1
|
Figueiredo Filho LC, Massoud RO, Cabeça RAS, Wanderley IJM, da Rocha AM, Aranha MFDAC, Rosa IR, Cabeça LS, de Oliveira RDCS, Monteiro AM. Relationship between patients with atopic dermatitis and the incidence of stroke: A systematic review with meta-analysis. Clin Neurol Neurosurg 2025; 253:108888. [PMID: 40253836 DOI: 10.1016/j.clineuro.2025.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin condition associated with a variety of comorbidities, including cardiovascular and mental health issues. Recent studies have suggested a potential link between AD and an increased risk of stroke, particularly ischemic stroke. However, the association remains unclear, warranting further investigation. METHODS This study conducted a systematic review and meta-analysis to explore the relationship between AD and stroke risk. PRISMA guidelines were followed, and a comprehensive search was carried out in multiple databases, including PubMed/MEDLINE, Biblioteca Virtual em Saúde (BVS), Embase, Cochrane, Web of Science, and Scopus. Observational studies reporting on the incidence of stroke in patients with AD were included. A meta-analysis was performed to assess the odds ratio (OR), hazard ratio (HR), and relative risk (RR) for stroke incidence. Heterogeneity and publication bias were evaluated using Cochran's Q test, I² statistic, and funnel plots. RESULTS A total of 11 studies were included, with the majority being cohort studies. The meta-analysis revealed a significant association between AD and an increased risk of ischemic stroke, with an HR of 1.19 (95 % CI 1.13-1.26, p < 0.00001) and moderate heterogeneity (I² = 57 %). However, no statistically significant increase in hemorrhagic stroke risk was observed (HR = 1.13, 95 % CI 1-1.29, p = 0.06). Patients with severe AD exhibited a higher stroke risk compared to those with mild AD, with ORs of 1.29 (95 % CI 1.07-1.56) and 1.06 (95 % CI 0.88-1.27), respectively. CONCLUSIONS This meta-analysis confirms a significant association between AD and ischemic stroke, particularly in patients with severe AD. Further research is needed to understand this relationship better and explore potential preventative strategies, including the role of AD treatment in reducing stroke risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isadora Rocha Rosa
- Faculty of Medicine, State University of Pará (UEPA), Belém, Pará, Brazil.
| | - Lucas Silva Cabeça
- Faculty of Medicine, Federal University of Pará (UFPA), Belém, Pará, Brazil.
| | | | | |
Collapse
|
2
|
Annink ME, Kraaijenhof JM, Stroes ESG, Kroon J. Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1446758. [PMID: 39161593 PMCID: PMC11330886 DOI: 10.3389/fcell.2024.1446758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the most important cause of morbidity and mortality worldwide. While it is traditionally attributed to lipid accumulation in the vascular endothelium, recent research has shown that plaque inflammation is an important additional driver of atherogenesis. Though clinical outcome trials utilizing anti-inflammatory agents have proven promising in terms of reducing ASCVD risk, it is imperative to identify novel actionable targets that are more specific to atherosclerosis to mitigate adverse effects associated with systemic immune suppression. To that end, this review explores the contributions of various immune cells from the innate and adaptive immune system in promoting and mitigating atherosclerosis by integrating findings from experimental studies, high-throughput multi-omics technologies, and epidemiological research.
Collapse
Affiliation(s)
- Maxim E. Annink
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, Netherlands
| |
Collapse
|
3
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
4
|
Hayderi A, Kumawat AK, Shavva VS, Dreifaldt M, Sigvant B, Petri MH, Kragsterman B, Olofsson PS, Sirsjö A, Ljungberg LU. RSAD2 is abundant in atherosclerotic plaques and promotes interferon-induced CXCR3-chemokines in human smooth muscle cells. Sci Rep 2024; 14:8196. [PMID: 38589444 PMCID: PMC11001978 DOI: 10.1038/s41598-024-58592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.
Collapse
Affiliation(s)
- Assim Hayderi
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Ashok K Kumawat
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Vladimir S Shavva
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Center for Bioelectronic Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Dreifaldt
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Cardiothoracic Surgery and Vascular Surgery, Örebro University Hospital, Örebro, Sweden
| | - Birgitta Sigvant
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research and Education, Region Värmland, Karlstad, Sweden
| | - Marcelo H Petri
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Cardiothoracic Surgery and Vascular Surgery, Örebro University Hospital, Örebro, Sweden
| | - Björn Kragsterman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Surgery, Västmanlands Hospital Västerås, Västerås, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Center for Bioelectronic Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Allan Sirsjö
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
5
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 2023; 13:2056. [PMID: 37895437 PMCID: PMC10608492 DOI: 10.3390/life13102056] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity throughout the world, accounting for 16.7 million deaths each year. The underlying pathological process for the majority of cardiovascular diseases is atherosclerosis, a slowly progressing, multifocal, chronic, immune-inflammatory disease that involves the intima of large and medium-sized arteries. The process of atherosclerosis begins in childhood as fatty streaks-an accumulation of lipids, inflammatory cells, and smooth muscle cells in the arterial wall. Over time, a more complex lesion develops into an atheroma and characteristic fibrous plaques. Atherosclerosis alone is rarely fatal; it is the further changes that render fibrous plaques vulnerable to rupture; plaque rupture represents the most common cause of coronary thrombosis. The prevalence of atherosclerosis is increasing worldwide and more than 50% of people with circulatory disease die of it, mostly in modern societies. Epidemiological studies have revealed several environmental and genetic risk factors that are associated with the early formation of a pathogenic foundation for atherosclerosis, such as dyslipidemia, hypertension, diabetes mellitus, obesity, and smoking. The purpose of this review is to bring together the current information concerning the origin and progression of atherosclerosis in childhood as well as the identification of known risk factors for atherosclerotic cardiovascular disease in children.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Simona Georgiana David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Alexandru Gabriel David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana-Alexandra Pădureț
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Heidrun Adumitrăchioaiei
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
7
|
Cho K. Neutrophil-Mediated Progression of Mild Cognitive Impairment to Dementia. Int J Mol Sci 2023; 24:14795. [PMID: 37834242 PMCID: PMC10572848 DOI: 10.3390/ijms241914795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive impairment is a serious condition that begins with amnesia and progresses to cognitive decline, behavioral dysfunction, and neuropsychiatric impairment. In the final stage, dysphagia and incontinence occur. There are numerous studies and developed drugs for cognitive dysfunction in neurodegenerative diseases, such as Alzheimer's disease (AD); however, their clinical effectiveness remains equivocal. To date, attempts have been made to overcome cognitive dysfunction and understand and delay the aging processes that lead to degenerative and chronic diseases. Cognitive dysfunction is involved in aging and the disruption of inflammation and innate immunity. Recent reports have indicated that the innate immune system is prevalent in patients with AD, and that peripheral neutrophil markers can predict a decline in executive function in patients with mild cognitive impairment (MCI). Furthermore, altered levels of pro-inflammatory interleukins have been reported in MCI, which have been suggested to play a role in the peripheral immune system during the process from early MCI to dementia. Neutrophils are the first responders of the innate immune system. Neutrophils eliminate harmful cellular debris via phagocytosis, secrete inflammatory factors to activate host defense systems, stimulate cytokine production, kill pathogens, and regulate extracellular proteases and inhibitors. This review investigated and summarized the regulation of neutrophil function during cognitive impairment caused by various degenerative diseases. In addition, this work elucidates the cellular mechanism of neutrophils in cognitive impairment and what is currently known about the effects of activated neutrophils on cognitive decline.
Collapse
Affiliation(s)
- KyoungJoo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
8
|
Wacker M, Ball A, Beer HD, Schmitz I, Borucki K, Azizzadeh F, Scherner M, Awad G, Wippermann J, Veluswamy P. Immunophenotyping of Monocyte Migration Markers and Therapeutic Effects of Selenium on IL-6 and IL-1β Cytokine Axes of Blood Mononuclear Cells in Preoperative and Postoperative Coronary Artery Disease Patients. Int J Mol Sci 2023; 24:7198. [PMID: 37108367 PMCID: PMC10139122 DOI: 10.3390/ijms24087198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Multivessel coronary artery disease (CAD) is characterized by underlying chronic vascular inflammation and occlusion in the coronary arteries, where these patients undergo coronary artery bypass grafting (CABG). Since post-cardiotomy inflammation is a well known phenomenon after CABG, attenuation of this inflammation is required to reduce perioperative morbidity and mortality. In this study, we aimed to phenotype circulating frequencies and intensities of monocyte subsets and monocyte migration markers, respectively, and to investigate the plasma level of inflammatory cytokines and chemokines between preoperative and postoperative CAD patients and later, to intervene the inflammation with sodium selenite. We found a higher amplitude of inflammation, postoperatively, in terms of CCR1high monocytes and significantly increased pro-inflammatory cytokines, IL-6, IL-8, and IL-1RA. Further, in vitro intervention with selenium displayed mitigating effects on the IL-6/STAT-3 axis of mononuclear cells derived from postoperative CAD patients. In addition, in vitro selenium intervention significantly reduced IL-1β production as well as decreased cleaved caspase-1 (p20) activity by preoperative (when stimulated) as well as postoperative CAD mononuclear cells. Though TNF-α exhibited a positive correlation with blood troponin levels in postoperative CAD patients, there was no obvious effect of selenium on the TNF-α/NF-κB axis. In conclusion, anti-inflammatory selenium might be utilized to impede systemic inflammatory cytokine axes to circumvent aggravating atherosclerosis and further damage to the autologous bypass grafts during the post-surgical period.
Collapse
Affiliation(s)
- Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Anna Ball
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland;
| | - Ingo Schmitz
- Department of Molecular Immunology, Medical Faculty of Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Faranak Azizzadeh
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - George Awad
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| |
Collapse
|
9
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
10
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
11
|
Grievink HW, Smit V, Huisman BW, Gal P, Yavuz Y, Klerks C, Binder CJ, Bot I, Kuiper J, Foks AC, Moerland M. Cardiovascular risk factors: The effects of ageing and smoking on the immune system, an observational clinical study. Front Immunol 2022; 13:968815. [PMID: 36189218 PMCID: PMC9519851 DOI: 10.3389/fimmu.2022.968815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Currently immunomodulatory compounds are under investigation for use in patients with cardiovascular disease, caused by atherosclerosis. These trials, using recurrent cardiovascular events as endpoint, require enrollment of large patient groups. We investigated the effect of key risk factors for atherosclerosis development, ageing and smoking, on the immune system, with the objective to identify biomarkers differentiating between human populations, and potentially serving as endpoints for future phase 1B trials with immunomodulatory compounds. Blood was collected from young healthy volunteers (aged 18-25 years, n=30), young smokers (18-25 years, n=20), elderly healthy volunteers (>60 years, n=20), heavy smokers (>45 years, 15 packyears, n=11) and patients with stable coronary artery disease (CAD) (>60 years, n=27). Circulating immune cell subsets were characterized by flow cytometry, and collected plasma was evaluated by proteomics (Olink). Clear ageing effects were observed, mostly illustrated by a lower level in CD8+ and naïve CD4+ and CD8+ T cells, with an increase in CD4+ and CD8+ effector memory T cells in elderly healthy volunteers compared to young healthy volunteers. Heavy smokers showed a more inflammatory cellular phenotype, especially a shift in Th1/Th2 ratio: higher Th1 and lower Th2 percentages compared to young healthy volunteers. A significant decrease in circulating atheroprotective oxLDL-specific IgM was found in patients with CAD compared to young healthy volunteers. Elevated pro-inflammatory and chemotactic proteins TREM1 and CCL11 were observed in elderly volunteers compared to young volunteers. In addition, heavy smokers had an increase in pro-inflammatory cytokine IL-6 and lysosomal protein LAMP3. These data show that ageing and smoking are associated with an inflammatory immunophenotype, and that heavy smokers or aged individuals may serve as potential populations for future clinical trials investigating immunomodulatory drugs targeted for cardiovascular disease.
Collapse
Affiliation(s)
- H. W. Grievink
- Centre for Human Drug Research, Leiden, Netherlands
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - V. Smit
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - B. W. Huisman
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Leiden, Netherlands
| | - P. Gal
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Y. Yavuz
- Centre for Human Drug Research, Leiden, Netherlands
| | - C. Klerks
- Centre for Human Drug Research, Leiden, Netherlands
| | - C. J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - I. Bot
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - J. Kuiper
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - A. C. Foks
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - M. Moerland
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Stahr N, Galkina EV. Immune Response at the Crossroads of Atherosclerosis and Alzheimer's Disease. Front Cardiovasc Med 2022; 9:870144. [PMID: 35872901 PMCID: PMC9298512 DOI: 10.3389/fcvm.2022.870144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) and cardiovascular disease (CVD) are pathologies that are characterized by common signatures of vascular dysfunction and chronic inflammation that are accelerated with aging. Importantly, epidemiological studies report an independent interaction between AD and CVD and data suggest that chronic inflammation in CVD may accelerate AD development. Atherosclerosis affects most large to medium sized arteries including those supplying the cerebral circulation. Vascular dysfunction caused by atherosclerosis results in blood brain barrier breakdown, inflammation, an impaired clearance of amyloid-beta (Aβ), and finally ends with neurovascular dysfunction. Numerous data indicate that innate and adaptive immune responses shape atherogenesis and increasing evidence suggests an implication of the immune response in AD progression. Currently, mechanisms by which these two diseases are interconnected with each other are not well-defined. In this review, we discuss the recent advances in our understanding of the intertwined role of the immune response in atherosclerosis and AD and the implications of these findings for human health.
Collapse
|
13
|
Burger F, Baptista D, Roth A, Brandt KJ, Miteva K. The E3 Ubiquitin Ligase Peli1 Deficiency Promotes Atherosclerosis Progression. Cells 2022; 11:cells11132014. [PMID: 35805095 PMCID: PMC9265341 DOI: 10.3390/cells11132014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory vascular disease and the main cause of death and morbidity. Emerging evidence suggests that ubiquitination plays an important role in the pathogenesis of atherosclerosis including control of vascular inflammation, vascular smooth muscle cell (VSMC) function and atherosclerotic plaque stability. Peli1 a type of E3 ubiquitin ligase has emerged as a critical regulator of innate and adaptive immunity, however, its role in atherosclerosis remains to be elucidated. Methods: Apoe−/− mice and Peli1-deficient Apoe−/− Peli1−/− mice were subject to high cholesterol diet. Post sacrifice, serum was collected, and atherosclerotic plaque size and parameters of atherosclerotic plaque stability were evaluated. Immunoprofiling and foam cell quantification were performed. Results: Peli1 deficiency does not affect atherosclerosis lesion burden and cholesterol levels, but promotes VSMCs foam cells formation, necrotic core expansion, collagen, and fibrous cap reduction. Apoe−/− Peli1−/− mice exhibit a storm of inflammatory cytokines, expansion of Th1, Th1, Th17, and Tfh cells, a decrease in regulatory T and B cells and induction of pro-atherogenic serum level of IgG2a and IgE. Conclusions: In the present study, we uncover a crucial role for Peli1 in atherosclerosis as an important regulator of inflammation and VSMCs phenotypic modulation and subsequently atherosclerotic plaque destabilization.
Collapse
|
14
|
Deng Q, Chen J. Potential Therapeutic Effect of All-Trans Retinoic Acid on Atherosclerosis. Biomolecules 2022; 12:869. [PMID: 35883425 PMCID: PMC9312697 DOI: 10.3390/biom12070869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a major risk factor for myocardial infarction and ischemic stroke, which are the leading cause of death worldwide. All-trans retinoic acid (ATRA) is a natural derivative of essential vitamin A. Numerous studies have shown that ATRA plays an important role in cell proliferation, cell apoptosis, cell differentiation, and embryonic development. All-trans retinoic acid (ATRA) is a ligand of retinoic acid receptors that regulates various biological processes by activating retinoic acid signals. In this paper, the metabolic processes of ATRA were reviewed, with emphasis on the effects of ATRA on inflammatory cells involved in the process of atherosclerosis.
Collapse
Affiliation(s)
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
15
|
Roberts LB, Lord GM, Howard JK. Heartbreakers or Healers? Innate Lymphoid Cells in Cardiovascular Disease and Obesity. Front Immunol 2022; 13:903678. [PMID: 35634348 PMCID: PMC9130471 DOI: 10.3389/fimmu.2022.903678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for most pre-mature deaths worldwide, contributing significantly to the global burden of disease and its associated costs to individuals and healthcare systems. Obesity and associated metabolic inflammation underlie development of several major health conditions which act as direct risk factors for development of CVDs. Immune system responses contribute greatly to CVD development and progression, as well as disease resolution. Innate lymphoid cells (ILCs) are a family of helper-like and cytotoxic lymphocytes, typically enriched at barrier sites such as the skin, lung, and gastrointestinal tract. However, recent studies indicate that most solid organs and tissues are home to resident populations of ILCs - including those of the cardiovascular system. Despite their relative rarity, ILCs contribute to many important biological effects during health, whilst promoting inflammatory responses during tissue damage and disease. This mini review will discuss the evidence for pathological and protective roles of ILCs in CVD, and its associated risk factor, obesity.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Monocyte subsets, T cell activation profiles, and stroke in men and women: The Multi-Ethnic Study of Atherosclerosis and Cardiovascular Health Study. Atherosclerosis 2022; 351:18-25. [PMID: 35605368 PMCID: PMC9548392 DOI: 10.1016/j.atherosclerosis.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Despite mechanistic data implicating unresolving inflammation in stroke pathogenesis, data regarding circulating immune cell phenotypes - key determinants of inflammation propagation versus resolution - and incident stroke are lacking. Therefore, we aimed to comprehensively define associations of circulating immune phenotypes and activation profiles with incident stroke. METHODS We investigated circulating leukocyte phenotypes and activation profiles with incident adjudicated stroke in 2104 diverse adults from the Multi-Ethnic Study of Atherosclerosis (MESA) followed over a median of 16.6 years. Cryopreserved cells from the MESA baseline examination were thawed and myeloid and lymphoid lineage cell subsets were measured using polychromatic flow cytometry and intracellular cytokine activation staining. We analyzed multivariable-adjusted associations of cell phenotypes, as a proportion of parent cell subsets, with incident stroke (overall) and ischemic stroke using Cox regression models. RESULTS We observed associations of intermediate monocytes, early-activated CD4+ T cells, and both CD4+ and CD8+ T cells producing interleukin-4 after cytokine stimulation (Th2 and Tc2, respectively) with higher risk for incident stroke; effect sizes ranged from 35% to 62% relative increases in risk for stroke. Meanwhile, differentiated and memory T cell phenotypes were associated with lower risk for incident stroke. In sex-stratified analyses, positive and negative associations were especially strong among men but null among women. CONCLUSIONS Circulating IL-4 producing T cells and intermediate monocytes were significantly associated with incident stroke over nearly two decades of follow-up. These associations were stronger among men and not among women. Further translational studies are warranted to define more precise targets for prognosis and intervention.
Collapse
|
17
|
Aprotosoaie AC, Costache AD, Costache II. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics 2022; 14:722. [PMID: 35456556 PMCID: PMC9025701 DOI: 10.3390/pharmaceutics14040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Despite progress in understanding the pathogenesis of atherosclerosis, the development of effective therapeutic strategies is a challenging task that requires more research to attain its full potential. This review discusses current pharmacotherapy in atherosclerosis and explores the potential of some important emerging therapies (antibody-based therapeutics, cytokine-targeting therapy, antisense oligonucleotides, photodynamic therapy and theranostics) in terms of clinical translation. A chemopreventive approach based on modern research of plant-derived products is also presented. Future perspectives on preventive and therapeutic management of atherosclerosis and the design of tailored treatments are outlined.
Collapse
Affiliation(s)
- Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Alexandru-Dan Costache
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
18
|
Louka AM, Sagris D, Ntaios G. Ιmmunity, Vascular Aging, and Stroke. Curr Med Chem 2022; 29:5510-5521. [PMID: 34979888 DOI: 10.2174/0929867329666220103101700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Stroke is one of the most devastating manifestations of cardiovascular disease. Growing age, arterial hypertension, and atherosclerosis are identified as independent risk factors for stroke, primarily due to structural and functional alterations in the cerebrovascular tree. Recent data from in vitro and clinical studies have suggested that the immune system influences atherosclerosis, promoting vascular stiffness and vascular aging and contributing to ischemic stroke, intracranial haemorrhage and microbleeds, white matter disease, and cognitive decline. Furthermore, aging is related to a chronic low-grade inflammatory state, in which macrophage, neutrophils, natural killer (NK cells), and B and T lymphocytes act as major effectors of the immune-mediated cell responses. Moreover, oxidative stress and vascular inflammation are correlated with endothelial dysfunction, vascular aging, blood-brain barrier disruption, lacunar lesions, and neurodegenerative disorders. This review discusses the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including the complex interplay between them and innate immunity, as well as vascular dysfunction, arterial stiffness, atherosclerosis, atherothrombosis, systemic inflammation, and blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Anna-Maria Louka
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa Greece
| | - Dimitrios Sagris
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa Greece
| | - George Ntaios
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa Greece
| |
Collapse
|
19
|
Fernandes das Neves M, Batuca JR, Delgado Alves J. The role of high-density lipoprotein in the regulation of the immune response: implications for atherosclerosis and autoimmunity. Immunology 2021; 164:231-241. [PMID: 33934336 PMCID: PMC8442240 DOI: 10.1111/imm.13348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation and immune dysfunction have been increasingly recognized as crucial mechanisms in atherogenesis. Modifications in cell lipid metabolism, plasma dyslipidaemia and particularly low high-density lipoprotein (HDL) levels occur both in atherosclerosis and in autoimmune rheumatic diseases (which are strongly associated with an increased risk of atherosclerosis), suggesting the presence of a crucial link. HDL, the plasma lipoprotein responsible for reverse cholesterol transport, is known for its several protective effects in the context of atherosclerosis. Among these, HDL immunomodulatory effects are possibly the less understood. Through the efflux of cholesterol from plasma cell membranes with the consequent disruption of lipid rafts and the interaction with the cholesterol transporters present in the plasma membrane, HDL affects both the innate and adaptive immune responses. Animal and human studies have demonstrated a predominance of HDL anti-inflammatory effects, despite some pro-inflammatory actions having also been reported. The HDL role on the modulation of the immune response is further suggested by the detection of low levels together with a dysfunctional HDL in patients with autoimmune diseases. Here, we review the current knowledge of the immune mechanisms of atherosclerosis and the modulatory effects HDL may have on them.
Collapse
Affiliation(s)
- Marisa Fernandes das Neves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| | - Joana R. Batuca
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
| | - José Delgado Alves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| |
Collapse
|
20
|
Pakzad B, Rajae E, Shahrabi S, Mansournezhad S, Davari N, Azizidoost S, Saki N. T-Cell Molecular Modulation Responses in Atherosclerosis Anergy. Lab Med 2021; 51:557-565. [PMID: 32106301 DOI: 10.1093/labmed/lmaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis continues to be a major cause of death in patients with cardiovascular diseases. The cooperative role of immunity has been recently considered in atherosclerotic plaque inflammation, especially adaptive immune response by T cells. In this review, we examine the possible role of T cells in atherosclerosis-mediated inflammation and conceivable therapeutic strategies that can ameliorate complications of atherosclerosis. The cytokines secreted by T-lymphocyte subsets, different pathophysiological profiles of microRNAs (miRs), and the growth factor/receptor axis have diverse effects on the inflammatory cycle of atherosclerosis. Manipulation of miRNA expression and prominent growth factor receptors involved in inflammatory cytokine secretion in atherosclerosis can be considered diagnostic biomarkers in the induction of anergy and blockade of atherosclerotic development. This manuscript reviews immunomodulation of T cells responses in atherosclerosis anergy.
Collapse
Affiliation(s)
- Bahram Pakzad
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Rajae
- Department of Rheumatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- -Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Mansournezhad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Abstract
Atherosclerosis is the leading cause of acute cardiovascular events, and vascular calcification is an important pathological phenomenon in atherosclerosis. Recently, many studies have shown that immune cells are closely associated with the development of atherosclerosis and calcification, but there are many conflicting viewpoints because of immune system complications, such as the pro-atherosclerotic and atheroprotective effects of regulatory B cells (Bregs), T helper type 2 (Th2) cells and T helper type 17 (Th17) cells. In this review, we summarize the studies on the roles of immune cells, especially lymphocytes and macrophages, in atherosclerotic calcification. Furthermore, we prepared graphs showing the relationship between T cells, B cells and macrophages and atherosclerotic calcification. Finally, we highlight some potential issues that are closely associated with the function of immune cells in atherosclerotic calcification. Based on current research results, this review summarizes the relationship between immune cells and atherosclerotic calcification, and it will be beneficial to understand the relationship of immune cells and atherosclerotic calcification.
Collapse
Affiliation(s)
- Jingsong Cao
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
22
|
Mixed Lineage Kinase Domain-Like Pseudokinase (MLKL) Gene Expression in Human Atherosclerosis with and without Type 2 Diabetes Mellitus. IRANIAN BIOMEDICAL JOURNAL 2021; 25:265-74. [PMID: 34217157 DOI: 10.52547/ibj.25.4.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Mixed lineage kinase domain-like pseudokinase (MLKL), one of the main downstream components of the necroptosis or programmed necrosis has recently been demonstrated in advanced atherosclerotic lesions. However, its precise role in the atherosclerosis pathogenesis still requires more elucidation. Our study was set to delineate both the changes in peripheral MLKL gene expression and its influence on disease severity in atherosclerotic patients with and without type 2 diabetes mellitus. Methods The study involved 50 patients (20 non-diabetics and 30 diabetics) undergoing coronary artery bypass graft and 20 apparently healthy controls. Taqman RT-PCR was used to quantify MLKL mRNA expression levels, while ELISA was employed to estimate serum insulin and high sensitivity C-reactive protein (hsCRP) levels. Results Compared with the control group, MLKL gene was up regulated significantly in cardiovascular diseases (CVD; p ≤ 0.001). Higher MLKL expression was demonstrated in diabetic CVD group than non-diabetic group (p < 0.05). Correlation studies reported positive associations between MLKL and markers of dyslipidemia, inflammation, and insulin resistance. Multiple regression analysis revealed that FBG levels, hsCRP levels, and total white blood cells count were significant predictors for MLKL levels. Receiver operating characteristic curve showed a significant diagnostic value of MLKL for CVD. Moreover, regression analysis demonstrated that MLKL and hsCRP were independent predicting factors for the severity of CVD. Conclusion MLKL is linked to hallmarks of atherosclerosis and could explain increased cardiovascular risk in diabetic patients. Thus, it can be a potential drug target for treatment of atherosclerotic patients.
Collapse
|
23
|
Choi YY, Kim A, Seong KM. Chronic radiation exposure aggravates atherosclerosis by stimulating neutrophil infiltration. Int J Radiat Biol 2021; 97:1270-1281. [PMID: 34032557 DOI: 10.1080/09553002.2021.1934750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation exposure is known to increase the risk of chronic inflammatory diseases, such as atherosclerosis, by modulating inflammation. METHODS To investigate the infiltration of leukocytes in radiation-aggravated atherosclerosis, we examined low-density lipoprotein receptor-deficient (Ldlr-/-) mice and C57BL/6j mice after exposure to 0.5 or 1 Gy radiation over 16 weeks. RESULTS We found that radiation exposure induced atherosclerosis development in Ldlr-/- mice, as demonstrated by increased lipid-laden plaque size, reactive oxygen species levels, and levels of the pro-inflammatory cytokines, IL-1β and TNF-α, in the aortas and spleens. Total plasma cholesterol, triglyceride, and LDL cholesterol levels were also increased by radiation exposure, along with cardiovascular risk. We also showed dose-dependent increases in neutrophils and monocytes that coincided with a reduction in lymphocytes in the spleens of Ldlr-/- mice. The correlation between the infiltration of leukocytes and cytokine production was also confirmed in the hearts and spleens of these mice. CONCLUSIONS We concluded that chronic radiation exposure increased the production of pro-inflammatory mediators, which was associated with the migration of neutrophils and inflammatory monocytes into sites of atherosclerosis. Thus, our data suggest that the accumulation of neutrophils and inflammatory monocytes, together with the reduction of lymphocytes, contribute to aggravated atherosclerosis in Ldlr-/- mice under prolonged exposure to radiation.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
24
|
Rodríguez-Carrio J, Carrillo-López N, Ulloa C, Martín-Carro B, Rodríguez-Suárez C, Naves-Díaz M, Sánchez-Álvarez E, Rodríguez-García M, Arcidiacono MV, Fernández-Mariño B, Cannata-Andía JB, Suárez A, Dusso AS. Novel Immune Cell Subsets Exhibit Different Associations With Vascular Outcomes in Chronic Kidney Disease Patients-Identifying Potential Biomarkers. Front Med (Lausanne) 2021; 8:618286. [PMID: 34113627 PMCID: PMC8185045 DOI: 10.3389/fmed.2021.618286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Alterations in novel immune cell subsets, such as angiogenic T cells (Tang), senescent T cells (CD4+CD28null), and monocyte subsets are associated with impaired vascular homeostasis in several inflammatory conditions. However, mediators underlying vascular deterioration in chronic kidney disease (CKD) are poorly characterized. This study assessed their role in the vascular deterioration of CKD using a broad spectrum of surrogate markers ranging from altered functionality to overt calcification. Methods: Tang (CD3+CD31+CXCR4+), CD4+CD28null cells, and monocytes [CD14/CD16 subsets and angiotensin-converting enzyme (ACE) expression] were measured in peripheral blood by flow cytometry in 33 CKD stage 5 patients undergoing peritoneal dialysis (CKD5-PD) and 15 healthy controls (HCs). Analyses were replicated in a hemodialysis cohort. Vascular surrogate markers (including adventitial vasa vasorum, pulse wave velocity, intima-media thickness, and vascular calcification) were assessed by appropriate imaging methods. Results: In CKD5-PD, decreased Tang levels (p < 0.001) were unrelated to clinical features or traditional cardiovascular (CV) risk factors but correlated negatively with troponin T levels (r = −0.550, p = 0.003). Instead, CD4+CD28null frequency was increased (p < 0.001), especially in those with vascular calcifications. Quantitative and qualitative differences were also observed within the monocyte pool, a shift toward CD16+ subsets and ACE expression being found in CKD. Equivalent results were observed in the replication cohort. Each subset associated distinctly with adverse vascular outcomes in univariate and multivariate analyses: while Tang depletion was linked to poor vascular function and subclinical atherosclerosis, increases in CD4+CD28null were associated with overt vascular thickening and calcification. Monocytes were not independently associated with vascular outcomes in CKD patients. Conclusions: Novel T cell and monocyte subsets are altered in CKD. Altered T-cell subpopulations, but not monocytes, exhibited distinct associations with different vascular outcomes in CKD. Tang are emerging biomarkers of subclinical vascular deterioration in CKD.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,REDinREN-ISCIII, Oviedo, Spain
| | - Catalina Ulloa
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Nephrology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,REDinREN-ISCIII, Oviedo, Spain
| | | | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,REDinREN-ISCIII, Oviedo, Spain
| | - Emilio Sánchez-Álvarez
- REDinREN-ISCIII, Oviedo, Spain.,Department of Nephrology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Minerva Rodríguez-García
- REDinREN-ISCIII, Oviedo, Spain.,Division of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,REDinREN-ISCIII, Oviedo, Spain.,Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Adriana S Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,REDinREN-ISCIII, Oviedo, Spain.,Department of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
25
|
Akhtar S, Sharma A. Endothelial dysfunction sustains immune response in atherosclerosis: potential cause for ineffectiveness of prevailing drugs. Int Rev Immunol 2021; 41:123-134. [PMID: 33439070 DOI: 10.1080/08830185.2020.1866568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vascular endothelial dysfunction (ED) forms the cornerstone in the development of atherosclerotic lesions that clinically manifest as ischemia, myocardial infarction, stroke or peripheral arterial disease. ED can be triggered by various risk factors including hypercholesterolemia, hypertension, hyperhomocystenemia and chronic low-grade inflammation. These risk factors also activate immune response systemically. Current drugs used for managing atherosclerosis not only aid in subsiding the risk factor but also suppress the immune activation. Nonetheless, their effectiveness in treating ED is still questionable. Here, we discuss how pathologic molecules and processes pertaining to ED can activate innate and adaptive arms of the immune system leading to disease progression even in the absence of cardiovascular risk factors and the potential of the current drugs, used in the management of atherosclerotic patients, in reversing them. We mainly focus on activated endothelium, endothelial microparticles, mechanically stretched endothelial cells, endothelial mesenchymal transition and endothelial glycocalyx sheds.
Collapse
Affiliation(s)
- Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
26
|
Affiliation(s)
- Tsukasa Oshima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
27
|
Padgett LE, Dinh HQ, Wu R, Gaddis DE, Araujo DJ, Winkels H, Nguyen A, McNamara CA, Hedrick CC. Naive CD8 + T Cells Expressing CD95 Increase Human Cardiovascular Disease Severity. Arterioscler Thromb Vasc Biol 2020; 40:2845-2859. [PMID: 33054398 DOI: 10.1161/atvbaha.120.315106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cardiovascular disease (CVD) remains a significant global health concern with a high degree of mortality. While CD4+ T cells have been extensively studied in CVD, the importance of CD8+ T cells in this disease, despite their abundance and increased activation in human atherosclerotic plaques, remains largely unknown. Thus, the objective of this study was to compare peripheral T-cell signatures between humans with a high (severe) risk of CVD (including myocardial infarction or stroke) and those with a low risk of CVD. Approach and Results: Using mass cytometry, we uncovered a naive CD8+ T (TN) cell population expressing CD95 (termed CD95+CD8+ stem cell memory T [CD8 TSCM] cells) that was enriched in patients with high compared with low CVD. This T-cell subset enrichment within individuals with high CVD was a relative increase and resulted from the loss of CD95lo cells within the TN compartment. We found that CD8 TSCM cells positively correlated with CVD risk in humans, while CD8+ TN cells were inversely correlated. Atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice also displayed respective 7- and 2-fold increases in CD8+ TSCM frequencies within the peripheral blood and aorta-draining paraaortic lymph nodes compared with C57BL/6J mice. CD8+ TSCM cells were 1.7-fold increased in aortas from western diet fed ApoE-/- mice compared with normal laboratory diet-fed ApoE-/- mice. Importantly, transfer of TSCM cells into immune-deficient Rag.Ldlr recipient mice that lacked T cells increased atherosclerosis, illustrating the importance of these cells in atherogenesis. CONCLUSIONS CD8+ TSCM cells are increased in humans with high CVD. As these TSCM cells promote atherosclerosis, targeting them may attenuate atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Huy Q Dinh
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Anh Nguyen
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Coleen A McNamara
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| |
Collapse
|
28
|
Chang TT, Yang HY, Chen C, Chen JW. CCL4 Inhibition in Atherosclerosis: Effects on Plaque Stability, Endothelial Cell Adhesiveness, and Macrophages Activation. Int J Mol Sci 2020; 21:ijms21186567. [PMID: 32911750 PMCID: PMC7555143 DOI: 10.3390/ijms21186567] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is an arterial inflammatory disease. The circulating level of the C-C chemokine ligand (CCL4) is increased in atherosclerotic patients. This study aimed to investigate whether CCL4 inhibition could retard the progression of atherosclerosis. In ApoE knockout mice, CCL4 antibody treatment reduced circulating interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α levels and improved lipid profiles accompanied with upregulation of the liver X receptor. CCL4 inhibition reduced the atheroma areas and modified the progression of atheroma plaques, which consisted of a thicker fibrous cap with a reduced macrophage content and lower matrix metalloproteinase-2 and -9 expressions, suggesting the stabilization of atheroma plaques. Human coronary endothelial cells (HCAECs) and macrophages were stimulated with TNF-α or oxidized LDL (ox-LDL). The induced expression of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were attenuated by the CCL4 antibody or CCL4 si-RNA. CCL4 inhibition reduced the adhesiveness of HCAECs, which is an early sign of atherogenesis. CCL4 blockade reduced the activity of metalloproteinase-2 and -9 and the production of TNF-α and IL-6 in stimulated macrophages. The effects of CCL4 inhibition on down-regulating adhesion and inflammation proteins were obtained through the nuclear factor kappa B (NFκB) signaling pathway. The direct inhibition of CCL4 stabilized atheroma and reduced endothelial and macrophage activation. CCL4 may be a novel therapeutic target for modulating atherosclerosis.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (T.-T.C.); (H.-Y.Y.); (C.C.)
| | - Hsin-Ying Yang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (T.-T.C.); (H.-Y.Y.); (C.C.)
| | - Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (T.-T.C.); (H.-Y.Y.); (C.C.)
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (T.-T.C.); (H.-Y.Y.); (C.C.)
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Tel.: +886-2-28757730; Fax: +886-2-28711601
| |
Collapse
|
29
|
Sharebiani H, Mohareri M, Mirhosseini A, Fazeli B. The IL-33/sST2 Axis in Thromboangiitis Obliterans. J Inflamm Res 2020; 13:317-323. [PMID: 32765040 PMCID: PMC7371438 DOI: 10.2147/jir.s253980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
Background Until recently, it remains unknown whether thromboangiitis obliterans (TAO) is a type of systemic vasculitis. A high level of IL-33 and its soluble decoy receptor sST2 in the acute phase of systemic vasculitis has been demonstrated. Methods The serum level of IL-33 and sST2 in 50 TAO patients, 20 age- and smoking habit-matched controls and 19 age-matched non-smoker controls was evaluated. Results The mean level of IL-33 in TAO, smokers and non-smokers was 370.2±61.7ng/mL,132.14±2.6ng/mL and 11.3±0.38ng/mL, respectively. The IL-33 was significantly higher in the TAO than in either control groups (p < 0.001). The IL-33 in the acute phase of TAO was significantly higher than in the patients in the quiescent phase of the disease (p = 0.019). Also, IL-33 in the patients with gangrene was significantly higher than in the patients with non-healing ulcers (p = 0.021). The sST2 in the TAO patients was 49.3±5.58ng/mL, and in smoker and non-smoker controls, it was 45.3±6.3ng/mL and 4.11±0.17ng/mL, respectively. No significant difference was found between the patients and smoker control groups (p = 0.87). The mean ratio of IL-33/sST2 was 27.89±10.44 in the TAO group and, in smokers and non-smokers, it was 2.85±0.48 and 2.84±0.14, respectively. A significantly high level of IL-33/sST2 ratio was observed in TAO patients in both the active and quiescent phases of the disease in comparison to both control groups (p<0.001). Conclusion The regulation pattern of IL-33/sST2 was different in TAO in comparison to autoimmune vasculitis.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mohareri
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Vascular Independent Research and Education, European Foundation, Milan, Italy
| |
Collapse
|
30
|
Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R, Willis MS, Bultman SJ, Luft JC, DeSimone JM, Jia Z, Maeda N, Yi X. New insights into immunomodulation via overexpressing lipoic acid synthase as a therapeutic potential to reduce atherosclerosis. Vascul Pharmacol 2020; 133-134:106777. [PMID: 32750408 DOI: 10.1016/j.vph.2020.106777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 01/24/2023]
Abstract
Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.
Collapse
Affiliation(s)
- Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Japan
| | - Sylvia Hiller
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen Simington
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy W Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Roberto Mota
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, Department of Pathology & Laboratory Medicine, and Krannert Institute of Cardiology and Division of Cardiology, Department of Internal Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys MS 5067, Indianapolis, IN 46202, USA
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Christopher Luft
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph M DeSimone
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nobuyo Maeda
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianwen Yi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Kalantar K, Farzaneh Z, Eshkevar Vakili M, Karimi MH, Asadi M, Khosropanah S, Doroudchi M. T cell responses to an HLA-A2-restricted adipophilin peptide correlate with BMI in patients with atherosclerosis. Physiol Int 2020; 107:280-293. [PMID: 32692717 DOI: 10.1556/2060.2020.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Introduction Atherosclerosis is an inflammatory disease causing a vast array of cardiovascular diseases. Adipophilin has been reported to be highly expressed in atherosclerotic lesions. This study investigated the possible existence of auto-reactive T cells against an HLA-A02-restricted adipophilin-derived peptide as well as peptides from Epstein-barr virus (EBV), Cytomegalovirus (CMV) and influenza (Flu) virus in patients with atherosclerosis. Methods HLA-A02 expression on peripheral blood mononuclear cells (PBMCs) was examined by flow cytometry. PBMCs from HLA-A02 individuals were stimulated with adipophilin, CMV, EBV, and Flu peptides at a concentration of 10 µM. Interferon (IFN)-γ production was evaluated in the culture supernatant using a commercial ELISA test. Results The levels of IFN-γ production against an HLA-A02-restricted adipophilin peptide and peptides from CMV, EBV, and Flu revealed no statistically significant differences between patients and healthy controls. However, we found a positive correlation between IFN-γ production against adipophilin and Body mass index (BMI) of patients (R = 0.8, P = 0.003), whereas no significant correlation was found in healthy controls (R = -0.267, P = 0.378). No correlation between BMI and IFN-γ production against CMV, EBV, or Flu peptides was found. Discussion Atherosclerotic patients with higher BMIs might have greater numbers of T cells against adipophilin that is highly expressed in atherosclerotic plaques. Therefore, autoimmune reactions may have a greater role in the development of atherosclerosis in individuals with higher BMI.
Collapse
Affiliation(s)
- K Kalantar
- 1Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Z Farzaneh
- 1Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - M Eshkevar Vakili
- 1Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - M H Karimi
- 3Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - M Asadi
- 1Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - S Khosropanah
- 2Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - M Doroudchi
- 1Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| |
Collapse
|
32
|
Bernardi S, Toffoli B, Tonon F, Francica M, Campagnolo E, Ferretti T, Comar S, Giudici F, Stenner E, Fabris B. Sex Differences in Proatherogenic Cytokine Levels. Int J Mol Sci 2020; 21:ijms21113861. [PMID: 32485823 PMCID: PMC7311959 DOI: 10.3390/ijms21113861] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It has been shown that sex affects immunity, including cytokine production. Given that atherosclerosis is an inflammatory disease promoted by specific cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, we aimed at evaluating whether sex could affect the levels of these proatherogenic cytokines in a group of healthy adults. In this analysis, we also included other cytokines and peptides that have been implicated in atherosclerosis development and progression. METHODS A total of 104 healthy adults were recruited; we measured circulating levels of IL-1β, IL-6, TNF-α, angiotensins and angiotensin-converting enzyme-2 (ACE2), as well as osteoprotegerin and receptor activator of nuclear factor κB ligand (RANKL). RESULTS IL-1β, IL-6, and TNF-α were significantly higher in men as compared to women. They were all associated with testosterone and the testosterone/estradiol ratio. They remained significantly associated with sex (but not with hormones) after being tested for potential confounders. CONCLUSIONS Sex seems to influence the levels of proatherogenic cytokines. This is consistent not only with sex differences in vulnerability to infections but also with the higher cardiovascular risk exhibited by the male gender as compared to the female gender. Nevertheless, this association is only partly explained by hormone levels.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
- ASUGI Azienda Sanitaria Universitaria Integrata di Trieste, Cattinara Teaching Hospital, UCO Medicina Clinica, 34100 Trieste, Italy
- Correspondence: ; Tel.: +39-040-399-4318
| | - Barbara Toffoli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34100 Trieste, Italy;
| | - Federica Tonon
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
| | - Morena Francica
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
| | - Elena Campagnolo
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
| | - Tommaso Ferretti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
| | - Sarah Comar
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
- ASUGI Azienda Sanitaria Universitaria Integrata di Trieste, Cattinara Teaching Hospital, UCO Medicina Clinica, 34100 Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34100 Trieste, Italy;
- Department of Life Sciences, University of Trieste, 34100 Trieste, Italy
| | - Fabiola Giudici
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
- ASUGI Azienda Sanitaria Universitaria Integrata di Trieste, Cattinara Teaching Hospital, UCO Medicina Clinica, 34100 Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34100 Trieste, Italy;
- Department of Life Sciences, University of Trieste, 34100 Trieste, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35100 Padova, Italy
| | - Elisabetta Stenner
- Department of Diagnostics, Azienda USL Toscana Nordovest, 57100 Livorno, Italy;
| | - Bruno Fabris
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara Teaching Hospital UCO Medicina Clinica, 34100 Trieste, Italy; (F.T.); (M.F.); (E.C.); (T.F.); (S.C.); (F.G.); (B.F.)
- ASUGI Azienda Sanitaria Universitaria Integrata di Trieste, Cattinara Teaching Hospital, UCO Medicina Clinica, 34100 Trieste, Italy
| |
Collapse
|
33
|
Sun Y, Li L, Wu Y, Yang K. PD-1/PD-L1 in cardiovascular disease. Clin Chim Acta 2020; 505:26-30. [PMID: 32084380 DOI: 10.1016/j.cca.2020.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
The PD-1/PD-L1 coinhibitory pathway has critical roles in the immune response and autoimmunity via the regulation of T cell activity. Excessive activity and high expression of this pathway suppresses the function of T cells and immunity. Recent research has indicated that tumour cells express high levels of PD-L1, which has an immunosuppressive effect and can result in treatment failure. Anti-PD-L1 or anti-PD-1 agents have well-established beneficial effects on mortality and quality of life in cancer patients. Based on the regulatory effects and therapeutic value of the PD-1/PD-L1 pathway in malignant disorders, we propose that it also regulates cell immunity and in CHD and atherosclerosis. Low expression level of PD-1/ PD-L1 or anti-PD-1/PD-L1 therapy accelerates the immune processes in CHD and aggravates disease according to numerous studies. A few studies have provided strong evidence that changes in the expression levels of PD-1 or PD-L1 can alter the degree of inflammation and the state of coronary plaques in atherosclerosis. In this review, we summarise the alterations of the PD-1/PD-L1 pathway and discuss its role in CHD.
Collapse
Affiliation(s)
- YunFeng Sun
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - Liang Li
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - YaWei Wu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - KePing Yang
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China; Department of Cardiology, Jingzhou Central Hospital, 434020 Jingzhou City, Hubei Province, China.
| |
Collapse
|
34
|
Abstract
The role of inflammation in cardiovascular disease (CVD) is now widely accepted. Immune cells, including T cells, are influenced by inflammatory signals and contribute to the onset and progression of CVD. T cell activation is modulated by T cell co-stimulation and co-inhibition pathways. Immune checkpoint inhibitors (ICIs) targeting T cell inhibition pathways have revolutionized cancer treatment and improved survival in patients with cancer. However, ICIs might induce cardiovascular toxicity via T cell re-invigoration. With the rising use of ICIs for cancer treatment, a timely overview of the role of T cell co-stimulation and inhibition molecules in CVD is desirable. In this Review, the importance of these molecules in the pathogenesis of CVD is highlighted in preclinical studies on models of CVD such as vein graft disease, myocarditis, graft arterial disease, post-ischaemic neovascularization and atherosclerosis. This Review also discusses the therapeutic potential of targeting T cell co-stimulation and inhibition pathways to treat CVD, as well as the possible cardiovascular benefits and adverse events after treatment. Finally, the Review emphasizes that patients with cancer who are treated with ICIs should be monitored for CVD given the reported association between the use of ICIs and the risk of cardiovascular toxicity.
Collapse
|
35
|
Semo J, Chernin G, Jonas M, Shimoni S, George J. Deletion of the Mir-106b~ 25 MicroRNA cluster attenuates atherosclerosis in Apolipoprotein E knockout mice. Lipids Health Dis 2019; 18:208. [PMID: 31796057 PMCID: PMC6889727 DOI: 10.1186/s12944-019-1155-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Background MicroRNAs are short non-coding RNAs that regulate gene expression. The aim of this study was to gain an understanding of the possible role of the miR-106b~ 25 microRNA cluster in regulating atherosclerosis in mice. Methods MiR-106b~ 25 knockout mice were outcrossed into Apolipoprotein E (ApoE) knockout background to generate double knockout mice. At 36 weeks of age, lesion size was evaluated in the aortic sinus by oil-red-O staining. Results Lesion size was 2-fold smaller in double KO mice in comparison to ApoE KO mice. In addition, collagen staining showed a trend towards a stable plaque phenotype in the double KO mice. Lipid profiling of plasma samples of double KO and ApoE KO mice using FPLC revealed over 2-fold decrease in Very low density lipoprotein (VLDL) cholesterol content and a 50% decrease in low density lipoprotein (LDL) cholesterol content in double KO mice. By using target prediction software, we have identified several possible targets for the miR-106b~ 25 cluster including the VLDL and LDL receptors. We found that upon feeding miR-106b~ 25 KO mice with high fat diet, the expression of LDL and VLDL receptors was higher than in the wild-type mice, suggesting the miR-106b~ 25 cluster regulates atherosclerosis by influencing clearance of VLDL and LDL from the plasma. Conclusions We identified the miR-106b~ 25 cluster as a novel regulator of atherosclerosis in ApoE KO mice, presumably by regulating plasma cholesterol levels.
Collapse
Affiliation(s)
- Jonathan Semo
- Heart Center, Kaplan Medical Center and the Hebrew University School of Medicine, Rehovot, Israel
| | - Gil Chernin
- Nephrology and Hypertension Department, Kaplan Medical Center and the Hebrew University School of Medicine, P.O. Box 1, 76100, Rehovot, Israel.
| | - Michael Jonas
- Heart Center, Kaplan Medical Center and the Hebrew University School of Medicine, Rehovot, Israel
| | - Sara Shimoni
- Heart Center, Kaplan Medical Center and the Hebrew University School of Medicine, Rehovot, Israel
| | - Jacob George
- Heart Center, Kaplan Medical Center and the Hebrew University School of Medicine, Rehovot, Israel.
| |
Collapse
|
36
|
Albany CJ, Trevelin SC, Giganti G, Lombardi G, Scottà C. Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Front Immunol 2019; 10:2795. [PMID: 31849973 PMCID: PMC6894511 DOI: 10.3389/fimmu.2019.02795] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Atherosclerosis is directly associated with CVD and is characterized by slow progressing inflammation which results in the deposition and accumulation of lipids beneath the endothelial layer in conductance and resistance arteries. Both chronic inflammation and disease progression have been associated with several risk factors, including but not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and hypertension. Currently, despite increasing incidence and significant expense on the healthcare system in both western and developing countries, there is no curative therapy for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert vessel occlusion, and pharmacological management of the aforementioned risk factors. However, neither of these approaches completely resolve the underlying inflammatory environment which perpetuates the disease, nor do they result in plaque regression. As such, immunomodulation could provide a novel therapeutic option for atherosclerosis; shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells (Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have been shown to be athero-protective and could function as new targets in both CVD and atherosclerosis. This review aims to give a comprehensive overview about the roles of Tregs in CVD, focusing on atherosclerosis.
Collapse
Affiliation(s)
- Caraugh J Albany
- British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| | - Silvia C Trevelin
- British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Giulio Giganti
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom.,Department of Internal Medicine, University of Milan, Milan, Italy
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Gaddis DE, Padgett LE, Wu R, Hedrick CC. Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3237-3246. [PMID: 31740486 DOI: 10.4049/jimmunol.1900245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Neuropilin 1 (Nrp1) is a type I transmembrane protein that plays important roles in axonal guidance, neuronal development, and angiogenesis. Nrp1 also helps migrate thymus-derived regulatory T cells to vascular endothelial growth factor (VEGF)-producing tumors. However, little is known about the role of Nrp1 on CD4 T cells in atherosclerosis. In ApoE-/- mice fed a Western diet for 15 wk, we found a 2-fold increase in Nrp1+Foxp3- CD4 T cells in their spleens, periaortic lymph nodes, and aortas, compared with chow-fed mice. Nrp1+Foxp3- CD4 T cells had higher proliferation potential, expressed higher levels of the memory marker CD44, and produced more IFN-γ when compared with Nrp1- CD4 T cells. Treatment of CD4 T cells with oxLDL increased Nrp1 expression. Furthermore, atherosclerosis-susceptible mice selectively deficient for Nrp1 expression on T cells developed less atherosclerosis than their Nrp1-sufficient counterparts. Mechanistically, we found that CD4 T cells that express Nrp1 have an increased capacity to migrate to the aorta and periaortic lymph nodes compared to Nrp1- T cells, suggesting that the expression of Nrp1 facilitates the recruitment of CD4 T cells into the aorta where they can be pathogenic. Thus, we have identified a novel role of Nrp1 on CD4 T cells in atherosclerosis. These results suggest that manipulation of Nrp1 expression on T cells can affect the outcome of atherosclerosis and lower disease incidence.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
38
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
39
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
40
|
Taghizadeh E, Taheri F, Renani PG, Reiner Ž, Navashenaq JG, Sahebkar A. Macrophage: A Key Therapeutic Target in Atherosclerosis? Curr Pharm Des 2019; 25:3165-3174. [DOI: 10.2174/1381612825666190830153056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Background:
Atherosclerosis is a chronic inflammatory disease and a leading cause of coronary artery
disease, peripheral vascular disease and stroke. Lipid-laden macrophages are derived from circulating monocytes
and form fatty streaks as the first step of atherogenesis.
Methods:
An electronic search in major databases was performed to review new therapeutic opportunities for
influencing the inflammatory component of atherosclerosis based on monocytes/macrophages targeting.
Results:
In the past two decades, macrophages have been recognized as the main players in atherogenesis but also
in its thrombotic complications. There is a growing interest in immunometabolism and recent studies on metabolism
of macrophages have created new therapeutic options to treat atherosclerosis. Targeting recruitment, polarization,
cytokine profile extracellular matrix remodeling, cholesterol metabolism, oxidative stress, inflammatory
activity and non-coding RNAs of monocyte/macrophage have been proposed as potential therapeutic approaches
against atherosclerosis.
Conclusion:
Monocytes/macrophages have a crucial role in progression and pathogenesis of atherosclerosis.
Therefore, targeting monocyte/macrophage therapy in order to achieve anti-inflammatory effects might be a good
option for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Forough Taheri
- Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | | | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Department of Internal Medicine, Zagreb, Croatia
| | - Jamshid G. Navashenaq
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
41
|
Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol 2019; 317:H375-H386. [DOI: 10.1152/ajpheart.00206.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is now considered a chronic maladaptive inflammatory disease. The hallmark feature in both human and murine disease is atherosclerotic plaques. Macrophages and various T-cell lineages play a crucial role in atherosclerotic plaque establishment and disease progression. Humans and mice share many of the same processes that occur within atherogenesis. The various similarities enable considerable insight into disease mechanisms and those which contribute to cardiovascular complications. The apolipoprotein E-null and low-density lipoprotein receptor-null mice have served as the foundation for further immunological pathway manipulation to identify pro- and antiatherogenic pathways in attempt to reveal more novel therapeutic targets. In this review, we provide a translational perspective and discuss the roles of macrophages and various T-cell lineages in contrasting proatherosclerotic and atheroprotective settings.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
42
|
Abdolmaleki F, Gheibi Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Atherosclerosis and immunity: A perspective. Trends Cardiovasc Med 2019; 29:363-371. [DOI: 10.1016/j.tcm.2018.09.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
|
43
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
44
|
Oppi S, Lüscher TF, Stein S. Mouse Models for Atherosclerosis Research-Which Is My Line? Front Cardiovasc Med 2019; 6:46. [PMID: 31032262 PMCID: PMC6473202 DOI: 10.3389/fcvm.2019.00046] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is one of the primary causes of cardiovascular disease and mortality. This chronic immunometabolic disease evolves during decades in humans and encompasses different organs and immune cell types, as well as local and systemic processes that promote the progression of the disease. The most frequently used animal model to study these atherogenic processes and inter-organ crosstalk in a short time frame are genetically modified mouse models. Some models have been used throughout the last decades, and some others been developed recently. These models have important differences in cholesterol and lipoprotein metabolism, reverse cholesterol transport pathway, obesity and diabetes as well as inflammatory processes. Therefore, the disease develops and progresses differently in the various mouse models. Since atherosclerosis is a multifaceted disease and many processes contribute to its progression, the choice of the right mouse model is important to study specific aspects of the disease. We will describe the different mouse models and provide a roadmap to facilitate current and future atherosclerosis researchers to choose the right model depending on their scientific question.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Heart Division, Royal Brompton & Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Loss of Regulatory Immune Function in Coronary Artery Disease Patients from the Indian Population. J Cardiovasc Transl Res 2019; 12:378-388. [DOI: 10.1007/s12265-019-09872-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
47
|
Hoekstra M, Nahon JE, de Jong LM, Kröner MJ, de Leeuw LR, Van Eck M. Inhibition of PRMT3 activity reduces hepatic steatosis without altering atherosclerosis susceptibility in apoE knockout mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1402-1409. [PMID: 30776415 DOI: 10.1016/j.bbadis.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
The nuclear receptor liver X receptor (LXR) impacts on cholesterol metabolism as well as hepatic lipogenesis via transcriptional regulation. It is proposed that inhibition of the protein arginine methyltransferase 3 (PRMT3) uncouples these two transcriptional pathways in vivo by acting as a specific lipogenic coactivator of LXR. Here we validated the hypothesis that treatment with the allosteric PRMT3 inhibitor SGC707 will diminish the hepatic steatosis extent, while leaving global cholesterol metabolism, important in cholesterol-driven pathologies like atherosclerosis, untouched. For this purpose, 12-week old hyperlipidemic apolipoprotein E knockout mice were fed a Western-type diet for six weeks to induce both hepatic steatosis and atherosclerosis. The mice received 3 intraperitoneal injections with SGC707 or solvent control per week. Mice chronically treated with SGC707 developed less severe hepatic steatosis as exemplified by the 51% reduced (P < 0.05) liver triglyceride levels. In contrast, the extent of in vivo macrophage foam cell formation and aortic root atherosclerosis was not affected by SGC707 treatment. Interestingly, SGC707-treated mice gained 94% less body weight (P < 0.05), which was paralleled by changes in white adipose tissue morphology, i.e. reduction in adipocyte size and browning. In conclusion, we have shown that through PRMT3 inhibitor treatment specific functions of LXR involved in respectively the development of fatty liver disease and atherosclerosis can be uncoupled, resulting in an overall diminished hepatic steatosis extent without a negative impact on atherosclerosis susceptibility. As such, our studies highlight that PRMT3 inhibition may constitute a novel therapeutic approach to limit the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands..
| | - Joya E Nahon
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Laura M de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Lidewij R de Leeuw
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| |
Collapse
|
48
|
Del Porto F, Cifani N, Proietta M, Dezi T, Panzera C, Ficarelli R, Taurino M. Inflammation and immune response in carotid artery stenosis. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2019. [DOI: 10.23736/s1824-4777.18.01385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Chen PY, Simons M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr Opin Lipidol 2018; 29:397-403. [PMID: 30080704 PMCID: PMC6290915 DOI: 10.1097/mol.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite much effort, atherosclerosis remains an important public health problem, leading to substantial morbidity and mortality worldwide. The purpose of this review is to provide an understanding of the role of endothelial cell fate change in atherosclerosis process. RECENT FINDINGS Recent studies indicate that a process known as endothelial-to-mesenchymal transition (EndMT) may play an important role in atherosclerosis development. Transforming growth factor beta (TGFβ) has been shown to be an important driver of the endothelial cell phenotype transition. SUMMARY The current review deals with the current state of knowledge regarding EndMT's role in atherosclerosis and its regulation by fibroblast growth factor (FGF)-TGFβ cross-talk. A better understanding of FGF-TGFβ signaling in the regulation of endothelial cell phenotypes is key to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
50
|
Liu W, Chang C, Hu H, Yang H. Interleukin-23: A New Atherosclerosis Target. J Interferon Cytokine Res 2018; 38:440-444. [PMID: 30328797 DOI: 10.1089/jir.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Wenjing Liu
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Chao Chang
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Hua Yang
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| |
Collapse
|