1
|
Lipina TV, Giang H, Thacker JS, Wetsel WC, Caron MG, Beaulieu JM, Salahpour A, Ramsey AJ. Combination of Haloperidol With UNC9994, β-arrestin-Biased Analog of Aripiprazole, Ameliorates Schizophrenia-Related Phenotypes Induced by NMDAR Deficit in Mice. Int J Neuropsychopharmacol 2024; 27:pyae060. [PMID: 39612588 DOI: 10.1093/ijnp/pyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Glutamatergic system dysfunction contributes to a full spectrum of schizophrenia-like symptoms, including the cognitive and negative symptoms that are resistant to treatment with antipsychotic drugs (APDs). Aripiprazole, an atypical APD, acts as a dopamine partial agonist, and its combination with haloperidol (a typical APD) has been suggested as a potential strategy to improve schizophrenia. Recently, an analog of aripiprazole, UNC9994, was developed. UNC9994 does not affect dopamine 2 receptor (D2R)-mediated Gi/o protein signaling but acts as a partial agonist for D2R/β-arrestin interactions. Hence, one of our objectives was to probe the behavioral effects of co-administrating haloperidol with UNC9994 in the N-methyl-D-aspartate receptor (NMDAR) mouse models of schizophrenia. The biochemical mechanisms underlying the neurobiological effects of dual haloperidol × UNC9994 action are currently missing. Hence, we aimed to explore D2R- and NMDAR-dependent signaling mechanisms that could underlie the effects of dual drug treatments. METHODS NMDAR hypofunction was induced pharmacologically by acute injection of MK-801 (NMDAR pore blocker; 0.15 mg/kg) and genetically by knockdown of Grin1 gene expression in mice, which have a 90% reduction in NMDAR levels (Grin1 knockdown [Grin1-KD]). After intraperitoneal injections of vehicle, haloperidol (0.15 mg/kg), UNC9994 (0.25 mg/kg), or their combination, mice were tested in open field, prepulse inhibition (PPI), Y-maze, and Puzzle box. Biochemical effects on the phosphorylation of Akt, glycogen synthase kinase-3 (GSK-3), and CaMKII in the prefrontal cortex (PFC) and striatum of MK-801-treated mice were assessed by western blotting. RESULTS Our findings indicate that low dose co-administration of UNC9994 and haloperidol reduces hyperactivity in MK-801-treated animals and in Grin1-KD mice. Furthermore, this dual administration effectively reverses PPI deficits, repetitive/rigid behavior in the Y-maze, and deficient executive function in the Puzzle box in both animal models. Pharmacological inhibition of NMDAR by MK-801 induced the opposite effects in the PFC and striatum on pAkt-S473 and pGSK3β-Ser9. Dual injection of haloperidol with UNC9994 reversed MK-801-induced effects on pAkt-S473 but not on pGSK3β-Ser9 in both brain structures. CONCLUSIONS The dual administration of haloperidol with UNC9994 at low doses represents a promising approach to ameliorate symptoms of schizophrenia. The combined drug regimen elicits synergistic effects specifically on pAkt-S473, suggesting it as a potential biomarker for antipsychotic actions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Huy Giang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan S Thacker
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
| | - William C Wetsel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marc G Caron
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Salahpour
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Marballi KK, Gallitano AL. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Front Behav Neurosci 2018; 12:23. [PMID: 29520222 PMCID: PMC5827560 DOI: 10.3389/fnbeh.2018.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the "Index single nucleotide polymorphism (SNP)" (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in insufficient electrophysiologic, immunologic, and neuroprotective, processes that these genes normally mediate. Continued adverse environmental experiences, over time, may thereby result in neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple genes associated with schizophrenia susceptibility, in a functional cascade triggered by neuronal activity, the proposed biological pathway provides an explanation for both the polygenic and environmental influences that determine the complex etiology of this mental illness.
Collapse
Affiliation(s)
- Ketan K. Marballi
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Amelia L. Gallitano
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
3
|
Tagliabue E, Pouvreau T, Eybrard S, Meyer F, Louilot A. Dopaminergic responses in the core part of the nucleus accumbens to subcutaneous MK801 administration are increased following postnatal transient blockade of the prefrontal cortex. Behav Brain Res 2017; 335:191-198. [PMID: 28823626 DOI: 10.1016/j.bbr.2017.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a complex and devastating neuropsychiatric disease thought to result from impaired connectivity between several integrative regions, stemming from developmental failures. In particular, the left prefrontal cortex of schizophrenia patients seems to be targeted by such early developmental disturbances. Data obtained over the last three decades support the hypothesis of a dopaminergic dysfunction in schizophrenia. Striatal dopaminergic dysregulation in schizophrenia may result from a dysconnection between the prefrontal cortex and the striatum (dorsal and ventral) involving glutamatergic N-methyl-d-aspartate (NMDA) receptors. In the context of animal modeling of the pathophysiology of schizophrenia, the present study was designed to investigate the effects of MK 801 (dizocilpine) on locomotor activity and dopaminergic responses in the left core part of the nucleus accumbens (ventral striatum) in adult rats following neonatal tetrodotoxin inactivation of the left prefrontal cortex (infralimbic/prelimbic region) at postnatal day 8. Dopaminergic variations were recorded in the nucleus accumbens by means of in vivo voltammetry in freely moving adult animals. Following MK 801 administration, and in comparison to control (PBS) animals, animals microinjected with tetrodotoxin display locomotor hyperactivity and increased extracellular dopamine levels in the core part of the nucleus accumbens. These findings suggest neonatal functional inactivation of the prefrontal cortex may lead to a dysregulation of dopamine release in the core part of the nucleus accumbens involving NMDA receptors. The results obtained may provide new insight into the involvement of NMDA receptors in the pathophysiology of schizophrenia and suggest that future studies should look carefully at the core of the nucleus accumbens.
Collapse
Affiliation(s)
- Emmanuelle Tagliabue
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Tiphaine Pouvreau
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
4
|
Tang WK, Liang H, Lin Y, Zhang C, Tang A, Chan F, Freeman TP, Ungvari GS. Psychiatric Co-morbidity in Ketamine and Methamphetamine Dependence: a Retrospective Chart Review. Int J Ment Health Addict 2016. [DOI: 10.1007/s11469-016-9681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Kim JM, Park SW, Lin HY, Shin KC, Sung DJ, Kim JG, Cho H, Kim B, Bae YM. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801. J Pharmacol Sci 2015; 127:92-102. [DOI: 10.1016/j.jphs.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023] Open
|
6
|
Chanasong R, Thanoi S, Watiktinkorn P, Reynolds GP, Nudmamud-Thanoi S. Genetic variation of GRIN1 confers vulnerability to methamphetamine-dependent psychosis in a Thai population. Neurosci Lett 2013; 551:58-61. [PMID: 23880023 DOI: 10.1016/j.neulet.2013.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
GRIN1 is a gene that encodes the N-methyl-d aspartate (NMDA) receptor subunit1 (NR1). Variations of GRIN1 have been identified as a risk factor for schizophrenia and drug dependence, supporting hypotheses of glutamatergic dysfunction in these disorders. Methamphetamine (METH) is a psychostimulant drug which can induce psychotic symptoms reminiscent of those found in schizophrenia; thus GRIN1 is a candidate gene for vulnerability to METH dependence or METH-dependent psychosis. The present study examined two polymorphisms of GRIN1, rs11146020 (G1001C) and rs1126442 (G2108A), in 100 male Thai METH-dependent patients and 103 healthy controls using PCR-RFLP techniques. Neither polymorphism was significantly associated with METH dependence, although rs1126442 was highly significantly associated with METH-dependent psychosis, in which the A allele showed reduced frequency (P<0.00001). The present findings indicate that the rs1126442 of GRIN1 contributes to the genetic vulnerability to psychosis in METH-dependent subjects in the Thai population.
Collapse
Affiliation(s)
- Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | | | |
Collapse
|
7
|
Wible CG. Hippocampal temporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome. Front Hum Neurosci 2012; 6:180. [PMID: 22737114 PMCID: PMC3381447 DOI: 10.3389/fnhum.2012.00180] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/01/2012] [Indexed: 11/25/2022] Open
Abstract
A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ), posterior superior temporal sulcus (PSTS) and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs, and cognitive deficits). Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly correlated with activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. Many positive symptoms of schizophrenia can be reframed as the erroneous sense of a presence or other who is observing, acting, speaking, or controlling; these qualia are similar to those evoked during abnormal activation of the TPJ. The TPJ and PSTS play a key role in the perception (and production) of dynamic social, emotional, and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech and prosody, and social attentional gestures such as eye gaze). The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile), matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others). Stimulation of the TPJ resulting in activation of the self representation has been shown to result a feeling of a presence or multiple presences (due to heautoscopy) and also bizarre tactile experiences. Neurons in the TPJ are also tuned, or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech), a person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms). It could produce the unconscious feeling of being watched, followed, or of a social situation unfolding along with accompanying abnormal perception of intent and agency (delusions). Abnormal activity in the TPJ would also be predicted to create several cognitive disturbances that are characteristic of schizophrenia, including abnormalities in attention, predictive social processing, working memory, and a bias to erroneously perceive threat.
Collapse
Affiliation(s)
- Cynthia G Wible
- Laboratory for Neuroscience, Department of Psychiatry, Harvard Medical School, Brockton MA, USA
| |
Collapse
|
8
|
Banerjee A, Ganji S, Hulsey K, Dimitrov I, Maher E, Ghose S, Tamminga C, Choi C. Measurement of glycine in gray and white matter in the human brain in vivo by 1H MRS at 7.0 T. Magn Reson Med 2012; 68:325-31. [PMID: 22693073 DOI: 10.1002/mrm.24368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 01/07/2023]
Abstract
The concentration of glycine (Gly) was measured in gray matter (GM) and white matter (WM) in the human brain using single-voxel localized (1)H MRS at 7 T. A point-resolved spectroscopy sequence with echo time = 150 ms was used for measuring Gly levels in various regions of the frontal and occipital lobes in 11 healthy volunteers and one subject with a glioblastoma. The point-resolved spectroscopy spectra were analyzed with LCModel using basis functions generated from density matrix simulations that included the effects of volume localized radio-frequency and gradient pulses. The fraction of GM and white matter within the voxels was obtained from T(1)-weighted image segmentation. The metabolite concentrations within the voxels, estimated with respect to the GM + WM water concentrations, were fitted to a linear function of fractional GM content. The Gly concentrations in pure GM and white matter were estimated to be 1.1 and 0.1 mM, with 95% confidence intervals 1.0-1.2 and 0.0-0.2, respectively.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kilanowicz A, Wiaderna D, Lutz P, Szymczak W. Behavioral effects following repeated exposure to hexachloronaphthalene in rats. Neurotoxicology 2012; 33:361-9. [PMID: 22387569 DOI: 10.1016/j.neuro.2012.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/06/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Polychlorinated naphthalenes (PCNs), including hexachloronaphthalene (HxCN), are widespread global environmental contaminants. Our experiments were aimed at assessing HxCN effects on motor behavior, long-term memory, pain sensitivity, magnitude of stress-induced analgesia, auditory function and sensorimotor gating, following repeated intragastric administration (28 days) of HxCN at 0.3 and 1.0 mg/kg body weight. Three weeks after the exposure termination, male Wistar rats were subjected to the neurobehavioral tests battery performed in the following order: open-field test, passive avoidance test, hot-plate test and acoustic startle response test. Repeated administration of HxCN induced disorders of motivational processes manifested by: anorectic effect caused by aphagia and adipsia; significantly reduced motor activity (hypokinesia); impaired long-term memory and acquired passive avoidance reaction; reduced pain threshold and shortened duration of anxiety reaction after pain stimulus (sensory neglect). Some of these neurobehavioral effects (impaired long-term memory, reduced pain threshold and stress-induced analgesia) were observed at 0.3 mgHxCN/kg body weight without any signs of overt toxicity. The outcome of our study shows that HxCN, like other compounds of the persistent organic pollutants (POPs) group, creates a potential risk of behavioral changes in the central nervous system in the general population as a result of environmental exposure.
Collapse
Affiliation(s)
- Anna Kilanowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University, Lodz, Poland.
| | | | | | | |
Collapse
|
10
|
Influence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to antipsychotic treatment in patients with schizophrenia. Neurosci Lett 2011; 506:170-4. [PMID: 22094384 DOI: 10.1016/j.neulet.2011.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/21/2011] [Accepted: 10/29/2011] [Indexed: 02/05/2023]
Abstract
The present study is aimed at exploring whether some single nucleotide polymorphisms (SNPs) within GRIA1, GRIA2 and GRIA4 could be associated with schizophrenia and whether they could predict clinical outcomes in Korean in-patients treated with antipsychotics. One hundred forty five patients with MD, 221 in-patients with schizophrenia and 170 psychiatrically healthy controls were genotyped for 17 SNPs within GRIA1, GRIA2 and GRIA4. Baseline and final clinical measures, including the Positive and Negative Symptoms Scale (PANSS), were recorded. No significant association was found with the diagnosis of schizophrenia. We observed an association between rs3813296 genotype and improvement on PANSS negative scores. Our findings provide no evidence for an association between SNPs within GRIA1, GRIA2 and GRIA4 under investigation and schizophrenia susceptibility, although rs3813296 (GRIA2) could be associated with improvement on PANSS negative scores. However, taking into account the several limitations of our study, further research is needed to draw more definitive conclusions.
Collapse
|
11
|
Do KQ, Conus P, Cuenod M. Redox dysregulation and oxidative stress in schizophrenia: nutrigenetics as a challenge in psychiatric disease prevention. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 3:267-89. [PMID: 21474958 DOI: 10.1159/000324366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kim Q Do
- Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.
| | | | | |
Collapse
|
12
|
Bender C, de Olmos S, Bueno A, de Olmos J, Lorenzo A. Comparative analyses of the neurodegeneration induced by the non-competitive NMDA-receptor-antagonist drug MK801 in mice and rats. Neurotoxicol Teratol 2010; 32:542-50. [DOI: 10.1016/j.ntt.2010.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
13
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
14
|
Rădulescu AR, Mujica-Parodi LR. A principal component network analysis of prefrontal-limbic functional magnetic resonance imaging time series in schizophrenia patients and healthy controls. Psychiatry Res 2009; 174:184-94. [PMID: 19880294 PMCID: PMC2788080 DOI: 10.1016/j.pscychresns.2009.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
We investigated neural regulation of emotional arousal. We hypothesized that the interactions between the components of the prefrontal-limbic system determine the global trajectories of the individual's brain activation, with the strengths and modulations of these interactions being potentially key components underlying the differences between healthy individuals and those with schizophrenia. Using affect-valent facial stimuli presented to 11 medicated schizophrenia patients and 65 healthy controls, we activated neural regions associated with the emotional arousal response during functional magnetic resonance imaging (fMRI). Performing first a random effects analysis of the fMRI data to identify activated regions, we obtained 352 data-point time series for six brain regions: bilateral amygdala, hippocampus and two prefrontal regions (Brodmann Areas 9 and 45). Since standard statistical methods are not designed to capture system features and evolution, we used principal component analyses on two types of pre-processed data: contrasts and group averages. We captured an important characteristic of the evolution of our six-dimensional brain network: all subject trajectories are almost embedded in a two-dimensional plane. Moreover, the direction of the largest principal component was a significant differentiator between the control and patient populations: the left and right amygdala coefficients were substantially higher in the case of patients, and the coefficients of Brodmann Area 9 were, to a lesser extent, higher in controls. These results are evidence that modulations between the regions of interest are the important determinant factors for the system's dynamical behavior. We place our results within the context of other principal component analyses used in neuroimaging, as well as of our existing theoretical model of prefrontal-limbic dysregulation.
Collapse
Affiliation(s)
- Anca R Rădulescu
- Department of Applied Mathematics, UCB 526, University of Colorado at Boulder, Boulder, CO 80309-0526, USA.
| | | |
Collapse
|
15
|
Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia. Neuropsychopharmacology 2009; 34:2305-22. [PMID: 19516252 PMCID: PMC2811085 DOI: 10.1038/npp.2009.58] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine-glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ.
Collapse
|
16
|
Haeger P, Alvarez A, Leal N, Adasme T, Núñez MT, Hidalgo C. Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 2009; 17:238-47. [PMID: 19655216 DOI: 10.1007/s12640-009-9096-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl D: -aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 muM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1-IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.
Collapse
Affiliation(s)
- Paola Haeger
- Centro FONDAP de Estudios Moleculares de la Célula, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
17
|
Ghose S, Chin R, Gallegos A, Roberts R, Coyle J, Tamminga C. Localization of NAAG-related gene expression deficits to the anterior hippocampus in schizophrenia. Schizophr Res 2009; 111:131-7. [PMID: 19403271 PMCID: PMC2685203 DOI: 10.1016/j.schres.2009.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
N-acetyl aspartyl glutamate (NAAG) is an endogenous agonist at the metabotropic glutamate receptor 3 (mGluR3,GRM3) receptor and antagonist at the N-methyl d-aspartate (NMDA) receptor, both receptors important to the pathophysiology of schizophrenia. Glutamate carboxypeptidase II (GCPII), an enzyme that metabolizes NAAG, is also implicated in this illness. In this study, we conducted in situ hybridization experiments to examine expression of mGluR3 and GCPII transcripts along the rostrocaudal axis of the human postmortem hippocampus. We hypothesized that we would find changes in mGluR3 and/or GCPII in the AH but not posterior hippocampus (PH) in schizophrenia. We compared mRNA levels of these genes in the dentate gyrus (DG) and cornu ammonis (CA)1 and CA3 of AH and PH in 20 matched pairs of control and schizophrenia cases. In controls, mGluR3 is highly expressed in the DG and at lower levels in CA1 and CA3 while GCP II is expressed at similar levels in these regions. Group comparisons show a significant reduction of GCPII mRNA level in the AH in schizophrenia. Post hoc analyses reveal this difference is localized to the CA1 region. In addition, we find a significant positive correlation between GCPII and mGluR3 mRNA in the CA3 of the control AH (r=0.66, p=0.008) which is not present in schizophrenia (r=0.096, p=0.76). This may reflect a disrupted functional interaction between NAAG and mGluR3 in CA3 in schizophrenia. These data suggest that NAAG-mediated signaling is disrupted in the AH in schizophrenia and localize the defect to the CA1 and CA3 regions.
Collapse
Affiliation(s)
- Subroto Ghose
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9127, USA.
| | - Ronald Chin
- 5323 Harry Hines Boulevard, NE5. 110, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Analysa Gallegos
- 5323 Harry Hines Boulevard, NE5. 110, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rosalinda Roberts
- Maryland Psychiatric Research Center, 55 Wade Avenue, Catonsville, MD, USA
| | - Joseph Coyle
- 115 Mill Street, Belmont, MA Mclean Hospital, Harvard Medical School, MA, USA
| | - Carol Tamminga
- 5323 Harry Hines Boulevard, NE5. 110, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Nesvaderani M, Matsumoto I, Sivagnanasundaram S. Anterior hippocampus in schizophrenia pathogenesis: molecular evidence from a proteome study. Aust N Z J Psychiatry 2009; 43:310-22. [PMID: 19296286 DOI: 10.1080/00048670902721103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The purpose of the present study was to identify differentially expressed proteins in the anterior and posterior hippocampus of brains of schizophrenia patients compared to neurologically healthy controls. METHOD Proteins extracted from fresh frozen post-mortem posterior and anterior hippocampus for nine schizophrenia and nine control individuals, and seven schizophrenia and seven control individuals, respectively, were screened for differential expression using 2-D gel electrophoresis and mass spectrometry. RESULTS A significantly larger number of protein spots were differentially expressed in the anterior (n = 43) compared to the posterior (n = 16) hippocampus, representing 34 and 14 unique proteins, respectively. These proteins are involved in cytoskeleton structure and function, neurotransmission and mitochondrial function. CONCLUSION Based on the aberrant protein expression profiles, the anterior hippocampus appears to be more involved in schizophrenia pathogenesis than the posterior hippocampus. Furthermore, consistent with previous findings, we found molecular evidence to support abnormal neuronal cytoarchitecture and function, neurotransmission and mitochondrial function in the schizophrenia hippocampus.
Collapse
Affiliation(s)
- Maryam Nesvaderani
- Discipline of Pathology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
19
|
Zavitsanou K, Nguyen V, Newell K, Ballantyne P, Huang XF. Rapid cortico-limbic alterations in AMPA receptor densities after administration of PCP: Implications for schizophrenia. J Chem Neuroanat 2008; 36:71-6. [DOI: 10.1016/j.jchemneu.2008.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
|
20
|
Rasmussen BA, Perry DC, O’Neil J, Manaye KF, Tizabi Y. Effects of nicotine on sensorimotor gating impairment induced by long-term treatment with neurotoxic NMDA antagonism. Neurotox Res 2008; 13:151-61. [DOI: 10.1007/bf03033499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Gozzi A, Large CH, Schwarz A, Bertani S, Crestan V, Bifone A. Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology 2008; 33:1690-703. [PMID: 17805312 DOI: 10.1038/sj.npp.1301547] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute administration of NMDA receptor (NMDAR) antagonists such as phencyclidine (PCP) or ketamine induces symptoms that closely resemble those of schizophrenia in humans, a finding that has led to the hypothesis that a decreased NMDAR function may be a predisposing or even causative factor in schizophrenia. However, the precise neuropharmacological mechanisms underlying these effects remain to be fully elucidated. Here, we applied pharmacological MRI (phMRI) to examine the brain circuitry underlying the psychotomimetic action of PCP in the anesthetized rat, and investigated how these functional changes are modulated by drugs that possess distinct pharmacological mechanisms. Acute administration of PCP (0.5 mg/kg i.v.) produced robust and sustained positive relative cerebral blood volume (rCBV) changes in discrete cortico-limbo-thalamic regions. Pretreatment with the selective D2 dopamine antagonist raclopride (0.3 mg/kg i.p.) did not significantly affect the rCBV response to PCP, while the atypical antipsychotic clozapine (5 mg/kg i.p.) produced region-dependent effects, with complete suppression of the rCBV response in the thalamus, and weaker attenuation of the response in cortical and hippocampal structures. The response to PCP was strongly suppressed in all regions by pretreatment with two drugs that can inhibit aberrant glutamatergic activity: the anticonvulsant lamotrigine (10 mg/kg i.p.) and the mGluR2/3 agonist LY354740 (10 mg/kg i.p.). Taken together, our findings corroborate the pivotal role of dysfunctional glutamatergic neurotransmission in the functional response elicited by PCP, while the lack of effect of raclopride argues against a primary role of dopamine D2 receptor activation in this process. Finally, the thalamic effect of clozapine could be key to elucidating the functional basis of its pharmacological action.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Department of Biology, Psychiatry CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratalla R. Metabolic interactions between glutamatergic and dopaminergic neurotransmitter systems are mediated through D(1) dopamine receptors. J Neurosci Res 2008; 85:3284-93. [PMID: 17455302 DOI: 10.1002/jnr.21302] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions between the dopaminergic and glutamatergic neurotransmission systems were investigated in the adult brain of wild-type (WT) and transgenic mice lacking the dopamine D(1) or D(2) receptor subtypes. Activity of the glutamine cycle was evaluated by using (13)C NMR spectroscopy, and striatal activity was assessed by c-Fos expression and motor coordination. Brain extracts from (1,2-(13)C(2)) acetate-infused mice were prepared and analyzed by (13)C NMR to determine the incorporation of the label into the C4 and C5 carbons of glutamate and glutamine. D(1)R(-/-) mice showed a significantly higher concentration of cerebral (4,5-(13)C(2)) glutamine, consistent with an increased activity of the glutamate-glutamine cycle and of glutamatergic neurotransmission. Conversely, D(2)R(-/-) mice did not show any significant changes in (4,5-(13)C(2)) glutamate or (4,5-(13)C(2)) glutamine, suggesting that alterations in glutamine metabolism are mediated through D(1) receptors. This was confirmed with D(1)R(-/-) and WT mice treated with reserpine, a dopamine-depleting drug, or with reserpine followed by L-DOPA, a dopamine precursor. Exposure to reserpine increased (4,5-(13)C(2)) glutamine in WT to levels similar to those found in untreated D(1)R(-/-) mice. These values were the same as those reached in the reserpine-treated D(1)R(-/-) mice. Treatment of WT animals with L-DOPA returned (4,5-(13)C(2)) glutamine levels to normal, but this was not verified in D(1)R(-/-) animals. Reserpine impaired motor coordination and decreased c-Fos expression, whereas L-DOPA restored both variables to normal values in WT but not in D(1)R(-/-). Together, our results reveal novel neurometabolic interactions between glutamatergic and dopaminergic systems that are mediated through the D(1), but not the D(2), dopamine receptor subtype.
Collapse
Affiliation(s)
- Tiago B Rodrigues
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC/UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Tan HY, Callicott JH, Weinberger DR. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb Cortex 2007; 17 Suppl 1:i171-81. [PMID: 17726000 DOI: 10.1093/cercor/bhm069] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive deficits are critical determinants of schizophrenia morbidity. In this review, we offer a mechanistic perspective regarding schizophrenia-related changes observed in prefrontal cortical networks engaged in working memory. A body of earlier work converges on aberrations in putative macrocircuit stability and functional efficiency as the underlying pathophysiology of the cognitive deficits in schizophrenia. In parsing the dysfunctional prefrontal cortical dynamics of schizophrenia, recent functional magnetic resonance imaging and electoencephalography works suggest that in the context of reduced capacity for executive aspects of working memory, patients engage a larger network of cortical regions consistent with an interplay between reduced signal-to-noise components and the recruitment of compensatory networks. The genetic programming underlying these systems-level cortical interactions has been examined under the lens of certain schizophrenia susceptibility genes, especially catechol-o-methyltransferase (COMT) and GRM3. Variation in COMT, which presumably impacts on cortical dopamine signaling, translates into variable neural strategies for working memory and altering patterns of intracortical functional correlations. GRM3, which impacts on synaptic glutamate, interacts with COMT and exaggerates the genetic dissection of cortical processing strategies. These findings reveal novel insights into the modulation and parcellation of working memory processing in cortical assemblies and provide a mechanistic link between susceptibility genes and cortical pathophysiology related to schizophrenia.
Collapse
Affiliation(s)
- Hao-Yang Tan
- Genes, Cognition and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Large CH. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 2007; 21:283-301. [PMID: 17591656 DOI: 10.1177/0269881107077712] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine and phencyclidine, induce perceptual abnormalities, psychosis-like symptoms, and mood changes in healthy humans and patients with schizophrenia. The similarity between NMDA receptor antagonist-induced psychosis and schizophrenia has led to the widespread use of the drugs to provide models to aid the development of novel treatments for the disorder. This review investigates the predictive validity of NMDA receptor antagonist models based on a range of novel treatments that have now reached clinical trials. Furthermore, it considers the extent to which the different hypotheses that have been proposed to account for the psychotomimetic effects of NMDA receptor antagonist have been validated by the results of these trials. Finally, the review discusses some of the caveats associated with use of the models and some suggestions as to how a greater use of translational markers might ensure progress in understanding the relationship between the models and schizophrenia.
Collapse
Affiliation(s)
- Charles H Large
- Psychiatry CEDD, GlaxoSmithKline, Via Fleming 4, 37135 Verona, Italy.
| |
Collapse
|
25
|
Nudmamud-Thanoi S, Piyabhan P, Harte MK, Cahir M, Reynolds GP. Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:281-285. [PMID: 17982904 DOI: 10.1007/978-3-211-73574-9_34] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Abnormal glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. In the present study we investigated two potential neuronal glutamatergic markers, the Excitatory Amino Acid Transporter 3 (EAAT3) and the Vesicular Glutamate Transporter 1 (VGluT1), in post-mortem striatal tissue from control subjects and from subjects with schizophrenia (n = 15 per group). We also investigated the possible influence of chronic antipsychotic administration (typical and atypical) on striatal VGluT1 expression in the rat brain. We found deficits in EAAT3 in all striatal regions examined in schizophrenia when compared to controls. Following correction for confounding factors (post-mortem interval), these deficits only remained significant in the caudate nucleus (p = 0.019). We also found significant deficits in VGluT1 in the caudate nucleus (p = 0.009) in schizophrenia. There were no significant differences in VGluT1 in the striatum of antipsychotic treated rats when compared to their vehicle treated controls. The data provides additional evidence for a glutamatergic synaptic pathology in the caudate nucleus in schizophrenia and may reflect a loss of glutamatergic cortico-striatal pathways. The absence of an effect of antipsychotic administration on VGluT1 indicates that the deficits in schizophrenia are unlikely to be a consequence of pharmacotherapy and thus likely to be a correlate of the disease process.
Collapse
Affiliation(s)
- S Nudmamud-Thanoi
- Division of Psychiatry and Neuroscience, Queen's University, Belfast, UK
| | | | | | | | | |
Collapse
|
26
|
Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U. Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 2006; 31:1880-7. [PMID: 16395297 DOI: 10.1038/sj.npp.1300993] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia-mimicking compounds such as phencyclidine (PCP) and MK801 are antagonists at the N-methyl-D-aspartate (NMDA) receptor and produce the whole spectrum of positive, negative, and cognitive symptoms. This is one of the most important pillars of the hypoglutamatergic hypothesis of schizophrenia. Since the synthesis of glutamate and GABA in neurons is closely connected to astrocyte metabolism, the study of astrocytic function is essential in this context. Dizocilpine-maleate (MK801) (0.5 mg/kg) was injected into rats every day for 6 days. The last dose was given together with [1-(13)C]glucose and [1,2-(13)C]acetate. Extracts from frontal, retrosplenial, and cingulate cortices (CRFC) and temporal lobes were examined by (13)C nuclear magnetic resonance spectroscopy, high pressure liquid chromatography, and light microscopy. In CRFC, significant increases in the levels of glutamate, glutathione, and taurine were seen, whereas amounts and turnover of noradrenaline, dopamine, and serotonin were unchanged. Glutamate and glutamine, derived from [1,2-(13)C]acetate and thus astrocytes, were significantly decreased in CRFC as compared to controls. Labeling from [1-(13)C]glucose and thus mostly neuronal metabolism was affected in the same brain region with decreased labeling of glutamate and GABA. The present model mimics the increased glutamate/glutamine activity found in drug-naive patients with first episode schizophrenia. Moreover, the decreased labeling indicates the transition to lower glutamatergic function seen in chronic schizophrenia patients. The disturbance in astrocytic function and the glutamine-glutamate-GABA cycle are of significant importance and might add to the malfunction of the cortico-striato-thalamo-cortical loop caused by NDMA receptor blockade.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
27
|
Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 2006; 59:1198-207. [PMID: 16797265 PMCID: PMC3928106 DOI: 10.1016/j.biopsych.2006.05.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 05/08/2006] [Accepted: 05/15/2006] [Indexed: 11/26/2022]
Abstract
Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. Creating adequate animal models of complex neuropsychiatric disorders such as schizophrenia represents a particularly difficult challenge. In the case of schizophrenia, little is certain regarding the etiology or pathophysiology of the human disease. In addition, many symptoms of the disorder are difficult to measure directly in rodents. These challenges have not daunted neuroscientists who are capitalizing on even subtle overlaps between this uniquely human disorder and rodent behavior. In this perspective, we detail the features of ideal animal models of schizophrenia, the potential utility of such models, and the rodent behaviors used to model certain aspects of schizophrenia. The development of such models will provide critical tools to understand the pathogenesis of schizophrenia and novel insights into therapeutic approaches to this complex disorder.
Collapse
Affiliation(s)
- Craig M Powell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA.
| | | |
Collapse
|
28
|
Magri C, Gardella R, Barlati SD, Podavini D, Iatropoulos P, Bonomi S, Valsecchi P, Sacchetti E, Barlati S. Glutamate AMPA receptor subunit 1 gene (GRIA1) and DSM-IV-TR schizophrenia: a pilot case-control association study in an Italian sample. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:287-93. [PMID: 16526023 DOI: 10.1002/ajmg.b.30294] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamatergic dysfunction is one of the major hypotheses for the pathogenesis of schizophrenia. The GRIA1 gene encodes for one (GluR1) of the four (GluR1-4) ionotropic AMPA receptor subunits. GRIA1 is a good candidate gene for susceptibility to schizophrenia since it maps in 5q33, a region where the presence of susceptibility loci has been suggested by independent genome-wide scans and because its expression has been found to be decreased in the brain of some schizophrenia patients. We present data from a case-control association study on the Italian population with eight polymorphisms spanning the whole GRIA1 gene. Single-locus analysis revealed a significantly different allele distribution in cases and in controls of two SNPs (rs707176, 0.41 vs. 0.31, P = 0.009; rs2963944, 0.41 vs. 0.30, P = 0.007), and one microsatellite (rs10631988, allele 9: 0.40 vs. 0.29, P = 0.004). Haplotype analysis showed an increased frequency of a specific haplotype for these markers (C09CC, 0.39 vs. 0.28, P = 0.009). Therefore our data indicate that GRIA1 may be involved in susceptibility to DSM-IV-TR schizophrenia.
Collapse
Affiliation(s)
- Chiara Magri
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, Brescia University School of Medicine, Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zuo DY, Zhang YH, Cao Y, Wu CF, Tanaka M, Wu YL. Effect of acute and chronic MK-801 administration on extracellular glutamate and ascorbic acid release in the prefrontal cortex of freely moving mice on line with open-field behavior. Life Sci 2006; 78:2172-8. [PMID: 16280137 DOI: 10.1016/j.lfs.2005.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 09/06/2005] [Indexed: 11/21/2022]
Abstract
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.
Collapse
Affiliation(s)
- Dai-Ying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | | | | | | | | | | |
Collapse
|
30
|
Honey GD, Pomarol-Clotet E, Corlett PR, Honey RAE, McKenna PJ, Bullmore ET, Fletcher PC. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 2005; 128:2597-611. [PMID: 16183659 PMCID: PMC3838931 DOI: 10.1093/brain/awh632] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is not known whether there is a core abnormality that occurs in all cases of schizophrenia. The cognitive dysmetria hypothesis proposes that there is such an abnormality which is characterized cognitively by a disruption in control and coordination processes, and functionally by abnormal inter-regional connectivity within the cortico-cerebellar-thalamo-cortical circuit (CCTCC). In the current study, we used functional MRI (fMRI) to investigate these two key aspects of the hypothesis. Since patients with schizophrenia show deficits in attention which have been characterized extensively using the continuous performance task (CPT) and since functional imaging studies have also demonstrated that this task engages the CCTCC, we used this task to investigate whether two patient groups with distinct symptom profiles would show functional dysconnectivity within this network. Three groups of subjects participated in the study: healthy volunteers (n = 12), schizophrenia patients with both negative and positive symptoms (n = 11) and schizophrenia patients with primarily positive symptoms (n = 11). Patient groups were matched for age of illness onset and medication, and to the control group for age, gender and handedness. Subjects were scanned using fMRI whilst they performed a modified version of the CPT, involving both degraded and non-degraded stimuli. Stimulus degradation has been shown to produce decrements in sensitivity, which is thought to reflect increased demands on the limited capacity of visual attention. Between-group comparisons revealed that patients with schizophrenia, irrespective of symptomatology, showed attenuation of the anterior cingulate and cerebellar response to stimulus degradation in comparison with control subjects. We also observed disruptions of inter-regional brain integration in schizophrenia. A task-specific relationship between the medial superior frontal gyrus and both anterior cingulate and the cerebellum was disrupted in both patient groups in comparison with controls. In addition, patients with negative symptoms showed impaired behavioural performance, and abnormal task-related connectivity between anterior cingulate and supplementary motor area. These findings are consistent with theoretical accounts of schizophrenia as a disorder of functional integration, and with the cognitive dysmetria hypothesis, which posits a disconnection within the CCTCC as a fundamental abnormality in schizophrenia, independent of diagnostic subtype. Furthermore, these data show evidence of additional functional deficits in patients with negative symptoms, deficits which may explain the accompanying attentional impairment.
Collapse
Affiliation(s)
- Garry D Honey
- University of Cambridge, Department of Psychiatry, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Hochhauser CJ, Lewis M, Kamen BA, Cole PD. Steroid-induced alterations of mood and behavior in children during treatment for acute lymphoblastic leukemia. Support Care Cancer 2005; 13:967-74. [PMID: 16189647 DOI: 10.1007/s00520-005-0882-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/15/2005] [Indexed: 01/24/2023]
Abstract
Despite their therapeutic utility, children may experience emotional and behavioral side effects from steroids during treatment for leukemia. However, clinical manifestations and treatment options have rarely been described in the pediatric literature. The aim of this current paper is to address this knowledge gap via four brief case examples and a review of the literature. In addition, we review recent data to indicate how concurrent use of antifolates may place these children at particular risk for adverse psychological reactions.
Collapse
Affiliation(s)
- Carl J Hochhauser
- The Institute for the Study of Child Development, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 97 Paterson Street, New Brunswick, NJ, 08903, USA.
| | | | | | | |
Collapse
|
32
|
Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179:30-53. [PMID: 15761697 DOI: 10.1007/s00213-005-2199-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 02/04/2005] [Indexed: 01/23/2023]
Abstract
RATIONALE Activation of "co-agonist" N-methyl-D-aspartate (NMDA) and Glycine(B) sites is mandatory for the operation of NMDA receptors, which play an important role in the control of mood, cognition and motor function. OBJECTIVES This article outlines the complex regulation of activity at Glycine(B)/NMDA receptors by multiple classes of endogenous ligand. It also summarizes the evidence that a hypoactivity of Glycine(B)/NMDA receptors contributes to the pathogenesis of psychotic states, and that drugs which enhance activity at these sites may possess antipsychotic properties. RESULTS Polymorphisms in several genes known to interact with NMDA receptors are related to an altered risk for schizophrenia, and psychotic patients display changes in levels of mRNA encoding NMDA receptors, including the NR1 subunit on which Glycine(B) sites are located. Schizophrenia is also associated with an overall decrease in activity of endogenous agonists at Glycine(B)/NMDA sites, whereas levels of endogenous antagonists are elevated. NMDA receptor "open channel blockers," such as phencyclidine, are psychotomimetic in man and in rodents, and antipsychotic agents attenuate certain of their effects. Moreover, mice with genetically invalidated Glycine(B)/NMDA receptors reveal similar changes in behaviour. Finally, in initial clinical studies, Glycine(B) agonists and inhibitors of glycine reuptake have been found to potentiate the ability of "conventional" antipsychotics to improve negative and, albeit modestly, cognitive and positive symptoms. In contrast, therapeutic effects of clozapine are not reinforced, likely since clozapine itself enhances activity at NMDA receptors. CONCLUSIONS Reduced activity at NMDA receptors is implicated in the aetiology of schizophrenia. Correspondingly, drugs that (directly or indirectly) increase activity at Glycine(B) sites may be of use as adjuncts to other classes of antipsychotic agent. However, there is an urgent need for broader clinical evaluation of this possibility, and, to date, there is no evidence that stimulation of Glycine(B) sites alone improves psychotic states.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
33
|
Ohrmann P, Siegmund A, Suslow T, Spitzberg K, Kersting A, Arolt V, Heindel W, Pfleiderer B. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 2005; 73:153-7. [PMID: 15653258 DOI: 10.1016/j.schres.2004.08.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/26/2004] [Accepted: 08/28/2004] [Indexed: 11/26/2022]
Abstract
Based upon pharmacological challenge and postmortem studies, schizophrenia has been hypothesized to be caused by decreased glutamatergic neurotransmission. We investigated the glutamatergic neuronal metabolism of the dorsolateral prefrontal cortex with localized 1H magnetic resonance spectroscopy in 18 first-episode patients, 21 chronic patients with schizophrenia, and 21 age-matched controls. Chronic patients had significantly lower levels of glutamate/glutamine (Glx) and N-acetylaspartate (NAA) compared to healthy controls and first-episode patients. Reduced metabolite levels were not correlated with duration of illness or medication. Our results indicate glutamatergic dysfunction in chronic schizophrenia that could be evidence of a progressive brain disorder.
Collapse
Affiliation(s)
- Patricia Ohrmann
- University of Muenster, Department of Psychiatry, Albert-Schweitzer-Str. 11, Germany.
| | | | | | | | | | | | | | | |
Collapse
|