1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Hu L, Peng Z, Bai G, Fu H, Tan DJ, Wang J, Li W, Cao Z, Huang G, Liu F, Xie Y, Lin L, Sun J, Gao L, Chen Y, Zhu R, Mao J. Lipidomic profiles in serum and urine in children with steroid sensitive nephrotic syndrome. Clin Chim Acta 2024; 555:117804. [PMID: 38316288 DOI: 10.1016/j.cca.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Steroid-sensitive nephrotic syndrome (SSNS) accounts for approximately 80% of cases of nephrotic syndrome. The involvement of aberrant lipid metabolism in early SSNS is poorly understood, warranting further investigation. This study aimed to explore alterations in lipid metabolism associated with SSNS pathogenesis. METHODS A screening cohort containing serum (50 SSNS, 37 controls) and urine samples (27 SSNS, 26 controls) was analyzed by untargeted lipidomic profiling using UHPLC-QTOF-MS. Then, a validation cohort (20 SSNS, 56 controls) underwent further analysis to check the potential clinical application by ROC curve analysis. RESULTS Lipidomic profiling of serum and urine samples revealed significant lipid alterations in SSNS patients, with the alterations in the serum samples being more significant. An elevated concentration of PE and PG and downregulated concentration of FA were observed in SSNS serum. A total of 38 dysregulated lipids and 5 lipid metabolic pathways were identified in the serum samples in SSNS patients. Validation in the second cohort confirmed differential regulation of nine kinds of lipids, including 5 up-regulated substances [SM d33:2 (m/z = 686.5361), SHexCer d34:1 (m/z = 779.521), PI 20:4_22:4 (m/z = 934.5558), Cer_NS d18:1_23:0 (m/z = 635.6216), and GM3 d36:1 (m/z = 1180.7431)], as well as 4 down-regulated substances: [CE 18:1 (m/z = 650.601), PE 38:6 (m/z = 763.5205), PC 17:0_20:4 (m/z = 795.5868) and EtherPC 16:2e_20:4 (m/z = 763.5498)]. CONCLUSIONS Untargeted lipidomic analysis successfully identified specific lipid class changes in patients with SSNS, providing a deeper understanding of lipid alterations and underlying mechanisms associated with SSNS.
Collapse
Affiliation(s)
- Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China.
| | - Zhaoyang Peng
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Guannan Bai
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Danny Junyi Tan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Wei Li
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Guoping Huang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yixuan Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Ruihan Zhu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Choi H, Kim HD, Choi YW, Lim H, Kim KW, Kim KS, Lee YC, Kim CH. T7 phage display reveals NOLC1 as a GM3 binding partner in human breast cancer MCF-7 cells. Arch Biochem Biophys 2023; 750:109810. [PMID: 37939867 DOI: 10.1016/j.abb.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-β receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Yeon-Woo Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hakseong Lim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyung-Woon Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| |
Collapse
|
5
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Suzuki M, Nagane M, Kato K, Yamauchi A, Shimizu T, Yamashita H, Aihara N, Kamiie J, Kawashima N, Naito S, Yamashita T. Endothelial ganglioside GM3 regulates angiogenesis in solid tumors. Biochem Biophys Res Commun 2021; 569:10-16. [PMID: 34216992 DOI: 10.1016/j.bbrc.2021.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
Cancer cells require oxygen and nutrients for growth, making angiogenesis one of the essential components of tumor growth. Gangliosides, constituting membrane lipid rafts, regulate intracellular signal transduction and are involved in the malignancy of cancer cells. While endothelial cells, as well as cancer cells, express vast amounts of gangliosides, the precise function of endothelial gangliosides in angiogenesis remains unclear. In this study, we focused on gangliosides of vascular endothelial cells and analyzed their functions on tumor angiogenesis. In human breast cancer, GM3 synthase was highly expressed in vascular endothelial cells as well as immune cells. Angiogenesis increased in GM3S-KO mice. In BAEC, RNA interference of GM3S showed increased cellular invasion and oxidative stress tolerance through activation of ERK. In the breast cancer model, GM3-KO mice showed an increase in tumor growth and angiogenesis. These results suggest that the endothelial ganglioside GM3 regulates tumor angiogenesis by suppressing cellular invasion and oxidative stress tolerance in endothelial cells.
Collapse
Affiliation(s)
- Mira Suzuki
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazuhiro Kato
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Akinori Yamauchi
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takuto Shimizu
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shokichi Naito
- Department of Nephrology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
7
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
8
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
9
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Sarbu M, Ica R, Zamfir AD. Developments and applications of separation and microfluidics methods coupled to electrospray mass spectrometry in glycomics of nervous system gangliosides. Electrophoresis 2021; 42:429-449. [PMID: 33314304 DOI: 10.1002/elps.202000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
11
|
Zheng C, Terreni M, Sollogoub M, Zhang Y. Ganglioside GM3 and Its Role in Cancer. Curr Med Chem 2019; 26:2933-2947. [PMID: 29376491 DOI: 10.2174/0929867325666180129100619] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France.,Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
| |
Collapse
|
12
|
Oliveira R, Hermo L, Pshezhetsky AV, Morales CR. Presence of aberrant epididymal tubules revealing undifferentiated epithelial cells and absence of spermatozoa in a combined neuraminidase-3 and -4 deficient adult mouse model. PLoS One 2018; 13:e0206173. [PMID: 30359429 PMCID: PMC6201937 DOI: 10.1371/journal.pone.0206173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
Mammalian neuraminidases are responsible for the removal of sialic acids from glycoproteins and glycolipids and function in a variety of biological phenomena such as lysosomal catabolism and control of cell differentiation and growth. Disruption of Neu3 and Neu4 genes has led to the generation of a mouse model revealing severe neurological disorders. In this study a morphological analysis was performed on the epididymis of 3 month-old neu3-/-neu4-/- mice as compared with wild type animals. In neu3-/-neu4-/- mice the majority of tubules of the main epididymal duct were large and lined by differentiated epithelial cells, but revealing lysosomal abnormalities in principal and basally located cells. Of particular note was the presence of aberrant epididymal tubules (ATs) juxtaposed next to the main tubules. ATs were small and of different shapes. Layers of myoid cells encased ATs, which they shared with those of the main tubules, but no interstitial space existed between the two. While some ATs were a dense mass of cells, others revealed a distinct lumen devoid of spermatozoa. The latter revealed an undifferentiated epithelium consisting of cuboidal cells and basal cells, with junctional complexes evident at the luminal front. The absence of spermatozoa from the lumen of the ATs suggests that they were not in contact with the main duct, as also implied by the undifferentiated appearance of the epithelium suggesting lack of lumicrine factors. Despite the presence of ATs, the main duct contained ample spermatozoa, as the neu3-/-neu4-/- mice were fertile. Taken together the data suggest that absence of Neu3 and Neu4 leads to defects in cell adhesion and differentiation of epithelial cells resulting in aberrant tubular offshoots that fail to remain connected with the main duct. Hence Neu3 and Neu 4 play an essential role in the guidance of epithelial cells during early embryonic formation.
Collapse
Affiliation(s)
- Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Centre Hospitalière Universitaire Sainte-Justine, University of Montréal—Montreal, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
- * E-mail:
| |
Collapse
|
13
|
Smith NJ, Fuller M, Saville JT, Cox TM. Reduced cerebral vascularization in experimental neuronopathic Gaucher disease. J Pathol 2018; 244:120-128. [PMID: 28981147 DOI: 10.1002/path.4992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 09/12/2017] [Indexed: 11/10/2022]
Abstract
The glycosphingolipidosis, Gaucher disease, in which a range of neurological manifestations occur, results from a deficiency of acid β-glucocerebrosidase, with subsequent accumulation of β-glucocerebroside, its upstream substrates, and the non-acylated congener β-glucosylsphingosine. However, the mechanisms by which end-organ dysfunction arise are poorly understood. Here, we report strikingly diminished cerebral microvascular density in a murine model of disease, and provide a detailed analysis of the accompanying cerebral glycosphingolipidome in these animals, with marked elevations of β-glucosylsphingosine. Further in vitro studies confirmed a concentration-dependent impairment of endothelial cytokinesis upon exposure to quasi-pathological concentrations of β-glucosylsphingosine. These findings support a premise for pathogenic disruption of cerebral angiogenesis as an end-organ effect, with potential for therapeutic modulation in neuronopathic Gaucher disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas Jc Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Health Network, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Maria Fuller
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Li Y, Huang X, Wang C, Li Y, Luan M, Ma K. Ganglioside GM3 exerts opposite effects on motility via epidermal growth factor receptor and hepatocyte growth factor receptor-mediated migration signaling. Mol Med Rep 2014; 11:2959-66. [PMID: 25503644 DOI: 10.3892/mmr.2014.3087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
The ganglioside GM3 exerts its different effects via various growth factor receptors. The present study investigated and comparatively analyzed the opposing effects exerted by GM3 on the migration of mouse hepatocellular carcinoma Hepa1‑6 cells via epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR/cMet). The results demonstrated that GM3 inhibited EGF‑stimulated motility, but promoted HGF‑stimulated motility of the Hepa1‑6 cells via phosphatidylinositol 3‑kinase/Akt‑mediated migration signaling. It is well established that the main cytokines modulating cell proliferation, invasion and metastasis are different in different types of tumor. This difference may, at least in part, explain why GM3 exerted its actions in a tumor‑type specific manner.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiaohua Huang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Congcong Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yuzhong Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Mingchun Luan
- Department of Microbiology Laboratory, Dalian Center for Disease and Prevention, Dalian, Liaoning 116021, P.R. China
| | - Keli Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
15
|
Gantner M, Schwarzmann G, Sandhoff K, Kolter T. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification. J Lipid Res 2014; 55:2692-704. [PMID: 25341943 DOI: 10.1194/jlr.d054734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies.
Collapse
Affiliation(s)
- Martin Gantner
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Günter Schwarzmann
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Thomas Kolter
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
16
|
Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res 2014; 55:1797-809. [PMID: 24879804 DOI: 10.1194/jlr.d050302] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Indexed: 01/03/2023] Open
Abstract
Lipid extraction using a monophasic chloroform/methanol/water mixture, coupled with functional group selective derivatization and direct infusion nano-ESI-high-resolution/accurate MS, is shown to facilitate the simultaneous analysis of both highly polar and nonpolar lipids from a single retina lipid extract, including low abundance highly polar ganglioside lipids, nonpolar sphingolipids, and abundant glycerophospholipids. Quantitative comparison showed that the monophasic lipid extraction method yielded similar lipid distributions to those obtained from established "gold standard" biphasic lipid extraction methods known to enrich for either highly polar gangliosides or nonpolar lipids, respectively, with only modest relative ion suppression effects. This improved lipid extraction and analysis strategy therefore enables detailed lipidome analyses of lipid species across a broad range of polarities and abundances, from minimal amounts of biological samples and without need for multiple lipid class-specific extractions or chromatographic separation prior to analysis.
Collapse
Affiliation(s)
- Todd A Lydic
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Julia V Busik
- Physiology, Michigan State University, East Lansing, MI 48824
| | - Gavin E Reid
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824 Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
17
|
Cross AS, Hyun SW, Miranda-Ribera A, Feng C, Liu A, Nguyen C, Zhang L, Luzina IG, Atamas SP, Twaddell WS, Guang W, Lillehoj EP, Puché AC, Huang W, Wang LX, Passaniti A, Goldblum SE. NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia: NEU1 restrains endothelial cell migration, whereas NEU3 does not. J Biol Chem 2012; 287:15966-80. [PMID: 22403397 DOI: 10.1074/jbc.m112.346817] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.
Collapse
Affiliation(s)
- Alan S Cross
- Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le Bourhis X, Delannoy P. GD₃ synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 2010; 8:1526-35. [PMID: 20889649 DOI: 10.1158/1541-7786.mcr-10-0302] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The disialoganglioside G(D3) is overexpressed in ∼50% of invasive ductal breast carcinoma, and the G(D3) synthase gene (ST8SIA1) displays higher expression among estrogen receptor-negative breast cancer tumors, associated with a decreased overall survival of breast cancer patients. However, no relationship between ganglioside expression and breast cancer development and aggressiveness has been reported. We have previously shown that overexpression of G(D3) synthase induces the accumulation of b- and c-series gangliosides (G(D3), G(D2), and G(T3)) at the cell surface of MDA-MB-231 breast cancer cells together with the acquisition of a proliferative phenotype in the absence of serum. Here, we show that phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways are constitutively activated in G(D3) synthase-expressing cells. Analysis of phosphorylation of tyrosine kinase receptors shows a specific c-Met constitutive activation in G(D3) synthase-expressing cells, in the absence of its ligand, hepatocyte growth factor/scatter factor. In addition, inhibition of c-Met or downstream signaling pathways reverses the proliferative phenotype. We also show that G(D3) synthase expression enhances tumor growth in severe combined immunodeficient mice. Finally, a higher expression of ST8SIA1 and MET in the basal subtype of human breast tumors are observed. Altogether, our results show that G(D3) synthase expression is sufficient to enhance the tumorigenicity of MDA-MB-231 breast cancer cells through a ganglioside-dependent activation of the c-Met receptor.
Collapse
|
19
|
Ribeiro-Resende VT, Ribeiro-Guimarães ML, Lemes RMR, Nascimento IC, Alves L, Mendez-Otero R, Pessolani MCV, Lara FA. Involvement of 9-O-Acetyl GD3 ganglioside in Mycobacterium leprae infection of Schwann cells. J Biol Chem 2010; 285:34086-96. [PMID: 20739294 DOI: 10.1074/jbc.m110.147272] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium leprae (ML), the etiologic agent of leprosy, mainly affects the skin and peripheral nerves, leading to demyelization and loss of axonal conductance. Schwann cells (SCs) are the main cell population infected by ML in the nerves, and infection triggers changes in the SC phenotype from a myelinated to a nonmyelinated state. In the present study, we show that expression of 9-O-acetyl GD3, a ganglioside involved in cellular anti-apoptotic signaling and nerve regeneration, increases in SCs following infection with ML. Observation by confocal microscopy together with coimmunoprecipitation suggested that this ganglioside participates in ML attachment and internalization by SC. Immunoblockage of 9-O-acetyl GD3 in vitro significantly reduced adhesion of ML to SC surfaces. Finally, we show that activation of the MAPK (ERK 1/2) pathway and SC proliferation, two known effects of ML on SCs that result in demyelization, are significantly reduced when the 9-O-acetyl GD3 ganglioside is immunoblocked. Taken together, these data suggest the involvement of 9-O-acetyl GD3 in ML infection on SCs.
Collapse
Affiliation(s)
- Victor Túlio Ribeiro-Resende
- Laboratório de Microbiologia Celular, Pavilhão de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21045-900 Rio de Janeiro, Brazil and
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cao T, Zhang T, Wang L, Zhang L, Adachi T, Sato T, Yamagata S, Yamagata T. Ganglioside GD1a Suppression of NOS2 Expression Via ERK1 Pathway in Mouse Osteosarcoma FBJ Cells. J Cell Biochem 2010; 110:1165-74. [DOI: 10.1002/jcb.22631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
22
|
Gracheva EV, Samovilova NN, Golovanova NK, Kashirina SV, Shevelev A, Rybalkin I, Gurskaya T, Vlasik TN, Andreeva ER, Prokazova NV. Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol Cell Biochem 2009; 330:121-9. [DOI: 10.1007/s11010-009-0125-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 04/16/2009] [Indexed: 11/30/2022]
|
23
|
Polyanionic drugs and viral oncogenesis: a novel approach to control infection, tumor-associated inflammation and angiogenesis. Molecules 2008; 13:2758-85. [PMID: 19002078 PMCID: PMC6245429 DOI: 10.3390/molecules13112758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 01/01/2023] Open
Abstract
Polyanionic macromolecules are extremely abundant both in the extracellular environment and inside the cell, where they are readily accessible to many proteins for interactions that play a variety of biological roles. Among polyanions, heparin, heparan sulfate proteoglycans (HSPGs) and glycosphingolipids (GSLs) are widely distributed in biological fluids, at the cell membrane and inside the cell, where they are implicated in several physiological and/or pathological processes such as infectious diseases, angiogenesis and tumor growth. At a molecular level, these processes are mainly mediated by microbial proteins, cytokines and receptors that exert their functions by binding to HSPGs and/or GSLs, suggesting the possibility to use polyanionic antagonists as efficient drugs for the treatment of infectious diseases and cancer. Polysulfated (PS) or polysulfonated (PSN) compounds are a heterogeneous group of natural, semi-synthetic or synthetic molecules whose prototypes are heparin and suramin. Different structural features confer to PS/PSN compounds the capacity to bind and inhibit the biological activities of those same heparin-binding proteins implicated in infectious diseases and cancer. In this review we will discuss the state of the art and the possible future development of polyanionic drugs in the treatment of infectious diseases and cancer.
Collapse
|