1
|
Antonopoulou S. Platelet-Activating Factor-Induced Inflammation in Obesity: A Two-Sided Coin of Protection and Risk. Cells 2025; 14:471. [PMID: 40214425 PMCID: PMC11987740 DOI: 10.3390/cells14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity, marked by excessive fat accumulation, especially abdominal, is a global health concern with significant public impact. While obesity-associated chronic unresolved inflammation contributes to metabolic dysfunctions, acute inflammation supports healthy adipose tissue remodeling and expansion. Platelet-activating factor (PAF), a "primitive" signaling molecule, is among the key mediators involved in the acute phase of inflammation and in various pathophysiological processes. This article explores the role of PAF in fat accumulation and obesity by reviewing experimental data from cell cultures, animals, and humans. It proposes an emerging biochemical mechanism in an attempt to explain its dual role in the healthy and obese adipose tissue, including also data on PAF's potential involvement in epigenetic mechanisms that may be linked to the "obesity memory". Finally, it highlights the potential of natural PAF modulators in promoting functional adipose tissue, thermogenesis, and obesity prevention through a healthy lifestyle, including a Mediterranean diet rich in PAF weak agonists/PAF receptor antagonists and regular exercise, which help maintain controlled PAF levels. Conversely, in cases of obesity-related systemic inflammation with excessive PAF levels, potent PAF inhibitors like ginkgolide B and rupatadine may help mitigate metabolic dysfunctions with PAFR antagonists potentially enhancing their effects synergistically.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
2
|
Simon TW, Ginsburg B, Javors MA, Hill-Kapturczak N, Lopez-Crusan M, Stark H, Dougherty DM, Roache JD. Calibration and evaluation of a refined pharmacokinetic model for three homologs of phosphatidylethanol. Chem Biol Interact 2025; 408:111414. [PMID: 39914503 DOI: 10.1016/j.cbi.2025.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
The use of phosphatidylethanol (PEth) as a biomarker for alcohol consumption is increasing likely due to its relatively long half-life in blood. Here, we present a pharmacokinetic model for three common homologs of PEth based on concentrations of each observed in a 5-day study of daily alcohol consumption. Adult participants were 11 females and 6 males with a median age of 32 years and median BMI of 24.3, all of whom drank on 1 or more days per week with at least 1 day per month of "heavy" drinking and also free from psychiatric disorders. All participants were abstinent for one week prior to beginning the study. The overall goals of this modeling effort are the use of PEth for assessment of alcohol consumption behavior and better understanding of the biological mechanisms underlying PEth pharmacokinetics. The modeling presented encompasses both the calibration of the pharmacokinetic model from daily individual PEth measurements and the prediction of model parameters in the study population with a regression model. The overall model was then evaluated by comparison of predicted PEth levels in blood with those measured in several groups of subjects in controlled drinking experiments. The results of this modeling effort indicate that the model can predict PEth concentrations in blood from alcohol consumption albeit with high variability both between individuals and within a single individual between drinking occasions. These results suggest the possible need to refine currently used cutoffs used in clinical and forensic contexts to predict alcohol consumption amounts. (249 words).
Collapse
Affiliation(s)
| | - Brett Ginsburg
- University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | - Haidyn Stark
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - John D Roache
- University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
3
|
He Y, Ye M, Shen Z, Zhong Z, Xia Y, Li Q. Correlation between lipoprotein-associated phospholipase A2 and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus: A cross-sectional study. J Diabetes Complications 2025; 39:108950. [PMID: 39817931 DOI: 10.1016/j.jdiacomp.2025.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme implicated in inflammation and oxidative stress, and has been associated with cardiovascular conditions and adverse outcomes, particularly in diabetes and its complications. However, no prior studies have examined the relationship between Lp-PLA2 and diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). This research aims to explore the potential association between Lp-PLA2 and DPN. METHODS This retrospective study included 880 hospitalized patients with T2DM treated between March 2024 and August 2024 at Nanjing First Hospital. To assess the relationship between Lp-PLA2 and DPN, multiple logistic regression models were applied. The study also utilized restricted cubic spline (RCS) modeling, segmented regression, stratified analysis, and receiver operating characteristic (ROC) curve assessments. RESULTS Patients diagnosed with DPN exhibited elevated Lp-PLA2 levels compared to those without DPN. Even after adjusting for multiple variables, Lp-PLA2 was independently associated with a higher likelihood of DPN (odds ratio [OR] 1.011, 95 % confidence interval [CI] 1.008-1.014, P < 0.001). The RCS analysis revealed a nonlinear association, with an inflection point at 215.8 ng/mL. In ROC curve analysis, the area under the curve (AUC) for Lp-PLA2 was 0.664, while the combined indicator AUC was 0.739. CONCLUSIONS Serum Lp-PLA2 levels show a significant correlation with the presence of DPN in patients with T2DM. These findings suggest that Lp-PLA2 could serve as a valuable biomarker for identifying patients at risk for DPN, emphasizing the need for close monitoring of T2DM individuals with elevated Lp-PLA2 to mitigate the risk of developing DPN and associated adverse health outcomes.
Collapse
Affiliation(s)
- Yijia He
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Miaomin Ye
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Zhong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Sahebkar A, Reiner Ž, Almahmeed W, Jamialahmadi T, Simental-Mendía LE. Effect of Statin Treatment on Lipoprotein-Associated Phospholipase A2 Mass and Activity: A Systematic Review and Meta-analysis of Randomized Placebo-Controlled Trials. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07634-5. [PMID: 39466484 DOI: 10.1007/s10557-024-07634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE The goal of this meta-analysis was to establish whether statin treatment reduces Lp-PLA2 mass concentration and/or activity. METHODS PubMed, Scopus, Web of Science, ClinicalTrials.gov, and Google Scholar databases were searched using MESH terms and keywords. Randomized controlled trials (RCT) with either parallel or cross-over design examining the effect of statins on Lp-PLA2 mass and/or activity were included in meta-analysis. RESULTS Out of 256 articles, 10 RCT were selected for meta-analysis. Statin therapy significantly reduced both Lp-PLA2 mass (WMD -44.46 ng/mL; 95%CI -59.01, -29.90; p < 0.001; I2 = 93%) and activity (WMD -39.37 nmol/min/mL; 95%CI -69.99, -8.75; p = 0.01; I2 = 100%). The sensitivity analysis was robust for Lp-PLA2 mass and was also positive for two studies concerning Lp-PLA2 activity. CONCLUSION Statin therapy significantly reduced both Lp-PLA2 mass and activity.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, 93-338, Poland
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, Mexico.
| |
Collapse
|
5
|
Chen M, Suwannaphoom K, Sanaiha Y, Luo Y, Benharash P, Fishbein MC, Sevag Packard RR. Electrochemical impedance spectroscopy unmasks high-risk atherosclerotic features in human coronary artery disease. FASEB J 2024; 38:e70069. [PMID: 39315853 PMCID: PMC11728480 DOI: 10.1096/fj.202401200r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 μm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 μm versus >65 μm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 μm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yas Sanaiha
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Peyman Benharash
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
7
|
Jaff S, Gubari M, Shab-Bidar S, Djafarian K. Effect of probiotic supplementation on lipoprotein-associated phospholipase A2 in type 2 diabetic patients: a randomized double blind clinical controlled trial. Nutr Metab (Lond) 2024; 21:3. [PMID: 38167029 PMCID: PMC10763277 DOI: 10.1186/s12986-023-00778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND It has been recently reported that lipoprotein-associated phospholipase A2 (Lp-PLA2) may predict the risk of cardiovascular disease. The effect of multi-strain probiotics on Lp-PLA2 in patients with type 2 diabetes is still not clear. AIMS This study aimed to determine the effect of multi-strain probiotic supplementation on lipoprotein-associated phospholipase A2, and glycemic status, lipid profile, and body composition in patients with type 2 diabetes. METHODS In this randomized double-blind placebo-controlled clinical trial, 68 participants with type 2 diabetes, in the age group of 50-65 years, were recruited and randomly allocated to take either probiotic (n = 34) or placebo (n = 34) for 12 weeks. The primary outcome was lipoprotein-associated phospholipase A2, and secondary outcomes were glycemic parameters, lipid profile, anthropometric characters, and body composition (fat mass and fat-free mass). RESULTS There was a significant reduction in serum lipoprotein-associated phospholipase A2, in the probiotic group, it dropped by 6.4 units at the end of the study (p < 0.001) compared to the placebo group. Probiotic supplementation also resulted in a significant improvement in the hemoglobin A1c and high-density lipoprotein cholesterol 1.5% (p < 0.001) and 6 mg/dl (p 0.005), respectively. There were no significant changes in other outcomes. CONCLUSION Probiotic supplementation was beneficial for reducing Lp-PLA2 and hemoglobin-A1c and improving high-density lipoprotein cholesterol, which may suggest an improvement in the prognosis in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Salman Jaff
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes and Endocrine Center, Sulaymaniyah, Iraq
| | - Mohammed Gubari
- Department of community and family Medicine, School of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Detopoulou P, Fragopoulou E, Nomikos T, Antonopoulou S. Associations of phase angle with platelet-activating factor metabolism and related dietary factors in healthy volunteers. Front Nutr 2023; 10:1237086. [PMID: 38024339 PMCID: PMC10655008 DOI: 10.3389/fnut.2023.1237086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phase angle (PA) is derived from bioelectrical impedance analysis (BIA). It reflects cell membrane function and decreases in disease. It is affected by inflammation, oxidative stress, and diet. Platelet-activating factor (PAF) is a potent inflammatory lipid mediator. Its levels, along with the activity of its metabolic enzymes, including CDP-choline:1-alkyl-2-acetyl-sn-glycerol-cholinephosphotransferase, acetyl-CoA:lyso-PAF-acetyltransferases, and PAF-AH/Lp-PLA2 are also related to dietary factors, such as the dietary antioxidant capacity (DAC). The aim of the study was to estimate whether the PAF metabolic circuit and related dietary factors are associated with PA in healthy volunteers. Methods In healthy subjects, PAF, its metabolic enzyme activity, and erythrocyte fatty acids were measured, while desaturases were estimated. Food-frequency questionnaires and recalls were used, and food groups, macronutrient intake, MedDietScore, and DAC were assessed. Lifestyle and biochemical variables were collected. DXA and BIA measurements were performed. Results Lp-PLA2 activity was positively associated with PA (rho = 0.651, p < 0.001, total population; rho = 0.780, p < 0.001, women), while PAF levels were negatively associated with PA only in men (partial rho = -0.627, p = 0.012) and inversely related to DAC. Estimated desaturase 6 was inversely associated with PA (rho = -0.404, p = 0.01, total sample). Moreover, the DAC correlated positively with PA (rho = 0.513, p = 0.03, women). All correlations were adjusted for age, body mass index, and sex (if applicable). Conclusion PA is associated with PAF levels and Lp-PLA2 activity in a gender-dependent fashion, indicating the involvement of PAF in cell membrane impairment. The relationship of PA with DAC suggests a protective effect of antioxidants on cellular health, considering that antioxidants may inhibit PAF generation.
Collapse
Affiliation(s)
| | | | | | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education. Harokopio University, Athens, Greece
| |
Collapse
|
9
|
Truong CD, Ton TT. The relation between coronary artery disease and newly diagnosed dysglycemia. Perfusion 2023; 38:1428-1435. [PMID: 35817752 DOI: 10.1177/02676591221113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is a known association between hyperglycemia and the presence of coronary syndrome. The purpose of this work is to study risk factors and clinical manifestations of hyperglycemia in patients diagnosed with coronary artery disease. METHODS The study was conducted in 2018-2020 among 505 patients in Ho Chi Minh city, Vietnam. Based on the results of the glucose test at 0 and 120 min, the patients were divided into the groups: with normal glucose metabolism (control, 204), patients with impaired fasting glucose levels (175 patients, group 2), and patients with impaired glucose tolerance, including diabetes mellitus (126, group 3). Anthropometric measurements were performed, and the levels of hemoglobin HbA, glucose, lipids were measured. RESULTS In the group of patients with fasting hyperinsulinemia, all variables (body weight, body mass index, waist circumference, LAP, creatinine clearance) differed considerably as compared to the control group (p ≤ 0.0001). Decrease in tissue sensitivity to insulin is already present at normal levels of glucose metabolism. CONCLUSIONS The study found that diabetes mellitus and prediabetes are more typical for patients with metabolic syndrome and acute coronary syndrome. The results obtained will allow predicting the risk of developing coronary syndrome depending on the presence of diabetes mellitus or prediabetes.
Collapse
Affiliation(s)
- Cam Dinh Truong
- Cardiovascular Department, Military Hospital 175, Ho Chi Minh, Vietnam
| | - Tung Thanh Ton
- Emergency Department, Military Hospital 175, Ho Chi Minh, Vietnam
| |
Collapse
|
10
|
Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, Kim D, Kim MW, Park JS, Song KH, Oh KJ, Kim WK, Bae KH, Huh YM, Kim SH, Kim D, Han BS, Lee SC, Hwang GS, Lee EW. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun 2023; 14:5728. [PMID: 37714840 PMCID: PMC10504358 DOI: 10.1038/s41467-023-41462-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Jiwoo Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 305-764, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunji Jang
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
| | - Hye Young Son
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Dain Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | | | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, 42472, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Yong-Min Huh
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics Inc., Seoul, 06123, Korea
| | - Doyoun Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
11
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
12
|
Wancewicz B, Zhu Y, Fenske RJ, Weeks AM, Wenger K, Pabich S, Daniels M, Punt M, Nall R, Peter DC, Brasier A, Cox ED, Davis DB, Ge Y, Kimple ME. Metformin Monotherapy Alters the Human Plasma Lipidome Independent of Clinical Markers of Glycemic Control and Cardiovascular Disease Risk in a Type 2 Diabetes Clinical Cohort. J Pharmacol Exp Ther 2023; 386:169-180. [PMID: 36918276 PMCID: PMC10353072 DOI: 10.1124/jpet.122.001493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023] Open
Abstract
Type 2 diabetes (T2D) is a rising pandemic worldwide. Diet and lifestyle changes are typically the first intervention for T2D. When this intervention fails, the biguanide metformin is the most common pharmaceutical therapy. Yet its full mechanisms of action remain unknown. In this work, we applied an ultrahigh resolution, mass spectrometry-based platform for untargeted plasma metabolomics to human plasma samples from a case-control observational study of nondiabetic and well-controlled T2D subjects, the latter treated conservatively with metformin or diet and lifestyle changes only. No statistically significant differences existed in baseline demographic parameters, glucose control, or clinical markers of cardiovascular disease risk between the two T2D groups, which we hypothesized would allow the identification of circulating metabolites independently associated with treatment modality. Over 3000 blank-reduced metabolic features were detected, with the majority of annotated features being lipids or lipid-like molecules. Altered abundance of multiple fatty acids and phospholipids were found in T2D subjects treated with diet and lifestyle changes as compared with nondiabetic subjects, changes that were often reversed by metformin. Our findings provide direct evidence that metformin monotherapy alters the human plasma lipidome independent of T2D disease control and support a potential cardioprotective effect of metformin worthy of future study. SIGNIFICANCE STATEMENT: This work provides important new information on the systemic effects of metformin in type 2 diabetic subjects. We observed significant changes in the plasma lipidome with metformin therapy, with metabolite classes previously associated with cardiovascular disease risk significantly reduced as compared to diet and lifestyle changes. While cardiovascular disease risk was not a primary outcome of our study, our results provide a jumping-off point for future work into the cardioprotective effects of metformin, even in well-controlled type 2 diabetes.
Collapse
Affiliation(s)
- Benjamin Wancewicz
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Yanlong Zhu
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Rachel J Fenske
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Alicia M Weeks
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Kent Wenger
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Samantha Pabich
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Michael Daniels
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Margaret Punt
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Randall Nall
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Darby C Peter
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Allan Brasier
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Elizabeth D Cox
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Dawn Belt Davis
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Ying Ge
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Michelle E Kimple
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| |
Collapse
|
13
|
Tufaro V, Serruys PW, Räber L, Bennett MR, Torii R, Gu SZ, Onuma Y, Mathur A, Baumbach A, Bourantas CV. Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 2023; 119:121-135. [PMID: 35394014 DOI: 10.1093/cvr/cvac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intravascular imaging has been often used over the recent years to examine the efficacy of emerging therapies targeting plaque evolution. Serial intravascular ultrasound, optical coherence tomography, or near-infrared spectroscopy-intravascular ultrasound studies have allowed us to evaluate the effects of different therapies on plaque burden and morphology, providing unique mechanistic insights about the mode of action of these treatments. Plaque burden reduction, a decrease in necrotic core component or macrophage accumulation-which has been associated with inflammation-and an increase in fibrous cap thickness over fibroatheromas have been used as surrogate endpoints to assess the value of several drugs in inhibiting plaque evolution and improving clinical outcomes. However, some reports have demonstrated weak associations between the effects of novel treatments on coronary atheroma and composition and their prognostic implications. This review examines the value of invasive imaging in assessing pharmacotherapies targeting atherosclerosis. It summarizes the findings of serial intravascular imaging studies assessing the effects of different drugs on atheroma burden and morphology and compares them with the results of large-scale trials evaluating their impact on clinical outcome. Furthermore, it highlights the limited efficacy of established intravascular imaging surrogate endpoints in predicting the prognostic value of these pharmacotherapies and introduces alternative imaging endpoints based on multimodality/hybrid intravascular imaging that may enable more accurate assessment of the athero-protective and prognostic effects of emerging therapies.
Collapse
Affiliation(s)
- Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Sophie Zhaotao Gu
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Yale University School of Medicine, New Haven, CT, USA
| | - Christos Vasileios Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
14
|
Zuliani G, Marsillach J, Trentini A, Rosta V, Cervellati C. Lipoprotein-Associated Phospholipase A2 Activity as Potential Biomarker of Vascular Dementia. Antioxidants (Basel) 2023; 12:597. [PMID: 36978845 PMCID: PMC10045550 DOI: 10.3390/antiox12030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wealth of evidence suggests that Lipoprotein-associated phospholipase A2 (Lp-PLA2) plays a relevant role in atherogenesis and inflammation, which in turn are associated with the risk of developing dementia. The aim of this study was to evaluate whether serum Lp-PLA2 activity might be an early and/or late biomarker for different forms of dementia. Serum Lp-PLA2 activity was assessed in older patients with mild cognitive impairment (MCI, n = 166; median clinical follow-up = 29 months), Late-Onset Alzheimer's disease (LOAD, n = 176), vascular dementia (VAD, n = 43), dementia characterized by an overlap between LOAD and VAD (AD-VAD MIXED dementia) (n = 136), other dementia subtypes (n = 45), and cognitively normal controls (n = 151). We found a significant trend towards higher levels of Lp-PLA2 activity in VAD compared with the other groups (ANOVA, p = 0.028). Similarly, Lp-PLA2 activity was greater in MCI converting to VAD compared with those that did not or did convert to the other types of dementia (ANOVA, p = 0.011). After adjusting for potential confounders, high levels of Lp-PLA2 activity were associated with the diagnosis of VAD (O.R. = 2.38, 95% C.I. = 1.06-5.10), but not with other types of dementia. Our data suggest that increased serum Lp-PLA2 activity may represent a potential biomarker for the diagnosis of VAD.
Collapse
Affiliation(s)
- Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 NE Roosevelt Way, Seattle, WA 98105, USA
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
16
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
17
|
High-Density Lipoprotein Suppresses Neutrophil Extracellular Traps Enhanced by Oxidized Low-Density Lipoprotein or Oxidized Phospholipids. Int J Mol Sci 2022; 23:ijms232213992. [PMID: 36430470 PMCID: PMC9698465 DOI: 10.3390/ijms232213992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are found in patients with various diseases, including cardiovascular diseases. We previously reported that copper-oxidized low-density lipoprotein (oxLDL) promotes NET formation of neutrophils, and that the resulting NETs increase the inflammatory responses of endothelial cells. In this study, we investigated the effects of high-density lipoproteins (HDL) on NET formation. HL-60-derived neutrophils were treated with phorbol 12-myristate 13-acetate (PMA) and further incubated with oxLDL and various concentrations of HDL for 2 h. NET formation was evaluated by quantifying extracellular DNA and myeloperoxidase. We found that the addition of native HDL partially decreased NET formation of neutrophils induced by oxLDL. This effect of HDL was lost when HDL was oxidized. We showed that oxidized phosphatidylcholines and lysophosphatidylcholine, which are generated in oxLDL, promoted NET formation of PMA-primed neutrophils, and NET formation by these products was completely blocked by native HDL. Furthermore, we found that an electronegative subfraction of LDL, LDL(-), which is separated from human plasma and is thought to be an in vivo oxLDL, was capable of promoting NET formation. These results suggest that plasma lipoproteins and their oxidative modifications play multiple roles in promoting NET formation, and that HDL acts as a suppressor of this response.
Collapse
|
18
|
Advances in nonclassical phenyl bioisosteres for drug structural optimization. Future Med Chem 2022; 14:1681-1692. [PMID: 36317661 DOI: 10.4155/fmc-2022-0188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl group is the most prevalent ring system and plays an essential role as a pharmacophore or scaffold in marketed drugs. However, the indiscriminate employment of phenyl is also a major cause of poor physicochemical properties of active molecules. Nonclassical phenyl bioisosteres (NPBs) have emerged as effective replacements for phenyl in structural optimization due to their unique steric structures and physicochemical properties. Herein, the effects of widely reported NPBs on physicochemical properties and biological activities, including bicyclo[1.1.1]pentane (BCP), bicyclo[2.1.1]hexanes (BCH), bicyclo[2.2.2]octane (BCO), cubane (CUB) and closo-carboborane, are reviewed. Issues that require consideration while using NPBs and practical solutions to problems frequently encountered in structural optimization using NPBs are also discussed.
Collapse
|
19
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
21
|
Mancebo C, Fernández JJ, Herrero-Sánchez C, Alvarez Y, Alonso S, Sandoval TA, Cubillos-Ruiz JR, Montero O, Fernández N, Crespo MS. Fungal Patterns Induce Cytokine Expression through Fluxes of Metabolic Intermediates That Support Glycolysis and Oxidative Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2779-2794. [PMID: 35688467 DOI: 10.4049/jimmunol.2100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
Cytokine expression is fine-tuned by metabolic intermediates, which makes research on immunometabolism suitable to yield drugs with a wider prospect of application than the biological therapies that block proinflammatory cytokines. Switch from oxidative phosphorylation (OXPHOS) to glycolysis has been considered a characteristic feature of activated immune cells. However, some stimuli might enhance both routes concomitantly. The connection between the tricarboxylic acid cycle and cytokine expression was scrutinized in human monocyte-derived dendritic cells stimulated with the fungal surrogate zymosan. Results showed that nucleocytosolic citrate and ATP-citrate lyase activity drove IL1B, IL10, and IL23A expression by yielding acetyl-CoA and oxaloacetate, with the latter one supporting glycolysis and OXPHOS by maintaining cytosolic NAD+ and mitochondrial NADH levels through mitochondrial shuttles. Succinate dehydrogenase showed a subunit-specific ability to modulate IL23A and IL10 expression. Succinate dehydrogenase A subunit activity supported cytokine expression through the control of the 2-oxoglutarate/succinate ratio, whereas C and D subunits underpinned cytokine expression by conveying electron flux from complex II to complex III of the electron transport chain. Fatty acids may also fuel the tricarboxylic acid cycle and influence cytokine expression. Overall, these results show that fungal patterns support cytokine expression through a strong boost of glycolysis and OXPHOS supported by the use of pyruvate, citrate, and succinate, along with the compartmentalized NAD(H) redox state maintained by mitochondrial shuttles.
Collapse
Affiliation(s)
- Cristina Mancebo
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - José Javier Fernández
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Carmen Herrero-Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Alvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY; and
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY; and
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain;
| |
Collapse
|
22
|
Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators Inflamm 2022; 2022:5824657. [PMID: 35418806 PMCID: PMC9001093 DOI: 10.1155/2022/5824657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
Background Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are mainly characterized by progressive motor, sensory, or cognitive dysfunction in patients. Such diseases mostly occur in middle-aged and elderly people, and there is no effective cure. Studies have shown that neurodegenerative diseases are accompanied by neuroinflammation. The proinflammatory mediators produced neuroinflammation further damage neurons and aggravate the process of neurodegenerative diseases. Therefore, inhibiting neuroinflammation might be an effective way to alleviate neurodegenerative diseases. Pomiferin extracted from the fruit of the orange mulberry has a wide range of antioxidation and anti-inflammatory effects in peripheral tissues. However, it is not clear whether it plays a role on neuroinflammation. Methods In our experiment, we studied the effect of Pomiferin on BV2 cell inflammation and its mechanism with cck-8, LDH, quantitative PCR, and ELISA and methods. We then investigated the effect of Pomiferin on the classical inflammatory pathway by Western blot methods. Results The results showed that Pomiferin inhibited the production of ROS, NO, and proinflammatory mediators (IL-6, TNF-α, iNOS, and COX2) in BV2 cells. Further mechanism studies showed that Pomiferin activated the Akt/Nrf2 pathway and inhibited the NF-κB pathway. Conclusion Our study demonstrated that Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
|
23
|
Laget J, Vigor C, Nouvel A, Rocher A, Leroy J, Jeanson L, Reversat G, Oger C, Galano JM, Durand T, Péraldi-Roux S, Azay-Milhau J, Lajoix AD. Reduced production of isoprostanes by peri-pancreatic adipose tissue from Zucker fa/fa rats as a new mechanism for β-cell compensation in insulin resistance and obesity. Free Radic Biol Med 2022; 182:160-170. [PMID: 35227851 DOI: 10.1016/j.freeradbiomed.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
During early stages of type 2 diabetes, named prediabetes, pancreatic β-cells compensate for insulin resistance through increased insulin secretion in order to maintain normoglycemia. Obesity leads to the development of ectopic fat deposits, among which peri-pancreatic white adipose tissue (pWAT) can communicate with β-cells through soluble mediators. Thus we investigated whether pWAT produced oxygenated lipids, namely isoprostanes and neuroprostanes and whether they can influence β-cell function in obesity. In the Zucker fa/fa rat model, pWAT and epididymal white adipose tissue (eWAT) displayed different inflammatory profiles. In obese rats, pWAT, but not eWAT, released less amounts of 5-F2t-isoprostanes, 15-F2t-isoprostanes, 4-F4t-neuroprostanes and 10-F4t-neuroprostane compared to lean animals. These differences could be explained by a greater induction of antioxidant defenses enzymes such as SOD-1, SOD-2, and catalase in pWAT of obese animals compared to eWAT. In addition, sPLA2 IIA, involved in the release of isoprostanoids from cellular membranes, was decreased in pWAT of obese animals, but not in eWAT, and may also account for the reduced release of oxidized lipids by this tissue. At a functional level, 15-F2t-isoprostane epimers, but not 5-F2t-isoprostanes, were able to decrease glucose-induced insulin secretion in pancreatic islets from Wistar rats. This effect appeared to be mediated through activation of the thromboxane A2 receptor and reduction of cAMP signaling in pancreatic islets. In conclusion, through the removal of an inhibitory tone exerted by isoprostanes, we have shown, for the first time, a new mechanism allowing β-cells to compensate for insulin resistance in obesity that is linked to a biocommunication between adipose tissue and β-cells.
Collapse
Affiliation(s)
- Jonas Laget
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; RD-Néphrologie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Agathe Nouvel
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jérémy Leroy
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Laura Jeanson
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | - Sylvie Péraldi-Roux
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, France; Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, CNRS, ENSCM, France
| | | | | |
Collapse
|
24
|
Simultaneous Noninvasive Detection and Therapy of Atherosclerosis Using HDL Coated Gold Nanorods. Diagnostics (Basel) 2022; 12:diagnostics12030577. [PMID: 35328130 PMCID: PMC8947645 DOI: 10.3390/diagnostics12030577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of death and disability worldwide. A real need exists in the development of new, improved therapeutic methods for treating CVD, while major advances in nanotechnology have opened new avenues in this field. In this paper, we report the use of gold nanoparticles (GNPs) coated with high-density lipoprotein (HDL) (GNP-HDL) for the simultaneous detection and therapy of unstable plaques. Based on the well-known HDL cardiovascular protection, by promoting the reverse cholesterol transport (RCT), injured rat carotids, as a model for unstable plaques, were injected with the GNP-HDL. Noninvasive detection of the plaques 24 h post the GNP injection was enabled using the diffusion reflection (DR) method, indicating that the GNP-HDL particles had accumulated in the injured site. Pathology and noninvasive CT measurements proved the recovery of the injured artery treated with the GNP-HDL. The DR of the GNP-HDL presented a simple and highly sensitive method at a low cost, resulting in simultaneous specific unstable plaque diagnosis and recovery.
Collapse
|
25
|
Schmitt J, Wurm M, Schwab KO, Spiekerkoetter U, Hannibal L, Grünert SC. Glycogen storage disease type I patients with hyperlipidemia have no signs of early vascular dysfunction and premature atherosclerosis. Nutr Metab Cardiovasc Dis 2021; 31:3384-3392. [PMID: 34627694 DOI: 10.1016/j.numecd.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Glycogen storage disease type I (GSD I) is associated with hyperlipidemia, a known risk factor for premature atherosclerosis. Few studies have addressed endothelial dysfunction in patients with GSD I, and these studies yielded controversial results. METHODS AND RESULTS We investigated vascular dysfunction in a cohort of 32 patients with GSD I (26 GSD Ia, 6 GSD Ib, mean age 20.7 (4.8-47.5) years) compared to 32 age-, gender-, and BMI-matched healthy controls using non-invasive techniques such as quantification of carotid intima media thickness, retinal vessel analysis and 24 h-blood pressure measurements. In addition, early biomarkers of inflammatory and oxidative endothelial stress were assessed in blood. Although GSD I patients had a clearly proatherogenic lipid profile, increased oxidative stress, higher levels of high sensitivity C-reactive protein and increased lipoprotein associated phospholipase A2 activity, functional and structural parameters including carotid intima media thickness and retinal vessel diameters did not indicate premature atherosclerosis in this patient cohort. Blood pressure values and pulse wave velocity were comparable in patients and healthy controls, while central blood pressure and augmentation index were higher in GSD patients. CONCLUSION Our data suggest that GSD I is not associated with early vascular dysfunction up to the age of at least 20 years. Further studies are needed to elucidate the possibly protective mechanisms that prevent early atherosclerosis is GSD I. Longer follow-up studies are required to assess the long-term risk of vascular disease with increased oxidative stress being present in GSD I patients.
Collapse
Affiliation(s)
- Johannes Schmitt
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Michael Wurm
- Department of Pediatrics, St. Hedwigs Campus, University Children's Hospital Regensburg, 93049 Regensburg, Germany
| | - K Otfried Schwab
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany.
| |
Collapse
|
26
|
Apocynum Leaf Extract Suppresses the Progress of Atherosclerosis in Rats via the FKN/SYK/p38 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5524226. [PMID: 34777534 PMCID: PMC8580673 DOI: 10.1155/2021/5524226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/16/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022]
Abstract
To investigate the antiatherosclerotic effects of flavonoids extracted from Apocynum venetum (AVF) leaves in atherosclerotic rats and the underlying mechanisms, a total of 72 male Wistar rats were randomly divided into six groups: control group, model group, simvastatin group, low-dose AVF group, medium-dose AVF group, and high-dose AVF group. Atherosclerosis in rats was induced with a high-fat diet and an intraperitoneal injection of VD3 once daily for three contiguous days at a total injection dose of 70 U/kg. At the end of the 13th week, total serum cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) contents were measured. The hematoxylin-eosin (HE) staining was applied to evaluate the morphological changes. The ELISA method was used to detect related inflammatory factors and oxidative stress indicators. The corresponding protein expression and the mRNA level were detected by western blot analysis and reverse transcriptase PCR. HE staining showed that the thoracic aorta wall was thickened, and the aortic subendothelial foam cells and lipid vacuoles were reduced in the medium/high-AVF groups. Similarly, the TC, TG, LDL-C, and malondialdehyde (MDA) levels in the model group were significantly higher, but the HDL-C level and superoxide dismutase (SOD) activity were lower than those of the control group, and these effects were ameliorated by treatment with simvastatin or AVF. ELISA results showed that compared with the control group, the model group C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) results were significantly increased, and the medium AVF and high AVF could significantly reduce the expression of related inflammatory factors. The AVF inhibited intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin mRNA and related protein expression in the aorta in atherosclerotic rats. Western blot analysis also showed that AVF can significantly reduce the protein expression of fractalkine (FKN), spleen tyrosine kinase (SYK), and p38 mitogen-activated protein kinase (p38) in the rat aorta. We believe that the AVF can effectively reduce blood lipid levels in rats with atherosclerosis and delay atherosclerotic progression by inhibiting excessive inflammatory factors and inhibiting related adhesion factors. The underlying mechanism may be related to the FKN/SYK/p38 signaling pathway activity. Our results contribute to validating the traditional use of the Apocynum leaf extract in the treatment of atherosclerosis.
Collapse
|
27
|
Kim SR, Heo JI, Park JW, Kang CM, Kim KS. Radiation-induced lipoprotein-associated phospholipase A2 increases lysophosphatidylcholine and induces endothelial cell damage. Toxicology 2021; 458:152841. [PMID: 34216699 DOI: 10.1016/j.tox.2021.152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis. Previously, by applying QTOF-MASS analysis to irradiated human fibroblasts, we identified that metabolite sets of lysophosphatidylcholine (LPC) were increased in these cells. In this study, radiation-induced LPC accumulation in human aortic endothelial cells (HAECs) increased reactive oxygen species (ROS) production and senescence-associated-beta-galactosidase staining, in addition to decreasing their tube-forming ability. Knockdown of lipoprotein-associated phospholipase A2 (Lp-PLA2) with small interfering RNA (siRNA) inhibited the increased LPC production induced by radiation, and reduced the radiation-induced cell damage produced by ROS and oxidized low-density lipoprotein (LDL). Lp-PLA2 depletion abolished the induction of proinflammatory factors, such as interleukin 1β, tumor necrosis factor-alpha, matrix metalloproteinase 2, and matrix metalloproteinase 9, as well as adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and E-selection. Likewise, we showed that Lp-PLA2 expression was upregulated in the vasculature of irradiated rat, resulting in increased LPC production and LDL oxidation. Our data demonstrate that radiation-induced LPC production is a potential risk factor for cardiotoxicity that is mediated by Lp-PLA2 activity, suggesting that LPC and Lp-PLA2 offer potential diagnostic and therapeutic approaches to cardiovascular damage during radiotherapy.
Collapse
Affiliation(s)
- So-Ra Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea
| | - Jong-Ik Heo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Jeong-Woo Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chang-Mo Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea.
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
28
|
Hardwick J, Taylor J, Mehta M, Satija S, Paudel KR, Hansbro PM, Chellappan DK, Bebawy M, Dua K. Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems. Curr Pharm Des 2021; 27:2-14. [PMID: 32723255 DOI: 10.2174/1381612826666200728151610] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Curcumin is a major curcuminoid present in turmeric. The compound is attributed to various therapeutic properties, which include anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as nanoparticle-based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary of nanoparticle-based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as for biotechnology, nutraceutical, and functional food industries.
Collapse
Affiliation(s)
- Joel Hardwick
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
29
|
Fras Z, Tršan J, Banach M. On the present and future role of Lp-PLA 2 in atherosclerosis-related cardiovascular risk prediction and management. Arch Med Sci 2021; 17:954-964. [PMID: 34336025 PMCID: PMC8314407 DOI: 10.5114/aoms.2020.98195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
Circulating concentration and activity of secretory phospholipase A2 (sPLA2) and lipoprotein-associated phospholipase A2 (Lp-PLA2) have been proven as biomarkers of increased risk of atherosclerosis-related cardiovascular disease (ASCVD). Lp-PLA2 might be part of the atherosclerotic process and may contribute to plaque destabilisation through inflammatory activity within atherosclerotic lesions. However, all attempts to translate the inhibition of phospholipase into clinically beneficial ASCVD risk reduction, including in randomised studies, by either non-specific inhibition of sPLA2 (by varespladib) or specific Lp-PLA2 inhibition by darapladib, unexpectedly failed. This gives us a strong imperative to continue research aimed at a better understanding of how Lp-PLA2 and sPLA2 regulate vascular inflammation and atherosclerotic plaque development. From the clinical viewpoint there is a need to establish and validate the existing and emerging novel anti-inflammatory therapeutic strategies to fight against ASCVD development, by using potentially better animal models and differently designed clinical trials in humans.
Collapse
Affiliation(s)
- Zlatko Fras
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Tršan
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
30
|
Transfer and Enzyme-Mediated Metabolism of Oxidized Phosphatidylcholine and Lysophosphatidylcholine between Low- and High-Density Lipoproteins. Antioxidants (Basel) 2020; 9:antiox9111045. [PMID: 33114515 PMCID: PMC7712993 DOI: 10.3390/antiox9111045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.
Collapse
|
31
|
Zhuo S, Yuan C. Active site competition is the mechanism for the inhibition of lipoprotein-associated phospholipase A 2 by detergent micelles or lipoproteins and for the efficacy reduction of darapladib. Sci Rep 2020; 10:17232. [PMID: 33057060 PMCID: PMC7560626 DOI: 10.1038/s41598-020-74236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/18/2020] [Indexed: 01/27/2023] Open
Abstract
Lipoprotein associated phospholipase A2 (Lp-PLA2) has been characterized for its interfacial activation as well as inhibition by detergent micelles and lipoprotein particles. The enzyme has been shown to bind on the surfaces of hydrophobic aggregates, such as detergent micelles, lipoprotein particles and even polystyrene latex nanobeads. Binding to hydrophobic aggregates stimulates the activity of Lp-PLA2 but may not be the necessary step for catalysis. However, at higher concentrations, detergent micelles, latex nanobeads or lipoprotein particles inhibit Lp-PLA2 possibly by blocking the access of substrates to the active site. The competition mechanism also blocks inhibitors such as darapladib binding to Lp-PLA2 and reduces the efficacy of the drug. Darapladib has very low solubility and mainly exists in solutions as complexes with detergents or lipoprotein particles. The inhibition of Lp-PLA2 by darapladib is dependent on many factors such as concentrations of detergents or lipoproteins, incubation time, as well as the order of mixing reaction components. The in vitro Lp-PLA2 activity assays used in clinical studies may not accurately reflect the residual Lp-PLA2 activity in vivo. Darapladib has been found mainly bound on HDL and albumin when it is incubated with human serum. However, Lp-PLA2 is more sensitive to darapladib when bound on LDL and relatively resistant to darapladib when bound on HDL. Therefore, high cholesterol levels may decrease the efficacy of darapladip and cause the drug to be less effective in high risk patients. Our study will help to design better inhibitors for Lp-PLA2. The discoveries also contribute to understanding the mechanism of interfacial activation and inhibition for Lp-PLA2 and provide a new concept for researchers in building better kinetic model for interfacial enzymes.
Collapse
Affiliation(s)
- Shaoqiu Zhuo
- Diazyme Laboratories, Inc, 12889 Gregg Ct., Poway, CA, 92064, USA. .,Bayer HealthCare, 800 Dwight Way, Berkeley, CA, 94710, USA.
| | - Chong Yuan
- Diazyme Laboratories, Inc, 12889 Gregg Ct., Poway, CA, 92064, USA
| |
Collapse
|
32
|
Zhu C, Zhou J, Li T, Mu J, Jin L, Li S. Urocortin participates in LPS-induced apoptosis of THP-1 macrophages via S1P-cPLA2 signaling pathway. Eur J Pharmacol 2020; 887:173559. [PMID: 32949605 DOI: 10.1016/j.ejphar.2020.173559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
There is little literature showing the effect of urocortin (UCN) on macrophage apoptosis. The underlying mechanism is also unclear. This work was to investigate the involvement of UCN in the regulation of LPS-induced macrophage apoptosis and hence in the prevention from the atherosclerotic lesion development through targeting PLA2. Flow cytometry analysis showed that cell apoptosis was increased by more than 50% after LPS treatment in human THP-1 macrophage. Lp-PLA2 and cPLA2 were found to mediate LPS-induced macrophage apoptosis and NF-κB differentially influenced the expression of Lp-PLA2 and cPLA2. However, the reverse regulation of the expression of Lp-PLA2 and cPLA2 by NF-κB suggested that NF-κB may not be a key target for regulating macrophage apoptosis. Interestingly, we found that the approximate three folds upregulation of cPLA2 was in line with the induction of S1P formation and cell apoptosis by LPS. Inversely, LPS obviously decreased UCN expression by about 50% and secretion by about 25%. Both the enzyme inhibitor and knockdown expression of cPLA2 could completely abolish LPS-induced cell apoptosis. In addition, suppression of S1P synthesis by Sphk1 inhibitor PF-543 reduced the expression of cPLA2 and cell apoptosis but at the same time restored the normal level of UCN in cell culture supernatant. Furthermore, addition of exogenous UCN also reversed LPS-induced expression of cPLA2 and apoptosis. Taken together, UCN may be the reverse regulator of LPS-S1P-cPLA2-apoptosis pathway, thereby contributing to the prevention from the formation of unstable plaques.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
33
|
Wang YJ, Chang SB, Wang CY, Huang HT, Tzeng SF. The selective lipoprotein-associated phospholipase A2 inhibitor darapladib triggers irreversible actions on glioma cell apoptosis and mitochondrial dysfunction. Toxicol Appl Pharmacol 2020; 402:115133. [DOI: 10.1016/j.taap.2020.115133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
|
34
|
Rosta V, Trentini A, Passaro A, Zuliani G, Sanz JM, Bosi C, Bonaccorsi G, Bellini T, Cervellati C. Sex Difference Impacts on the Relationship between Paraoxonase-1 (PON1) and Type 2 Diabetes. Antioxidants (Basel) 2020; 9:antiox9080683. [PMID: 32751395 PMCID: PMC7463677 DOI: 10.3390/antiox9080683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) and its cardiovascular complications are related to sex. Increasing evidence suggests that paraoxonase 1 (PON1) activity, an antioxidant enzyme bound to high-density lipoproteins (HDL), is implicated in the onset and clinical progression of T2D. Since we previously showed that PON1 is a sexual dimorphic protein, we now investigated whether sex might impact the relationship between PON1 and this chronic disease. To address this aim, we assessed PON1 activity in the sera of 778 patients, including controls (women, n = 383; men, n = 198) and diabetics (women, n = 79; men = 118). PON1 activity decreased in both women and men with T2D compared with controls (p < 0.05 and p > 0.001, respectively), but the change was 50% larger in the female cohort. In line with this result, the enzyme activity was associated with serum glucose level only in women (r = -0.160, p = 0.002). Notably, only within this gender category, lower PON1 activity was independently associated with increased odds of being diabetic (odds ratio (95% Confidence interval: 2.162 (1.075-5.678)). In conclusion, our study suggests that PON1-deficiency in T2D is a gender-specific phenomenon, with women being more affected than men. This could contribute to the partial loss of female cardiovascular advantage associated with T2D.
Collapse
Affiliation(s)
- Valentina Rosta
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy; (V.R.); (T.B.)
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy; (V.R.); (T.B.)
- Correspondence: (A.T.); (A.P.); Tel.: +39-532-455322 (A.T.); +39-532-237017 (A.P.)
| | - Angelina Passaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
- Correspondence: (A.T.); (A.P.); Tel.: +39-532-455322 (A.T.); +39-532-237017 (A.P.)
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
| | - Juana Maria Sanz
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
| | - Cristina Bosi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
| | - Gloria Bonaccorsi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
- Menopause and Osteoporosis Centre, University of Ferrara, 44124 Ferrara, Italy
- Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Tiziana Bellini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy; (V.R.); (T.B.)
- Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (J.M.S.); (C.B.); (G.B.); (C.C.)
| |
Collapse
|
35
|
Chapman MJ, Orsoni A, Tan R, Mellett NA, Nguyen A, Robillard P, Giral P, Thérond P, Meikle PJ. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res 2020; 61:911-932. [PMID: 32295829 PMCID: PMC7269759 DOI: 10.1194/jlr.p119000543] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.
Collapse
Affiliation(s)
- M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France; Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. mailto:
| | - Alexina Orsoni
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Ricardo Tan
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitié-Salpetrière University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Khajeniazi S, Marjani A, Shakeri R, Hakimi S. Polymorphism of Secretary PLA2G2A Gene Associated with Its Serum Level in Type2 Diabetes Mellitus Patients in Northern Iran. Endocr Metab Immune Disord Drug Targets 2020; 19:1192-1197. [PMID: 31132981 DOI: 10.2174/1871530319666190528111225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammation may occur in Type2 diabetes mellitus. sPLA2 is among the factors that contribute to the activation of pathways involved in inflammation. Several agents affect serum sPLA2 level, one of which is genetic diversity. OBJECTIVE The current study was performed to determine whether there is a relationship between sPLA2 gene (-763C > G) polymorphism and circulating sPLA2 level in patients with Type 2 diabetes. METHODS DNA was extracted from blood samples and used for the amplification of sPLA2 gene using ARMS-PCR. RESULTS A statistical analysis using SPSS (version 16) revealed a significant correlation between -763C > G sPLA2 gene polymorphisms and the disease incidence in patients with T2DM. Among the three possible genotypes (GG, CC, and CG), CG genotype was found to have a higher frequency(53%) in T2DM patients. GG and CC genotypes frequencies were 20 and 27%, respectively. In healthy individuals, the frequencies of CC, GG, and GC genotypes were 77, 9.8% and 13.2%, respectively). Patients with genotype GG had the highest level of sPLA2. We showed that C>G polymorphism at position- 763 is associated with a high level of sPLA2 in both T2DM patients and healthy individuals. The average of sPLA2 circulating level was (170.48± 84.90), (106.62 ± 74.31), in patients and normal individuals, respectively. CONCLUSION Our findings show that sPLA2 serum level is significantly higher in patients with T2DM disease than that in healthy individuals.
Collapse
Affiliation(s)
- Safoura Khajeniazi
- Department of Medical Technology, Faculty of Advanced Medical Sciences and Technology, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdoljalal Marjani
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Raheleh Shakeri
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safoura Hakimi
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
37
|
Zhou M, Chen M, Bai H, He GL, Liu QQ, Guan LB, Liu XH, Fan P. Association of the G994T and R92H genotypes of platelet-activating factor acetylhydrolase with risk of preeclampsia in Chinese women. Pregnancy Hypertens 2020; 20:19-26. [DOI: 10.1016/j.preghy.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/02/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
|
38
|
Baba K, Mikhailov A, Sankai Y. Long-term safety of the carbon fiber as an implant scaffold material. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1105-1110. [PMID: 31946087 DOI: 10.1109/embc.2019.8856629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Permanent therapeutically placed implants often used in situations when regeneration or transplantation are not practical or possible. They include metallic grafts for osteosynthesis, bulk metallic glasses, ceramics, and non-resorbable polymers providing mechanical support. Repair of the tissues on micro scale can also benefit from the biocompatible permanent implants. Vascular graft engineering and repairs of the spinal cord and peripheral nerves are among the most demanding application. Carbon fibers (CF) have superior mechanical and chemical properties, however, their long-time safety was never systematically estimated. The biggest concern comes from residual polymers used for pyrolysis and epoxy laminating resins. Here we attempted to investigate survival of the cells cultured on carbon fibers and to evaluate the tissue responses towards the long-term implanted material. Immortalized rat Schwann cells displayed efficient sporadic attachment to the carbon fibers with survival rate over 90%. Carbon fiber implants in adipose and on connective tissues were tolerable by animals during about 40% of their lifespan with no signs of inflammation on physiological, morphological or gene expression level.
Collapse
|
39
|
Miletić Vukajlović J, Drakulić D, Pejić S, Ilić TV, Stefanović A, Petković M, Schiller J. Increased plasma phosphatidylcholine/lysophosphatidylcholine ratios in patients with Parkinson's disease. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8595. [PMID: 31519070 DOI: 10.1002/rcm.8595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Changes in lipid composition might be associated with the onset and progression of various neurodegenerative diseases. Herein, we investigated the changes in the plasma phosphatidylcholine (PC)/lysophosphatidylcholine (LPC) ratios in patients with Parkinson's disease (PD) in comparison with healthy subjects and their correlation with clinico-pathological features. METHODS The study included 10 controls and 25 patients with PD. All patients were assigned to groups based on clinico-pathological characteristics (gender, age at examination, duration of disease and Hoehn and Yahr (H&Y) stage). The analysis of the PC/LPC intensity ratios in plasma lipid extracts was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS PD patients exhibited an increased PC/LPC intensity ratio in comparison with the control group of healthy subjects. Furthermore, the investigated ratio was shown to be correlated with clinico-pathological parameters, in particular with H&Y stage and disease duration. The PC/LPC intensity ratio in plasma samples of PD patients was found to be elevated in all examined H&Y stages and throughout the disease duration. CONCLUSIONS To our knowledge, this is the first study examining the PC/LPC ratios in plasma of patients with PD and illustrating their correlation with clinico-pathological features. Although the presented results may be considered as preliminary due to the limited number of participants, the observed alterations of PC/LPC ratios in plasma might be a first step in the characterization of plasma lipid changes in PD patients and an indicator of lipid reconfiguration.
Collapse
Affiliation(s)
- Jadranka Miletić Vukajlović
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Tihomir V Ilić
- Medical Faculty of Medical Military Academy, Clinic of Neurology, University of Defense, Belgrade, Republic of Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy - University of Belgrade, Belgrade, Republic of Serbia
| | - Marijana Petković
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Atomic Physics, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Leipzig, Germany
| |
Collapse
|
40
|
Zvintzou E, Xepapadaki E, Kalogeropoulou C, Filou S, Kypreos KE. Pleiotropic effects of apolipoprotein A-Ⅱ on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J Biomed Res 2020; 0:1-13. [PMID: 31741463 DOI: 10.7555/jbr.33.20190048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein A-Ⅱ (APOA-Ⅱ) is the second most abundant apolipoprotein of high-density lipoprotein (HDL) synthesized mainly by the liver and to a much lesser extent by the intestine. Transgenic mice overexpressing human APOA-Ⅱ present abnormal lipoprotein composition and are prone to atherosclerosis, though in humans the role for APOA-Ⅱ in coronary heart disease remains controversial. Here, we investigated the effects of overexpressed APOA-Ⅱ on HDL structure and function, adipose tissue metabolic activity, glucose tolerance and insulin sensitivity. C57BL/6 mice were infected with an adenovirus expressing human APOA-Ⅱ or a control adenovirus AdGFP, and five days post-infection blood and tissue samples were isolated. APOA-Ⅱ expression resulted in distinct changes in HDL apoproteome that correlated with increased antioxidant and anti-inflammatory activities. No effects on cholesterol efflux from RAW 264.7 macrophages were observed. Molecular analyses in white adipose tissue (WAT) indicated a stimulation of oxidative phosphorylation coupled with respiration for ATP production in mice overexpressing APOA-Ⅱ. Finally, overexpressed APOA-Ⅱ improved glucose tolerance of mice but had no effect on the response to exogenously administered insulin. In summary, expression of APOA-Ⅱ in C57BL/6 mice results in pleiotropic effects with respect to HDL functionality, adipose tissue metabolism and glucose utilization, many of which are beneficial to health.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
41
|
Abstract
Environmental stressors exert a profound effect on humans. Many environmental stressors have in common the ability to induce reactive oxygen species. The goal of this chapter is to present evidence that the potent lipid mediator platelet-activating factor (PAF) is involved in the effects of many stressors ranging from cigarette smoke to ultraviolet B radiation. These environmental stressors can generate PAF enzymatically as well as PAF-like lipids produced by free radical-mediated attack of glycerophosphocholines. Inasmuch as PAF exerts both acute inflammation and delayed immunosuppressive effects, involvement of the PAF system can provide an explanation for many consequences of environmental stressor exposures.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA.
- Dayton Veterans Administration Medical Center, Dayton, OH, USA.
| |
Collapse
|
42
|
Forty Years Since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives. Molecules 2019; 24:molecules24234414. [PMID: 31816871 PMCID: PMC6930554 DOI: 10.3390/molecules24234414] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
In the late 1960s, Barbaro and Zvaifler described a substance that caused antigen induced histamine release from rabbit platelets producing antibodies in passive cutaneous anaphylaxis. Henson described a ‘soluble factor’ released from leukocytes that induced vasoactive amine release in platelets. Later observations by Siraganuan and Osler observed the existence of a diluted substance that had the capacity to cause platelet activation. In 1972, the term platelet-activating factor (PAF) was coined by Benveniste, Henson, and Cochrane. The structure of PAF was later elucidated by Demopoulos, Pinckard, and Hanahan in 1979. These studies introduced the research world to PAF, which is now recognised as a potent phospholipid mediator. Since its introduction to the literature, research on PAF has grown due to interest in its vital cell signalling functions and more sinisterly its role as a pro-inflammatory molecule in several chronic diseases including cardiovascular disease and cancer. As it is forty years since the structural elucidation of PAF, the aim of this review is to provide a historical account of the discovery of PAF and to provide a general overview of current and future perspectives on PAF research in physiology and pathophysiology.
Collapse
|
43
|
Nezos A, Evangelopoulos ME, Mavragani CP. Genetic contributors and soluble mediators in prediction of autoimmune comorbidity. J Autoimmun 2019; 104:102317. [PMID: 31444033 DOI: 10.1016/j.jaut.2019.102317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
Comorbidities including subclinical atherosclerosis, neuropsychological aberrations and lymphoproliferation represent a major burden among patients with systemic autoimmune diseases; they occur either as a result of intrinsic disease related characteristics including therapeutic interventions or traditional risk factors similar to those observed in general population. Soluble molecules recently shown to contribute to subclinical atherosclerosis in the context of systemic lupus erythematosus (SLE) include among others B-cell activating factor (BAFF), hyperhomocysteinemia, parathormone (PTH) levels and autoantibodies against oxidized lipids. Variations of the 5, 10- methylenetetrahydrofolate reductase (MTHFR) gene -the main genetic determinant of hyperhomocystenemia in humans-as well the interferon regulatory factor-8 (IRF8), FcγRIIA and BAFF genes have been all linked to subclinical atherosclerosis in SLE. BAFF variants have been also found to confer increased risk for subclinical atherosclerosis and lymphoma development in Sjogren's syndrome (SS) patients. Other genes shown to be implicated in SS lymphoproliferation include genes involved a. in inflammatory responses such as the NFκB regulator Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the Leukocyte immunoglobulin-like receptor A3 (LILRA3) immunoreceptor, b. B cell activation and signaling (BAFF/BAFF-receptor), c. type I IFN pathway such as three-prime repair exonuclease 1 (TREX1), d. epigenetic processes including DNA methylation (MTHFR rs1801133, 677T allele) and e. genomic instability (MTHFR rs1801131, 1298C allele). Emerging soluble biomarkers for SS related lymphoma include mediators of B cell growth and germinal center formation such as BAFF, FMS-like tyrosine kinase 3 ligand (Flt-3L) and CXCL13 as well as inflammatory contributors such as inteleukin (IL)-17, IL-18, ASC, LILRA3 and the extracellular lipoprotein-associated phospholipase A2 (Lp-PLA2). In regard to fatigue and neuropsychologic features in the setting of SS, contributing factors such as BAFF variants, antibodies against neuropeptides, proteins involved in nervous system function as well as inflammatory cytokines have been reported.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleutheria Evangelopoulos
- First Department of Neurology, Demyelinating Diseases Unit, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
44
|
Luo Y, Fang JL, Yuan K, Jin SH, Guo Y. Ameliorative effect of purified anthocyanin from Lycium ruthenicum on atherosclerosis in rats through synergistic modulation of the gut microbiota and NF-κB/SREBP-2 pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
45
|
Wang X, Gong Y, Deng T, Zhang L, Liao X, Han C, Yang C, Huang J, Wang Q, Song X, Zhang T, Yu T, Zhu G, Ye X, Peng T. Diagnostic and prognostic significance of mRNA expressions of apolipoprotein A and C family genes in hepatitis B virus-related hepatocellular carcinoma. J Cell Biochem 2019; 120:18246-18265. [PMID: 31211449 DOI: 10.1002/jcb.29131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the most common and lethal malignancies worldwide. Apolipoproteins (APOs) have been reported increasingly for their relationships with tumors. We aim at exploring the potential relationships of apolipoprotein A (APOA) and apolipoprotein C (APOC) family members with HCC. METHODS A data set, containing 212 hepatitis B virus-related HCC patients, was used for analysis. The diagnostic and prognostic ability of APOA and APOC family genes was figured out. Risk score models and nomograms were developed for the HCC prognosis prediction. Moreover, molecular mechanism exploration were identified biological processes and metabolic pathways of these genes involved in. Validation analysis was carried out using online website. RESULTS APOA1, APOC1, APOC3, and APOC4 showed robust diagnosis significance (all P < 0.05). APOA4, APOC3, and APOC4 were associated with the overall survival (OS) while APOA4 and APOC4 were linked to recurrence-free survival (RFS, all P ≤ 0.05). Risk score models and nomograms had the advantage of predicting OS and RFS for HCC. Molecular mechanism exploration indicated that these genes were involved in the steroid metabolic process, the PPAR signaling pathway, and fatty acid metabolism. Besides that, validation analysis revealed that APOC1 and APOC4 had an association with OS; and APOC3 was associated with OS and RFS (all P ≤ 0.05). CONCLUSIONS APOA1, APOC1, APOC3, and APOC4 are likely to be potential diagnostic biomarkers and APOC3 and APOC4 are likely to be potential prognostic biomarkers for hepatitis B virus-related HCC. They may be involved in the steroid metabolic process, PPAR signaling pathway, and fatty acid metabolism.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaowei Song
- Department of Gastrointestinal Glands, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tengfang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
46
|
Park JG, Oh GT. Current pharmacotherapies for atherosclerotic cardiovascular diseases. Arch Pharm Res 2019; 42:206-223. [DOI: 10.1007/s12272-019-01116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
|
47
|
Kelkar DS, Ravikumar G, Mehendale N, Singh S, Joshi A, Sharma AK, Mhetre A, Rajendran A, Chakrapani H, Kamat SS. A chemical-genetic screen identifies ABHD12 as an oxidized-phosphatidylserine lipase. Nat Chem Biol 2019; 15:169-178. [PMID: 30643283 PMCID: PMC6420073 DOI: 10.1038/s41589-018-0195-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.
Collapse
Affiliation(s)
- Dhanashree S Kelkar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Govindan Ravikumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alaumy Joshi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Amol Mhetre
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Abinaya Rajendran
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.
| |
Collapse
|
48
|
Characterization of PLAC® tests in the quantization of lipoprotein associated phospholipase A 2 for assessment of cardiovascular diseases. Clin Chim Acta 2018; 487:222-227. [PMID: 30296441 DOI: 10.1016/j.cca.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND PLAC® mass test (diaDexus, Inc.) does not detect all Lp-PLA2 proteins in the circulation. The total circulating Lp-PLA2 mass can be quantized by using the CHAPS modified PLAC® mass test. To compare the difference of the PLAC® mass, CHAPS modified PLAC® mass and PLAC® activity tests in risk assessment of CVD, the 3 Lp-PLA2 quantization methods were characterized using a collection of serum and plasma from CVD patents and matched non-symptomatic controls. Improvement on risk assessment for ischemic stroke by Lp-PLA2 and lipids were also investigated. METHODS Ninety one human sera and plasma from elderly patients with first CVD incidents and 78 matched controls were collected at clinics. Lp-PLA2 was assessed by PLAC® mass, CHAPS modified PLAC® mass and PLAC® activity tests and data were subjected to statistical analyses. Correlation with lipid cholesterols or Apo proteins was compared for all formats of PLAC® tests. Ratios of Lp-PLA2 by different PLAC® tests to different lipids were assessed for synergistic enhancement in the indication of ischemic stroke. RESULTS The PLAC® mass test was superior to other formats of PLAC® tests in the assessment of CVD and is independent of lipids. The Lp-PLA2 by the CHAPS modified PLAC® mass test has no separation between the CVD and control groups. CONCLUSIONS Both PLAC® mass and PLAC® activity tests are effective but the CHAPS modified PLAC® mass test has no or less utility in the risk assessment of CVD. The ratio of Lp-PLA2 by either PLAC® mass or PLAC® activity over ApoA1 or (Apo A1 + Apo B) synergistically enhance the risk assessment power for ischemic stroke.
Collapse
|
49
|
Kerr N, García-Contreras M, Abbassi S, Mejias NH, Desousa BR, Ricordi C, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Front Mol Neurosci 2018; 11:309. [PMID: 30233311 PMCID: PMC6131639 DOI: 10.3389/fnmol.2018.00309] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammasome is a key contributor to the inflammatory innate immune response after stroke. We have previously shown that inflammasome proteins are released in extracellular vesicles (EV) after brain and spinal cord injury. In addition, we have shown that inflammasome proteins offer great promise as biomarkers of central nervous system (CNS) injury following brain trauma. In the present study, we used a Simple Plex Assay (Protein Simple), a novel multi-analyte automated microfluidic immunoassay platform, to analyze serum and serum-derived EV samples from stroke patients and control subjects for inflammasome protein levels of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), Interleukins (IL)-1β, and (IL)-18. Receiver operator characteristic (ROC) curves with associated confidence intervals obtained from the analysis of serum samples revealed that the area under the curve (AUC) for ASC was 0.99 with a confidence interval between 0.9914 and 1.004, whereas the AUC for caspase-1, IL-1β, and IL-18 were 0.75, 0.61, and 0.67, respectively. Thus, these data indicate that ASC is a potential biomarker of stroke and highlight the role of the inflammasome in the inflammatory response after brain ischemia.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Marta García-Contreras
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sam Abbassi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| | - Nancy H Mejias
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Brandon R Desousa
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| |
Collapse
|
50
|
Lysosomal phospholipase A2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:932-940. [PMID: 30077006 DOI: 10.1016/j.bbalip.2018.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022]
Abstract
Lysosomal phospholipase A2 (PLA2G15) is a ubiquitous enzyme uniquely characterized by a subcellular localization to the lysosome and late endosome. PLA2G15 has an acidic pH optimum, is calcium independent, and acts as a transacylase in the presence of N-acetyl-sphingosine as an acceptor. Recent studies aided by the delineation of the crystal structure of PLA2G15 have clarified further the catalytic mechanism, sn-1 versus sn-2 specificity, and the basis whereby cationic amphiphilic drugs inhibit its activity. PLA2G15 has recently been shown to hydrolyze short chain oxidized phospholipids which access the catalytic site directly based on their aqueous solubility. Studies on the PLA2G15 null mouse suggest a role for the enzyme in the catabolism of pulmonary surfactant. PLA2G15 may also have a role in host defense and in the processing of lipid antigens for presentation by CD1 proteins. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
|