1
|
Robles-Remacho A, Martos-Jamai I, Tabraue-Chávez M, Aguilar-González A, Laz-Ruiz JA, Cano-Cortés MV, López-Delgado FJ, Guardia-Monteagudo JJ, Pernagallo S, Diaz-Mochon JJ, Sanchez-Martin RM. Click chemistry-based dual nanosystem for microRNA-122 detection with single-base specificity from tumour cells. J Nanobiotechnology 2024; 22:791. [PMID: 39710710 DOI: 10.1186/s12951-024-03071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
MicroRNAs (miRNAs) have been recognised as potential biomarkers due to their specific expression patterns in different biological tissues and their changes in expression under pathological conditions. MicroRNA-122 (miR-122) is a vertebrate-specific miRNA that is predominantly expressed in the liver and plays an important role in liver metabolism and development. Dysregulation of miR-122 expression is associated with several liver-related diseases, including hepatocellular carcinoma and drug-induced liver injury (DILI). Given the potential of miR-122 as a biomarker, its effective detection is important for accurate diagnosis. However, miRNA detection methods still face challenges, particularly in terms of accurately identifying miRNA isoforms that may differ by only a single base. Here, with the aim of advancing accessible methods for the detection of miRNAs with single-base specificity, we have developed a robust dual nanosystem that leverages the simplicity of click chemistry reactions. Using the dual nanosystem, we successfully detected miR-122 at single-base resolution using flow cytometry and analysed its expression in various tumour cell lines with high specificity and strong correlation with TaqMan assay results. We also detected miR-122 in serum and identified four single nucleotide variations in its sequence. The chemistry employed in this dual nanosystem is highly versatile and offers a promising opportunity to develop nanoparticle-based strategies that incorporate click chemistry and bioorthogonal chemistry for the detection of miRNAs and their isoforms.
Collapse
Affiliation(s)
- Agustín Robles-Remacho
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain.
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Ismael Martos-Jamai
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Mavys Tabraue-Chávez
- DESTINA Genomica S.L, PTS Granada, Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Spain
| | - Araceli Aguilar-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Jose A Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - M Victoria Cano-Cortés
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - F Javier López-Delgado
- DESTINA Genomica S.L, PTS Granada, Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Spain
| | | | - Salvatore Pernagallo
- DESTINA Genomica S.L, PTS Granada, Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Spain
| | - Juan J Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain.
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Ahmed ASI, Blood AB, Zhang L. Hypoxia-induced pulmonary hypertension in adults and newborns: implications for drug development. Drug Discov Today 2024; 29:104015. [PMID: 38719143 PMCID: PMC11936511 DOI: 10.1016/j.drudis.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology. In this review, we highlight prominent mechanisms causing CHPH in adults and newborns, and emerging therapeutic targets of potential pharmaceuticals.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Chuang JC, Clifford AJ, Kim SH, Novotny JA, Kelly PB, Holstege DM, Walzem RL. Separation of Lipoproteins for Quantitative Analysis of 14C-Labeled Lipid-Soluble Compounds by Accelerator Mass Spectrometry. Int J Mol Sci 2024; 25:1856. [PMID: 38339135 PMCID: PMC10855872 DOI: 10.3390/ijms25031856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
To date, 14C tracer studies using accelerator mass spectrometry (AMS) have not yet resolved lipid-soluble analytes into individual lipoprotein density subclasses. The objective of this work was to develop a reliable method for lipoprotein separation and quantitative recovery for biokinetic modeling purposes. The novel method developed provides the means for use of small volumes (10-200 µL) of frozen plasma as a starting material for continuous isopycnic lipoprotein separation within a carbon- and pH-stable analyte matrix, which, following post-separation fraction clean up, created samples suitable for highly accurate 14C/12C isotope ratio determinations by AMS. Manual aspiration achieved 99.2 ± 0.41% recovery of [5-14CH3]-(2R, 4'R, 8'R)-α-tocopherol contained within 25 µL plasma recovered in triacylglycerol rich lipoproteins (TRL = Chylomicrons + VLDL), LDL, HDL, and infranatant (INF) from each of 10 different sampling times for one male and one female subject, n = 20 total samples. Small sample volumes of previously frozen plasma and high analyte recoveries make this an attractive method for AMS studies using newer, smaller footprint AMS equipment to develop genuine tracer analyses of lipophilic nutrients or compounds in all human age ranges.
Collapse
Affiliation(s)
| | | | - Seung-Hyun Kim
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 143-701, Republic of Korea;
| | - Janet A. Novotny
- U.S. Department of Agriculture, Beltsville Human Nutrition Research Center, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Peter B. Kelly
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Dirk M. Holstege
- UC Davis Analytical Lab, University of California, Davis, CA 95616, USA
| | - Rosemary L. Walzem
- Poultry Science Department, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Chen S, Zhong J, Hu B, Shao N, Deng C. Whole-genome microRNA sequencing analysis in patients with pulmonary hypertension. Front Genet 2023; 14:1250629. [PMID: 38125751 PMCID: PMC10731455 DOI: 10.3389/fgene.2023.1250629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH.
Collapse
Affiliation(s)
- Shi Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jinnan Zhong
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Bingzhu Hu
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Nan Shao
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Solaguren-Beascoa M, Gámez-Valero A, Escaramís G, Herrero-Lorenzo M, Ortiz AM, Minguet C, Gonzalo R, Bravo MI, Costa M, Martí E. Phospho-RNA-Seq Highlights Specific Small RNA Profiles in Plasma Extracellular Vesicles. Int J Mol Sci 2023; 24:11653. [PMID: 37511412 PMCID: PMC10380198 DOI: 10.3390/ijms241411653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Small RNAs (sRNAs) are bioactive molecules that can be detected in biofluids, reflecting physiological and pathological states. In plasma, sRNAs are found within extracellular vesicles (EVs) and in extravesicular compartments, offering potential sources of highly sensitive biomarkers. Deep sequencing strategies to profile sRNAs favor the detection of microRNAs (miRNAs), the best-known class of sRNAs. Phospho-RNA-seq, through the enzymatic treatment of sRNAs with T4 polynucleotide kinase (T4-PNK), has been recently developed to increase the detection of thousands of previously inaccessible RNAs. In this study, we investigated the value of phospho-RNA-seq on both the EVs and extravesicular plasma subfractions. Phospho-RNA-seq increased the proportion of sRNAs used for alignment and highlighted the diversity of the sRNA transcriptome. Unsupervised clustering analysis using sRNA counts matrices correctly classified the EVs and extravesicular samples only in the T4-PNK treated samples, indicating that phospho-RNA-seq stresses the features of sRNAs in each plasma subfraction. Furthermore, T4-PNK treatment emphasized specific miRNA variants differing in the 5'-end (5'-isomiRs) and certain types of tRNA fragments in each plasma fraction. Phospho-RNA-seq increased the number of tissue-specific messenger RNA (mRNA) fragments in the EVs compared with the extravesicular fraction, suggesting that phospho-RNA-seq favors the discovery of tissue-specific sRNAs in EVs. Overall, the present data emphasizes the value of phospho-RNA-seq in uncovering RNA-based biomarkers in EVs.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Georgia Escaramís
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana M Ortiz
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Ricardo Gonzalo
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | | | | | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| |
Collapse
|
6
|
Lavker RM, Kaplan N, McMahon KM, Calvert AE, Henrich SE, Onay UV, Lu KQ, Peng H, Thaxton CS. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocul Surf 2021; 21:19-26. [PMID: 33894397 PMCID: PMC8328934 DOI: 10.1016/j.jtos.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022]
Abstract
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.
Collapse
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kaylin M McMahon
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen E Henrich
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Vickers KC, Michell DL. HDL-small RNA Export, Transport, and Functional Delivery in Atherosclerosis. Curr Atheroscler Rep 2021; 23:38. [PMID: 33983531 DOI: 10.1007/s11883-021-00930-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review highlights recent advances on the mechanisms and impact of HDL-small non-coding RNAs (sRNA) on intercellular communication in atherosclerosis. RECENT FINDINGS Studies demonstrate that HDL-microRNAs (miRNA) are significantly altered in atherosclerotic cardiovascular disease (ASCVD), and are responsive to diet, obesity, and diabetes. Immune cells, pancreatic beta cells, and neurons are shown to export miRNAs to HDL. In turn, HDL can deliver functional miRNAs to recipient hepatocytes and endothelial cells regulating adhesion molecule expression, cytokines, and angiogenesis. With high-throughput sRNA sequencing, we now appreciate the full sRNA signature on circulating HDL, including the transport of rRNA and tRNA-derived fragments. Strikingly, HDL were highly enriched with exogenous microbial sRNAs. HDL transport a diverse set of host and non-host sRNAs that are altered in cardiometabolic diseases. Given the bioactivity of these sRNAs, they likely contribute to cellular communication within atherosclerotic lesions, and are potential disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave. 312 Preston Research Building, Nashville, TN, 37232, USA.
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave. 312 Preston Research Building, Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Pan JH, Cha H, Tang J, Lee S, Lee SH, Le B, Redding MC, Kim S, Batish M, Kong BC, Lee JH, Kim JK. The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food Funct 2021; 12:656-667. [PMID: 33404569 DOI: 10.1039/d0fo02286a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limited studies reported mechanisms by which microRNAs (miRNA) are interlinked in the etiology of fructose-induced non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the significance of miRNAs in fructose-induced NAFLD pathogenesis through unbiased approaches. In experiment I, C57BL/6N mice were fed either water or 34% fructose for six weeks ad libitum. In experiment II, time course effects of fructose intervention were monitored using the same conditions; mice were killed at the baseline, fourth, and sixth weeks. Bioinformatic analyses for hepatic proteomics revealed that SREBP1 is the most significant upstream regulator influenced by fructose; miR-33-5p (miR-33) was identified as the key miRNA responsible for SREBP1 regulation upon fructose intake, which was validated by in vitro transfection assay. In experiment II, we confirmed that the longer mice consumed fructose, the more severe liver injury markers (e.g., serum AST) appeared. Moreover, hepatic Srebp1 mRNA expression was increased depending upon the duration of fructose consumption. Hepatic miR-33 was time-dependently decreased by fructose while serum miR-33 expression was increased; these observations indicated that miR-33 from the liver might be released upon cell damage. Finally we observed that fructose-induced ferroptosis might be a cause of liver toxicity, resulting from oxidative damage. Collectively, our findings suggest that fructose-induced oxidative damage induces ferroptosis, and miR-33 could be used as a serological biomarker of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020; 17:1269-1288. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To tackle challenges associated with traditional drug carriers, investigators have explored cells, cellular membrane, and macromolecular components including proteins and exosomes for the fabrication of delivery vehicles, owing to their excellent biocompatibility, lower toxicity, lower immunogenicity and similarities with the host. Biomacromolecule- and biomimetic nanoparticle (NP)-based drug/gene carriers are drawing immense attention, and biomimetic drug delivery systems (BDDSs) have been conceived and constructed. AREAS COVERED This review focuses on BDDS based on mammalian cells, including blood cells, cancer cells, adult stem cells, endogenous proteins, pathogens and extracellular vesicles (EVs). EXPERT OPINION Compared with traditional drug delivery systems (DDSs), BDDSs are based on biological nanocarriers, exhibiting superior biocompatibility, fewer side effects, natural targeting, and diverse modifications. In addition to directly employing natural biomaterials such as cells, proteins, pathogens and EVs as carriers, BDDSs offer these advantages by mimicking the structure of natural nanocarriers through bioengineering technologies. Furthermore, BDDSs demonstrate fewer limitations and irregularities than natural materials and can overcome several shortcomings associated with natural carriers. Although research remains ongoing to resolve these limitations, it is anticipated that BDDSs possess the potential to overcome challenges associated with traditional DDS, with a promising future in the treatment of human diseases.
Collapse
Affiliation(s)
- Qirong Tong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| |
Collapse
|
12
|
Liang T, Han L, Guo L. Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer. Comput Struct Biotechnol J 2020; 18:1238-1248. [PMID: 32542110 PMCID: PMC7280754 DOI: 10.1016/j.csbj.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Classical microRNA (miRNA) has been so far believed as a single sequence, but it indeed contains multiple miRNA isoforms (isomiR) with various sequences and expression patterns. It is not clear whether these diverse isomiRs have potential relationships and whether they contribute to miRNA:mRNA interactions. Here, we aimed to reveal the potential evolutionary and functional relationships of multiple isomiRs based on let-7 and miR-10 gene families that are prone to clustering together on chromosomes. Multiple isomiRs within gene families showed similar functions to their canonical miRNAs, indicating selection of the predominant sequence. IsomiRs containing novel seed regions showed increased/decreased biological function depending on whether they had more/less specific target mRNAs than their annotated seed. Few gene ontology(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were shared among the target genes of the annotated seeds and the novel seeds. Various let-7 isomiRs with novel seed regions may cause opposing drug responses despite the fact that they are generated from the same miRNA locus and have highly similar sequences. IsomiRs, especially the dominant isomiRs with shifted seeds, may disturb the coding-non-coding RNA regulatory network. These findings provide insight into the multiple isomiRs and isomiR-mediated control of gene expression in the pathogenesis of cancer.
Collapse
Key Words
- ACC, adrenocortical carcinoma
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- ESCA, esophageal carcinoma
- Function
- GBM, glioblastoma multiforme
- HNSC, head and neck squamous cell carcinoma
- IsomiR
- KICH, kidney chromophobe
- KIRC, kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LAML, acute myeloid leukemia
- LGG, brain Lower grade glioma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Let-7
- MESO, mesothelioma
- MicroRNA (miRNA)
- Network
- OV, ovarian serous cystadenocarcinoma
- PAAD, pancreatic adenocarcinoma
- PCPG, pheochromocytoma and paraganglioma
- PRAD, prostate adenocarcinoma
- READ, rectum adenocarcinoma
- SARC, sarcoma
- SKCM, skin cutaneous melanoma
- STAD, stomach adenocarcinoma
- TGCT, testicular germ cell tumors
- THCA, thyroid carcinoma
- THYM, thymoma
- TSG, tumor suppressor gene
- UCEC, uterine corpus endometrial carcinoma
- UCS, uterine carcinosarcoma
- UVM, uveal melanoma
- miR-10
Collapse
Affiliation(s)
- Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
13
|
Koi Y, Tsutani Y, Nishiyama Y, Ueda D, Ibuki Y, Sasada S, Akita T, Masumoto N, Kadoya T, Yamamoto Y, Takahashi RU, Tanaka J, Okada M, Tahara H. Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles. Cancer Sci 2020; 111:2104-2115. [PMID: 32215990 PMCID: PMC7293081 DOI: 10.1111/cas.14393] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence indicates that small RNAs, including microRNAs (miRNAs) and their isoforms (isomiRs), and transfer RNA fragments (tRFs), are differently expressed in breast cancer (BC) and can be detected in blood circulation. Circulating small RNAs and small RNAs in extracellular vesicles (EVs) have emerged as ideal markers in small RNA‐based applications for cancer detection. In this study, we first undertook small RNA sequencing to assess the expression of circulating small RNAs in the serum of BC patients and cancer‐free individuals (controls). Expression of 3 small RNAs, namely isomiR of miR‐21‐5p (3′ addition C), miR‐23a‐3p and tRF‐Lys (TTT), was significantly higher in BC samples and was validated by small RNA sequencing in an independent cohort. Our constructed model using 3 small RNAs showed high diagnostic accuracy with an area under the receiver operating characteristic curve of 0.92 and discriminated early‐stage BCs at stage 0 from control. To test the possibility that these small RNAs are released from cancer cells, we next examined EVs from the serum of BC patients and controls. Two of the 3 candidate small RNAs were identified, and shown to be abundant in EVs of BC patients. Interestingly, these 2 small RNAs are also more abundantly detected in culture media of breast cancer cell lines (MCF‐7 and MDA‐MB‐231). The same tendency in selective elevation seen in total serum, serum EV, and EV derived from cell culture media could indicate the efficiency of this model using total serum of patients. These findings indicate that small RNAs serve as significant biomarkers for BC detection.
Collapse
Affiliation(s)
- Yumiko Koi
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukie Nishiyama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Ueda
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuta Ibuki
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Collaborative laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Alipoor SD, Adcock IM, Folkerts G, Garssen J, Mortaz E. A bioinformatics analysis of exosomal microRNAs released following mycobacterial infection. Int J Mycobacteriol 2020; 8:218-222. [PMID: 31512596 DOI: 10.4103/ijmy.ijmy_88_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tuberculosis (TB) still remains a major health threat worldwide. The current TB diagnostics are suboptimal, and there is a high clinical need for identifying novel biomarkers of disease prevalence. Circulating exosomes have been currently attractive as novel biomarkers in a wide range of pathological conditions. Methods In this study, we performed bioinformatics analysis on the downstream targets of a dysregulated microRNA (miRNA) cluster induced by Bacillus Calmette-Guerin infection of human macrophages to provide greater understanding of their potential roles in disease pathogenesis. Results Our analysis demonstrated that these dysregulated miRNAs have central roles in the host metabolic and energy pathways. Conclusion This suggests that the host miRNA network is perturbed by Mycobacterium to re-patterning host metabolism machinery to favor its intracellular survival. The dysregulated miRNAs can be delivered to local and distal cells by exosomes and thereby modulate their function.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia; Airways Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Immunology Section, Nutricia Research, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hung YH, Kanke M, Kurtz CL, Cubitt RL, Bunaciu RP, Zhou L, White PJ, Vickers KC, Hussain MM, Li X, Sethupathy P. MiR-29 Regulates de novo Lipogenesis in the Liver and Circulating Triglyceride Levels in a Sirt1-Dependent Manner. Front Physiol 2019; 10:1367. [PMID: 31736786 PMCID: PMC6828850 DOI: 10.3389/fphys.2019.01367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are known regulators of lipid homeostasis. We recently demonstrated that miR-29 controls the levels of circulating cholesterol and triglycerides, but the mechanisms remained unknown. In the present study, we demonstrated that systemic delivery of locked nucleic acid inhibitor of miR-29 (LNA29) through subcutaneous injection effectively suppresses hepatic expression of miR-29 and dampens de novo lipogenesis (DNL) in the liver of chow-fed mice. Next, we used mice with liver-specific deletion of Sirtuin 1 (L-Sirt1 KO), a validated target of miR-29, and demonstrated that the LNA29-induced reduction of circulating triglycerides, but not cholesterol, is dependent on hepatic Sirt1. Moreover, lipidomics analysis revealed that LNA29 suppresses hepatic triglyceride levels in a liver-Sirt1 dependent manner. A comparative transcriptomic study of liver tissue from LNA29-treated wild-type/floxed and L-Sirt1 KO mice identified the top candidate lipogenic genes and hepatokines through which LNA29 may confer its effects on triglyceride levels. The transcriptomic analysis also showed that fatty acid oxidation (FAO) genes respond differently to LNA29 depending on the presence of hepatic Sirt1. Overall, this study demonstrates the beneficial effects of LNA29 on DNL and circulating lipid levels. In addition, it provides mechanistic insight that decouples the effect of LNA29 on circulating triglycerides from that of circulating cholesterol.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Catherine Lisa Kurtz
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca L Cubitt
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Liye Zhou
- Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, United States
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | | | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z, Ilbeigi D, Seiri P, Yousefi Z. Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells. Biochem Genet 2019; 57:507-521. [PMID: 30697640 DOI: 10.1007/s10528-019-09905-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
Non-alcoholic fatty liver disease is one of the main causes of chronic liver disease and therefore is currently considered a major public health problem. Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase enzyme that contributes in the regulation of metabolic processes and protects against lipid accumulation in hepatocytes. Its expression is potentially regulated by microRNAs which attach to the 3' untranslated region (3'-UTR) of their target mRNA. HepG2 cells were incubated by glucose to induce lipid accumulation and were subsequently transfected with mir-23b mimic and inhibitor. Real-time PCR was used for measuring the expression of mir-23b and SIRT1 mRNA. Cell survival assay and intracellular triglyceride measurement were performed using colorimetric methods. Determination of SIRT1 protein level and activity were done by western blot and fluorometric analysis, respectively. The interaction of miR-23b with 3'-UTR of SIRT1 mRNA was confirmed by dual luciferase. miR-23b mimic inhibited gene and protein expression of SIRT1, while the inhibitor of miR-23b significantly elevated the expression levels of SIRT1 mRNA and protein. The results showed that the 3'-UTR of SIRT1 mRNA is a direct target for miR-23b. The intracellular triglyceride level was increased following the inhibition of SIRT1 in transfected HepG2 cell by miR-23b mimic. Cell viability was decreased in response to miR-23b upregulation compared to control cells. miR-23b reduces the expression and activity of SIRT1 and therefore may be a causative factor in the enhancement of lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Mohammad Borji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | - Ali Akbar Owji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Davod Ilbeigi
- Neuroscience Researcher Center, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
17
|
Dhanoa JK, Verma R, Sethi RS, Arora JS, Mukhopadhyay CS. Biogenesis and biological implications of isomiRs in mammals- a review. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-018-0003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Allen RM, Zhao S, Ramirez Solano MA, Zhu W, Michell DL, Wang Y, Shyr Y, Sethupathy P, Linton MF, Graf GA, Sheng Q, Vickers KC. Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J Extracell Vesicles 2018; 7:1506198. [PMID: 30128086 PMCID: PMC6095027 DOI: 10.1080/20013078.2018.1506198] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
To comprehensively study extracellular small RNAs (sRNA) by sequencing (sRNA-seq), we developed a novel pipeline to overcome current limitations in analysis entitled, "Tools for Integrative Genome analysis of Extracellular sRNAs (TIGER)". To demonstrate the power of this tool, sRNA-seq was performed on mouse lipoproteins, bile, urine and livers. A key advance for the TIGER pipeline is the ability to analyse both host and non-host sRNAs at genomic, parent RNA and individual fragment levels. TIGER was able to identify approximately 60% of sRNAs on lipoproteins and >85% of sRNAs in liver, bile and urine, a significant advance compared to existing software. Moreover, TIGER facilitated the comparison of lipoprotein sRNA signatures to disparate sample types at each level using hierarchical clustering, correlations, beta-dispersions, principal coordinate analysis and permutational multivariate analysis of variance. TIGER analysis was also used to quantify distinct features of exRNAs, including 5' miRNA variants, 3' miRNA non-templated additions and parent RNA positional coverage. Results suggest that the majority of sRNAs on lipoproteins are non-host sRNAs derived from bacterial sources in the microbiome and environment, specifically rRNA-derived sRNAs from Proteobacteria. Collectively, TIGER facilitated novel discoveries of lipoprotein and biofluid sRNAs and has tremendous applicability for the field of extracellular RNA.
Collapse
Affiliation(s)
- Ryan M. Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle L. Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuhuan Wang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Zhang H, Vieira Resende e Silva B, Cui J. miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis. Brief Bioinform 2018; 19:415-424. [PMID: 28073746 PMCID: PMC5952930 DOI: 10.1093/bib/bbw140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/07/2016] [Indexed: 01/09/2023] Open
Abstract
Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health, research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species transport and miRNA function in cellular biological processes. In this article, we present microRNA Discovery (miRDis), a new small RNA sequencing data analysis pipeline for both endogenous and exogenous miRNA detection. Specifically, we developed and deployed a Web service that supports the annotation and expression profiling data of known host miRNAs and the detection of novel miRNAs, other noncoding RNAs, and the exogenous miRNAs from dietary species. As a proof-of-concept, we analyzed a set of human plasma sequencing data from a milk-feeding study where 225 human miRNAs were detected in the plasma samples and 44 show elevated expression after milk intake. By examining the bovine-specific sequences, data indicate that three bovine miRNAs (bta-miR-378, -181* and -150) are present in human plasma possibly because of the dietary uptake. Further evaluation based on different sets of public data demonstrates that miRDis outperforms other state-of-the-art tools in both detection and quantification of miRNA from either animal or plant sources. The miRDis Web server is available at: http://sbbi.unl.edu/miRDis/index.php.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bruno Vieira Resende e Silva
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
20
|
Rubio M, Bustamante M, Hernandez-Ferrer C, Fernandez-Orth D, Pantano L, Sarria Y, Piqué-Borras M, Vellve K, Agramunt S, Carreras R, Estivill X, Gonzalez JR, Mayor A. Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One 2018; 13:e0193527. [PMID: 29505615 PMCID: PMC5837101 DOI: 10.1371/journal.pone.0193527] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
Circulating small RNAs, including miRNAs but also isomiRs and other RNA species, have the potential to be used as non-invasive biomarkers for communicable and non-communicable diseases. This study aims to characterize and compare small RNA profiles in human biofluids. For this purpose, RNA was extracted from plasma and breast milk samples from 15 healthy postpartum mothers. Small RNA libraries were prepared with the NEBNext® small RNA library preparation kit and sequenced in an Illumina HiSeq2000 platform. miRNAs, isomiRs and clusters of small RNAs were annotated using seqBuster/seqCluster framework in 5 plasma and 10 milk samples that passed the initial quality control. The RNA yield was 81 ng/mL [standard deviation (SD): 41] and 3985 ng/mL (SD: 3767) for plasma and breast milk, respectively. Mean number of good quality reads was 4.04 million (M) (40.01% of the reads) in plasma and 12.5M (89.6%) in breast milk. One thousand one hundred eighty two miRNAs, 12,084 isomiRs and 1,053 small RNA clusters that included piwi-interfering RNAs (piRNAs), tRNAs, small nucleolar RNAs (snoRNA) and small nuclear RNAs (snRNAs) were detected. Samples grouped by biofluid, with 308 miRNAs, 1,790 isomiRs and 778 small RNA clusters differentially detected. In summary, plasma and milk showed a different small RNA profile. In both, miRNAs, piRNAs, tRNAs, snRNAs, and snoRNAs were identified, confirming the presence of non-miRNA species in plasma, and describing them for the first time in milk.
Collapse
Affiliation(s)
- Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Carles Hernandez-Ferrer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Dietmar Fernandez-Orth
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Lorena Pantano
- Harvard TH Chan School of Public Health, Boston, MA, United States of America
| | - Yaris Sarria
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Piqué-Borras
- Laboratory of Childhood Leukemia, Department of Biomedicine, University of Basel and Basel University Children's Hospital, Hebelestrasse, Basel, Switzerland
| | - Kilian Vellve
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Silvia Agramunt
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Ramon Carreras
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Genetics of Child and Woman's Health Group, Research Department, Sidra Medical and Research Center, Doha, Qatar
- Genetics Unit, Dexeus Woman's Health, Barcelona, Spain
| | - Juan R. Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- * E-mail: (JRG); (AM)
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- * E-mail: (JRG); (AM)
| |
Collapse
|
21
|
Zheng Y, Zhao C, Zhang N, Kang W, Lu R, Wu H, Geng Y, Zhao Y, Xu X. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells. Mol Med Rep 2018; 17:5635-5641. [PMID: 29484422 PMCID: PMC5866004 DOI: 10.3892/mmr.2018.8633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.
Collapse
Affiliation(s)
- Yingjuan Zheng
- Department of Pediatrics, Shu Yang Union Medical College Hospital, Suqian, Jiangsu 223600, P.R. China
| | - Chao Zhao
- Department of Clinical Laboratory, The 82nd Hospital of Chinese People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Naijian Zhang
- Department of Clinical Laboratory, The 82nd Hospital of Chinese People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Wenqin Kang
- Department of Pediatrics, Shu Yang Union Medical College Hospital, Suqian, Jiangsu 223600, P.R. China
| | - Rongrong Lu
- Department of Pediatrics, Shu Yang Union Medical College Hospital, Suqian, Jiangsu 223600, P.R. China
| | - Huadong Wu
- Department of Clinical Laboratory, The 82nd Hospital of Chinese People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Yingxue Geng
- Department of Pediatrics, Shu Yang Union Medical College Hospital, Suqian, Jiangsu 223600, P.R. China
| | - Yaping Zhao
- Department of Postgraduates, BengBu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiaoyan Xu
- Department of Pediatrics, Shu Yang Union Medical College Hospital, Suqian, Jiangsu 223600, P.R. China
| |
Collapse
|
22
|
Seow N, Fenati RA, Connolly AR, Ellis AV. Hi-fidelity discrimination of isomiRs using G-quadruplex gatekeepers. PLoS One 2017; 12:e0188163. [PMID: 29145502 PMCID: PMC5690596 DOI: 10.1371/journal.pone.0188163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022] Open
Abstract
Core microRNA (miRNA) sequences exist as populations of variants called isomiRs made up of different lengths and nucleotide compositions. In particular, the short sequences of miRNA make single-base isomiR mismatches very difficult to be discriminated. Non-specific hybridizations often arise when DNA probe-miRNA target hybridization is the primary, or initial, mode of detection. These errors then become exacerbated through subsequent amplification steps. Here, we present the design of DNA probes modified with poly-guanine (PG) tracts that were induced to form G-quadruplexes (G4) for hi-fidelity discrimination of miRNA core target sequence from single-base mismatched isomiRs. We demonstrate that, when compared to unmodified probes, this G4 'gate-keeping' function within the G4-modified probes enables more stringent hybridization of complementary core miRNA target transcripts while limiting non-specific hybridizations. This increased discriminatory power of the G4-modified probes over unmodified probes is maintained even after further reverse transcriptase extension of probe-target hybrids. Enzymatic extension also enhanced the clarity and sensitivity of readouts and allows different isomiRs to be distinguished from one another via the relative positions of the mismatches.
Collapse
Affiliation(s)
- Nianjia Seow
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia
| | - Renzo A Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley R Connolly
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia
| | - Amanda V Ellis
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Muiwo P, Pandey P, Ahmad HM, Ramachandran SS, Bhattacharya A. IsomiR processing during differentiation of myelogenous leukemic cell line K562 by phorbol ester PMA. Gene 2017; 641:172-179. [PMID: 29051025 DOI: 10.1016/j.gene.2017.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
Abstract
Chronic myelocytic leukemia cell line K562 undergoes differentiation by phorbol esters to megakaryocytes and we have used this system to understand miRNA processing leading to isomiR generation. PMA treatment significantly altered the production of miRNA in K562 cells. Expression of 24.4% of miRNAs were found to be stimulated whereas expression of 10% miRNAs were inhibited by PMA treatment. Our results suggest that miRNA precursors are processed into isomiRs in a deterministic manner. The relative levels of different isomiRs of a miRNA remained mainly unchanged even after PMA treatment irrespective of overall changes in expression (either up-regulation or down-regulation). However, not all miRNAs behave in the same way, about 7% showed a variation of isomiR profiles after PMA treatment. Most of the later class of miRNAs were found to be oncogenic miRNAs. Further, it was also found that number of isomiRs was independent of abundance of a miRNA. Functional importance of different isomiRs was demonstrated using three different isomiRs of miR-22. Our results showed that different isomiRs could inhibit expression of targets genes with different efficiencies. Our study suggests that the heterogeneity of a miRNA population generated during processing is in general regulated and that variation in the generation of an isomiR can be a functionally important regulatory feature.
Collapse
Affiliation(s)
- Pamchui Muiwo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Priyatama Pandey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Hafiz M Ahmad
- Department of Molecular Cell and Cancer Biology, Umass Medical School, Worcester, MA, USA.
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
24
|
Alipoor SD, Mortaz E, Tabarsi P, Farnia P, Mirsaeidi M, Garssen J, Movassaghi M, Adcock IM. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages. J Transl Med 2017; 15:105. [PMID: 28499455 PMCID: PMC5427544 DOI: 10.1186/s12967-017-1205-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a significant global health concern and its diagnosis is challenging due to the limitations in the specificity and sensitivity of the current diagnostic tests. Exosomes are bioactive 30-100 nm vesicles produced by most cell types and are found in almost all human body fluids. Exosomal microRNAs (miRNAs) can transfer biological information between cells and tissues and may act as potential biomarkers in many diseases. In this pilot study, we assessed the miRNA profile of exosomes released from human monocyte-derived macrophages upon infection with Mycobacterium bovis Bacillus Calmette-Guerin (BCG). METHODS Human monocytes were obtained from the peripheral blood of three healthy subjects and driven to a monocyte-derived macrophage (MDM) phenotype using standard protocols. MDMs were infected with BCG or left uninfected as control. 72 h post-infection, exosomes were collected from the cell culture medium, RNA was isolated and RNA-seq performed. The raw reads were filtered to eliminate adaptor and primer sequences and the sequences were run against the mature human miRNA sequences available in miRBase. MicroRNAs were identified using an E value <0.01. miRNA network analysis was performed using the DIANA miRNA tool, miRDB and functional KEGG pathway analysis. RESULTS Infection of MDMs with BCG leads to the release of several exosomal miRNAs. These included miR-1224, -1293, -425, -4467, -4732, -484, -5094, -6848-6849, -4488 and -96 all of which were predicted to target metabolism and energy production-related pathways. CONCLUSIONS This study provides evidence for the release of specific exosomal miRNAs from BCG-infected MDMs. These exosomal miRNAs reflect host-pathogen interaction and subversion of host metabolic processes following infection.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Coral Gables, FL USA
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ian M. Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| |
Collapse
|
25
|
Aw MS, Paniwnyk L. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater Sci 2017; 5:1944-1961. [DOI: 10.1039/c7bm00425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target.
Collapse
Affiliation(s)
- M. S. Aw
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| | - L. Paniwnyk
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| |
Collapse
|
26
|
MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:19-26. [DOI: 10.1016/j.cbd.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
|
27
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Zhang Y, Zang Q, Zhang H, Ban R, Yang Y, Iqbal F, Li A, Shi Q. DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 2016; 44:W166-75. [PMID: 27179030 PMCID: PMC4987950 DOI: 10.1093/nar/gkw427] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Small RNA (sRNA) Sequencing technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent variations from their canonical sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). However, integrated tool to precisely detect and systematically annotate isomiRs from sRNA sequencing data is still in great demand. Here, we present an online tool, DeAnnIso (Detection and Annotation of IsomiRs from sRNA sequencing data). DeAnnIso can detect all the isomiRs in an uploaded sample, and can extract the differentially expressing isomiRs from paired or multiple samples. Once the isomiRs detection is accomplished, detailed annotation information, including isomiRs expression, isomiRs classification, SNPs in miRNAs and tissue specific isomiR expression are provided to users. Furthermore, DeAnnIso provides a comprehensive module of target analysis and enrichment analysis for the selected isomiRs. Taken together, DeAnnIso is convenient for users to screen for isomiRs of their interest and useful for further functional studies. The server is implemented in PHP + Perl + R and available to all users for free at: http://mcg.ustc.edu.cn/bsc/deanniso/ and http://mcg2.ustc.edu.cn/bsc/deanniso/.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Hefei Institute of Physical Science, China Academy of Science, Hefei 230027, China
| | - Qiguang Zang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Rongjun Ban
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Yifan Yang
- Department of statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Furhan Iqbal
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China Research Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Hefei Institute of Physical Science, China Academy of Science, Hefei 230027, China
| |
Collapse
|
29
|
Wang S, Xu Y, Li M, Tu J, Lu Z. Dysregulation of miRNA isoform level at 5' end in Alzheimer's disease. Gene 2016; 584:167-72. [PMID: 26899870 DOI: 10.1016/j.gene.2016.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/09/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, whose mechanism is still not yet fully understood. A miRNA-based signature method, commonly according to the changes of expression levels, is widely used for AD analysis in previous studies. Recently, miRNA isoforms called as isomiR variants, which is considered to play important biological roles, have been demonstrated as the applications of high throughput sequencing platforms. Here, we presented an entropy-based model to detect the miRNA isoform level at the 5' end, and found many miRNAs with significant changes of isoform levels between the early stage and the late stage of AD by the application of this model to the public data. The statistical significance of the overlap between isoform-level changed miRNAs and AD related miRNAs extracted from HMDD2 supports that these miRNA isoforms are not degradation products. Based on the most common isomiR seed analysis of isoform-level changed AD related miRNAs, the predicted targets are also found to be enriched for genes involved in transcriptional regulation and the nervous system. After comparing with the expression level based method, we detected that changes of 5' isoform levels are more stable than those of expression levels for AD related miRNA detecting.
Collapse
Affiliation(s)
- Shengqin Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuming Xu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Musheng Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100781, China.
| |
Collapse
|
30
|
MIR494 reduces renal cancer cell survival coinciding with increased lipid droplets and mitochondrial changes. BMC Cancer 2016; 16:33. [PMID: 26794413 PMCID: PMC4722626 DOI: 10.1186/s12885-016-2053-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background miRNAs can regulate cellular survival in various cancer cell types. Recent evidence implicates the formation of lipid droplets as a hallmark event during apoptotic cell death response. It is presently unknown whether MIR494, located at 14q32 which is deleted in renal cancers, reduces cell survival in renal cancer cells and if this process is accompanied by changes in the number of lipid droplets. Methods 769-P renal carcinoma cells were utilized for this study. Control or MIR494 mimic was expressed in these cells following which cell viability (via crystal violet) and apoptotic cell numbers (via Annexin V/PI staining) were assessed. By western blotting, MIR494 cellular responses were validated using MIR494 antagomir and Argonaute 2 siRNA. Transmission electron microscopy (TEM) was performed in MIR494-transfected 769-P cells to identify ultrastructural changes. LipidTOX green neutral lipid staining and cholesterol measurements were conducted to assess accumulation of lipids droplets and total cholesterol levels, respectively, in MIR494 expressing 769-P cells. Indirect immunofluorescence and western analyses were also performed to examine changes in mitochondria organization. Co-transfection of MIR494 mimic with siRNA targeting LC3B and ATG7 was conducted to assess their contribution to formation of lipid droplets in MIR494-expressing cells. Results MIR494 expression reduces viability of 769-P renal cancer cells; this was accompanied by increased cleaved PARP (an apoptotic marker) and LC3B protein. Further, expression of MIR494 increased LC3B mRNA levels and LC3B promoter activity (2.01-fold; 50 % increase). Interestingly, expression of MIR494 markedly increased multilamellar bodies and lipid droplets (by TEM and validated by LipidTOX immunostaining) while reducing total cholesterol levels. Via immunocytochemistry, we observed increased LC3B-associated endogenous punctae upon MIR494 expression. In contrast to ATG7 siRNA, knockdown of LC3B reduced the numbers of lipid droplets in MIR494-expressing cells. Our results also identified that MIR494 expression altered the organization of mitochondria which was accompanied by co-localization with LC3B punctae, decreased PINK1 protein, and altered Drp1 intracellular distribution. Conclusion Collectively, our findings indicate that MIR494 reduces cell survival in 769-P renal cancer cells which is accompanied by increased lipid droplet formation (which occurs in a LC3B-dependent manner) and mitochondrial changes.
Collapse
|
31
|
Transcriptomic Analysis of Chronic Hepatitis B and C and Liver Cancer Reveals MicroRNA-Mediated Control of Cholesterol Synthesis Programs. mBio 2015; 6:e01500-15. [PMID: 26646011 PMCID: PMC4676282 DOI: 10.1128/mbio.01500-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hepatitis B (CHB), chronic hepatitis C (CHC), and associated hepatocellular carcinoma (HCC) are characterized by cholesterol imbalance and dyslipidemia; however, the key regulatory drivers of these phenotypes are incompletely understood. Using gene expression microarrays and high-throughput sequencing of small RNAs, we performed integrative analysis of microRNA (miRNA) and gene expression in nonmalignant and matched cancer tissue samples from human subjects with CHB or CHC and HCC. We also carried out follow-up functional studies of specific miRNAs in a cell-based system. These studies led to four major findings. First, pathways affecting cholesterol homeostasis were among the most significantly overrepresented among genes dysregulated in chronic viral hepatitis and especially in tumor tissue. Second, for each disease state, specific miRNA signatures that included miRNAs not previously associated with chronic viral hepatitis, such as miR-1307 in CHC, were identified. Notably, a few miRNAs, including miR-27 and miR-224, were components of the miRNA signatures of all four disease states: CHB, CHC, CHB-associated HCC, and CHC-associated HCC. Third, using a statistical simulation method (miRHub) applied to the gene expression data, we identified candidate master miRNA regulators of pathways controlling cholesterol homeostasis in chronic viral hepatitis and HCC, including miR-21, miR-27, and miR-33. Last, we validated in human hepatoma cells that both miR-21 and miR-27 significantly repress cholesterol synthesis and that miR-27 does so in part through regulation of the gene that codes for the rate-limiting enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (HMGCR). Hepatitis B virus (HBV) and hepatitis C virus (HCV) are phylogenetically unrelated hepatotropic viruses that persistently infect hundreds of millions of people world-wide, often leading to chronic liver disease and hepatocellular carcinoma (HCC). Chronic hepatitis B (CHB), chronic hepatitis C (CHC), and associated HCC often lead to cholesterol imbalance and dyslipidemia. However, the regulatory mechanisms underlying the dysregulation of lipid pathways in these disease states are incompletely understood. MicroRNAs (miRNAs) have emerged as critical modulators of lipid homeostasis. Here we use a blend of genomic, molecular, and biochemical strategies to identify key miRNAs that drive the lipid phenotypes of chronic viral hepatitis and HCC. These findings provide a panoramic view of the miRNA landscape in chronic viral hepatitis, which could contribute to the development of novel and more-effective miRNA-based therapeutic strategies.
Collapse
|
32
|
Wang Y, Liu Z, Zou W, Hong H, Fang H, Tong W. Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH. Biomark Med 2015; 9:1189-200. [PMID: 26506944 DOI: 10.2217/bmm.15.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that microRNAs regulate diverse biological functions in the liver and play a very important function in metabolic-related disorders such as nonalcoholic fatty liver disease via regulating their target genes expression. In this review, we summarized the most recent progress in identification of miRNAs involving in the progression of liver steatosis and discussed the possible mechanisms by which miRNAs contribute to the diverse pathogenic liver injuries. We provide insights into the functional network of miRNAs by connecting miRNAs, their targets and biological pathways associated to hepatic steatosis and fibrosis, with important implications for our understanding of phenotypic-based disease pathogenesis. We also discuss the possible roles and challenges of miRNAs as biomarkers for drug-induced liver injury.
Collapse
Affiliation(s)
- Yuping Wang
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Zhichao Liu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Wen Zou
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Hong Fang
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
33
|
Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res 2015; 43:9158-75. [PMID: 26400174 PMCID: PMC4627084 DOI: 10.1093/nar/gkv922] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
Here we describe our study of miRNA isoforms (isomiRs) in breast cancer (BRCA) and normal breast data sets from the Cancer Genome Atlas (TCGA) repository. We report that the full isomiR profiles, from both known and novel human-specific miRNA loci, are particularly rich in information and can distinguish tumor from normal tissue much better than the archetype miRNAs. IsomiR expression is also dependent on the patient's race, exemplified by miR-183-5p, several isomiRs of which are upregulated in triple negative BRCA in white but not black women. Additionally, we find that an isomiR's 5′ endpoint and length, but not the genomic origin, are key determinants of the regulation of its expression. Overexpression of distinct miR-183-5p isomiRs in MDA-MB-231 cells followed by microarray analysis revealed that each isomiR has a distinct impact on the cellular transcriptome. Parallel integrative analysis of mRNA expression from BRCA data sets of the TCGA repository demonstrated that isomiRs can distinguish between the luminal A and luminal B subtypes and explain in more depth the molecular differences between them than the archetype molecules. In conclusion, our findings provide evidence that post-transcriptional studies of BRCA will benefit from transcending the one-locus-one-miRNA paradigm and taking into account all isoforms from each miRNA locus as well as the patient's race.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
35
|
Dokanehiifard S, Soltani BM, Parsi S, Hosseini F, Javan M, Mowla SJ. Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell Mol Life Sci 2015; 72:2613-25. [PMID: 25772499 PMCID: PMC11113298 DOI: 10.1007/s00018-015-1868-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75(NTR) receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Parsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Wang S, Tu J, Wang L, Lu Z. Entropy-based model for miRNA isoform analysis. PLoS One 2015; 10:e0118856. [PMID: 25785816 PMCID: PMC4364746 DOI: 10.1371/journal.pone.0118856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs) in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test), we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3’ isomiR variant, is strongly correlated with Minimum Free Energy (MFE) of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5’ end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.
Collapse
Affiliation(s)
- Shengqin Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jing Tu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100781, China
- * E-mail:
| |
Collapse
|
38
|
Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 2014; 5:54. [PMID: 24672539 PMCID: PMC3957189 DOI: 10.3389/fgene.2014.00054] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/02/2014] [Indexed: 12/17/2022] Open
Abstract
It is now well known that gene expression is intricately regulated inside each cell especially in mammals. There are multiple layers of gene regulation active inside a cell at a given point of time. Gene expression is regulated post-transcriptionally by microRNAs and other factors. Mechanistically, microRNAs are known to bind to the 3’ UTR of mRNAs and cause repression of gene expression and the number of known microRNAs continues to increase every day. Dysregulated microRNA signatures in different types of cancer are being uncovered consistently implying their importance in cellular homeostasis. However when studied in isolation in mouse models, clear-cut cellular and molecular mechanisms have been described only for a select few microRNAs. What is the reason behind this discrepancy? Are microRNAs small players in gene regulation helping only to fine tune gene expression? Or are their roles tissue and cell type-specific with single-cell level effects on mRNA expression and microRNA threshold levels? Or does it all come down to the technical limitations of high-throughput techniques, resulting in false positive results? In this review, we will assess the challenges facing the field and potential avenues for resolving the cellular and molecular mechanisms of these small but important regulators of gene expression.
Collapse
Affiliation(s)
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, CA, USA ; Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA ; Broad Stem Cell Research Center, University of California Los Angeles, CA, USA ; Division of Biology, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
39
|
Vickers KC, Moore KJ. Small RNA overcomes the challenges of therapeutic targeting of microsomal triglyceride transfer protein. Circ Res 2014; 113:1189-91. [PMID: 24201112 DOI: 10.1161/circresaha.113.302732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plasma level of apolipoprotein B (apoB) is among the strongest risk factors for coronary artery disease. Microsomal triglyceride transfer protein (MTP) plays a key role in the lipidation of nascent apoB and the secretion of apoB-containing lipoproteins enriched with triglycerides and is thus a promising target for the treatment of hyperlipidemia. Yet, the development of MTP inhibitors to lower plasma lipid concentrations has been hindered by adverse effects on hepatic steatosis. A study recently published in Nature Medicine identifies microRNA-30c (miR-30c) as a potent repressor of MTP that controls plasma apoB-containing lipoprotein levels, in addition to decreasing hepatic lipid synthesis through direct targeting of lysophosphatidylglycerol acyltransferase 1 (LPGAT1). These findings identify miR-30c as a novel therapeutic target that coordinately reduces lipid biosynthesis and lipoprotein secretion to suppress circulating apoB lipoproteins, while sparing the liver from steatosis.
Collapse
Affiliation(s)
- Kasey C Vickers
- From the Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (K.C.V.); and Marc and Ruti Bell Vascular Biology and Disease Program, Department of Medicine, New York University School of Medicine, New York, NY (K.J.M.)
| | | |
Collapse
|
40
|
Kane JP, Malloy MJ. Needed: a better understanding of the antiatherogenic properties of HDL. Curr Opin Lipidol 2013; 24:453-4. [PMID: 24005220 DOI: 10.1097/mol.0b013e3283654ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Kiss O, Tőkés AM, Spisák S, Szilágyi A, Lippai N, Szász AM, Kulka J. [MicroRNA-profiling in breast- and salivary gland-derived adenoid cystic carcinomas]. Orv Hetil 2013; 154:963-8. [PMID: 23774803 DOI: 10.1556/oh.2013.29643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Adenoid cystic carcinoma is a salivary gland-derived malignant tumor, but rarely it can originate from the breast, too. The salivary gland-derived form shows a very aggressive clinical outcome, while adenoid cystic carcinoma of the breast has mostly a very good prognosis. AIM The aim of the authors was to compare the miRNA-expression profile of breast- and salivary gland-derived cases. METHOD The miRNA-profiles of two salivary gland derived and two breast-derived adenoid cystic carcinoma tissues as well as one normal breast and one salivary gland tissues were analysed using the Affymetrix® Gene Chip. RESULTS The expression of some miRNAs differed in the tumor tissues compared to their controls: the let-7b was overexpressed in salivary gland-derived adenoid cystic carcinoma, while decreased in breast-derived adenoid cystic carcinoma. In addition, the miR-24 was decreased in salivary gland-derived but overexpressed in breast-derived adenoid cystic carcinomas. The miR-181a-2* was only detected in salivary gland-derived adenoid cystic carcinomas. CONCLUSIONS Through post-transcriptional regulation of the genes, the diverse expression of some miRNAs may partially explain the diverse clinical outcome of salivary gland-derived and breast-derived adenoid cystic carcinomas.
Collapse
Affiliation(s)
- Orsolya Kiss
- Semmelweis Egyetem, Általános Orvostudományi Kar, II. Patológiai Intézet, Budapest.
| | | | | | | | | | | | | |
Collapse
|