1
|
Jia Q, Ren H, Zhang S, Yang H, Gao S, Fan R. Preparation and Application of Clostridium perfringens Alpha Toxin Nanobodies. Vet Sci 2024; 11:381. [PMID: 39195835 PMCID: PMC11360521 DOI: 10.3390/vetsci11080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
All subtypes of Clostridium perfringens (C. perfringens) produce the alpha toxin (CPA), which can cause enteritis or enterotoxemia in lambs, cattle, pigs, and horses, as well as traumatic clostridial myonecrosis in humans and animals. CPA acts on cell membranes, ultimately leading to endocytosis and cell death. Therefore, the neutralization of CPA is crucial for the prevention and treatment of diseases caused by C. perfringens. In this study, utilizing CPA as an antigen, a nanobody (CPA-VHH) with a half-life of 2.9 h, an affinity constant (KD) of 0.9 nmol/L, and good stability below 60 °C was prepared from a natural nanobody library from alpacas. The biological activity analysis of CPA-VHH revealed its ability to effectively neutralize the phospholipase and hemolytic activity of CPA at a 15-fold ratio. In Vero cells, 9.8 μg/mL CPA-VHH neutralized the cytotoxicity of CPA at two times the half-maximal inhibitory concentration (IC50). In a mouse model, 35.7 ng/g body weight (BW) of CPA-VHH neutralized 90% of the lethality caused by a 2× median lethal dose (LD50) of CPA. It was found that CPA-VHH protected 80% of mice within 30 min at 2 × LD50 CPA, but this dropped below 50% after 2 h and to 0% after 4 h. Rescue trials indicated that using CPA-VHH within 30 min post-infection with 2 × LD50 CPA achieved an 80% rescue rate, which decreased to 10% after 2 h. Furthermore, CPA-VHH effectively mitigated the reduction in the expression levels of zonula occludens-1 (ZO-1), Occludin, and Claudin-1, while also attenuating the upregulation of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ) induced by CPA infection. Overall, this study has identified a specific nanobody, CPA-VHH, that effectively neutralizes CPA toxins in vitro and in animal models, providing a new tool for inhibiting the pathogenicity resulting from these toxins and laying an important foundation for the development of new anti-C. perfringens toxin-related therapeutic products.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.J.); (H.R.); (S.Z.); (H.Y.); (S.G.)
| |
Collapse
|
2
|
Gautam H, Ayalew LE, Shaik NA, Subhasinghe I, Popowich S, Chow-Lockerbie B, Dixon A, Ahmed KA, Tikoo SK, Gomis S. Exploring the predictive power of jejunal microbiome composition in clinical and subclinical necrotic enteritis caused by Clostridium perfringens: insights from a broiler chicken model. J Transl Med 2024; 22:80. [PMID: 38243294 PMCID: PMC10799374 DOI: 10.1186/s12967-023-04728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.
Collapse
Affiliation(s)
- Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Noor Ahmad Shaik
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Alexa Dixon
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, 5D40 Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
3
|
Uzal FA, Giannitti F, Asin J. Yellow Lamb Disease (Clostridium perfringens Type A Enterotoxemia of Sheep): A Review. Animals (Basel) 2022; 12:ani12121590. [PMID: 35739925 PMCID: PMC9219707 DOI: 10.3390/ani12121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Yellow lamb disease is a poorly researched and understood condition that seems to affect young sheep. The disease is characterized by hemolysis and is thought to be caused by alpha toxin-producing Clostridium perfringens type A, although a definitive association with this microorganism has not been confirmed. This is due, in part, to the ubiquitous nature of C. perfringens type A, which is naturally present in the intestine of healthy sheep, a fact that complicates the diagnosis. In this review, we summarize the available information on the etiology, clinical signs, lesions, diagnosis, prevention and prophylaxis of yellow lamb disease. Abstract Yellow lamb disease is an infrequent disease in sheep for which there is scant literature, and that has been reported in the US, Australia, New Zealand, South Africa and Europe, although anecdotal evidence indicates that it may have also been diagnosed in South America. The disease is produced by some strains of Clostridium perfringens type A that produce unusually high levels of alpha- toxin. Because C. perfringens type A is ubiquitous and is found in the intestine of most clinically healthy sheep, diagnosis of yellow lamb disease is challenging and requires quantitating the amount of this microorganism present in feces and/or intestinal content. Clinically, yellow lamb disease is characterized by depression, anemia, icterus and hemoglobinuria. Occasionally, sudden death may occur. Gross findings include generalized icterus, red urine in the bladder, enlarged, pale, and friable spleen, enlarged liver with an acinar pattern, and dark, swollen kidneys. Microscopically, yellow lamb disease is characterized by centrilobular necrosis of the liver, hemoglobinuria-associated acute tubular injury, splenic congestion, pulmonary congestion and edema. Although there are no vaccines specifically designed to prevent yellow lamb disease, several vaccines against the different types of C. perfringens may afford at least some level of protection against yellow lamb disease.
Collapse
Affiliation(s)
- Francisco A. Uzal
- California Animal Health and Food Safety, University of California-Davis, San Bernardino, CA 92408, USA;
- Correspondence: ; Tel.: +1-951-751-0027
| | - Federico Giannitti
- Plataforma de Investigación en Salud Animal, Instituto de Investigación Agropecuaria, Estación Experimental La Estanzuela, Colonia 70000, Uruguay;
| | - Javier Asin
- California Animal Health and Food Safety, University of California-Davis, San Bernardino, CA 92408, USA;
| |
Collapse
|
4
|
Takehara M, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin inhibits myogenic differentiation of C2C12 myoblasts. Anaerobe 2020; 65:102265. [PMID: 32860931 DOI: 10.1016/j.anaerobe.2020.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Clostridium perfringens type A is the causative agent of clostridial myonecrosis, and α-toxin has been reported to be responsible for the pathogenesis. Recently, it was reported that regeneration of skeletal muscle after C. perfringens-induced muscle disorders is delayed, but the detailed mechanisms have not been elucidated. Here, we tested whether α-toxin impairs the differentiation of C2C12 myoblasts, a useful cell line to study muscle growth, maturation, and regeneration in vitro. α-Toxin dose-dependently inhibited myotube formation in C2C12 cultures after induction of their differentiation by horse serum. Also, immunoblot analysis revealed that α-toxin dose-dependently decreases the expressions of two skeletal muscle differentiation markers, myogenic differentiation 1 (MyoD) and myogenin. These results demonstrate that α-toxin impairs the myogenic differentiation of C2C12 myoblasts. To reveal the mechanism behind α-toxin-mediated impairment of myogenic differentiation, we focused on ceramide production since α-toxin is known to promote the formation of ceramide by its sphingomyelinase activity. Immunofluorescent analysis revealed that ceramide production is accelerated by treatment with α-toxin. Furthermore, a synthetic cell-permeable ceramide analog, C2-ceramide, inhibited myotube formation in C2C12 cells and decreased the expressions of MyoD and myogenin, suggesting that accelerated ceramide production is involved in the α-toxin-mediated blockage of myogenic differentiation. Together, our results illustrate that the impairment of myogenic differentiation by α-toxin might be crucial for the pathogenesis of C. perfringens to delay regeneration of severely damaged skeletal muscles.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
5
|
Takehara M, Bandou H, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis. Anaerobe 2020; 65:102262. [PMID: 32828915 DOI: 10.1016/j.anaerobe.2020.102262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023]
Abstract
Clostridium perfringens type A-induced gas gangrene is characterized by severe myonecrosis, and α-toxin has been revealed to be a major virulence factor involved in the pathogenesis. However, the detailed mechanism is unclear. Here, we show that CD31+ endothelial cell counts decrease in muscles infected with C. perfringens in an α-toxin-dependent manner. In vitro experiments revealed that α-toxin preferentially and rapidly induces the death of human umbilical vein endothelial cells (HUVECs) compared with C2C12 murine muscle cells. The toxin induces apoptosis of HUVECs by increasing ceramide. Furthermore, the specificity might be dependent on differences in the sensitivity to ceramide between these cell lines. Together, our results suggest that α-toxin-induced endothelial cell death promotes severe myonecrosis and is involved in the pathogenesis of C. perfringens.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
6
|
|
7
|
Nagahama M, Takehara M, Rood JI. Histotoxic Clostridial Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0024-2018. [PMID: 31350831 PMCID: PMC10957196 DOI: 10.1128/microbiolspec.gpp3-0024-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of clostridial myonecrosis or gas gangrene involves an interruption to the blood supply to the infected tissues, often via a traumatic wound, anaerobic growth of the infecting clostridial cells, the production of extracellular toxins, and toxin-mediated cell and tissue damage. This review focuses on host-pathogen interactions in Clostridium perfringens-mediated and Clostridium septicum-mediated myonecrosis. The major toxins involved are C. perfringens α-toxin, which has phospholipase C and sphingomyelinase activity, and C. septicum α-toxin, a β-pore-forming toxin that belongs to the aerolysin family. Although these toxins are cytotoxic, their effects on host cells are quite complex, with a range of intracellular cell signaling pathways induced by their action on host cell membranes.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock. Commun Biol 2019; 2:45. [PMID: 30729183 PMCID: PMC6355902 DOI: 10.1038/s42003-019-0280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
During bacterial infection, granulocyte colony-stimulating factor (G-CSF) is produced and accelerates neutrophil production from their progenitors. This process, termed granulopoiesis, strengthens host defense, but Clostridium perfringens α-toxin impairs granulopoiesis via an unknown mechanism. Here, we tested whether G-CSF accounts for the α-toxin-mediated impairment of granulopoiesis. We find that α-toxin dramatically accelerates G-CSF production from endothelial cells in response to Toll-like receptor 2 (TLR2) agonists through activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Meanwhile, α-toxin inhibits G-CSF-mediated cell proliferation of Ly-6G+ neutrophils by inducing degradation of G-CSF receptor (G-CSFR). During sepsis, administration of α-toxin promotes lethality and tissue injury accompanied by accelerated production of inflammatory cytokines in a TLR4-dependent manner. Together, our results illustrate that α-toxin disturbs G-CSF-mediated granulopoiesis by reducing the expression of G-CSFR on neutrophils while augmenting septic shock due to excess inflammatory cytokine release, which provides a new mechanism to explain how pathogenic bacteria modulate the host immune system.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Yuuta Sonobe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Saki Yokoyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| |
Collapse
|
9
|
Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins (Basel) 2018; 10:toxins10050212. [PMID: 29786671 PMCID: PMC5983268 DOI: 10.3390/toxins10050212] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/26/2022] Open
Abstract
Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens-mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host–toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis.
Collapse
|
10
|
Clostridium perfringens α-toxin impairs erythropoiesis by inhibition of erythroid differentiation. Sci Rep 2017; 7:5217. [PMID: 28701754 PMCID: PMC5507896 DOI: 10.1038/s41598-017-05567-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clostridium perfringens α-toxin induces hemolysis of erythrocytes from various species, but it has not been elucidated whether the toxin affects erythropoiesis. In this study, we treated bone marrow cells (BMCs) from mice with purified α-toxin and found that TER119+ erythroblasts were greatly decreased by the treatment. A variant α-toxin defective in enzymatic activities, phospholipase C and sphingomyelinase, had no effect on the population of erythroblasts, demonstrating that the decrease in erythroblasts was dependent of its enzymatic activities. α-Toxin reduced the CD71+TER119+ and CD71–TER119+ cell populations but not the CD71+TER119− cell population. In addition, α-toxin decreased the number of colony-forming unit erythroid colonies but not burst-forming unit erythroid colonies, indicating that α-toxin preferentially reduced mature erythroid cells compared with immature cells. α-Toxin slightly increased annexinV+ cells in TER119+ cells. Additionally, simultaneous treatment of BMCs with α-toxin and erythropoietin greatly attenuated the reduction of TER119+ erythroblasts by α-toxin. Furthermore, hemin-induced differentiation of human K562 erythroleukemia cells was impaired by α-toxin, whereas the treatment exhibited no apparent cytotoxicity. These results suggested that α-toxin mainly inhibited erythroid differentiation. Together, our results provide new insights into the biological activities of α-toxin, which might be important to understand the pathogenesis of C. perfringens infection.
Collapse
|
11
|
Membrane-Binding Mechanism of Clostridium perfringens Alpha-Toxin. Toxins (Basel) 2015; 7:5268-75. [PMID: 26633512 PMCID: PMC4690130 DOI: 10.3390/toxins7124880] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens alpha-toxin is a key mediator of gas gangrene, which is a life-threatening infection that manifests as fever, pain, edema, myonecrosis, and gas production. Alpha-toxin possesses phospholipase C and sphingomyelinase activities. The toxin is composed of an N-terminal domain (1-250 aa, N-domain), which is the catalytic site, and a C-terminal domain (251-370 aa, C-domain), which is the membrane-binding site. Immunization of mice with the C-domain of alpha-toxin prevents the gas gangrene caused by C. perfringens, whereas immunization with the N-domain has no effect. The central loop domain (55-93 aa), especially H….SW(84)Y(85)….G, plays an important role in the interaction with ganglioside GM1a. The toxin binds to lipid rafts in the presence of a GM1a/TrkA complex, and metabolites from phosphatidylcholine to diacylglycerol through the enzymatic activity of alpha-toxin itself. These membrane dynamics leads to the activation of endogenous PLCγ-1 via TrkA. In addition, treatment with alpha-toxin leads to the formation of diacylglycerol at membrane rafts in ganglioside-deficient DonQ cells; this in turn triggers endocytosis and cell death. This article summarizes the current the membrane-binding mechanism of alpha-toxin in detail.
Collapse
|
12
|
Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane. PLoS One 2015; 10:e0120497. [PMID: 25910247 PMCID: PMC4409118 DOI: 10.1371/journal.pone.0120497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023] Open
Abstract
Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA.
Collapse
|
13
|
Maté S, Busto JV, García-Arribas AB, Sot J, Vazquez R, Herlax V, Wolf C, Bakás L, Goñi FM. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes. Biophys J 2015; 106:2606-16. [PMID: 24940778 DOI: 10.1016/j.bpj.2014.04.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.
Collapse
Affiliation(s)
- Sabina Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Jon V Busto
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Aritz B García-Arribas
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Jesús Sot
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Romina Vazquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claude Wolf
- Groupe de spectrométrie de masse-APLIPID, Université Pierre et Marie Curie, Faculté de Médicine Pierre et Marie Curie, Paris, France
| | - Laura Bakás
- Departamento de Ciencias Biológicas. Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Argentina
| | - Félix M Goñi
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| |
Collapse
|
14
|
Monturiol-Gross L, Flores-Díaz M, Campos-Rodríguez D, Mora R, Rodríguez-Vega M, Marks DL, Alape-Girón A. Internalization of Clostridium perfringens α-toxin leads to ERK activation and is involved on its cytotoxic effect. Cell Microbiol 2013; 16:535-47. [PMID: 24245664 DOI: 10.1111/cmi.12237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/25/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, plays a key role in the pathogenesis of gas gangrene. CpPLC may lead to cell lysis at concentrations that cause extensive degradation of plasma membrane phospholipids. However, at sublytic concentrations it induces cytotoxicity without inducing evident membrane damage. The results of this work demonstrate that CpPLC becomes internalized in cells by a dynamin-dependent mechanism and in a time progressive process: first, CpPLC colocalizes with caveolin both at the plasma membrane and in vesicles, and later it colocalizes with early and late endosomes and lysosomes. Lysosomal damage in the target cells is evident 9 h after CpPLC exposure. Our previous work demonstrated that CpPLCinduces ERK1/2 activation, which is involved in its cytotoxic effect. In this work we found that cholesterol sequestration, dynamin inhibition, as well as inhibition of actin polymerization, prevent CpPLC internalization and ERK1/2 activation, involving endocytosis in the signalling events required for CpPLC cytotoxic effect at sublytic concentrations. These results provide new insights about the mode of action of this bacterial phospholipase C, previously considered to act only locally on cell membrane.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Escuela de Medicina Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
15
|
Giannitti F, Rioseco MM, García JP, Beingesser J, Woods LW, Puschner B, Uzal FA. Diagnostic Exercise. Vet Pathol 2013; 51:624-7. [DOI: 10.1177/0300985813501339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within a 24-hour period, 7 out of 200 three- to four-week-old pastured Katahdin lambs died after showing clinical signs of hemoglobinuria, red-tinged feces, weakness, and recumbency. One of the lambs that was examined clinically before natural death also had abdominal pain, trembling, tachycardia, and severe anemia with a packed cell volume of 4%. Pathologic findings included icterus, hemoglobinuric nephrosis, dark red urine, pulmonary edema, hydrothorax, splenomegaly, and acute centrilobular to midzonal hepatocellular degeneration and necrosis with cholestasis. The differential diagnoses and diagnostic workup to achieve the diagnosis are briefly discussed.
Collapse
Affiliation(s)
- F. Giannitti
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| | - M. Macias Rioseco
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - J. P. García
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| | - J. Beingesser
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| | - L. W. Woods
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| | - B. Puschner
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| | - F. A. Uzal
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Peter Slotte J. Molecular properties of various structurally defined sphingomyelins -- correlation of structure with function. Prog Lipid Res 2013; 52:206-19. [PMID: 23295259 DOI: 10.1016/j.plipres.2012.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023]
Abstract
Sphingomyelins are important phospholipids in plasma membranes of most cells. Because of their dominantly saturated nature, they affect the lateral structure of membranes, and contribute to the regulation of cholesterol distribution within membranes, and in cells. However, the abundance of molecular species present in cells also implies that sphingomyelins have other, more specific functions. Many of these functions are currently unknown, but are under extensive study. Mostly model membrane studies have shown that sphingomyelins (and other sphingolipids), in contrast to glycerophospholipids, have important hydrogen bonding properties which in several important ways confer specific functional properties to this abundant class of membrane phospholipids. The often very asymmetric nature of sphingomyelins, arising from mismatch in length between the long chain base and N-acyl chains, also impose specific properties (e.g., interdigitation) to sphingomyelins not seen with glycerophospholipids. In this review, the latest sphingomyelin literature will be scrutinized, and an effort will be made to correlate the molecular structure of sphingomyelin with functional properties. In particular, the effects of head group properties, interfacial hydrogen bonding, long chain base hydroxylation, N-acyl chain hydroxylation, and N-acyl chain methyl-branching will be discussed.
Collapse
Affiliation(s)
- J Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| |
Collapse
|
17
|
Oda M, Kabura M, Takagishi T, Suzue A, Tominaga K, Urano S, Nagahama M, Kobayashi K, Furukawa K, Furukawa K, Sakurai J. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J Biol Chem 2012; 287:33070-9. [PMID: 22847002 DOI: 10.1074/jbc.m112.393801] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clostridium perfringens alpha-toxin is the major virulence factor in the pathogenesis of gas gangrene. Alpha-toxin is a 43-kDa protein with two structural domains; the N-domain contains the catalytic site and coordinates the divalent metal ions, and the C-domain is a membrane-binding site. The role of the exposed loop region (72-93 residues) in the N-domain, however, has been unclear. Here we show that this loop contains a ganglioside binding motif (H … SXWY … G) that is the same motif seen in botulinum neurotoxin and directly binds to a specific conformation of the ganglioside Neu5Acα2-3(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ1Cer (GM1a) through a carbohydrate moiety. Confocal microscopy analysis using fluorescently labeled BODIPY-GM1a revealed that the toxin colocalized with GM1a and induced clustering of GM1a on the cell membranes. Alpha-toxin was only slightly toxic in β1,4-N-acetylgalactosaminyltransferase knock-out mice, which lack the a-series gangliosides that contain GM1a, but was highly toxic in α2,8-sialyltransferase knock-out mice, which lack both b-series and c-series gangliosides, similar to the control mice. Moreover, experiments with site-directed mutants indicated that Trp-84 and Tyr-85 in the exposed alpha-toxin loop play an important role in the interaction with GM1a and subsequent activation of TrkA. These results suggest that binding of alpha-toxin to GM1a facilitates the activation of the TrkA receptor and induces a signal transduction cascade that promotes the release of chemokines. Therefore, we conclude that GM1a is the primary cellular receptor for alpha-toxin, which can be a potential target for drug developed against this pathogen.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
19
|
Oda M, Hashimoto M, Takahashi M, Ohmae Y, Seike S, Kato R, Fujita A, Tsuge H, Nagahama M, Ochi S, Sasahara T, Hayashi S, Hirai Y, Sakurai J. Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS One 2012; 7:e38054. [PMID: 22701599 PMCID: PMC3368938 DOI: 10.1371/journal.pone.0038054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/02/2012] [Indexed: 12/01/2022] Open
Abstract
Bacillus cereus (B. cereus) is a pathogen in opportunistic infections. Here we show that Bacillus cereus sphingomyelinase (Bc-SMase) is a virulence factor for septicemia. Clinical isolates produced large amounts of Bc-SMase, grew in vivo, and caused death among mice, but ATCC strains isolated from soil did not. A transformant of the ATCC strain carrying a recombinant plasmid containing the Bc-SMase gene grew in vivo, but that with the gene for E53A, which has little enzymatic activity, did not. Administration of an anti-Bc-SMase antibody and immunization against Bc-SMase prevented death caused by the clinical isolates, showing that Bc-SMase plays an important role in the diseases caused by B. cereus. Treatment of mouse macrophages with Bc-SMase resulted in a reduction in the generation of H2O2 and phagocytosis of macrophages induced by peptidoglycan (PGN), but no effect on the release of TNF-α and little release of LDH under our experimental conditions. Confocal laser microscopy showed that the treatment of mouse macrophages with Bc-SMase resulted in the formation of ceramide-rich domains. A photobleaching analysis suggested that the cells treated with Bc-SMase exhibited a reduction in membrane fluidity. The results suggest that Bc-SMase is essential for the hydrolysis of SM in membranes, leading to a reduction in phagocytosis.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Manabu Hashimoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Masaya Takahashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Yuka Ohmae
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Ryoko Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Aoi Fujita
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Hideaki Tsuge
- Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama Kita-ku, Kyoto, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Sadayuki Ochi
- School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Teppei Sasahara
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Shunji Hayashi
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Yoshikazu Hirai
- School of Medicine, Jichi Medical University, Shimono-city, Tochigi, Japan
| | - Jun Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail:
| |
Collapse
|
20
|
Chaves-Moreira D, Souza FN, Fogaça RTH, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 2011; 112:2529-40. [PMID: 21590705 DOI: 10.1002/jcb.23177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.
Collapse
|
21
|
Korzhenevskii DA, Kuptsov VN, Mityanina VA, Selishcheva AA, Saveliev SV, Kalashnikova TY. Identification of the individual molecular species of ceramides derived from human erythrocytes using HPLC/MS and HPLC/MS/MS. JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1134/s1061934811130053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Oda M. [Molecular mechanism of bacterial sphingomyelinase C]. Nihon Saikingaku Zasshi 2011; 66:159-67. [PMID: 21952350 DOI: 10.3412/jsb.66.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Tokushima Bunri University, Japan
| |
Collapse
|
23
|
Oda M, Saito Y, Morimune Y, Nagahama M, Sakurai J. Induction of neurite-outgrowth in PC12 cells by alpha-toxin from Clostridium perfringens. Biochem Biophys Res Commun 2011; 411:241-6. [PMID: 21740889 DOI: 10.1016/j.bbrc.2011.06.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 01/20/2023]
Abstract
Alpha-toxin-induced phosphorylation of PDK1 via the tyrosine kinase A (TrkA) receptor signaling pathway plays an important role in the activation of rabbit neutrophils. The relation between the toxin and TrkA, however, remains poorly understood. Here, we show that the toxin-induced phosphorylation of TrkA is closely related to the induction of neurite-outgrowth in PC12 cells. The toxin induced neurite-outgrowth and phosphorylation of TrkA in the cells in a dose-dependent manner. K252a, a TrkA inhibitor, and shRNA for TrkA inhibited the toxin-induced neurite-outgrowth, and phosphorylation of TrkA and ERK1/2. PD98059, an inhibitor of the ERK1/2 cascade, inhibited phosphorylation of ERK1/2 and the neurite-outgrowth induced by alpha-toxin. The wild-type toxin induced the formation of diacylglycerol, and neurite-outgrowth, but H148G, a variant toxin which binds to cell membranes and has lost the enzymatic activity did not. We demonstrated that the phosphorylation of TrkA through the phospholipid metabolism induced by the toxin synergistically play a key role in neurite-outgrowth.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Science, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | |
Collapse
|
24
|
Urbina P, Flores-Díaz M, Alape-Girón A, Alonso A, Goñi FM. Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:279-86. [PMID: 20727345 DOI: 10.1016/j.bbamem.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/30/2010] [Accepted: 08/11/2010] [Indexed: 01/15/2023]
Abstract
α-Toxin, a major determinant of Clostridium perfringens toxicity, exhibits both phospholipase C and sphingomyelinase activities. Our studies with large unilamellar vesicles containing a variety of lipid mixtures reveal that both lipase activities are enhanced by cholesterol and by lipids with an intrinsic negative curvature, e.g. phosphatidylethanolamine. Conversely lysophospholipids, that possess a positive intrinsic curvature, inhibit the α-toxin lipase activities. Phospholipids with a net negative charge do not exert any major effect on the lipase activities, and the same lack of effect is seen with the lysosomal lipid bis (monoacylglycero) phosphate. Ganglioside GT1b has a clear inhibitory effect, while the monosialic ganglioside GM3 is virtually ineffectual even when incorporated at 6mol % in the vesicles. The length of the lag periods appears to be inversely related to the maximum (post-lag) enzyme activities. Moreover, and particularly in the presence of cholesterol, lag times increase with pH. Both lipase activities are sensitive to vesicle size, but in opposite ways: while phospholipase C is higher with larger vesicles, sphingomyelinase activity is lower. The combination of our results with previous structural studies suggests that α-toxin lipase activities have distinct, but partially overlapping and interacting active sites.
Collapse
Affiliation(s)
- Patricia Urbina
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
25
|
Oda M, Takahashi M, Matsuno T, Uoo K, Nagahama M, Sakurai J. Hemolysis induced by Bacillus cereus sphingomyelinase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1073-80. [DOI: 10.1016/j.bbamem.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/07/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
|
26
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
27
|
The inhibition of lipopolysaccharide-induced tumor necrosis factor-α and nitric oxide production by Clostridium perfringens α-toxin and its relation to α-toxin-induced intracellular ceramide generation. Int J Med Microbiol 2009; 299:554-62. [DOI: 10.1016/j.ijmm.2009.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/04/2009] [Accepted: 04/19/2009] [Indexed: 11/18/2022] Open
|
28
|
Abstract
Clostridium botulinum C2 toxin is a binary toxin composed of an enzymatic component (C2I) and a binding component (C2II). The activated binding component (C2IIa) forms heptamers, and the oligomer with C2I is taken up by receptor-mediated endocytosis. We investigated the binding and internalization of C2IIa in cells. The C2IIa monomer formed oligomers on lipid rafts in membranes of MDCK cells. Methyl-beta-cyclodextrin inhibited the binding of C2IIa and the rounding of the cells induced by C2I plus C2IIa. C2I was localized to the rafts in the presence, but not the absence, of C2IIa. Surface plasmon resonance analysis revealed that C2I bound to the oligomer of C2IIa, but not the monomer of C2IIa. C2I and C2IIa were rapidly internalized in the cells. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited the internalization of C2IIa in the cells and the rounding activity in the presence of C2I plus C2IIa. Incubation of the cells with C2I plus C2IIa resulted in the activation of PI3K and in phosphorylation of phosphoinositide-dependent kinase 1 and protein kinase B/Akt (Akt), but that with C2IIa alone did not. Akt inhibitor X, an Akt phosphorylation inhibitor, inhibited the rounding activity but not the internalization of C2IIa. The results suggest that the binding of C2I to the oligomer of C2IIa on rafts triggers the activation of the PI3K-Akt signaling pathway and, in turn, the initiation of endocytosis.
Collapse
|
29
|
Chaves-Moreira D, Chaim OM, Sade YB, Paludo KS, Gremski LH, Donatti L, de Moura J, Mangili OC, Gremski W, da Silveira RB, Senff-Ribeiro A, Veiga SS. Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom. J Cell Biochem 2009; 107:655-66. [DOI: 10.1002/jcb.22148] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Phospholipase C and sphingomyelinase activities of the Clostridium perfringens α-toxin. Chem Phys Lipids 2009; 159:51-7. [DOI: 10.1016/j.chemphyslip.2009.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 11/21/2022]
|
31
|
Oda M, Kihara A, Yoshioka H, Saito Y, Watanabe N, Uoo K, Higashihara M, Nagahama M, Koide N, Yokochi T, Sakurai J. Effect of erythromycin on biological activities induced by clostridium perfringens alpha-toxin. J Pharmacol Exp Ther 2008; 327:934-40. [PMID: 18794379 DOI: 10.1124/jpet.108.143677] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clostridium perfringens alpha-toxin, an important agent of gas gangrene with inflammatory myopathies, possesses lethal, hemolytic, and necrotic activities. Here, we show that alpha-toxin-induced lethality in mice was inhibited by i.v. preadministration of erythromycin (ERM). Administration of ERM resulted in a drastic reduction in the release of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 and systemic hemolysis induced by alpha-toxin, whereas the administration of kitasamycin did not. Furthermore, the lethality and systemic hemolysis caused by alpha-toxin were blocked by the preinjection of anti-TNF-alpha, but not the anti-IL-1beta- or anti-IL-6-antibody. In addition, TNF-alpha-deficient mice were resistant to alpha-toxin, indicating that TNF-alpha plays an important role in the lethality. ERM inhibited the toxin-induced release of TNF-alpha from neutrophils and phosphorylation of toropomyosin-related kinase receptor A (TrkA) and extracellular-regulated kinase (ERK) 1/2. Furthermore, K252a, a TrkA inhibitor, and PD98059 (2'-amino-3'-methoxyflavone), an ERK1/2 inhibitor, inhibited the toxin-induced release of TNF-alpha from neutrophils. The observation shows that the toxin-induced release of TNF-alpha is dependent on the activation of ERK/mitogen-activated protein kinase signal transduction via TrkA in neutrophils and that ERM specifically blocks the toxin-induced events through the activation of neutrophils.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashirocho, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|