1
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Vavřínová A, Behuliak M, Vaněčková I, Zicha J. The abnormalities of adrenomedullary hormonal system in genetic hypertension: Their contribution to altered regulation of blood pressure. Physiol Res 2021; 70:307-326. [PMID: 33982588 PMCID: PMC8820560 DOI: 10.33549/physiolres.934687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
It is widely accepted that sympathetic nervous system plays a crucial role in the development of hypertension. On the other hand, the role of adrenal medulla (the adrenomedullary component of the sympathoadrenal system) in the development and maintenance of high blood pressure in man as well as in experimental models of hypertension is still controversial. Spontaneously hypertensive rats (SHR) are the most widely used animal model of human essential hypertension characterized by sympathetic hyperactivity. However, the persistence of moderately elevated blood pressure in SHR subjected to sympathectomy neonatally as well as the resistance of adult SHR to the treatment by sympatholytic drugs suggests that other factors (including enhanced activity of the adrenomedullary hormonal system) are involved in the pathogenesis of hypertension of SHR. This review describes abnormalities in adrenomedullary hormonal system of SHR rats starting with the hyperactivity of brain centers regulating sympathetic outflow, through the exaggerated activation of sympathoadrenal preganglionic neurons, to the local changes in chromaffin cells of adrenal medulla. All the above alterations might contribute to the enhanced release of epinephrine and/or norepinephrine from adrenal medulla. Special attention is paid to the alterations in the expression of genes involved in catecholamine biosynthesis, storage, release, reuptake, degradation and adrenergic receptors in chromaffin cells of SHR. The contribution of the adrenomedullary hormonal system to the development and maintenance of hypertension as well as its importance during stressful conditions is also discussed.
Collapse
Affiliation(s)
- A Vavřínová
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
3
|
Vavřínová A, Behuliak M, Bencze M, Vaněčková I, Zicha J. Which sympathoadrenal abnormalities of adult spontaneously hypertensive rats can be traced to a prehypertensive stage? Hypertens Res 2019; 42:949-959. [DOI: 10.1038/s41440-018-0198-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
4
|
Sahoo S, S. B. Pharmacogenomic assessment of herbal drugs in affective disorders. Biomed Pharmacother 2019; 109:1148-1162. [DOI: 10.1016/j.biopha.2018.10.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
5
|
Fan Y, Chen P, Raza MU, Szebeni A, Szebeni K, Ordway GA, Stockmeier CA, Zhu MY. Altered Expression of Phox2 Transcription Factors in the Locus Coeruleus in Major Depressive Disorder Mimicked by Chronic Stress and Corticosterone Treatment In Vivo and In Vitro. Neuroscience 2018; 393:123-137. [PMID: 30315878 DOI: 10.1016/j.neuroscience.2018.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Phox2a and Phox2b are two homeodomain transcription factors playing a pivotal role in the development of noradrenergic neurons during the embryonic period. However, their expression and function in adulthood remain to be elucidated. Using human postmortem brain tissues, rat stress models and cultured cells, this study aimed to examine the alteration of Phox2a and Phox2b expression. The results show that Phox2a and Phox2b are normally expressed in the human locus coeruleus (LC) in adulthood. Furthermore, the levels of Phox2a protein and mRNA and protein levels of Phox2b were significantly elevated in the LC of brain donors that suffered from the major depressive disorder, as compared to age-matched and psychiatrically normal control donors. Fischer 344 rats subjected to chronic social defeat showed higher mRNA and protein levels of Phox2a and Phox2b in the LC, as compared to non-stressed control rats. In rats chronically administered oral corticosterone, mRNA and protein levels of Phox2b, but not Phox2a, in the LC were significantly increased. In addition, the corticosterone-induced increase in Phox2b protein was reversed by simultaneous treatment with either mifepristone or spironolactone. Exposing SH-SY5Y cells to corticosterone significantly increased expression of Phox2a and Phox2b, which was blocked by corticosteroid receptor antagonists. Taken together, these experiments reveal that Phox2 genes are expressed throughout the lifetime in the LC of humans and Fischer 344 rats. Alterations in their expression may play a role in major depressive disorder and possibly other stress-related disorders through their modulatory effects on the noradrenergic phenotype.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Ping Chen
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Attila Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katalin Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A Ordway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
6
|
Gai Y, Zhang J, Wei C, Cao W, Cui Y, Cui S. miR-375 negatively regulates the synthesis and secretion of catecholamines by targeting Sp1 in rat adrenal medulla. Am J Physiol Cell Physiol 2017; 312:C663-C672. [PMID: 28356269 DOI: 10.1152/ajpcell.00345.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
The adrenal gland is an important endocrine gland in balancing homeostasis and the response to stress by synthesizing and secreting catecholamines (CATs), and it has been confirmed that microRNA-375 (miR-375) is highly expressed in adrenal medulla. However, up to now there are few reports about the functions and related mechanisms in adrenal medulla. The present study was thus designed to study the roles and related mechanisms in rat adrenal medulla. Our results showed that miR-375 was specifically expressed in rat adrenal medulla chromaffin cells, and its expression was downregulated when rats were exposed to stress. The further functional studies demonstrated that the inhibition of endogenous miR-375 induced the secretion of CATs in primary rat medulla chromaffin cells and PC12 cells, whereas miR-375 overexpression resulted in a decline of CAT secretion. In addition, our results showed that miR-375 negatively regulated tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH) and mediated adrenomedullary CAT biosynthesis. These functions of miR-375 were accomplished by its binding to the 3'-untranslated region of Sp1, which was involved in the regulation of TH and DBH expressions. These novel findings suggest that miR-375 acts as a potent negative mediator in regulating the synthesis and secretion of CATs in the adrenal medulla during the maintenance of homeostasis under stress.
Collapse
Affiliation(s)
- Yedan Gai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; and
| | - Jinglin Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; and
| | - Chao Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; and
| | - Wei Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; and
| | - Yan Cui
- The 306th Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; and
| |
Collapse
|
7
|
Mravec B, Vargovic P, Filipcik P, Novak M, Kvetnansky R. Effect of a single and repeated stress exposure on gene expression of catecholamine biosynthetic enzymes in brainstem catecholaminergic cell groups in rats. Eur J Neurosci 2015; 42:1872-86. [PMID: 25994480 DOI: 10.1111/ejn.12955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022]
Abstract
Brainstem catecholaminergic neurons significantly participate in the regulation of neuroendocrine system activity, particularly during stressful conditions. However, so far the precise quantitative characterisation of basal and stress-induced changes in gene expression and protein levels of catecholaminergic biosynthetic enzymes in these neurons has been missing. Using a quantitative reverse transcription-polymerase chain reaction method, we investigated gene expression of catecholamine biosynthetic enzymes in brainstem noradrenergic and adrenergic cell groups in rats under resting conditions as well as in acutely and repeatedly stressed animals. For the first time, we described quantitative differences in basal levels of catecholamine biosynthetic enzyme mRNA in brainstem catecholaminergic ascending and descending projecting cell groups. Moreover, we found and defined some differences among catecholaminergic cell groups in the time-course of mRNA levels of catecholaminergic enzymes following a single and especially repeated immobilisation stress. The data obtained support the assumption that brainstem catecholaminergic cell groups represent a functionally differentiated system, which is highly (but specifically) activated in rats exposed to stress. Therefore, potential interventions for the treatment of stress-related diseases need to affect the activity of brainstem catecholaminergic neurons not uniformly but with some degree of selectivity.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Peter Vargovic
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| |
Collapse
|
8
|
GAVRILOVIC LJUBICA, STOJILJKOVIC VESNA, KASAPOVIC JELENA, POPOVIC NATASA, PAJOVIC SNEZANAB, DRONJAK SLADJANA. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats. AN ACAD BRAS CIENC 2013; 85:999-1012. [DOI: 10.1590/s0001-37652013005000041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/27/2012] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase) and cyclic adenosine monophosphate response element-binding (CREB) in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT) in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.
Collapse
|
9
|
FAN YAN, CHEN PING, LI YING, ZHU MENGYANG. Effects of chronic social defeat on expression of dopamine β-hydroxylase in rat brains. Synapse 2013; 67:300-12. [PMID: 23389997 PMCID: PMC9338777 DOI: 10.1002/syn.21641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/29/2013] [Indexed: 12/23/2023]
Abstract
It is documented that stress activates the locus coeruleus-norepinephrine system. However, there are far few reports regarding effects of stress on the expression of dopamine β-hydroxylase, a hallmark enzyme of the noradrenergic neuron. In the present study, adult Fischer 344 rats were subjected to chronic social defeat for 4 weeks. Dopamine β-hydroxylase expressional levels in the locus coeruleus and its terminal regions were measured by in situ hybridization and western blotting. The results showed that immediately following chronic social defeat there are significantly increased mRNA and protein levels of dopamine β-hydroxylase in the locus coeruleus, and dopamine β-hydroxylase protein levels in the hippocampus, frontal cortex and amygdala, compared with those in the control. This chronic social defeat-induced upregulation of dopamine β-hydroxylase was completely abolished by adrenalectomy, and/or by treatment with corticosteroid receptor antagonists, mifepristone and spironolactone, either alone or in combination. Furthermore, treatment with desipramine, an antidepressant with specific inhibitory effects on norepinephrine transport, prevented an increased dopamine β-hydroxylase expression by chronic social defeat in the locus coeruleus and its main terminal regions such as the hippocampus, frontal cortex and amygdala. However, treatment with fluoxetine, an antidepressant with specific inhibition for serotonin transport, only selectively blocked increased dopamine β-hydroxylase protein levels in the hippocampus caused by CSD. The present findings indicate that chronic social defeat activates the locus coeruleus-norepinephrine system by upregulating the expression of dopamine β-hydroxylase, which may increase norepinephrine synthesis. This chronic social defeat induced upregulation of DBH expression was mediated through corticosterone and corticosteroid receptors, with possible interference from antidepressants.
Collapse
Affiliation(s)
- YAN FAN
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - PING CHEN
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- The Laboratory of Developmental Epigenetics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - YING LI
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - MENG-YANG ZHU
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
10
|
Does exposure to chronic stress influence blood pressure in rats? Auton Neurosci 2013; 177:217-23. [PMID: 23721955 DOI: 10.1016/j.autneu.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 11/23/2022]
Abstract
The principal aim of this study was to determine whether prolonged chronic footshock stress can evoke sustained changes in blood pressure in rats and to elucidate possible underlying neurochemical mechanisms as mediated by the sympathoadrenal system. Adult male Wistar rats instrumented for telemetric recording of arterial pressure, heart rate and locomotor activity were subjected to six weeks of inescapable unpredictable electrical footshocks (FS+) or were exposed to shock chambers but were not shocked (FS-). Compared to FS- animals, FS+ animals had significantly reduced body weight gain (by 30%), locomotor activity (by 25%) and social interaction time (by 30%)--symptoms commonly induced by chronic stress and depression in humans. These changes were associated with small, but significant increases in systolic blood pressure (by 7%) and pulse pressure (by 11%) in FS+ rats relative to FS- rats. We have also found neurochemical alterations in sympathoadrenal pathways (that lasted for at least one week post-stress) including about 2-3 fold increases in the levels of tyrosine hydroxylase phosphorylation in the sympathetic ganglia and adrenal gland and a 1.8-fold increase in the expression of the Angiotensin II receptor type 1 protein in the adrenal gland of FS+ rats relative to FS- rats. We conclude that uncontrollable and unpredictable footshock stress can lead to elevation in systolic blood pressure when applied for an extended period of time (six weeks) in Wistar rats, and that these changes could be mediated by stress-induced modifications in sympathoadrenal pathways.
Collapse
|
11
|
Laukova M, Vargovic P, Vlcek M, Lejavova K, Hudecova S, Krizanova O, Kvetnansky R. Catecholamine production is differently regulated in splenic T- and B-cells following stress exposure. Immunobiology 2013; 218:780-9. [DOI: 10.1016/j.imbio.2012.08.279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/27/2012] [Indexed: 11/24/2022]
|
12
|
Bobrovskaya L, Maniam J, Ong LK, Dunkley PR, Morris MJ. Early Life Stress and Post-Weaning High Fat Diet Alter Tyrosine Hydroxylase Regulation and AT1 Receptor Expression in the Adrenal Gland in a Sex Dependent Manner. Neurochem Res 2013; 38:826-33. [DOI: 10.1007/s11064-013-0985-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/26/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
13
|
Stress-triggered changes in peripheral catecholaminergic systems. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:359-97. [PMID: 24054153 DOI: 10.1016/b978-0-12-411512-5.00017-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sympathetic nervous system not only regulates cardiovascular and metabolic responses to stress but also is altered by stress. The sympathoneural and sympathoadrenomedullary systems are modified by different metabolic pathways and have different responses to short- and to long-term stressors. Stress also induces nonneuronal catecholamine enzymes, primarily through corticosteroids. Catecholamine synthetic enzymes are induced by different pathways in response to short- and long-term acting stressors, like cold exposure or immobilization, and differently in the sympathetic ganglia and the adrenal medulla. However, a long-term exposure to one stressor can increase the response to a second, different stressor. Tyrosine hydroxylase gene transcription increases after only 5min of immobilization through phosphorylation of CREB, but this response is short lived. However, repeated stress gives a longer-lived response utilizing transcription factors such as Egr-1 and Fra-2. Glucocorticoids and ACTH also induce sympathoneural enzymes leading to distinct patterns of short-term and long-lived activation of the sympathetic nervous system. Nonneuronal phenylethanolamine N-methyltransferase (PNMT) develops early in the heart and then diminishes. However, intrinsic cardiac adrenergic cells remain and nonneuronal PNMT is present in many cells of the adult organism and increases in response to glucocorticoids. Both stress-induced and administered glucocorticoids induce fetal PNMT and hypertension. Human stressors such as caring for an ill spouse or sleep apnea cause a persistent increase in blood norepinephrine, increased blood pressure, and downregulated catecholamine receptors. Hypertension is associated with a loss of slow-wave sleep, when sympathetic nerve activity is lowest. These findings indicate that stress-induced alteration of the sympathetic nervous system occurs in man as in experimental animals.
Collapse
|
14
|
Kvetnansky R, Ukropec J, Laukova M, Manz B, Pacak K, Vargovic P. Stress stimulates production of catecholamines in rat adipocytes. Cell Mol Neurobiol 2012; 32:801-13. [PMID: 22402834 PMCID: PMC3419009 DOI: 10.1007/s10571-012-9822-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
Abstract
The sympathoadrenal system is the main source of catecholamines (CAs) in adipose tissues and therefore plays the key role in the regulation of adipose tissue metabolism. We recently reported existence of an alternative CA-producing system directly in adipose tissue cells, and here we investigated effect of various stressors-physical (cold) and emotional stress (immobilization) on dynamics of this system. Acute or chronic cold exposure increased intracellular norepinephrine (NE) and epinephrine (EPI) concentration in isolated rat mesenteric adipocytes. Gene expression of CA biosynthetic enzymes did not change in adipocytes but was increased in stromal vascular fraction (SVF) after 28 day cold. Exposure of rats to a single IMO stress caused increases in NE and EPI levels, and also gene expression of CA biosynthetic enzymes in adipocytes. In SVF changes were similar but more pronounced. Animals adapted to a long-term cold exposure (28 days, 4°C) did not show those responses found after a single IMO stress either in adipocytes or SVF. Our data indicate that gene machinery accommodated in adipocytes, which is able to synthesize NE and EPI de novo, is significantly activated by stress. Cold-adapted animals keep their adaptation even after an exposure to a novel stressor. These findings suggest the functionality of CAs produced endogenously in adipocytes. Taken together, the newly discovered CA synthesizing system in adipocytes is activated in stress situations and might significantly contribute to regulation of lipolysis and other metabolic or thermogenetic processes.
Collapse
Affiliation(s)
- R Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
15
|
The neuroimmune changes induced by cohabitation with an Ehrlich tumor-bearing cage mate rely on olfactory information. Brain Behav Immun 2012; 26:32-9. [PMID: 21787859 DOI: 10.1016/j.bbi.2011.07.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 12/19/2022] Open
Abstract
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion.
Collapse
|
16
|
Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats. Eur J Appl Physiol 2011; 112:1177-82. [DOI: 10.1007/s00421-011-2046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/07/2011] [Indexed: 02/07/2023]
|
17
|
Kim Y, Choi EH, Doo M, Kim JY, Kim CJ, Kim CT, Kim IH. Anti-stress effects of ginseng via down-regulation of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) gene expression in immobilization-stressed rats and PC12 cells. Nutr Res Pract 2010; 4:270-5. [PMID: 20827341 PMCID: PMC2933443 DOI: 10.4162/nrp.2010.4.4.270] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 01/29/2023] Open
Abstract
Catecholamines are among the first molecules that displayed a kind of response to prolonged or repeated stress. It is well established that long-term stress leads to the induction of catecholamine biosynthetic enzymes such as tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) in adrenal medulla. The aim of the present study was to evaluate the effects of ginseng on TH and DBH mRNA expression. Repeated (2 h daily, 14 days) immobilization stress resulted in a significant increase of TH and DBH mRNA levels in rat adrenal medulla. However, ginseng treatment reversed the stress-induced increase of TH and DBH mRNA expression in the immobilization-stressed rats. Nicotine as a ligand of the nicotinic acetylcholine receptor (nAChR) in adrenal medulla stimulates catecholamine secretion and activates TH and DBH gene expression. Nicotine treatment increased mRNA levels of TH and DBH by 3.3- and 3.1-fold in PC12 cells. The ginseng total saponin exhibited a significant reversal in the nicotine-induced increase of TH and DBH mRNA expression, decreasing the mRNA levels of TH and DBH by 57.2% and 48.9%, respectively in PC12 cells. In conclusion, immobilization stress induced catecholamine biosynthetic enzymes gene expression, while ginseng appeared to restore homeostasis via suppression of TH and DBH gene expression. In part, the regulatory activity in the TH and DBH gene expression of ginseng may account for the anti-stress action produced by ginseng.
Collapse
Affiliation(s)
- Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Hypertensive effects of central angiotensin II infusion and restraint stress are reduced with age. J Hypertens 2010; 28:1298-306. [PMID: 20308921 DOI: 10.1097/hjh.0b013e328338a075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated the effect of age on cardiovascular responses mediated by central angiotensin II (AngII) after intracerebroventricular infusion of AngII, and during restraint stress. METHODS Blood pressure (BP) and heart rate (HR) of young (5-month-old) and old (27-month-old) male Fischer-344 x Brown-Norway rats were measured using radiotelemetry. AngII was infused intracerebroventricularly using osmotic minipumps (10 ng/0.5 microl/h for 11 days). BP and HR responses to stress were evaluated by placing animals in restrainers for 20 min before and after intracerebroventricular infusion of the AngII-type-1 receptor inhibitor losartan (15 microg/microl per h for 3 days). RESULTS Resting BP was significantly elevated and HR was significantly lower in old rats compared with young. AngII-induced BP increase was markedly reduced in old rats, but HR responses were similar. Diurnal variation of both BP and HR was lower in old animals, and AngII reduced the amplitude of BP variation in young rats, but not in old. Restraint stress-induced BP and HR elevations were reduced with age. BP responses were diminished by central losartan infusion in both young and old, but this effect was more significant in young rats. In addition, expression of CuZn-superoxide dismutase and catalase declined significantly with age in the hypothalamus, whereas baseline oxidative stress increased. In contrast, AngII-induced increase in hypothalamic oxidative stress decreased with age. CONCLUSION This study demonstrates that the role of central AngII diminishes with age in the regulation of BP both during baseline conditions and during stress, whereas the involvement of AngII in the regulation of HR remains unaffected.
Collapse
|
19
|
Gene expression of catecholamine synthesizing enzymes in stellate ganglia of stressed rats. ACTA VET-BEOGRAD 2010. [DOI: 10.2298/avb1001015g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Cheng SY, Serova LI, Sabban EL. Immobilization stress elevates intron-containing transcripts for tyrosine hydroxylase in rat superior cervical ganglia indicating transcriptional activation. Stress 2009; 12:544-8. [PMID: 20102321 PMCID: PMC2813454 DOI: 10.3109/10253890802687696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While both the adrenal medulla and sympathetic nervous system are important in mediating the catecholaminergic response to stress, there are crucial differences in the mechanism. Stress elevates tyrosine hydroxylase (TH) protein and mRNA levels in both the adrenal medulla and sympathetic ganglia. In the adrenal medulla, transcription of the TH gene is rapidly induced with immobilization (IMO) stress. Here, we examine whether IMO also increases TH transcription in the superior cervical ganglia (SCG). Quantitative real-time reverse transcription polymerase chain reaction was used to determine the changes in TH mRNA and in transcripts containing intron 2. As expected in the adrenal medulla following repeated IMO TH mRNA and intron containing transcripts were elevated about 5-fold. In the SCG, a significant increase in TH mRNA was observed following repeated 2 h IMO for 2 or 6 days, but not with single IMO. The intron 2 containing transcripts were elevated about 50% above controls with even single IMO, and were at similarly elevated levels after the 2nd or 6th repeated daily IMO. The results indicate, for the first time, that transcriptional mechanisms are involved in mediating the IMO stress triggered elevation in TH gene expression in the SCG.
Collapse
Affiliation(s)
- Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justices, New York, USA
| | | | | |
Collapse
|
21
|
Erdos B, Broxson CS, Cudykier I, Basgut B, Whidden M, Landa T, Scarpace PJ, Tümer N. Effect of high-fat diet feeding on hypothalamic redox signaling and central blood pressure regulation. Hypertens Res 2009; 32:983-8. [PMID: 19713964 DOI: 10.1038/hr.2009.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the effect of high-fat (HF) feeding on blood pressure (BP) regulation, including hypothalamic redox signaling, as well as the changes in diurnal patterns and responses to restraint stress. Furthermore, we investigated whether HF feeding affects catecholamine and neuropeptide Y (NPY) biosynthesis in the adrenal medulla. Male obesity-prone Sprague-Dawley rats were fed with standard rat chow or 60% HF diet for 6 months. BP and heart rate (HR) were measured by telemetry, and circadian changes as well as responses to 20 min restraint stress were analyzed. Mean arterial BP was significantly elevated in HF rats both during daytime and nighttime compared with controls, whereas HR was elevated only during the day. BP and HR increased similarly in response to stress in both experimental groups; however, post-stress recovery of BP and HR were significantly delayed in HF animals. Protein levels of angiotensin II type 1 receptor (AT(1)) and NOX2, p67(phox) and p47(phox) subunits of NADPH oxidase, as well as NADPH oxidase activity increased significantly in the hypothalamus with HF feeding, whereas levels of antioxidant enzymes and nitric oxide synthases remained unchanged. In addition, HF diet also elevated the adrenomedullary protein levels of tyrosine hydroxylase and NPY. This study shows that feeding obesity-prone Sprague-Dawley rats with a HF diet results in elevated BP and HR and delayed cardiovascular post-stress recovery, and that these changes are paralleled by increases in the expression and activity of NADPH oxidase in the hypothalamus without a compensatory increase in the antioxidant enzyme levels, possibly leading to superoxide-mediated sympathoexcitation and hypertension.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Gainesville, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
23
|
Gavrilovic L, Spasojevic N, Dronjak S. Psychosocial stress-related changes in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia of adult rats. Auton Neurosci 2009; 150:144-6. [PMID: 19482560 DOI: 10.1016/j.autneu.2009.05.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 11/18/2022]
Abstract
In this study we investigated the changes in norepinephrine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) gene expression in the stellate ganglia of naive controls and long-term socially isolated (12 weeks) adult rats and the response of these animals to additional immobilization stress. Psychosocial stress produced a significant increase of both TH mRNA and DBH mRNA levels in stellate ganglia. Additional immobilization of long-term psychosocially stressed rats expressed no effect on gene expression of these enzymes. The results presented here suggest that psychosocial stress-induced increase in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia may be connected to the increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Ljubica Gavrilovic
- Institute of Nuclear Sciences Vinca, Laboratory of Molecular Biology and Endocrinology, Belgrade, Serbia
| | | | | |
Collapse
|
24
|
Goto J, Otsuka F, Yamashita M, Suzuki J, Otani H, Takahashi H, Miyoshi T, Mimura Y, Ogura T, Makino H. Enhancement of aldosterone-induced catecholamine production by bone morphogenetic protein-4 through activating Rho and SAPK/JNK pathway in adrenomedullar cells. Am J Physiol Endocrinol Metab 2009; 296:E904-16. [PMID: 19190257 DOI: 10.1152/ajpendo.90840.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we investigated the effects of mineralocorticoid in the regulation of catecholamine biosynthesis using rat pheochromocytoma PC12 cells. Expression of mineralocorticoid receptor (MR) was confirmed in undifferentiated PC12 cells. Aldosterone stimulated dopamine production by PC12 cells without any increase in cAMP activity. Aldosterone-induced dopamine accumulation was enhanced in accordance with the increase in the rate-limiting enzyme tyrosine hydroxylase (TH). Blocking MR with eplerenone suppressed aldosterone-induced increases of TH mRNA and dopamine production. A glucocorticoid receptor (GR) antagonist, RU-486, attenuated dexamethasone- but not aldosterone-induced TH expression. Cycloheximide reduced both aldosterone- and dexamethasone-induced TH mRNA. A SAPK/JNK inhibitor, SP600125, suppressed aldosterone-induced TH mRNA expression; however, the aldosterone-induced TH expression was not affected by inhibition of ERK1/2, p38-MAPK, Rho-kinase, PI 3-kinase, and PKC. It was of note that cotreatment with eplerenone and SP600125 restored aldosterone-induced TH mRNA expression to basal levels. To investigate the involvement of bone morphogenetic protein (BMP) actions in aldosterone-induced catecholamine production, we examined the effects of BMP-4 and BMP-7, which are expressed in the adrenal medulla, on catecholamine biosynthesis. BMP-4 preferentially enhanced aldosterone-induced TH mRNA and dopamine production, although BMP-4 alone did not affect TH expression. The BMP-4 enhancement of aldosterone-induced TH expression was not observed in cells treated with eplerenone. BMP-4 did not affect MR expression of PC12 cells; however, it did enhance aldosterone-induced SAPK/JNK phosphorylation. Inhibition of SAPK/JNK or Rho suppressed BMP-4 enhancement of aldosterone-induced TH expression. Collectively, our findings demonstrate that aldosterone stimulates catecholamine biosynthesis in adrenomedullar cells via MR through genomic action and partly through nongenomic action by Rho-SAPK/JNK signaling, the latter of which is facilitated by BMP-4. A functional link between MR actions and endogenous BMP may be involved in the catecholamine production.
Collapse
Affiliation(s)
- Junko Goto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kvetnanský R, Krizanova O, Tillinger A, Sabban EL, Thomas SA, Kubovcakova L. Regulation of gene expression of catecholamine biosynthetic enzymes in dopamine-beta-hydroxylase- and CRH-knockout mice exposed to stress. Ann N Y Acad Sci 2009; 1148:257-68. [PMID: 19120118 DOI: 10.1196/annals.1410.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Norepinephrine-deficient mice harbor a disruption of the gene for dopamine-beta-hydroxylase (DBH-KO). Corticotropin-releasing hormone knockout mice (CRH-KO) have markedly reduced HPA activity. The aim of the present work was to study how deficiency of DBH and CRH would affect tyrosine hydroxylase (TH), DBH, and phenylethanolamine N-methyltransferase (PNMT) gene expression and protein levels in the adrenal medulla (AM) and stellate ganglia (SG) of control and stressed mice. Both in AM and SG, single immobilization significantly increased TH and DBH mRNA and protein levels both in wild-type (WT) and CRH-KO mice. On the other hand, the stress-triggered increase in PNMT mRNA and protein levels seen in WT mice was absent in CRH-KO mice. DBH-KO mice are more sensitive to stress but survive a single 2 h restraint stress in a tube. The increase in TH mRNA levels induced by restraint stress in WT was not observed in DBH-KO mice. PNMT mRNA and especially PNMT protein levels were significantly elevated in AM of DBH-KO mice. In SG of DBH-KO mice, TH mRNA levels were not affected; however, PNMT gene expression was highly elevated. Thus, disruption of the DBH gene surprisingly blocks the stress-induced elevation of TH mRNA levels in AM but increases PNMT gene expression in both AM and SG. Our data indicate that adrenergic signaling is required for stress-induced increase in TH mRNA and that this signaling restrains stress-induced increase in PNMT mRNA. They also confirm that the HPA system plays a crucial role in the stress-induced regulation of PNMT gene expression.
Collapse
Affiliation(s)
- Richard Kvetnanský
- Institute of Experimental Endocrinology, Centre of Excellence CENDO, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
26
|
Kiss A, Mravec B, Palkovits M, Kvet��ansk�� R. Stress-induced Changes in Tyrosine Hydroxylase Gene Expression in Rat Hypothalamic Paraventricular, Periventricular, and Dorsomedial Nuclei. Ann N Y Acad Sci 2008; 1148:74-85. [DOI: 10.1196/annals.1410.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Mravec B, Lukackova R, Bodnar I, Kiss A, Pacak K, Palkovits M, Kvetnansky R. Stress-induced alterations in catecholamine enzymes gene expression in the hypothalamic dorsomedial nucleus are modulated by caudal brain and not hypothalamic paraventricular nucleus neurons. Brain Res Bull 2007; 74:147-54. [PMID: 17683801 DOI: 10.1016/j.brainresbull.2007.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic dorsomedial nucleus (DMN) represents an important coordinate center for regulation of autonomic and neuroendocrine systems, especially during stress response. The present study was focused on the gene expression of catecholamine-synthesizing enzymes and the protein levels of tyrosine hydroxylase in DMN, both in control and stressed rats. Moreover, pathways modulating the gene expression of tyrosine hydroxylase in DMN during immobilization (IMO) stress were also investigated. Gene expressions of all catecholamine-synthesizing enzymes were detected in DMN samples. While the levels of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA were increased in IMO rats, aromatic L-amino acid decarboxylase and dopamine-beta-hydroxylase mRNA remained unchanged. Tyrosine hydroxylase protein levels were significantly elevated in the DMN only after repeated IMO stress. Postero-lateral deafferentations of the DMN, or transections of the ascending catecholaminergic pathways originating in the lower brainstem abolished the IMO-induced increase of tyrosine hydroxylase gene expression in the DMN. Nevertheless, postero-lateral deafferentations of the hypothalamic paraventricular nucleus (PVN), which separate the DMN from the PVN, had no effect on IMO-induced elevation of tyrosine hydroxylase mRNA in the DMN. The present data indicate that certain DMN neurons synthesize mRNA of catecholamine enzymes. The stress-induced increase of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA in DMN neurons indicates the involvement of these catecholaminergic neurons in stress response. The gene expression of tyrosine hydroxylase in DMN is modulated by lower brainstem and/or spinal cord, but not by PVN afferents.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kvetnansky R, Kubovcakova L, Tillinger A, Micutkova L, Krizanova O, Sabban EL. Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure. Cell Mol Neurobiol 2006; 26:735-54. [PMID: 16691441 PMCID: PMC11520757 DOI: 10.1007/s10571-006-9063-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
AIMS Epinephrine (EPI) synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is primarily localized in the adrenal medulla (AM). We have recently described existence of the PNMT gene expression in cardiac atria and ventricles and in sympathetic ganglia of adult rats and mice. The aim of the present work was to study regulation of the PNMT gene expression in corticotropin-releasing hormone knockout mice (CRH KO) and matched control wild-type mice (WT) under normal and stress conditions. METHODS Levels of the PNMT mRNA were determined by RT-PCR; PNMT immunoprotein and protein of transcription factor EGR-1 by Western Blot. Plasma EPI and corticosterone (CORT) levels were determined by radioenzymatic and RIA methods. Immobilization (IMMO) was used as a stressor. RESULTS Stress-induced increases in the PNMT mRNA and protein levels observed in WT mice were almost completely absent in CRH KO mouse adrenal medulla, stellate ganglia, and cardiac atria, while ventricular PNMT mRNA elevation was not CRH-dependent. Plasma EPI and CORT levels were markedly reduced in CRH KO compared to WT mice both before and after the stress. Levels of EGR-1, crucial transcription factor for regulation of the PNMT were highly increased in stressed WT and CRH KO mice in cardiac areas, but not in the adrenal medulla. CONCLUSIONS Data show that the CRH deficiency can markedly prevent immobilization-triggered induction of the PNMT mRNA and protein levels in the adrenal medulla and stellate ganglia. Reduced plasma epinephrine and corticosterone levels and adrenal medullary EGR-1 protein levels in CRH knockout versus WT mice during stress indicate that the HPA axis plays a crucial role in regulation of the PNMT gene expression in these organs. Cardiac atrial PNMT gene expression with stress is also dependent on intact HPA axis. However, in cardiac ventricles, especially after the single stress exposure, its expression is not impaired by CRH deficiency. Since cardiac EGR-1 protein levels in CRH KO mice are also not affected by the single stress exposure, we propose existence of different regulation of the PNMT gene expression, especially in the cardiac ventricles.Overall, our findings reveal that the PNMT gene expression is regulated through the HPA in both sympathoadrenal system and the heart and also via EGR-1 in the adrenal medulla, but apparently not in the heart. Regulation of the PNMT gene expression in various compartments of heart includes both corticosterone-dependent and independent mechanisms.
Collapse
Affiliation(s)
- R Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
29
|
Esler M, Alvarenga M, Pier C, Richards J, El-Osta A, Barton D, Haikerwal D, Kaye D, Schlaich M, Guo L, Jennings G, Socratous F, Lambert G. The neuronal noradrenaline transporter, anxiety and cardiovascular disease. J Psychopharmacol 2006; 20:60-6. [PMID: 16785272 DOI: 10.1177/1359786806066055] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses. The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients. Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic 'co-morbidity' perhaps underlies the clinical concordance. Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.
Collapse
Affiliation(s)
- Murray Esler
- Baker Heart Research Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kubovcakova L, Micutkova L, Bartosova Z, Sabban EL, Krizanova O, Kvetnansky R. Identification of phenylethanolamine N-methyltransferase gene expression in stellate ganglia and its modulation by stress. J Neurochem 2006; 97:1419-30. [PMID: 16696852 DOI: 10.1111/j.1471-4159.2006.03832.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.
Collapse
Affiliation(s)
- L Kubovcakova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
31
|
Kvetnansky R, Bodnar I, Shahar T, Uhereczky G, Krizanova O, Mravec B. Effect of Lesion of A5 and A7 Brainstem Noradrenergic Areas or Transection of Brainstem Pathways on Sympathoadrenal Activity in Rats During Immobilization Stress. Neurochem Res 2006; 31:267-75. [PMID: 16570211 DOI: 10.1007/s11064-005-9016-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
Both A5 and A7 brainstem noradrenergic cell groups innervate dorsal horns of the spinal cord. Moreover, A5 cell group directly innervates sympathetic preganglionic neurons. Thus, A5 and A7 noradrenergic neurons could modulate the sympathoadrenal system (SAS) activity. We investigated the role of A5 and A7 noradrenergic cell groups in regulation of the SAS activity under control and stressful conditions. We evaluated the effect of electrolytical lesions of A5 or A7 cell groups and also the effect of bilateral brainstem cuts interrupting brainstem pathways on tyrosine hydroxylase gene expression in A5 and A7 areas and on the SAS activity measured by plasma epinephrine and norepinephrine levels. We have found that immobilization stress increases activity of the A5 and A7 brainstem areas and also levels of the gene expression of tyrosine hydroxylase, the rate-limiting catecholamine biosynthetic enzyme. Immobilization of sham-operated and brainstem pathways transected or A5 or A7 lesioned animals induced a similar, highly significant increase in plasma epinephrine and norepinephrine levels in both sham-operated and A5 or A7 destroyed or transected groups. Our data suggest that both A5 and A7 noradrenergic cell groups are activated during immobilization stress. However, transection of brainstem pathways innervating A5 and A7 neurons or lesion of A5 or A7 cell groups is not sufficient enough for changes in immobilization stress-induced activation of the SAS. We suggest that neither A5 and A7 noradrenergic neurons nor the transected brainstem pathways represent structures crucial for an activation of the SAS during immobilization stress. We hypothesize that during regulation of the stress response, various areas and pathways are involved and the elimination just one of them might be compensated by the remained intact areas and pathways.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
32
|
Kvetnansky R. Stressor Specificity and Effect of Prior Experience on Catecholamine Biosynthetic Enzyme PhenylethanolamineN-Methyltransferase. Ann N Y Acad Sci 2004; 1032:117-29. [PMID: 15677399 DOI: 10.1196/annals.1314.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The specific activation of two components of the sympathoadrenal system (adrenomedullary and sympathoneural) by various stressors was recently described. The aim of this work was to investigate changes in catecholamine (CA) biosynthetic enzyme phenylethanolamine N-methyltransferase (PNMT) gene expression, protein level, and activity in the adrenal medulla of rats after a single or repeated exposure to various homotypic or novel heterotypic stressors. Immobilization for 2 h (IMO), cold 4 degrees C (COLD), administration of insulin 5I U (INS), or 2-deoxyglucose 500 mg/kg (2DG) were used as stressors. Plasma epinephrine (EPI) and norepinephrine (NE) levels clearly showed that these stressors specifically activate the aforementioned systems. A single exposure to IMO, COLD, INS, or 2DG induced increases in PNMT mRNA levels in the adrenal medulla. Besides PNMT mRNA, repeated exposure to IMO also elevated activity and protein levels of the enzyme; however, chronic cold exposure did not show PNMT changes compared to control animals at room temperature. PNMT gene expression was also investigated in rats adapted to repeated immobilization stress or to chronic cold exposure after a single exposure to various heterotypic novel stressors. Cold-adapted rats responded to heterotypic novel stressors (IMO, INS) by exaggerated responses of PNMT mRNA levels compared to responses in naive rats exposed to the same stressors at room temperature. Immobilization-adapted rats did not show exaggerated responses of PNMT mRNA after exposure to novel stressors. Therefore, observed differences in plasma CA and adrenomedullary mRNA levels suggest a specific regulation of CA release, synthesis, and gene expression of CA biosynthetic enzymes, which depends on the quality of the stressor. Exposure of adapted rats to novel stressors induces exaggerated responses, but this process also depends on the specificity of the stressor used. Different stressors regulate PNMT gene expression by specific mechanisms especially in chronically stressed rats. These mechanisms remain to be elucidated. It is the ability of the long-term stressed organism to respond differently to novel heterotypic stressors that we consider an important adaptive phenomenon of catecholaminergic systems in rats.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.
| |
Collapse
|