1
|
Criscuolo E, De Sciscio ML, De Cristofaro A, Nicoara C, Maccarrone M, Fezza F. Computational and Experimental Drug Repurposing of FDA-Approved Compounds Targeting the Cannabinoid Receptor CB1. Pharmaceuticals (Basel) 2023; 16:1678. [PMID: 38139805 PMCID: PMC10747202 DOI: 10.3390/ph16121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopathological processes, thus positioning itself as a promising and sought-after therapeutic target. However, the search for specific and effective CB1R ligands has been challenging, prompting the exploration of drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines computational screening and experimental validation to identify potential Food and Drug Administration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual screening was conducted using molecular docking simulations, where a library of FDA-approved drugs was screened against the CB1R's three-dimensional structures. This in silico analysis allowed us to prioritize compounds based on their binding affinity through two different filters. Subsequently, the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to validate their interaction with the CB1R and determine their functional impact. Our results reveal FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclusion, our integrated computational and experimental approach demonstrates the feasibility of DR for discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of existing pharmacological data, this strategy accelerates the identification of potential therapeutics while reducing development costs and timelines. The findings from this study hold the potential to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step forward in drug discovery research.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.D.S.); (A.D.C.)
| | - Angela De Cristofaro
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.L.D.S.); (A.D.C.)
| | - Catalin Nicoara
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy; (E.C.); (C.N.)
| |
Collapse
|
2
|
Oddi S, Ciaramellano F, Scipioni L, Dainese E, Maccarrone M. Visualization of Endocannabinoids in the Cell. Methods Mol Biol 2023; 2576:453-459. [PMID: 36152209 DOI: 10.1007/978-1-0716-2728-0_37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular membrane compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cells. Herein, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Francesca Ciaramellano
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Blando S, Raffaele I, Chiricosta L, Valeri A, Gugliandolo A, Silvestro S, Pollastro F, Mazzon E. Cannabidiol Promotes Neuronal Differentiation Using Akt and Erk Pathways Triggered by Cb1 Signaling. Molecules 2022; 27:molecules27175644. [PMID: 36080415 PMCID: PMC9457834 DOI: 10.3390/molecules27175644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.
Collapse
Affiliation(s)
- Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
- Correspondence:
| |
Collapse
|
4
|
Gagestein B, Stevens AF, Fazio D, Florea BI, van der Wel T, Bakker AT, Fezza F, Dulk HD, Overkleeft HS, Maccarrone M, van der Stelt M. Chemical Proteomics Reveals Off-Targets of the Anandamide Reuptake Inhibitor WOBE437. ACS Chem Biol 2022; 17:1174-1183. [PMID: 35482948 PMCID: PMC9127799 DOI: 10.1021/acschembio.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Anna F. Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Domenico Fazio
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Bogdan I. Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Alexander T. Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, Rome 00121, Italy
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S. Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
5
|
Crauste C, Galano JM, Guy A, Lehoux J, Durand T, Balas L. Synthesis of fatty acid bioconjugates and related derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Céline Crauste
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - jean-Marie Galano
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Alexandre Guy
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Jordan Lehoux
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Thierry Durand
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Laurence Balas
- UMR 5247: Institut des Biomolecules Max Mousseron Synthesis of bioactive lipids 1919 route de Mende 34293 Montpellier Cedex FRANCE
| |
Collapse
|
6
|
Hamilton AJ, Payne AD, Mocerino M, Gunosewoyo H. Imaging Cannabinoid Receptors: A Brief Collection of Covalent and Fluorescent Probes for CB1 and CB2 Receptors. Aust J Chem 2021. [DOI: 10.1071/ch21007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been an expanding public interest towards the notion that modulation of the sophisticated endocannabinoid system can lead to various therapeutic benefits that are yet to be fully explored. In recent years, the drug discovery paradigm in this field has been largely based on the development of selective CB2 receptor agonists, avoiding the unwanted CB1 receptor-mediated psychoactive side effects. Mechanistically, target engagement studies are crucial for confirming the ligand–receptor interaction and the subsequent biological cascades that lead to the observed therapeutic effects. Concurrently, imaging techniques for visualisation of cannabinoid receptors are increasingly reported in the literature. Small molecule imaging tools ranging from phytocannabinoids such as tetrahydrocannabinol (THC) and cannabidiol (CBD) to the endocannabinoids as well as the purely synthetic cannabimimetics, have been explored to date with varying degrees of success. This Review will cover currently known photoactivatable, electrophilic, and fluorescent ligands for both the CB1 and CB2 receptors. Structural insights from techniques such as ligand-assisted protein structure (LAPS) and the discovery of novel allosteric modulators are significant additions for better understanding of the endocannabinoid system. There has also been a plethora of fluorescent conjugates that have been assessed for their binding to cannabinoid receptors as well as their potential for cellular imaging. More recently, bifunctional probes containing either fluorophores or electrophilic tags are becoming more prevalent in the literature. Collectively, these molecular tools are invaluable in demonstrating target engagement within the human endocannabinoid system.
Collapse
|
7
|
Szilagyi JT, Composto-Wahler GM, Joseph LB, Wang B, Rosen T, Laskin JD, Aleksunes LM. Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res 2019; 141:331-342. [PMID: 30610963 DOI: 10.1016/j.phrs.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/13/2023]
Abstract
The BCRP/ABCG2 efflux transporter is expressed on the membrane of placental syncytiotrophoblasts and protects the fetus from toxicant exposure. Syncytiotrophoblasts arise from the fusion of cytotrophoblasts, a process negatively regulated by the endocannabinoid, anandamide (AEA). It is unknown whether AEA can influence fetal concentrations of xenobiotics by modulating the expression of transporters in syncytiotrophoblasts. Here, we sought to characterize and identify the mechanism(s) responsible for AEA-mediated down-regulation of the BCRP transporter in human placental explants and BeWo trophoblasts. Treatment of human placental explants with AEA (1 μM, 24 h) reduced hCGα, syncytin-1, and BCRP mRNAs by ˜30%. Similarly, treatment of BeWo trophoblasts with AEA (0-10 μM, 3-24 h) coordinately down-regulated mRNAs for hCGß, syncytin-2, and BCRP. In turn, AEA increased the sensitivity of trophoblasts to the cytotoxicity of mitoxantrone, a known BCRP substrate, and environmental and dietary contaminants including mycoestrogens and perfluorinated chemicals. AEA-treated trophoblasts also demonstrated reduced BCRP transport of the mycoestrogen zearalenone and the diabetes drug glyburide, labeled with BODIPY. The AEA-mediated reduction of BCRP mRNA was abrogated when placental cells were co-treated with AM630, a CB2 receptor inhibitor, or 8-Br-cAMP, a cAMP analog. AEA reduced intracellular cAMP levels in trophoblasts by 75% at 1 h, and completely inhibited forskolin-induced phosphorylation of the cAMP response element binding protein (CREB). AEA also decreased p-CREB binding to the BCRP promoter. Taken together, our data indicate that AEA down-regulates placental transporter expression and activity via CB2-cAMP signaling. This novel mechanism may explain the repression of placental BCRP expression observed during diseases of pregnancy.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gabriella M Composto-Wahler
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Bingbing Wang
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Todd Rosen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
9
|
Abstract
A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic compound anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cell. Here, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.
Collapse
|
10
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
11
|
Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci 2017; 10:166. [PMID: 28611591 PMCID: PMC5447297 DOI: 10.3389/fnmol.2017.00166] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of RomeRome, Italy.,European Center for Brain Research, IRCCS Santa Lucia FoundationRome, Italy
| |
Collapse
|
12
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73:4449-4470. [PMID: 27402121 PMCID: PMC5075023 DOI: 10.1007/s00018-016-2300-4] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
13
|
Onyango MG, Beebe NW, Gopurenko D, Bellis G, Nicholas A, Ogugo M, Djikeng A, Kemp S, Walker PJ, Duchemin JB. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet Res 2015; 231:39-58. [PMID: 26408175 DOI: 10.1007/978-3-319-20825-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia. .,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, Victoria, 3216, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia. .,CSIRO Health & Biosecurity Ecosciences Precinct, 41, Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales, 2650, Australia. .,Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Glenn Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, Northern Territory, 0812, Australia.
| | - Adrian Nicholas
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya. .,Biosciences eastern and central Africa - ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya.
| | - Steve Kemp
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Peter J Walker
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| |
Collapse
|
14
|
Gabrielli M, Battista N, Riganti L, Prada I, Antonucci F, Cantone L, Matteoli M, Maccarrone M, Verderio C. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep 2015; 16:213-20. [PMID: 25568329 DOI: 10.15252/embr.201439668] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.
Collapse
Affiliation(s)
- Martina Gabrielli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Loredana Riganti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | | | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Laura Cantone
- Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy IRCCS Humanitas, Rozzano, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Milano, Italy IRCCS Humanitas, Rozzano, Italy
| |
Collapse
|
15
|
Endocannabinoids, related compounds and their metabolic routes. Molecules 2014; 19:17078-106. [PMID: 25347455 PMCID: PMC6271436 DOI: 10.3390/molecules191117078] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds) have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.
Collapse
|
16
|
Gretskaya NM, Akimov MG, Bezuglov VV. A new fluorescent analogue for the studies of anandamide transport in cell cultures. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.
Collapse
|
18
|
Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG. Fatty acid-binding proteins transport N-acylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 2011; 287:3415-24. [PMID: 22170058 DOI: 10.1074/jbc.m111.304907] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-acylethanolamines (NAEs) are bioactive lipids that engage diverse receptor systems. Recently, we identified fatty acid-binding proteins (FABPs) as intracellular NAE carriers. Here, we provide two new functions for FABPs in NAE signaling. We demonstrate that FABPs mediate the nuclear translocation of the NAE oleoylethanolamide, an agonist of nuclear peroxisome proliferator-activated receptor α (PPARα). Antagonism of FABP function through chemical inhibition, dominant-negative approaches, or shRNA-mediated knockdown reduced PPARα activation, confirming a requisite role for FABPs in this process. In addition, we show that NAE analogs, traditionally employed as inhibitors of the putative endocannabinoid transmembrane transporter, target FABPs. Support for the existence of the putative membrane transporter stems primarily from pharmacological inhibition of endocannabinoid uptake by such transport inhibitors, which are widely employed in endocannabinoid research despite lacking a known cellular target(s). Our approach adapted FABP-mediated PPARα signaling and employed in vitro binding, arachidonoyl-[1-(14)C]ethanolamide ([(14)C]AEA) uptake, and FABP knockdown to demonstrate that transport inhibitors exert their effects through inhibition of FABPs, thereby providing a molecular rationale for the underlying physiological effects of these compounds. Identification of FABPs as targets of transport inhibitors undermines the central pharmacological support for the existence of an endocannabinoid transmembrane transporter.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.
| | | | | | | | | |
Collapse
|
19
|
Oddi S, Fezza F, Catanzaro G, De Simone C, Pucci M, Piomelli D, Finazzi-Agrò A, Maccarrone M. Pitfalls and solutions in assaying anandamide transport in cells. J Lipid Res 2010; 51:2435-44. [PMID: 20447929 DOI: 10.1194/jlr.d004176] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nonspecific binding of anandamide to plastic exhibits many features that could be mistaken as biological processes, thereby representing an important source of conflicting data on the uptake and release of this lipophilic substance. Herein, we propose an improved method to assay anandamide transport, by using glass slides (i.e., coverslips) as physical support to grow cells. Although the results obtained using plastic do not differ significantly from those obtained using glass, the new procedure has the advantage of being faster, simpler, and more accurate. In fact, the lack of aspecific adsorption of anandamide to the glass surface yields a lower background and a higher precision and accuracy in determining transport kinetics, especially for the export process. Remarkably, the kinetic parameters of anandamide uptake obtained with the old and the new procedures may be similar or different depending on the cell type, thus demonstrating the complexity of the interference of plastic on the transport process. In addition, the novel procedure is particularly suitable for visualization and measurement of anandamide transport in intact cells by using a biotinylated derivative in confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yates ML, Barker EL. Inactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol. Mol Pharmacol 2009; 76:11-7. [PMID: 19389920 DOI: 10.1124/mol.109.055251] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The cannabinoid field is currently an active research area. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most characterized endogenous cannabinoids (also known as endocannabinoids). These neuromodulators have been implicated in various physiologically relevant phenomena, including mood (Witkin et al., 2005), the immune response (Ashton, 2007), appetite (Kirkham and Tucci, 2006), reproduction (Wang et al., 2006), spasticity (Pertwee, 2002), and pain (Hohmann and Suplita, 2006). Pharmacological manipulation of AEA and 2-AG signaling should prove to have significant therapeutic applications in disorders linked to endocannabinoid signaling. One way to alter endocannabinoid signaling is to regulate the events responsible for termination of the endocannabinoid signal-cellular uptake and metabolism. However, to pharmacologically exploit AEA and/or 2-AG signaling in this way, we must first gain a better understanding of the proteins and mechanisms governing these processes. This review serves as an introduction to the endocannabinoid system with an emphasis on the proteins and events responsible for the termination of AEA and 2-AG signaling.
Collapse
Affiliation(s)
- Marla L Yates
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy, West Lafayette, IN 47907-2091, USA
| | | |
Collapse
|
21
|
Oddi S, Fezza F, Pasquariello N, D'Agostino A, Catanzaro G, De Simone C, Rapino C, Finazzi-Agrò A, Maccarrone M. Molecular Identification of Albumin and Hsp70 as Cytosolic Anandamide-Binding Proteins. ACTA ACUST UNITED AC 2009; 16:624-32. [DOI: 10.1016/j.chembiol.2009.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/13/2009] [Accepted: 05/07/2009] [Indexed: 01/09/2023]
|
22
|
Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A 2009; 106:6375-80. [PMID: 19307565 DOI: 10.1073/pnas.0901515106] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) is an uncharged neuromodulatory lipid that, similar to many neurotransmitters, is inactivated through its cellular uptake and subsequent catabolism. AEA is hydrolyzed by fatty acid amide hydrolase (FAAH), an enzyme localized on the endoplasmic reticulum. In contrast to most neuromodulators, the hydrophilic cytosol poses a diffusional barrier for the efficient delivery of AEA to its site of catabolism. Therefore, AEA likely traverses the cytosol with the assistance of an intracellular carrier that increases its solubility and rate of diffusion. To study this process, AEA uptake and hydrolysis were examined in COS-7 cells expressing FAAH restricted to the endoplasmic reticulum, mitochondria, or the Golgi apparatus. AEA hydrolysis was detectable at the earliest measurable time point (3 seconds), suggesting that COS-7 cells, normally devoid of an endocannabinoid system, possess an efficient cytosolic trafficking mechanism for AEA. Three fatty acid binding proteins (FABPs) known to be expressed in brain were examined as possible intracellular AEA carriers. AEA uptake and hydrolysis were significantly potentiated in N18TG2 neuroblastoma cells after overexpression of FABP5 or FABP7, but not FABP3. Similar results were observed in COS-7 cells stably expressing FAAH. Consistent with the roles of FABP as AEA carriers, administration of the competitive FABP ligand oleic acid or the selective non-lipid FABP inhibitor BMS309403 attenuated AEA uptake and hydrolysis by approximately 50% in N18TG2 and COS-7 cells. Taken together, FABPs represent the first proteins known to transport AEA from the plasma membrane to FAAH for inactivation and may therefore be novel pharmacological targets.
Collapse
|
23
|
Chapter 2 Organized Trafficking of Anandamide and Related Lipids. VITAMINS AND HORMONES 2009; 81:25-53. [DOI: 10.1016/s0083-6729(09)81002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|