effect of EVA1 overexpression. Altogether, the present study has revealed the oncogenic role of EVA1 during HCC progression and metastasis through the ERBB‐PI3K‐AKT signaling pathway, reiterating the potential use of EVA1 as a therapeutic target and/or prognostic marker for HCC.
Collapse
Affiliation(s)
- QianZhi Ni
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Chen
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qianwen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xingyuan Ma
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Gilly A, Suveges D, Kuchenbaecker K, Pollard M, Southam L, Hatzikotoulas K, Farmaki AE, Bjornland T, Waples R, Appel EVR, Casalone E, Melloni G, Kilian B, Rayner NW, Ntalla I, Kundu K, Walter K, Danesh J, Butterworth A, Barroso I, Tsafantakis E, Dedoussis G, Moltke I, Zeggini E. Cohort-wide deep whole genome sequencing and the allelic architecture of complex traits. Nat Commun 2018; 9:4674. [PMID: 30405126 PMCID: PMC6220258 DOI: 10.1038/s41467-018-07070-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022] Open
Abstract
The role of rare variants in complex traits remains uncharted. Here, we conduct deep whole genome sequencing of 1457 individuals from an isolated population, and test for rare variant burdens across six cardiometabolic traits. We identify a role for rare regulatory variation, which has hitherto been missed. We find evidence of rare variant burdens that are independent of established common variant signals (ADIPOQ and adiponectin, P = 4.2 × 10-8; APOC3 and triglyceride levels, P = 1.5 × 10-26), and identify replicating evidence for a burden associated with triglyceride levels in FAM189B (P = 2.2 × 10-8), indicating a role for this gene in lipid metabolism.
Collapse
Affiliation(s)
- Arthur Gilly
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Daniel Suveges
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Karoline Kuchenbaecker
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Division of Psychiatry, University College of London, London, W1T 7NF, United Kingdom
- UCL Genetics Institute, University College London, London, WC1E 6BT, United Kingdom
| | - Martin Pollard
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Lorraine Southam
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Konstantinos Hatzikotoulas
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Aliki-Eleni Farmaki
- Department of Health Sciences, College of Life Sciences, University of Leicester, Leicester, LE1 6TP, United Kingdom
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, 176-71, Greece
| | - Thea Bjornland
- Department of Mathematical Sciences, Norwegian Institute of Science and Technology, Trondheim, 7491, Norway
| | - Ryan Waples
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Emil V R Appel
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | | | - Giorgio Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Britt Kilian
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Nigel W Rayner
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Old Road, Headington, Oxford, OX3 7LE, United Kingdom
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Long Road, Cambridge, CB2 0PT, United Kingdom
| | - Klaudia Walter
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - John Danesh
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Wort's Causeway, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN, United Kingdom
| | - Adam Butterworth
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Wort's Causeway, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Inês Barroso
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, 176-71, Greece
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom.
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany.
| |
Collapse
|
12
|
Jideonwo V, Hou Y, Ahn M, Surendran S, Morral N. Impact of silencing hepatic SREBP-1 on insulin signaling. PLoS One 2018; 13:e0196704. [PMID: 29723221 PMCID: PMC5933792 DOI: 10.1371/journal.pone.0196704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Sterol Regulatory Element Binding Protein-1 (SREBP-1) is a conserved transcription factor of the basic helix-loop-helix leucine zipper family (bHLH-Zip) that plays a central role in regulating expression of genes of carbohydrate and fatty acid metabolism in the liver. SREBP-1 activity is essential for the control of insulin-induced anabolic processes during the fed state. In addition, SREBP-1 regulates expression of key molecules in the insulin signaling pathway, including insulin receptor substrate 2 (IRS2) and a subunit of the phosphatidylinositol 3-kinase (PI3K) complex, PIK3R3, suggesting that feedback mechanisms exist between SREBP-1 and this pathway. Nevertheless, the overall contribution of SREBP-1 activity to maintain insulin signal transduction is unknown. Furthermore, Akt is a known activator of mTORC1, a sensor of energy availability that plays a fundamental role in metabolism, cellular growth and survival. We have silenced SREBP-1 and explored the impact on insulin signaling and mTOR in mice under fed, fasted and refed conditions. No alterations in circulating levels of insulin were observed. The studies revealed that depletion of SREBP-1 had no impact on IRS1Y612, AktS473, and downstream effectors GSK3αS21 and FoxO1S256 during the fed state. Nevertheless, reduced levels of these molecules were observed under fasting conditions. These effects were not associated with changes in phosphorylation of mTOR. Overall, our data indicate that the contribution of SREBP-1 to maintain insulin signal transduction in liver is modest.
Collapse
Affiliation(s)
- Victoria Jideonwo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongyong Hou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Miwon Ahn
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sneha Surendran
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yang X, Fu Y, Hu F, Luo X, Hu J, Wang G. PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis. Exp Mol Med 2018; 50:e431. [PMID: 29350678 PMCID: PMC5799801 DOI: 10.1038/emm.2017.243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/25/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling plays an important role in the regulation of cellular lipid metabolism and non-alcoholic fatty liver disease (NAFLD). However, little is known about the role of the regulatory subunits of PI3K in lipid metabolism and NAFLD. In this study, we characterized the functional role of PIK3R3 in fasting-induced hepatic lipid metabolism. In this study, we showed that the overexpression of PIK3R3 promoted hepatic fatty acid oxidation via PIK3R3-induced expression of PPARα, thus improving the fatty liver phenotype in high-fat diet (HFD)-induced mice. By contrast, hepatic PIK3R3 knockout in normal mice led to increased hepatic TG levels. Our study also showed that PIK3R3-induced expression of PPARα was dependent on HNF4α. The novel PIK3R3-HNF4α-PPARα signaling axis plays a significant role in hepatic lipid metabolism. As the activation of PIK3R3 decreased hepatosteatosis, PIK3R3 can be considered a promising novel target for developing NAFLD and metabolic syndrome therapies.
Collapse
Affiliation(s)
- Xi Yang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinjia Fu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Hu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guihua Wang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Renaville B, Glenn KL, Mote BE, Fan B, Stalder KJ, Rothschild MF. SREBP pathway genes as candidate markers in country ham production. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.4081/ijas.2010.e7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Kimberly L. Glenn
- Department of Animal Science and the Center for Integrated Animal Genomics, State University, Iowa, USA
| | - Benny E. Mote
- Department of Animal Science and the Center for Integrated Animal Genomics, State University, Iowa, USA
| | - Bin Fan
- Department of Animal Science and the Center for Integrated Animal Genomics, State University, Iowa, USA
| | - Kenneth J. Stalder
- Department of Animal Science and the Center for Integrated Animal Genomics, State University, Iowa, USA
| | - Max F. Rothschild
- Department of Animal Science and the Center for Integrated Animal Genomics, State University, Iowa, USA
| |
Collapse
|
15
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse 2017; 71. [DOI: 10.1002/syn.21980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
| |
Collapse
|
16
|
Coomans de Brachène A, Dif N, de Rocca Serra A, Bonnineau C, Velghe AI, Larondelle Y, Tyteca D, Demoulin JB. PDGF-induced fibroblast growth requires monounsaturated fatty acid production by stearoyl-CoA desaturase. FEBS Open Bio 2017; 7:414-423. [PMID: 28286737 PMCID: PMC5337901 DOI: 10.1002/2211-5463.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/29/2016] [Accepted: 12/29/2016] [Indexed: 11/11/2022] Open
Abstract
Stearoyl-coenzyme A desaturase (SCD) catalyzes the Δ9-cis desaturation of saturated fatty acids (SFA) to generate monounsaturated fatty acids (MUFA). This enzyme is highly up-regulated by platelet-derived growth factor (PDGF) in human fibroblasts. Accordingly, the analysis of cellular fatty acids by gas chromatography showed that PDGF significantly increased the proportion of MUFA, particularly palmitoleate, in cellular lipids. To further analyze the role of SCD in fibroblasts, we used small hairpin RNA targeting SCD (shSCD), which decreased the MUFA content. SCD down-regulation blunted the proliferation of fibroblasts in response to PDGF. This was confirmed using a pharmacological inhibitor of SCD. In addition, proliferation was blocked by palmitate and stearate (two SCD substrates) but not by palmitoleate and oleate (two SCD products). In the presence of an equal amount of oleate, palmitate had no effect on cell proliferation. SCD inhibition or down-regulation did not decrease PDGF receptor activity or signaling. However, by measuring plasma membrane lipid lateral diffusion by fluorescence recovery after photobleaching, we showed that the modulation of the MUFA/SFA ratio by PDGF and SCD inhibitor was related to modifications of membrane fluidity. Altogether, our data suggest that SCD is required for the response of normal fibroblasts to growth factors.
Collapse
Affiliation(s)
| | - Nicolas Dif
- de Duve Institute MEXP unit Université catholique de Louvain Brussels Belgium
| | | | - Chloé Bonnineau
- Institute of Life Sciences Université catholique de Louvain Louvain-La-Neuve Belgium
| | - Amélie I Velghe
- de Duve Institute MEXP unit Université catholique de Louvain Brussels Belgium
| | - Yvan Larondelle
- Institute of Life Sciences Université catholique de Louvain Louvain-La-Neuve Belgium
| | - Donatienne Tyteca
- de Duve Institute CELL unit Université catholique de Louvain Brussels Belgium
| | | |
Collapse
|
17
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse 2016; 70:71-86. [DOI: 10.1002/syn.21881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/12/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine L'alleud Belgium
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - Benjamin Dehay
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - Erwan Bezard
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine L'alleud Belgium
| |
Collapse
|
18
|
Picco R, Tomasella A, Fogolari F, Brancolini C. Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain. PLoS One 2014; 9:e110610. [PMID: 25330190 PMCID: PMC4199739 DOI: 10.1371/journal.pone.0110610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging.
Collapse
Affiliation(s)
- Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Andrea Tomasella
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Federico Fogolari
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
19
|
Lee J, Kim S. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK-Nrf2 dependent pathway. Toxicol Appl Pharmacol 2014; 281:87-100. [PMID: 25261737 DOI: 10.1016/j.taap.2014.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/05/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023]
Abstract
Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK-Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant.
Collapse
Affiliation(s)
- Junghun Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sunyoung Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
20
|
Zhang H, Tian Y, Shen J, Wang Y, Xu Y, Wang Y, Han Z, Li X. Upregulation of the putative oncogene COTE1 contributes to human hepatocarcinogenesis through modulation of WWOX signaling. Int J Oncol 2014; 45:719-731. [PMID: 24899407 DOI: 10.3892/ijo.2014.2482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/14/2014] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 189, also known as COTE1, has been found to be significantly upregulated in hepatocellular carcinoma (HCC) specimens and cell lines and is associated with tumor size and differentiation. Furthermore, COTE1 contributes to hepatocellular carcinogenesis. The overexpression of COTE1 enhanced in vitro cell viability and colony formation in soft agar, and in vivo tumorigenicity of HCC-derived Focus and Huh7 cells. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes in YY-8103 and WRL-68 HCC cell lines. Mechanistic analyses indicated that COTE1 physically associated with WW domain-containing oxidoreductase (WWOX) and modulated WWOX tyrosine phosphorylation. The ectopic overexpression of COTE1 inhibited the WWOX-p53 signaling pathway by reducing the phosphorylation of WWOX at the Tyr33 residue in Focus cells. Conversely, COTE1 silencing activated tyrosine 33 phosphorylation of WWOX and induced WWOX-p53 mediated mitochondrial apoptosis in WRL-68 cells. In addition, COTE1 upregulation in Huh7 cells blocked the WWOX-cyclin D1 pathway via dephosphorylation of WWOX Tyr287, stimulating cell cycle progression whereas phosphorylation of Tyr287 of WWOX induced by COTE1 silencing resulted in activation of WWOX-cyclin D1 signaling, leading to cell cycle arrest in YY-8103 cells. Together, our findings suggest that the cytoplasmic protein COTE1 contributes to HCC tumorigenesis by regulating cell proliferation through the modulation of WWOX signaling.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Yuan Tian
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Jian Shen
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yun Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yonghua Xu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yuping Wang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Zeguang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| |
Collapse
|
21
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
22
|
Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway. Int J Cell Biol 2013; 2013:162094. [PMID: 23476651 PMCID: PMC3586522 DOI: 10.1155/2013/162094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Zinc protoporphyrin IX (ZnPP), a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1). It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10 μM ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC). The involvement of PKC α, β, δ, η, θ, and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.
Collapse
|
23
|
p55PIK transcriptionally activated by MZF1 promotes colorectal cancer cell proliferation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:868131. [PMID: 23509792 PMCID: PMC3591147 DOI: 10.1155/2013/868131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K), plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb) protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation) assay shows that MZF1 binds to the cis-element "TGGGGA" in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P = 0.046, P = 0.047, resp.). A strong positive correlation (Rs = 0.94) between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.
Collapse
|
24
|
Dessalle K, Euthine V, Chanon S, Delarichaudy J, Fujii I, Rome S, Vidal H, Nemoz G, Simon C, Lefai E. SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein synthesis through myogenic regulatory factors. PLoS One 2012; 7:e50878. [PMID: 23226416 PMCID: PMC3511457 DOI: 10.1371/journal.pone.0050878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/25/2012] [Indexed: 12/26/2022] Open
Abstract
SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack of expression of myogenic regulatory factors. Here we present evidences that SREBP-1 regulate muscle protein synthesis through the downregulation of the expression of MYOD1, MYOG and MEF2C factors. In myotubes overexpressing SREBP-1, restoring the expression of myogenic factors prevented atrophy and rescued protein synthesis, without affecting SREBP-1 action on atrogenes and proteolysis. Our results point out the roles of MRFs in the maintenance of the protein content and cell size in adult muscle fibre, and contribute to decipher the mechanisms by which SREBP-1 regulate muscle mass.
Collapse
Affiliation(s)
- Kevin Dessalle
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Vanessa Euthine
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | | | - Isao Fujii
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto-city, Japan
| | - Sophie Rome
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Georges Nemoz
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Chantal Simon
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
- * E-mail:
| |
Collapse
|
25
|
Drabkin HA, Gemmill RM. Cholesterol and the development of clear-cell renal carcinoma. Curr Opin Pharmacol 2012; 12:742-50. [PMID: 22939900 DOI: 10.1016/j.coph.2012.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 02/01/2023]
Abstract
The majority of kidney cancers are clear-cell carcinomas (ccRCC), characterized by the accumulation of cholesterol, cholesterol esters, other neutral lipids and glycogen. Rather than being a passive bystander, the clear-cell phenotype is suggested to be a biomarker of deregulated cholesterol and lipid biosynthesis, which plays an important role in development of the disease. One clue to this relationship has come from the elucidation of the hereditary kidney cancer gene, TRC8, which functions partly to degrade key regulators of endogenous cholesterol and lipid biosynthesis. In addition, deregulation of the mevalonate pathway has been shown to play a key role in cellular transformation and invasion. These findings are supported by considerable epidemiologic data linking obesity and the deregulation of lipid biosynthesis to ccRCC.
Collapse
Affiliation(s)
- Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
26
|
Zhou J, Chen GB, Tang YC, Sinha RA, Wu Y, Yap CS, Wang G, Hu J, Xia X, Tan P, Goh LK, Yen PM. Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Med Genomics 2012; 5:34. [PMID: 22876838 PMCID: PMC3479415 DOI: 10.1186/1755-8794-5-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 07/09/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND While there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians. METHODS Primary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS. RESULTS PIK3R3 was significantly up-regulated in GC specimens (n = 126, p < 0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. IPA pathway analysis showed that PIK3R3 promoted cellular growth and proliferation. Knockdown of PIK3R3 decreased the growth of GC cells, induced G0/G1 cell cycle arrest, decreased retinoblastoma protein (Rb) phosphorylation, cyclin D1, and PCNA expression. CONCLUSION Using a combination of genetic, bioinformatic, and molecular biological approaches, we showed that PIK3R3 was up-regulated in GC and promoted cell cycle progression and proliferation; and thus may be a potential new therapeutic target for GC.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Geng Bo Chen
- Laboratory of Computational Biology, Cancer and Stem Cell Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Yew Chung Tang
- Laboratory of Computational Systems Biology and Human Genetics, Neuroscience and Behavioral Disorder Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Rohit Anthony Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Yonghui Wu
- Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Chui Sun Yap
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Guihua Wang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianmin Xia
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Patrick Tan
- Laboratory of Genomic Oncology, Cancer and Stem Cell Program, Duke-National University of Singapore Graduate Medical School, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Genome Institute of Singapore, Singapore
| | - Liang Kee Goh
- Laboratory of Computational Biology, Cancer and Stem Cell Program, Duke-National University of Singapore Graduate Medical School, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| |
Collapse
|
27
|
Dokic I, Hartmann C, Herold-Mende C, Régnier-Vigouroux A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia 2012; 60:1785-800. [PMID: 22951908 DOI: 10.1002/glia.22397] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/03/2012] [Indexed: 01/02/2023]
Abstract
The high intratumoral and intertumoral heterogeneity of glioblastoma (GBM) leads to resistance to different therapies, and hence, selecting an effective therapy is very challenging. We hypothesized that the antioxidant enzyme status is a significant feature of GBM heterogeneity. The most important reactive oxygen/nitrogen species (ROS/RNS) detoxification mechanisms include superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). Expression and activity of these enzymes and the cellular response to induced oxidative stress were systematically analyzed and compared between GBM cells and nontransformed glial cells of both human and murine origin. Regardless of cell type or species, all tested cells expressed similar amount of catalase and MnSOD. All except one, GBM cell lines exhibited a deficiency in GPx1 expression and activity. Analysis of GBM tissue sections indicated a heterogeneous profile of weak to moderate expression of GPx1 in tumor cells. GPx1 deficiency led to an accumulation of ROS/RNS and subsequent death of GBM cells after induction of oxidative stress. Astrocytes, microglia/macrophages, and glioma stem cell lines expressed active GPx1 and resisted ROS/RNS-mediated cell death. Pharmacological inhibition or siRNA silencing of GPx1 partially reverted this resistance in astrocytes, indicating the contribution of various antioxidant molecules besides GPx1. The GPx1-expressing GBM cell line on the contrary, became extremely sensitive to oxidative stress after GPx1 inhibition. Altogether, these results highlight GPx1 as a crucial element over other antioxidant enzymes for oxidative stress regulation in GBM cells. Mapping the antioxidant enzyme status of GBM may prove to be a useful tool for personalized ROS/RNS inducing therapies.
Collapse
Affiliation(s)
- Ivana Dokic
- INSERM U701, German Cancer Research Centre, Program Infection and Cancer, INF 242, Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1350-60. [PMID: 22809995 DOI: 10.1016/j.bbalip.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 01/28/2023]
Abstract
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.
Collapse
|
29
|
Kwok SCM, Samuel SP, Handal J. Atorvastatin activates heme oxygenase-1 at the stress response elements. J Cell Mol Med 2012; 16:394-400. [PMID: 21447045 PMCID: PMC3823302 DOI: 10.1111/j.1582-4934.2011.01324.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Statins are known to inhibit growth of a number of cancer cells, but their mechanism of action is not well established. In this study, human prostate adenocarcinoma PC-3 and breast adenocarcinoma MCF-7 cell lines were used as models to investigate the mechanism of action of atorvastatin, one of the statins. Atorvastatin was found to induce apoptosis in PC-3 cells at a concentration of 1 μM, and in MCF-7 cells at 50 μM. Initial survey of possible pathway using various pathway-specific luciferase reporter assays showed that atorvastatin-activated antioxidant response element (ARE), suggesting oxidative stress pathway may play a role in atorvastatin-induced apoptosis in both cell lines. Among the antioxidant response genes, heme oxygenase-1 (HO-1) was significantly up-regulated by atorvastatin. Pre-incubation of the cells with geranylgeranyl pyrophosphate blocked atorvastatin-induced apoptosis, but not up-regulation of HO-1, suggesting that atorvastatin-induced apoptosis is dependent on GTPase activity and up-regulation of HO-1 gene is not. Six ARE-like elements (designated StRE1 [stress response element] through StRE6) are present in the HO-1 promoter. Atorvastatin was able to activate all of the elements. Because these StRE sites are present in clusters in HO-1 promoter, up-regulation of HO-1 by atorvastatin may involve multiple StRE sites. The role of HO-1 in atorvastatin-induced apoptosis in PC-3 and MCF-7 remains to be studied.
Collapse
Affiliation(s)
- Simon C M Kwok
- ORTD, Albert Einstein Medical Center, Philadelphia, PA 19141-3098, USA.
| | | | | |
Collapse
|
30
|
Montano-Almendras CP, Essaghir A, Schoemans H, Varis I, Noël LA, Velghe AI, Latinne D, Knoops L, Demoulin JB. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB. Haematologica 2012; 97:1064-72. [PMID: 22271894 DOI: 10.3324/haematol.2011.047530] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ETV6-PDGFRB (also called TEL-PDGFRB) and FIP1L1-PDGFRA are receptor-tyrosine kinase fusion genes that cause chronic myeloid malignancies associated with hypereosinophilia. The aim of this work was to gain insight into the mechanisms whereby fusion genes affect human hematopoietic cells and in particular the eosinophil lineage. DESIGN AND METHODS We introduced ETV6-PDGFRB and FIP1L1-PDGFRA into human CD34(+) hematopoietic progenitor and stem cells isolated from umbilical cord blood. RESULTS Cells transduced with these oncogenes formed hematopoietic colonies even in the absence of cytokines. Both oncogenes also stimulated the proliferation of cells in liquid culture and their differentiation into eosinophils. This model thus recapitulated key features of the myeloid neoplasms induced by ETV6-PDGFRB and FIP1L1-PDGFRA. We next showed that both fusion genes activated the transcription factors STAT1, STAT3, STAT5 and nuclear factor-κB. Phosphatidylinositol-3 kinase inhibition blocked nuclear factor-κB activation in transduced progenitor cells and patients' cells. Nuclear factor-κB was also activated in the human FIP1L1-PDGFRA-positive leukemia cell line EOL1, the proliferation of which was blocked by bortezomib and the IκB kinase inhibitor BMS-345541. A mutant IκB that prevents nuclear translocation of nuclear factor-κB inhibited cell growth and the expression of eosinophil markers, such as the interleukin-5 receptor and eosinophil peroxidase, in progenitors transduced with ETV6-PDGFRB. In addition, several potential regulators of this process, including HES6, MYC and FOXO3 were identified using expression microarrays. CONCLUSIONS We show that human CD34(+) cells expressing PDGFR fusion oncogenes proliferate autonomously and differentiate towards the eosinophil lineage in a process that requires nuclear factor-κB. These results suggest new treatment possibilities for imatinib-resistant myeloid neoplasms associated with PDGFR mutations.
Collapse
|
31
|
Zhang H, Huang CJ, Tian Y, Wang YP, Han ZG, Li XC. Ectopic overexpression of COTE1 promotes cellular invasion of hepatocellular carcinoma. Asian Pac J Cancer Prev 2012; 13:5799-5804. [PMID: 23317259 DOI: 10.7314/apjcp.2012.13.11.5799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.
Collapse
Affiliation(s)
- Hai Zhang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Medves S, Noël LA, Montano-Almendras CP, Albu RI, Schoemans H, Constantinescu SN, Demoulin JB. Multiple oligomerization domains of KANK1-PDGFRβ are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK. Haematologica 2011; 96:1406-14. [PMID: 21685469 DOI: 10.3324/haematol.2011.040147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND KANK1-PDGFRB is a fusion gene generated by the t(5;9) translocation between KANK1 and the platelet-derived growth factor receptor beta gene PDGFRB. This hybrid was identified in a myeloproliferative neoplasm featuring severe thrombocythemia, in the absence of the JAK2 V617F mutation. DESIGN AND METHODS KANK1-PDGFRB was transduced into Ba/F3 cells and CD34(+) human progenitor cells to gain insights into the mechanisms whereby this fusion gene transforms cells. RESULTS Although platelet-derived growth factor receptors are capable of activating JAK2, KANK1-PDGFRβ did not induce JAK2 phosphorylation in hematopoietic cells and a JAK inhibitor did not affect KANK1-PDGFRβ-induced cell growth. Like JAK2 V617F, KANK1-PDGFRβ constitutively activated STAT5 transcription factors, but this did not require JAK kinases. In addition KANK1-PDGFRβ induced the phosphorylation of phospholipase C-γ, ERK1 and ERK2, like wild-type PDGFRβ and TEL-PDGFRβ, another hybrid protein found in myeloid malignancies. We next tested various mutant forms of KANK1-PDGFRβ in Ba/F3 cells and human CD34(+) hematopoietic progenitors. The three coiled-coil domains located in the N-terminus of KANK1 were required for KANK1-PDGFRβ-induced cell growth and signaling via STAT5 and ERK. However, the coiled-coils were not essential for KANK1-PDGFRβ oligomerization, which could be mediated by another new oligomerization domain. KANK1-PDGFRβ formed homotrimeric complexes and heavier oligomers. CONCLUSIONS KANK1-PDGFRB is a unique example of a thrombocythemia-associated oncogene that does not signal via JAK2. The fusion protein is activated by multiple oligomerization domains, which are required for signaling and cell growth stimulation.
Collapse
Affiliation(s)
- Sandrine Medves
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
You H, Gobert GN, Jones MK, Zhang W, McManus DP. Signalling pathways and the host-parasite relationship: putative targets for control interventions against schistosomiasis: signalling pathways and future anti-schistosome therapies. Bioessays 2011; 33:203-14. [PMID: 21290396 DOI: 10.1002/bies.201000077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A better understanding of how schistosomes exploit host nutrients, neuro-endocrine hormones and signalling pathways for growth, development and maturation may provide new insights for improved interventions in the control of schistosomiasis. This paper describes recent advances in the identification and characterisation of schistosome tyrosine kinase and signalling pathways. It discusses the potential intervention value of insulin signalling, which may play an important role in glucose uptake and carbohydrate metabolism in schistosomes, providing the nutrients essential for parasite growth, development and, notably, female fecundity. Significant progress has also been made in the characterisation of other schistosome growth factor receptors, such as transforming growth factor beta receptor and epidermal growth factor receptor, and in our understanding of their roles in the host-parasite molecular dialogue and parasite development. The use of parasite signal transduction components as novel vaccine or drug targets may prove invaluable in prevention, treatment and control strategies to combat schistosomiasis.
Collapse
Affiliation(s)
- Hong You
- Queensland Institute of Medical Research, Australian Centre for International and Tropical Health, Brisbane, Australia
| | | | | | | | | |
Collapse
|
34
|
Essaghir A, Toffalini F, Knoops L, Kallin A, van Helden J, Demoulin JB. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data. Nucleic Acids Res 2010; 38:e120. [PMID: 20215436 PMCID: PMC2887972 DOI: 10.1093/nar/gkq149] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining.
Collapse
Affiliation(s)
- Ahmed Essaghir
- de Duve Institute, Université Catholique de Louvain, MEXP74.30, avenue Hippocrates 74-75, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol Cell Biol 2009; 30:1182-98. [PMID: 20028734 DOI: 10.1128/mcb.00690-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.
Collapse
|
36
|
Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol 2009; 18:833-41. [PMID: 19709092 DOI: 10.1111/j.1600-0625.2009.00924.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is the purpose of this viewpoint article to delineate the regulatory network of growth hormone (GH), insulin, and insulin-like growth factor-1 (IGF-1) signalling during puberty, associated hormonal changes in adrenal and gonadal androgen metabolism, and the impact of dietary factors and smoking involved in the pathogenesis of acne. The key regulator IGF-1 rises during puberty by the action of increased GH secretion and correlates well with the clinical course of acne. In acne patients, associations between serum levels of IGF-1, dehydroepiandrosterone sulphate, dihydrotestosterone, acne lesion counts and facial sebum secretion rate have been reported. IGF-1 stimulates 5alpha-reductase, adrenal and gonadal androgen synthesis, androgen receptor signal transduction, sebocyte proliferation and lipogenesis. Milk consumption results in a significant increase in insulin and IGF-1 serum levels comparable with high glycaemic food. Insulin induces hepatic IGF-1 secretion, and both hormones amplify the stimulatory effect of GH on sebocytes and augment mitogenic downstream signalling pathways of insulin receptors, IGF-1 receptor and fibroblast growth factor receptor-2b. Acne is proposed to be an IGF-1-mediated disease, modified by diets and smoking increasing insulin/IGF1-signalling. Metformin treatment, and diets low in milk protein content and glycaemic index reduce increased IGF-1 signalling. Persistent acne in adulthood with high IGF-1 levels may be considered as an indicator for increased risk of cancer, which may require appropriate dietary intervention as well as treatment with insulin-sensitizing agents.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
37
|
Kok K, Nock GE, Verrall EAG, Mitchell MP, Hommes DW, Peppelenbosch MP, Vanhaesebroeck B. Regulation of p110delta PI 3-kinase gene expression. PLoS One 2009; 4:e5145. [PMID: 19357769 PMCID: PMC2663053 DOI: 10.1371/journal.pone.0005145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/19/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite an intense interest in the biological functions of the phosphoinositide 3-kinase (PI3K) signalling enzymes, little is known about the regulation of PI3K gene expression. This also applies to the leukocyte-enriched p110delta catalytic subunit of PI3K, an enzyme that has attracted widespread interest because of its role in immunity and allergy. PRINCIPAL FINDINGS We show that p110delta expression is mainly regulated at the transcriptional level. In fibroblasts, lymphocytes and myeloid cells, p110delta gene transcription appears to be constitutive and not subject to acute stimulation. 5'RACE experiments revealed that p110delta mRNA transcripts contain distinct upstream untranslated exons (named exon -1, -2a, -2b, -2c and -2d), which are located up to 81 kb upstream of the translational start codon in exon 1. The levels of all the different p110delta transcripts are higher in leukocytes compared to non-leukocytes, with the p110delta transcript containing exon -2a most abundantly expressed. We have identified a highly conserved transcription factor (TF) binding cluster in the p110delta gene which has enhanced promoter activity in leukocytes compared to non-leukocytes. In human, this TF cluster is located immediately upstream of exon -2a whilst in mouse, it is located within exon -2a. CONCLUSION This study identifies a conserved PIK3CD promoter region that may account for the predominant leukocyte expression of p110delta.
Collapse
Affiliation(s)
- Klaartje Kok
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma E. Nock
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Elizabeth A. G. Verrall
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Michael P. Mitchell
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, United Kingdom
| | - Daan W. Hommes
- Department of Gastroenterology and Hepatology; Leiden University Medical Centre, Leiden, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Vanhaesebroeck
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|
38
|
Kok K, Geering B, Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci 2009; 34:115-27. [DOI: 10.1016/j.tibs.2009.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 11/24/2022]
|
39
|
Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 2009; 284:10334-42. [PMID: 19244250 DOI: 10.1074/jbc.m808848200] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
FOXO (Forkhead box O) transcription factors induce cell growth arrest and apoptosis, which can be prevented by FOXO phosphorylation by AKT in response to growth factors such as platelet-derived growth factors (PDGF) and insulin-like growth factor I (IGF-I). In addition to this well characterized post-translational modification, we showed that FOXO1, FOXO3, and FOXO4 were also regulated at the transcriptional level. PDGF, fibroblast growth factors (FGF), and IGF-I repressed the expression of FOXO genes in human fibroblasts. This process was sensitive to phosphatidylinositol 3-kinase inhibition by LY294002. FOXO1-specific shRNA decreased FOXO1 mRNA expression and enhanced fibroblast proliferation, mimicking the effects of growth factors. Conversely, ectopic FOXO3 activation blocked the proliferation of fibroblasts and induced the expression of FOXO1, FOXO4, and p27-KIP1. Using luciferase reporter assays and chromatin immunoprecipitations, we identified a conserved FOXO-binding site in the promoter of the FOXO1 gene, which was required for regulation by PDGF, and mediated the up-regulation of FOXO1 by itself and by FOXO3. Altogether, our results suggest that the expression of FOXO1 and FOXO4 genes is stimulated by FOXO3 and possibly by other FOXO factors in a positive feedback loop, which is disrupted by growth factors.
Collapse
Affiliation(s)
- Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, BE-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
40
|
Mueller AS, Klomann SD, Wolf NM, Schneider S, Schmidt R, Spielmann J, Stangl G, Eder K, Pallauf J. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J Nutr 2008; 138:2328-36. [PMID: 19022953 DOI: 10.3945/jn.108.089482] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counter-regulation of insulin signaling and in the stimulation of fatty acid synthesis. Selenium (Se), via the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), is involved in the removal of H(2)O(2) and organic peroxides, which are critical compounds in the modulation of PTP1B activity via glutathionylation. Our study with growing rats investigated how the manipulation of dietary Se concentration influences the regulation of PTP1B and lipogenic effects mediated by PTP1B. Weanling albino rats were divided into 3 groups of 10. The negative control group (NC) was fed a Se-deficient diet for 8 wk. Rats in groups Se75 and Se150 received diets supplemented with 75 or 150 microg Se/kg. Se supplementation of the rats strongly influenced expression and activity of the selenoenzymes cytosolic GPx, plasma GPx, phospholipidhydroperoxide GPx, and cytosolic TrxR, and liver PTP1B. Liver PTP1B activity was significantly higher in groups Se75 and Se150 than in the NC group and this was attributed to a lowered inhibition of the enzyme by glutathionylation. The increased liver PTP1B activity in groups Se75 and Se150 resulted in 1.1- and 1.4-fold higher liver triglyceride concentrations than in the NC rats. The upregulation of the sterol regulatory element binding protein-1c and of fatty acid synthase, 2 PTP1B targets, provided a possible explanation for the lipogenic effect of PTP1B due to the manipulation of dietary Se. We therefore conclude that redox-regulated proteins, such as PTP1B, represent important interfaces between dietary antioxidants such as Se and the regulation of metabolic processes.
Collapse
Affiliation(s)
- Andreas S Mueller
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Halle, Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
42
|
Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M. Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet 2008; 4:e1000133. [PMID: 18654640 PMCID: PMC2478640 DOI: 10.1371/journal.pgen.1000133] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/18/2008] [Indexed: 01/23/2023] Open
Abstract
The sterol regulatory element-binding protein (SREBP) family member SREBP1 is a critical transcriptional regulator of cholesterol and fatty acid metabolism and has been implicated in insulin resistance, diabetes, and other diet-related diseases. We globally identified the promoters occupied by SREBP1 and its binding partners NFY and SP1 in a human hepatocyte cell line using chromatin immunoprecipitation combined with genome tiling arrays (ChIP-chip). We find that SREBP1 occupies the promoters of 1,141 target genes involved in diverse biological pathways, including novel targets with roles in lipid metabolism and insulin signaling. We also identify a conserved SREBP1 DNA-binding motif in SREBP1 target promoters, and we demonstrate that many SREBP1 target genes are transcriptionally activated by treatment with insulin and glucose using gene expression microarrays. Finally, we show that SREBP1 cooperates extensively with NFY and SP1 throughout the genome and that unique combinations of these factors target distinct functional pathways. Our results provide insight into the regulatory circuitry in which SREBP1 and its network partners coordinate a complex transcriptional response in the liver with cues from the diet. Transcription factors (TFs) are DNA-binding proteins that regulate the transcription of their target genes. TFs typically bind in proximity to the transcription start sites of their target genes in a region called the promoter. SREBP1 is a TF that increases the transcription of numerous genes involved in cholesterol and fat metabolism and has been linked to diet-related diseases such as insulin resistance and type 2 diabetes. Using microarray technology, we identified all of the promoters in the human genome that are bound by SREBP1 and two associated TFs called NFY and SP1 in a human liver cell line. Our findings greatly expand the number of genes and biological pathways that may be regulated by SREBP1 and reveal that different combinations of SREBP1 and its partners preferentially target genes involved in different pathways. Thus, in contrast to traditional studies that focus on individual genes, we have used a genomics approach to provide a novel global view of the regulatory circuitry in which SREBP1 and its partners coordinate a transcriptional response in the liver with cues from the diet.
Collapse
Affiliation(s)
- Brian D. Reed
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Alexandra E. Charos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anna M. Szekely
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sherman M. Weissman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Snyder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
43
|
Rome S, Lecomte V, Meugnier E, Rieusset J, Debard C, Euthine V, Vidal H, Lefai E. Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 2008; 34:327-37. [PMID: 18559965 DOI: 10.1152/physiolgenomics.90211.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes in the expression of 1,315 genes (655 upregulated and 660 downregulated), whereas overexpression of SREBP-1c modified the mRNA level of 514 genes (310 upregulated and 204 downregulated). Gene ontology analysis indicated that in human muscle cells SREBP-1a and -1c are involved in the regulation of a large number of genes that are at the crossroads of different functional pathways, several of which are not directly connected with cholesterol and lipid metabolism. Six hundred fifty-two of all genes identified to be differentially regulated on SREBP overexpression had a sterol regulatory element (SRE) motif in their promoter sequences. Among these, 429 were specifically regulated by SREBP-1a, 69 by SREBP-1c, and 154 by both 1a and 1c. Because both isoforms recognize the same binding motif, we determined whether some of these functional differences could depend on the environment of the SRE motifs in the promoters. Results from promoter analysis showed that different combinations of transcription factor binding sites around the SRE binding motifs may determine regulatory networks of transcription that could explain the superposition of lipid and cholesterol metabolism with various other pathways involved in adaptive responses to stress like hypoxia and heat shock, or involvement in the immune response.
Collapse
Affiliation(s)
- Sophie Rome
- INSERM U870, INRA UMR1235, Régulations Métaboliques, Nutrition, et Diabètes, Université Lyon 1, Faculté de Médecine Lyon-Sud, Oullins, INSA-Lyon, RMND, Villeurbanne, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Malyala A, Zhang C, Bryant DN, Kelly MJ, Rønnekleiv OK. PI3K signaling effects in hypothalamic neurons mediated by estrogen. J Comp Neurol 2008; 506:895-911. [PMID: 18085586 DOI: 10.1002/cne.21584] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple mechanisms mediate the effects of estrogen in the central nervous system, including signal transduction pathways such as protein kinase A, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) pathways. Previously we demonstrated that estrogen regulates a number of PI3K-related genes in the hypothalamus, including the PI3K p55gamma regulatory subunit. We hypothesized that PI3K activation is critical for the effects of estrogen and that the p55gamma subunit may be more prevalent than the p85alpha regulatory subunit in the hypothalamus. Therefore, in the present study, we compared the mRNA distribution of the p55gamma and p85alpha regulatory subunits by using in situ hybridization in guinea pig. Expression level of p55gamma mRNA was greater than p85alpha in most hypothalamic nuclei. Twenty-four hours of estrogen treatment increased p55gamma mRNA expression in the paraventricular, suprachiasmatic, arcuate, and ventromedial nuclei, and little or no change was observed for p85alpha mRNA. Quantitative real-time PCR confirmed the in situ hybridization results. Next, we investigated the general role of PI3K signaling in the estrogen-mediated changes of arcuate proopiomelanocortin (POMC) neuronal excitability by using whole-cell recording. One cellular mechanism by which estrogen increases neuronal excitability is to desensitize (uncouple) gamma-aminobutyric acid type B (GABA(B)) receptors from their G-protein-gated inwardly rectifying K(+) channels in hypothalamic neurons. We found that the PI3K inhibitors wortmannin and LY294002 significantly reduced the estrogen-mediated GABA(B) receptor desensitization in POMC arcuate neurons, suggesting that PI3K signaling is a critical downstream mediator of the estrogen-mediated rapid effects. Collectively, these data suggest that the interplay between estrogen and PI3K occurs at multiple levels, including transcriptional and membrane-initiated signaling events that ultimately lead to changes in homeostatic function.
Collapse
Affiliation(s)
- Anna Malyala
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|