1
|
Kirubarajan A, Sohel N, Mayhew A, Griffith LE, Raina P, Shea AK. The association between primary ovarian insufficiency and increased multimorbidity in a large prospective cohort (Canadian Longitudinal Study on Aging). Fertil Steril 2025; 123:289-299. [PMID: 39216544 DOI: 10.1016/j.fertnstert.2024.08.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To describe the prevalence of multimorbidity among individuals with primary ovarian insufficiency (POI) and early menopause compared with those with the average age of menopause. DESIGN Prospective cohort. SUBJECTS This prospective cohort encompassed female postmenopausal individuals from the Canadian Longitudinal Study on Aging. The Canadian Longitudinal Study on Aging collected cross-sectional data from 50,000 community-dwelling Canadians aged 45-85 years between 2010 and 2015. EXPOSURE The primary exposure was POI (defined by onset of menopause at the age of <40 years). Comparators included average age of menopause (age, 46-55 years), early menopause (40-45 years), and late-onset menopause (56-65 years) and those who underwent hysterectomy. MAIN OUTCOME MEASURE(S) The primary outcome was multimorbidity, which was defined as two or more chronic conditions. The secondary outcomes were severe multimorbidity (defined as 3 or more chronic conditions) and frequencies of specific chronic conditions among a comprehensive list of 15 individual conditions. We assessed the association between multimorbidity and age at menopause using logistic regression and odds ratios (ORs), with confidence intervals (CIs) set at 95%. The ORs were adjusted for known predictors of multimorbidity, including age, menopausal hormone therapy, education, ethnicity, self-reported loneliness, living alone, body mass index, smoking habits, nutritional risk, social participation, and physical activity. RESULT(S) A total of 12,339 postmenopausal participants were included, of whom 374 (3.0%) experienced POI and 1,396 (11.3%) experienced early menopause. The prevalence rates of multimorbidity were 64.8% and 51.1% among those with POI and early menopause, respectively. In contrast, only 43.9% of individuals with average age of menopause (age, 46-55 years) had multimorbidity. The OR for multimorbidity in the POI population was 2.5 (95% CI, 2.0-3.1) compared with that in individuals who had the average age of menopause. This relationship was maintained after adjustment for confounders (adjusted OR [aOR], 2.0; 95% CI, 1.5-2.5). The prevalence of severe multimorbidity was also double in the POI group compared with that in the average age group (39.2% vs. 21.1%). There were significantly increased risks of ischemic heart disease (aOR, 2.8; 95% CI, 1.7-4.7), gastric ulcers (aOR, 1.6; 95% CI, 1.1-2.3), and osteoporosis (aOR, 1.6; 95% CI, 1.2-2.1) in the POI group. CONCLUSION(S) Individuals with POI and early menopause experience increased multimorbidity compared with those undergoing menopause at an average age. This trend persists even after adjusting for significant multimorbidity risk factors.
Collapse
Affiliation(s)
- Abirami Kirubarajan
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nazmul Sohel
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra Mayhew
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, McMaster University, Hamilton, Ontario, Canada
| | - Lauren E Griffith
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, McMaster University, Hamilton, Ontario, Canada
| | - Parminder Raina
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact (HEI), Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, McMaster University, Hamilton, Ontario, Canada
| | - Alison K Shea
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; The Research Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Gogakos AI, Anastasilakis AD. Current and emerging bone resorption inhibitors for the treatment of osteoporosis. Expert Opin Pharmacother 2025; 26:265-278. [PMID: 39797385 DOI: 10.1080/14656566.2025.2451741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Osteoporosis is a metabolic skeletal disease characterized by low bone mass and strength, and increased risk for fragility fractures. It is a major health issue in aging populations, due to fracture-associated increased disability and mortality. Antiresorptive treatments are first line choices in most of the cases. AREAS COVERED Bone homeostasis is complicated, and multiple factors can compromise skeletal health. Bone turnover is a continuous process regulated by the coupled activities of bone cells that preserves skeletal strength and integrity. Imbalance between bone resorption and formation leads to bone loss and increased susceptibility to fractures. Antiresorptives prevent bone loss and reduce fracture risk, by targeting osteoclastogenesis and osteoclast function and survival. Their major drawback is the coupling of osteoclast and osteoblast activity, due to which any reduction in bone resorption is followed by suppression of bone formation. EXPERT OPINION During the last couple of decades significant progress has been made in understanding of the genetic and molecular basis of osteoporosis. Critical pathways and key molecules that mediate regulation of bone resorption have been identified. These factors may underpin novel therapeutic avenues for osteoporosis, but their potential for translation into clinical applications is yet to be tested.
Collapse
Affiliation(s)
- Apostolos I Gogakos
- Department of Endocrinology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
3
|
Lin JY, Kuang HM, Rong K, Peng L, Kuang JJ, Yan X. Effectiveness of desertliving cistanche in managing hyperlipidemic osteoporosis in ovariectomized rats through the PI3K/AKT signaling pathway. J Orthop Surg Res 2024; 19:393. [PMID: 38970109 PMCID: PMC11225217 DOI: 10.1186/s13018-024-04890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.
Collapse
Affiliation(s)
- Jia-Yue Lin
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Hao-Ming Kuang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Kuan Rong
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China
| | - Li Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Jian-Jun Kuang
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China.
| | - Xu Yan
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China.
| |
Collapse
|
4
|
Moscatelli F, Monda A, Messina G, Picciocchi E, Monda M, Di Padova M, Monda V, Mezzogiorno A, Dipace A, Limone P, Messina A, Polito R. Exploring the Interplay between Bone Marrow Stem Cells and Obesity. Int J Mol Sci 2024; 25:2715. [PMID: 38473961 DOI: 10.3390/ijms25052715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Elisabetta Picciocchi
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marilena Di Padova
- Department of Humanistic Studies, University of Foggia, 71100 Foggia, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples "Parthenope", 80138 Naples, Italy
| | - Antonio Mezzogiorno
- Department of Mental Health, Fisics and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Kumari P, Shirumalla RK, Bhalla V, Alam MS. New Emerging Aspect of Herbal Extracts for the Treatment of Osteoporosis: Overview. Curr Rheumatol Rev 2024; 20:361-372. [PMID: 38173067 DOI: 10.2174/0115733971273691231121131455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/05/2024]
Abstract
As the global population ages, osteoporosis is becoming a more common silent disease. Osteoporosis is characterized by decreased bone quality and strength, which increases the risk of fragility fractures in the elderly. According to estimates, 50% of women eventually suffer from an osteoporotic fracture. Due to increasing disability, more frequent hospital hospitalizations, and most critically, fragility fractures have been linked to a reduced quality of life. Osteoporotic fractures have been linked to an increased mortality risk; and must be considered in awareness as a serious health concern. There are anti-osteoporotic medications available that improve bone quality. Considering the availability of various treatment options, still there are a lot of underserved needs in the treatment of fractures and osteoporosis. For example, the application of natural products and herbal resources for fracture healing, because of the androgen-like and antioxidant characteristics of the plants, they can play a crucial for accelerating the repair of bone fractures. In this article, we'll discuss the herbal remedies that are essential for treating osteoporosis (bone disease).
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Raj K Shirumalla
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Vijay Bhalla
- SGT College of Pharmacy, Department of Pharmacology, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| |
Collapse
|
6
|
Liu X, He C, Koyama T. D-Pinitol Ameliorated Osteoporosis via Elevating D-chiro-Inositol Level in Ovariectomized Mice. J Nutr Sci Vitaminol (Tokyo) 2023; 69:220-228. [PMID: 37394427 DOI: 10.3177/jnsv.69.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A natural sugar alcohol, D-pinitol, has been reported to be a potential compound for osteoporosis treatment via inhibiting osteoclastgenesis. However, research on the effects of pinitol on osteoporosis in vivo is still limited. The present study investigated the protective effects of pinitol on ovariectomized mice and attempted to elucidate this mechanism in vivo. Four-week-old female ovariectomized ICR mice were employed as a postmenopausal osteoporosis model and treated with pinitol or estradiol (E2) for 7 wk. Thereafter, serum calcium content, phosphorus content, tartrate-resistant acid phosphatase (TRAcP) and bone-specific alkaline phosphatase activity (BALP) were measured. Bilateral femurs were isolated, and bone marrow protein was collected through centrifuge. Dry femurs were weighed, while femur length, cellular bones, and bone mineral content were measured. D-chiro-Inositol (DCI) and myo-inositol (MI) content in serum and bone marrow was measured by GC-MS. At the end of experiment, the serum BALP and TRAcP activities of the OVX mice were suppressed significantly by treatment with either pinitol or E2. Femur weight, cellular bone rate, Ca and P content were improved by pinitol or E2. The DCI content of the serum of OVX decreased significantly, although it recovered to some extent after pinitol treatment. Pinitol significantly increased the ratio of DCI to MI in serum or bone marrow protein in the observed OVX mice. Besides, pinitol had no significant effects on osteoblast viability and differentiation. The present results showed that continuous pinitol intake exerts potent anti-osteoporosis activity via elevating DCI content in serum and bone marrow in OVX mice.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Chuan He
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Tomoyuki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
7
|
Dilley KN, Wong A, Kent MS, Steffey MA, Yellowley CE. Expression of Sex Hormone Receptors in Canine Osteosarcoma. Vet Sci 2022; 9:524. [PMID: 36288137 PMCID: PMC9609940 DOI: 10.3390/vetsci9100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 05/25/2024] Open
Abstract
Sex steroids regulate bone metabolism directly and indirectly through receptors on bone. Estrogen receptors (ER-∝, ER-β), progesterone receptor (PR), and androgen receptor (AR), have been previously identified on human osteosarcoma (OSA) cells, and are considered to influence tumor growth, but their expression and role in canine OSA is unknown. The aim of this study was to characterize sex hormone receptor expression levels in naturally occurring OSA tissue and in three canine OSA cell lines. The expression of ER-α, ER-β, PR, and AR was investigated using RT-PCR. PR expression levels were also quantified in OSA cells cultured under hypoxic conditions or in the presence of estradiol. The effects of progesterone on cell proliferation were quantified. Results demonstrated varying expression levels of these receptors in five OSA subtypes. OSA cell lines demonstrated high gene expression levels of PR and low gene expression levels of ER-α and ER-β and no gene expression of AR. PR expression was increased in OSA cells cultured under hypoxic conditions in a HIF-∝ independent manner. Interestingly, one cell line expressed very high levels of PR, expression of which decreased in response to estradiol. In addition, progesterone decreased OSA cell proliferation in this particular cell line. Further investigation of the role of sex steroids, particularly PR and its ligands, in regulation of canine OSA is recommended.
Collapse
Affiliation(s)
- Kristyn N. Dilley
- VCA Loomis Basin Veterinary Clinic, 3901 Sierra College Blvd, Loomis, CA 95650, USA
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Michele A. Steffey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
8
|
Guzman A, Kurgan N, Moniz SC, McCarthy SF, Sale C, Logan-Sprenger H, Elliott-Sale KJ, Hazell TJ, Klentrou P. Menstrual Cycle Related Fluctuations in Circulating Markers of Bone Metabolism at Rest and in Response to Running in Eumenorrheic Females. Calcif Tissue Int 2022; 111:124-136. [PMID: 35429247 DOI: 10.1007/s00223-022-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
This study examined potential fluctuations in bone metabolic markers across the menstrual cycle both at rest and after a 30-min bout of continuous running at 80% of V̇O2max. Resting and post-exercise (0, 30, 90 min) sclerostin, parathyroid hormone (PTH), carboxy-terminal cross-linking telopeptide of type I collagen (β-CTXI), and procollagen type 1 N propeptide (PINP) were assessed in 10 eumenorrheic women (age: 21 ± 3 y, BMI: 23.2 ± 3.0 kg.m2) during the mid- to late-follicular (FP: day 8.0 ± 1.4) and mid-luteal (LP: day 22.0 ± 2.5) phases of the menstrual cycle. Ovulation was determined using ovulation kits and daily measurement of oral body temperature upon awakening. Menstrual cycle phase was subsequently confirmed by measurement of plasma estradiol and progesterone. On average, resting estradiol concentrations increased from 46.3 ± 8.9 pg·mL-1 in the FP to 67.3 ± 23.4 pg·mL-1 in the LP (p = 0.015), and resting progesterone increased from 4.12 ± 2.36 ng·mL-1 in the FP to 11.86 ± 4.49 ng·mL-1 in the LP (p < 0.001). At rest, there were no differences between menstrual cycle phases in sclerostin (FP: 260.1 ± 135.0 pg·mL-1; LP: 303.5 ± 99.9 pg·mL-1; p = 0.765), PTH (FP: 0.96 ± 0.64 pmol·L-1; LP: 0.79 ± 0.44 pmol·L-1; p = 0.568), β-CTXI (FP: 243.1 ± 158.0 ng·L-1; LP: 202.4 ± 92.3 ng·L-1; p = 0.198), and PINP (FP: 53.6 ± 8.9 μg·L-1; LP: 66.2 ± 20.2 μg·L-1; p = 0.093). Main effects for time (p < 0.05) were shown in sclerostin, PTH, β-CTXI and PINP, without phase or interaction effects. Sclerostin increased from pre- to immediately post-exercise (45%; p = 0.007), and so did PTH (43%; p = 0.011), both returning to resting concentrations 30 min post-exercise. β-CTXI decreased from pre- to post-exercise (20%; p = 0.027) and was still below its pre-exercise concentrations at 90 min post-exercise (17%; p = 0.013). PINP increased immediately post-exercise (29%; p < 0.001), returning to resting concentrations at 30 min post-exercise. These results demonstrate no effect of menstrual cycle phase on resting bone marker concentrations or on the bone metabolic marker response to intense exercise.
Collapse
Affiliation(s)
- Anne Guzman
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Sara C Moniz
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Craig Sale
- SHAPE Research Centre, Nottingham Trent University, Nottingham, UK
| | | | | | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
9
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
10
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
11
|
Oxytocin and Bone: Review and Perspectives. Int J Mol Sci 2021; 22:ijms22168551. [PMID: 34445256 PMCID: PMC8395200 DOI: 10.3390/ijms22168551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Recent data demonstrate the anabolic effect of oxytocin on bone. Bone cells express oxytocin receptors. Oxytocin promotes osteoblasts differentiation and function, leading to an increased bone formation with no effect on bone resorption and an improvement of bone microarchitecture. Oxytocin is synthetized by osteoblasts, and this synthesis is stimulated by estrogen. Animal studies demonstrate a direct action of oxytocin on bone, as the systemic administration of oxytocin prevents and reverses the bone loss induced by estrogen deficiency. Although oxytocin is involved in bone formation in both sexes during development, oxytocin treatment has no effect on male osteoporosis, underlining the importance of estrogen that amplifies its local autocrine and paracrine secretion. There are few human data showing a decrease in the oxytocin serum level in anorexia nervosa independently of estrogen and in amenorrheic women associated with impaired bone microarchitecture; in post-menopausal women a higher oxytocin serum level is associated with higher bone density, but not in osteoporotic men. Oxytocin displays many effects that may be beneficial in the management of osteoporosis, cardiovascular diseases, cognitive disorders, breast cancer, diabetes and body fat gain, all age-related diseases affecting elderly women, opening exciting therapeutic perspectives, although the issue is to find a single route, dosage and schedule able to reach all these targets.
Collapse
|
12
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
13
|
Chiu YC, Lin YT, Hsia YF, Jung CR, Lo YC, Chen TM, Chan JC, Wang YC, Kuo CC, Hwang BF. Long-term exposure to fine particulate matter and osteoporotic fracture: A case-control study in Taiwan. ENVIRONMENTAL RESEARCH 2021; 196:110888. [PMID: 33662345 DOI: 10.1016/j.envres.2021.110888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Few studies have explored the relationship between long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and osteoporotic fracture, particularly in high PM2.5 level areas. The aim of this study was to assess the association between long-term exposure to PM2.5 and osteoporotic fracture. We performed a matched case-control study of 16,175 participants obtained from a hospital registry during 2005-2014 in Taiwan. A major osteoporotic fracture was defined as a fracture of the spine, hip, proximal humerus, and forearm. We applied satellite-based spatiotemporal models with 1-km resolution to individually calculate the 1-year average PM2.5 concentration before the index date which was defined as the first visit date for the osteoporotic fracture. Logistic regression models with and without potential confounding factors were used to estimate odds ratios (OR) and 95% confidence intervals (CI) between PM2.5 and osteoporotic fracture, whereas a restricted cubic spline model was used to estimate the dose-response relationship. The sample's median age was 44.7 years (interquartile range: 30.7, 63.1 years). We observed that long-term PM2.5 exposure was associated with osteoporotic fracture, the OR was 1.12 (95% CI: 1.03, 1.22) per 10-μg/m3 increase in PM2.5 in women. In the dose-response association, the OR of osteoporotic fracture was significantly increased for PM2.5 exposures more than 41 μg/m3. We did not find a significant association between PM2.5 (per 10-μg/m3 increase) and osteoporotic fracture among overall population (adjusted OR, 1.02 [95% CI, 0.97 to 1.08]) and men (adjusted OR, 0.94 [95% CI, 0.86 to 1.02]). The results of the stratified analysis showed that women were more sensitive to the adverse impact of PM2.5 that were men, and evidence was obtained of sex-based effect modification (P for interaction = 0.002). Our findings suggest that long-term exposure to PM2.5 is associated with osteoporotic fracture, particularly among women.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ying-Fang Hsia
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chau-Ren Jung
- Exposure Dynamics Research Section, Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yen-Chun Lo
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tung-Ming Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chu Chan
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chih Wang
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Chi Kuo
- School of Medicine, China Medical University, Taichung, Taiwan; Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Deng L, Guo Y. Estrogen effects on orthodontic tooth movement and orthodontically-induced root resorption. Arch Oral Biol 2020; 118:104840. [PMID: 32730908 DOI: 10.1016/j.archoralbio.2020.104840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Estrogen is an essential regulator of the bone tissue. The remodeling of the alveolar bone and periodontal ligament is the basis of orthodontic tooth movement (OTM). There is a negative coregulation between physiological estrogen levels and the rate of OTM. As a possible inhibitory factor of OTM, estrogen suppresses bone resorption by inhibiting osteoclastic differentiation and restraining osteoclast lifespan though multiple pathways and cytokines, leading to the suppression of the initiation step of bone remodeling. On the other hand, estrogen stimulates osteoblastic differentiation and function. Estrogen receptor-α (ERα) involves in the osteogenic responses to mechanical stimulation, and the ERα expression is regulated positively by the levels of circulatory estrogen. Orthodontically induced root resorption (OIRR) is a common side-effect of orthodontic treatment. Estrogen may have some inhibitory effects on OIRR, but more studies are needed to get an effective conclusion.
Collapse
Affiliation(s)
- Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Impact of calcium, vitamin D, vitamin K, oestrogen, isoflavone and exercise on bone mineral density for osteoporosis prevention in postmenopausal women: a network meta-analysis. Br J Nutr 2020. [DOI: 10.1017/s0007114519002290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractThe aim of this network meta-analysis is to compare bone mineral density (BMD) changes among different osteoporosis prevention interventions in postmenopausal women. We searched MEDLINE, Embase and Cochrane Library from inception to 24 February 2019. Included studies were randomised controlled trials (RCT) comparing the effects of different treatments on BMD in postmenopausal women. Studies were independently screened by six authors in three pairs. Data were extracted independently by two authors and synthesised using Bayesian random-effects network meta-analysis. The results were summarised as mean difference in BMD and surface under the cumulative ranking (SUCRA) of different interventions. A total of ninety RCT (10 777 participants) were included. Ca, vitamin D, vitamin K, oestrogen, exercise, Ca + vitamin D, vitamin D + vitamin K and vitamin D + oestrogen were associated with significantly beneficial effects relative to no treatment or placebo for lumbar spine (LS). For femoral neck (FN), Ca, exercise and vitamin D + oestrogen were associated with significantly beneficial intervention effects relative to no treatment. Ranking probabilities indicated that oestrogen + vitamin D is the best strategy in LS, with a SUCRA of 97·29 % (mean difference: +0·072 g/cm2 compared with no treatment, 95 % credible interval (CrI) 0·045, 0·100 g/cm2), and Ca + exercise is the best strategy in FN, with a SUCRA of 79·71 % (mean difference: +0·029 g/cm2 compared with placebo, 95 % CrI –0·00093, 0·060 g/cm2). In conclusion, in postmenopausal women, many interventions are valuable for improving BMD in LS and FN. Different intervention combinations can affect BMD at different sites diversely.
Collapse
|
16
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Csaba G. Bone Manifestation of Faulty Perinatal Hormonal Imprinting: A Review. Curr Pediatr Rev 2019; 15:4-9. [PMID: 30474530 DOI: 10.2174/1573396315666181126110110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 01/27/2023]
Abstract
Hormonal imprinting takes place at the first encounter between the developing receptor and its target hormone and the encounter determines the receptor's binding capacity for life. In the critical period of development, when the window for imprinting is open, the receptor can be misdirected by related hormones, synthetic hormones, and industrial or communal endocrine disruptors which cause faulty hormonal imprinting with life-long consequences. Considering these facts, the hormonal imprinting is a functional teratogen provoking alterations in the perinatal (early postnatal) period. One single encounter with a low dose of the imprinter in the critical developmental period is enough for the formation of faulty imprinting, which is manifested later, in adult age. This has been justified in the immune system, in sexuality, in animal behavior and brain neurotransmitters etc. by animal experiments and human observations. This review points to the faulty hormonal imprinting in the case of bones (skeleton), by single or repeated treatments. The imprinting is an epigenetic alteration which is inherited to the progeny generations. From clinical aspect, the faulty imprinting can have a role in the pathological development of the bones as well, as in the risk of osteoporotic fractures, etc.
Collapse
Affiliation(s)
- G Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Zammel N, Amri N, Chaabane R, Rebai T, Badraoui R. Proficiencies of Zingiber officinale against spine curve and vertebral damage induced by corticosteroid therapy associated with gonadal hormone deficiency in a rat model of osteoporosis. Biomed Pharmacother 2018; 103:1429-1435. [PMID: 29864927 DOI: 10.1016/j.biopha.2018.04.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/05/2023] Open
Abstract
This study was assessed to examine whether Zingiber officinale (ZO) can prevent spine disorder and trabecular microarchitecture disruption in osteoporotic murin model. Three groups of male rats were selected: Controls (CTRL), combined model of osteoporosis (CMO), in which rats were orchidectomized and treated with cortisol, and CMO treated with ZO (CMO + ZO). One month after the surgical procedures, the rats were sacrificed. Lumbar curve of the spine has been evaluated using the kyphotic method. The spines were submitted to histological and histomorphometric analysis and mineral (calcium and phosphorus) metabolism assessment. Compared to CTRL, the mean kyphotic angle (KA) was significantly higher in CMO rats. The spinal deconditioning associated decreased bone trabecular volume and a disrupted microarchitecture. A disorder was observed in the serum and bone levels of calcium and phosphorus in the combined severe osteopenia model. An increase in the level of TRAcP associated with an increase in osteoclast number and activity has been reported. These disturbances were reduced following the use of ZO in the CMO + ZO group. Finally, ginger might be an alternative therapeutic candidate for the treatment of severe osteopenia induced vertebral damage and spine curve disruption.
Collapse
Affiliation(s)
- Nourhène Zammel
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, 3029, Sfax, Tunisia
| | - Nahed Amri
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, 3029, Sfax, Tunisia
| | - Rim Chaabane
- Laboratory of Biochemistry, CHU Hédi Chaker of Sfax, 3029, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, 3029, Sfax, Tunisia
| | - Riadh Badraoui
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, 3029, Sfax, Tunisia; Laboratory of Histology - Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007, La Rabta-Tunis, Tunisia.
| |
Collapse
|
19
|
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237:R83-R98. [PMID: 29555849 PMCID: PMC5924585 DOI: 10.1530/joe-17-0680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023]
Abstract
Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: Mone Zaidi, MD, PhD, The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1055, New York, NY 10029;
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry C. Blair
- The Pittsburgh VA Medical Center and Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alberta Zallone
- Department of Histology, University of Bari, 70121 Bari, Italy
| | - Ramkumarie Baliram
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F. Davies
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Cardozo
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Lee H, Kim M, Choi Y, Hong J, Yang W. Effects of Cynanchum wilfordii on osteoporosis with inhibition of bone resorption and induction of bone formation. Mol Med Rep 2017; 17:3758-3762. [DOI: 10.3892/mmr.2017.8309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Haesu Lee
- Department of Convergence Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Kim
- Department of Convergence Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - You Choi
- Department of Convergence Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Yang
- Department of Convergence Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Song J, Jing Z, Hu W, Yu J, Cui X. α-Linolenic Acid Inhibits Receptor Activator of NF-κB Ligand Induced (RANKL-Induced) Osteoclastogenesis and Prevents Inflammatory Bone Loss via Downregulation of Nuclear Factor-KappaB-Inducible Nitric Oxide Synthases (NF-κB-iNOS) Signaling Pathways. Med Sci Monit 2017; 23:5056-5069. [PMID: 29061958 PMCID: PMC5665607 DOI: 10.12659/msm.904795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is a major cellular strain causing increased risk of osteo-degenerative diseases. Omega-3 fatty acids have been great source in suppressing inflammation. We investigated the effect of α-linolenic acid (ALA) on RANKL-stimulated osteoclast differentiation, LPS-induced and ovariectomized bone loss in mice models. Material/Methods The bone marrow macrophages (BMMs) were isolated from femurs of ICR mice, stimulated with RANKL, and treated with ALA (100, 200, 300 μM). Major analytical methods include histological analysis, osteoclasts viability assay, serum cytokines and chemokines ELISA, and gene expression by qPCR. Results ALA intervention inhibited RANKL-induced osteoclasts proliferation and differentiation. ALA inhibited bone resorption activity as measured by materialization of F-actin ring structures as well. ALA suppressed the RANKL-induced osteoclast markers c-Fos, c-Jun and NFATc1 together with transcription factor proteins TRAP, OSCAR, cathepsin K and β3-integrin. ALA also suppressed the RANKL-stimulated phosphorylation of JNK, ERK, and AKT as well as NF-κB and BCL-2 proteins. ALA intervention (100 and 300 mg/kg) to LPS-challenged mice showed annulled morphometric changes induced by LPS by suppressing the levels of proinflammatory cytokines and chemokines. ALA (100 and 300 mg/kg) intervention to estrogen-deficiency induced bone loss mice (ovariectomized) showed reductions in TRAP+ osteoclasts count, CTX-I expression, levels of IL-1β, IL-2, IL-6, IL10, TNF-α and MCP-1 and iNOS and COX-2. Conclusions ALA suppresses RANKL-induced osteoclast differentiation and prevents inflammatory bone loss via downregulation of NF-κB-iNOS-COX-2 signaling. ALA is suggested to be a preventive herbal medicine against inflammatory bone disorders.
Collapse
Affiliation(s)
- Jiefu Song
- Department of Orthopedics, Shan Xi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Zhizhen Jing
- Department of Orthopedics, Shan Xi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Wei Hu
- Department of Orthopedics, Shan Xi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Jianping Yu
- Department of Orthopedics, Shan Xi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Xiaoping Cui
- Department of Orthopedics, Shan Xi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
22
|
Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang J, Huang SH, Xie WL. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor–dependent MEK/ERK and PI3K/Akt activation. Nutr Res 2017. [DOI: 10.1016/j.nutres.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Daswani B, Gavali S, Desai M, Patil A, Khatkhatay MI. Serum levels of phosphorylated heat shock protein 27 (pHSP27) are associated with bone mineral density in pre- & postmenopausal women: A pilot study. Indian J Med Res 2017; 143:288-96. [PMID: 27241641 PMCID: PMC4892074 DOI: 10.4103/0971-5916.182618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND & OBJECTIVES Phosphorylated heat shock protein 27 (pHSP27) has been implicated in the pathogenesis of osteoporosis. oxidative stress and proinflammatory cytokines, which are known to be involved in aetiology of osteoporosis, can trigger HSP27 phosphorylation. Since pHSP27 is present in circulation, it was hypothesized that serum pHSP27 would be elevated in low bone mineral density (BMD) condition and might serve as an indicator of osteoporosis/osteopenia. Hence, the aim of this study was to examine serum levels of pHSP27 in relation with BMD in pre- and postmenopausal women. METHODS Premenopausal (30 to 40 yr) and postmenopausal (50 to 60 yr) women having either low BMD (osteopenia/osteoporosis) or high BMD were selected (n=80) from a prospective cohort (n=200). Serum levels of pHSP27; along with levels of oestradiol, malondialdehyde, total antioxidant capacity, interleukin (IL)-1, IL-6, tumour necrosis factor - alpha, (TNF-α), c-telopeptide fragments of collagen type I (CTX-1) and osteocalcin were estimated. RESULTS The serum levels of pHSP27 were significantly elevated in low BMD groups in premenopausal and postmenopausal categories (p<0.05). It also exhibited a significant odds ratio (OR) to differentiate between low and high BMD in both premenopausal (OR=1.734, p=0.013) and postmenopausal (OR=1.463, p=0.042) categories. Additionally, area under the curve to predict low BMD was non-significantly higher for pHSP27 than CTX-1 in premenopausal and postmenopausal categories. INTERPRETATION & CONCLUSIONS This study highlights a novel relation between serum pHSP27 and BMD in Indian women however, these findings need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Bhavna Daswani
- Division of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Shubhangi Gavali
- Division of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Meena Desai
- Division of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Anushree Patil
- Division of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - M Ikram Khatkhatay
- Division of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| |
Collapse
|
24
|
Zhang Z, Ren H, Shen G, Qiu T, Liang D, Yang Z, Yao Z, Tang J, Jiang X, Wei Q. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed Pharmacother 2016; 84:438-446. [PMID: 27685786 DOI: 10.1016/j.biopha.2016.09.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 08/21/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhida Zhang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
25
|
Abstract
Osteoporosis is a degenerative bone disease commonly related to aging. With an increase in life expectancies worldwide, the prevalence of the disease is expected to rise. Current clinical therapeutic treatments are not able to offer long-term solutions to counter the bone mass loss and the increased risk of fractures, which are the primary characteristics of the disease. However, the combination of bioactive nanomaterials within a biomaterial scaffold shows promise for the development of a localized, long-term treatment for those affected by osteoporosis. This review summarizes the unique characteristics of engineered nanoparticles that render them applicable for bone regeneration and recaps the current body of knowledge on nanomaterials with potential for osteoporosis treatment and bone regeneration. Specifically, we highlight new developments that are shaping this emerging field and evaluate applications of recently developed nanomaterials for osteoporosis treatment. Finally, we will identify promising new research directions in nanotechnology for bone regeneration.
Collapse
Affiliation(s)
- Mikayla Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Hannah Pearce
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Lauren Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic, Crotone, 88900, Italy
- Regenerative Medicine Section, Tecnologica Research Institute, Crotone, 88900, Italy
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77841, USA.
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:112-121. [PMID: 27237582 DOI: 10.1016/j.pbiomolbio.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/24/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Substance P signaling regulates the functions of both osteoblast and osteoclast. Available reports on the effects of substance P on bone mass are contradictory. The objective of this study was to determine the change of substance P expression in the osteoporotic bone of OVX mice. The effects of substance P signaling blockade by using its specific receptor antagonist L-703606 on bone remodeling in sham-operated mice and OVX mice were also investigated. METHODS Forty-eight nine-week-old female C57BL/6J mice were evenly distributed into three groups with sham surgery, OVX or OVX with estrogen replacement. Substance P expression in the bones of each group of mice was evaluated by immunohistochemistry and enzyme immunoassay. Another thirty-two nine-week-old female C57BL/6J mice were divided into a SHAM group (sham surgery followed by vehicle treatment with DMSO), a SHAM + L group (sham surgery followed by 15 mg/kg/d L-703606 repeated intraperitoneal injections), an OVX group (ovariectomy with the same vehicle treatment) and an OVX + L group (ovariectomy with the same L-703606 injections), with 8 mice in each group. Treatment started 3 weeks after surgery and last for 3 weeks. A 2 × 2 factorial experimental design was used to detect the effects of substance P signaling blockade on bone remodeling in sham-operated mice and OVX mice. Techniques including micro-computed tomography, biomechanical testing, histomorphometric analysis, enzyme immunoassay, and real-time PCR were employed. RESULTS Immunohistochemistry and enzyme immunoassay revealed that substance P expression significantly decreased in the bones of OVX mice both at 3 weeks and 6 weeks after surgery. Micro-CT tomography demonstrated that application of L-703606 led to bone loss in sham-operated mice, and aggravated the micro-structural deterioration of bones in OVX mice. This was shown by reduced BV/TV (Mean bone volume fraction), Tb.N (Mean trabecular number) and Tb.Th (Mean trabecular thickness), and increased Tb.Sp (Mean trabecular separation). Biomechanical analysis demonstrated that blockade of substance P signaling reduced the maximum stress and maximum load of L3 vertebrae and tibiae. Inhibited recruitment of bone mesenchymal stem cells (BMSCs) to bone remodeling sites, which was evidenced by increased number of osteoclasts, decreased number of osteoblasts and increased osteoid volume in the secondary spongiosa, was observed in the mice treated with L-703606. A significant decrease of OPG/RANKL ratio was also found in the bones of mice treated with L-703606. Body weight, uterine weight and serum estradiol level were not significantly different between the mice treated with L-703606 and those treated with vehicle. CONCLUSION The results demonstrated that blocking substance P signaling led to bone loss in sham-operated mice, and exacerbated the bone loss in OVX mice. Substance P signaling had an important role in the maintenance of bone mass.
Collapse
|
27
|
An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 2016; 147:46-58. [DOI: 10.1016/j.lfs.2016.01.024] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 01/03/2023]
|
28
|
Zhang N, Gui Y, Qiu X, Tang W, Li L, Gober HJ, Li D, Wang L. DHEA prevents bone loss by suppressing the expansion of CD4 + T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis. Biosci Trends 2016; 10:277-87. [DOI: 10.5582/bst.2016.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Zhang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, the University of Tokyo
| | - Lisha Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
29
|
Schultz TC, Valenzano JP, Verzella JL, Umland EM. Odanacatib: An Emerging Novel Treatment Alternative for Postmenopausal Osteoporosis. WOMENS HEALTH 2015; 11:805-14. [DOI: 10.2217/whe.15.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Odanacatib represents a novel treatment option in the approach of postmenopausal women. Postmenopausal women with osteoporosis experience a disturbance in bone remodeling wherein bone resorption exceeds bone formation. Cathepsin K is a lysosomal cysteine protease found primarily in osteoclasts that plays a major role in the breakdown of bone via its collagenase properties. Targeting a new area of pathophysiology, odanacatib inhibits cathepsin K to reduce bone resorption while preserving bone formation. Phase II and III trials have shown efficacy in increasing bone mineral density in the target treatment group. Overall, safety studies have found odanacatib to be well-tolerated and comparable to placebo; however, some imbalances in adverse events have been observed in the Phase III trials. Current and future studies will analyze the long-term ability of odanacatib in preventing bone fracture.
Collapse
Affiliation(s)
- Thomas C Schultz
- Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107, USA
| | - Jonathan P Valenzano
- Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107, USA
| | - Jessica L Verzella
- Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107, USA
| | - Elena M Umland
- Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
Kim JY, Park SH, Baek JM, Erkhembaatar M, Kim MS, Yoon KH, Oh J, Lee MS. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss. JOURNAL OF NATURAL PRODUCTS 2015; 78:2167-2174. [PMID: 26308264 DOI: 10.1021/acs.jnatprod.5b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Sun-Hyang Park
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jong Min Baek
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Munkhsoyol Erkhembaatar
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Min Seuk Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Kwon-Ha Yoon
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Jaemin Oh
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| | - Myeung Su Lee
- Imaging Science-Based Lung and Bone Diseases Research Center, ‡Department of Anatomy, School of Medicine, §Department of Oral Physiology, School of Dentistry, ⊥Department of Radiology, School of Medicine, ∥Institute for Skeletal Disease, and ▽Division of Rheumatology, Department of Internal Medicine, Wonkwang University , Iksan, Jeonbuk 570-749, Korea
| |
Collapse
|
31
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
32
|
ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways. Exp Cell Res 2015; 335:107-14. [DOI: 10.1016/j.yexcr.2015.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/22/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
|
33
|
Dai Z, Ang LW, Yuan JM, Koh WP. Association between change in body weight after midlife and risk of hip fracture-the Singapore Chinese Health Study. Osteoporos Int 2015; 26:1939-47. [PMID: 25868509 PMCID: PMC4498249 DOI: 10.1007/s00198-015-3099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 01/29/2023]
Abstract
UNLABELLED The relationship between change in body weight and risk of fractures is inconsistent in epidemiologic studies. In this cohort of middle-aged to elderly Chinese in Singapore, compared to stable weight, weight loss ≥10 % over an average of 6 years is associated with nearly 40 % increase in risk of hip fracture. INTRODUCTION Findings on the relationship between change in body weight and risk of hip fracture are inconsistent. In this study, we examined this association among middle-aged and elderly Chinese in Singapore. METHODS We used prospective data from the Singapore Chinese Health Study, a population-based cohort of 63,257 Chinese men and women aged 45-74 years at recruitment in 1993-1998. Body weight and height were self-reported at recruitment and reassessed during follow-up interview in 1999-2004. Percent in weight change was computed based on the weight difference over an average of 6 years, and categorized as loss ≥10 %, loss 5 to <10 %, loss or gain <5 % (stable weight), gain 5 to <10 %, and gain ≥10 %. Multivariable Cox proportional hazards regression model was applied with adjustment for risk factors for hip fracture and body mass index (BMI) reported at follow-up interview. RESULTS About 12 % experienced weight loss ≥10 %, and another 12 % had weight gain ≥10 %. After a mean follow-up of 9.0 years, we identified 775 incident hip fractures among 42,149 eligible participants. Compared to stable weight, weight loss ≥10 % was associated with 39 % increased risk (hazard ratio 1.39; 95 % confidence interval 1.14, 1.69). Such elevated risk with weight loss ≥10 % was observed in both genders and age groups at follow-up (≤65 and >65 years) and in those with baseline BMI ≥20 kg/m(2).There was no significant association with weight gain. CONCLUSIONS Our findings provide evidence that substantial weight loss is an important risk factor for osteoporotic hip fractures among the middle-aged to elderly Chinese.
Collapse
Affiliation(s)
- Z. Dai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Block MD1, 12 Science Drive 2, Singapore 117549, Singapore
| | - L.-W. Ang
- Epidemiology and Disease Control Division, Ministry of Health, Singapore, Singapore
| | - J.-M. Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - W.-P. Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Block MD1, 12 Science Drive 2, Singapore 117549, Singapore
- Office of Clinical Sciences, Duke-NUS Graduate Medical School Singapore, 8 College Road Level 4, Singapore 169857, Singapore
| |
Collapse
|
34
|
Jackowski SA, Baxter-Jones ADG, McLardy AJ, Pierson RA, Rodgers CD. The associations of exposure to combined hormonal contraceptive use on bone mineral content and areal bone mineral density accrual from adolescence to young adulthood: A longitudinal study. Bone Rep 2015; 5:e333-e341. [PMID: 28580404 PMCID: PMC5440951 DOI: 10.1016/j.bonr.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Background The association of long term combined hormone based contraceptives (CHC) use on bone mineral content (BMC) and areal bone mineral density (aBMD) development remains controversial, as it appears that the relationship may be age-dependent. The purpose of this study was to investigate the long-term associations of CHC exposure on the accrual of bone parameters from adolescence into young-adulthood. Methods 110 women (67 exposed to CHC) were drawn from the Pediatric Bone Mineral Accrual Study (PBMAS). Serial measures of total body (TB), lumbar spine (LS) and femoral neck (FN) BMC and aBMD were assessed by DXA (a total of 950 scans) and aligned by biological age (BA, years from peak height velocity [PHV]). Multilevel random effects models were constructed to assess the time dependent associations between annual CHC exposure and the development of bone parameters. Results After BA, height, lean tissue mass, fat mass, calcium and vitamin D intake, and physical activity were controlled, it was observed that those individuals exposed to CHC 6-years post PHV developed significantly less (−0.00986 ± 0.00422 g/cm2) TB aBMD than their non CHC exposed peers. Additionally, there were significant BA by CHC exposure interactions, where CHC exposure 6-years or more post PHV resulted in developing less TB BMC (−4.94 ± 2.41 g), LS BMC (−0.29 ± 0.11 g) and LS aBMD (−0.00307 ± 0.00109 g/cm2). One year after the attainment of PHV, CHC users were predicted to have 1.2% more TB BMC, 3.8% more LS BMC and 1.7% more LS aBMD than non-users. At 9-years post PHV the predicted differences showed that CHC users had 0.9% less TB BMC and 2.7% less LS BMC and 1.6% less LS BMD than those not exposed to CHC. Conclusions CHC may not hinder the development of BMC or aBMD during adolescence; however, exposure 6-years or more after PHV may be detrimental. The effects of combined hormone contraceptive (CHC) exposure on bone mass were assessed. CHC exposure resulted in developing significantly less (− 9.86 ± 4.22 g/cm2) TB aBMD. CHC exposure 6-years after PHV resulted in significantly less BMC and aBMD. CHC may not hinder adolescent bone development, but may be detrimental after growth.
Collapse
Affiliation(s)
- Stefan A Jackowski
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Ashlee J McLardy
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Roger A Pierson
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carol D Rodgers
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Nagy V, Penninger JM. The RANKL-RANK Story. Gerontology 2015; 61:534-42. [PMID: 25720990 DOI: 10.1159/000371845] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
Receptor activator of nuclear factor x03BA;B (RANK) and its ligand (RANKL) have originally been described for their key roles in bone metabolism and the immune system. Subsequently, it has been shown that the RANKL-RANK system is critical in the formation of mammary epithelia in lactating females and the thermoregulation of the central nervous system. RANKL and RANK are under the tight control of the female sex hormones estradiol and progesterone. A reduction of the circulating female sex hormones leading to an increase in RANKL-RANK signaling is the leading cause of osteoporosis in postmenopausal women. Denosumab, a human monoclonal anti-RANKL antibody, has been approved for the treatment of postmenopausal osteoporosis, where it is showing great promise. In addition, RANKL-RANK signaling also plays a critical role in other bone pathologies, bone metastasis or hormone-driven breast cancer. This review will highlight some of the functions of RANKL-RANK in bone turnover, the immune system and brain with a focus on the regulatory role of the female sex hormones.
Collapse
Affiliation(s)
- Vanja Nagy
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | | |
Collapse
|
36
|
Nash LA, Sullivan PJ, Peters SJ, Ward WE. Rooibos flavonoids, orientin and luteolin, stimulate mineralization in human osteoblasts through the Wnt pathway. Mol Nutr Food Res 2015; 59:443-53. [PMID: 25488131 DOI: 10.1002/mnfr.201400592] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/08/2022]
Abstract
SCOPE Several epidemiological studies have shown that tea consumption is associated with higher bone mineral density in women. Flavonoids in tea are recognized as potential estrogen mimics and may positively influence bone metabolism in estrogen-deficient women. Luteolin and orientin, flavonoids from rooibos tea, are of particular interest as rooibos tea contains no caffeine that can be detrimental to bone health. This study analyzed changes in mineral content when luteolin or orientin was added to a human osteoblast cell line and the potential mechanisms involved. Measurements included alkaline phosphatase (ALP) activity, cell mitochondrial activity, toxicity, and changes in regulatory proteins involved in osteoblast metabolism. METHODS AND RESULTS Mineral was significantly elevated in Saos2 cells treated with orientin (0.1-1.0 μM, 15-100 μM) or luteolin (5.0 μM) and was associated with increased ALP and mitochondrial activity, as determined by the production of p-nitrophenol and the reduction of 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. Greater mineral content was also associated with lower toxicity as determined by lactate dehydrogenase activity and lower expression of TNF-α, IL-6, sclerostin, osteopontin, and osteoprotegerin. CONCLUSION Orientin and luteolin, flavonoids in rooibos tea, enhance mineral content in Saos2 cells. These findings provide guidance for doses to be studied in well-established animal models.
Collapse
Affiliation(s)
- Leslie A Nash
- Department of Health Science, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | | | | | | |
Collapse
|
37
|
Chamouni A, Oury F. Reciprocal interaction between bone and gonads. Arch Biochem Biophys 2014; 561:147-53. [DOI: 10.1016/j.abb.2014.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
|
38
|
Pinto PIS, Estêvão MD, Power DM. Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Mar Drugs 2014; 12:4474-94. [PMID: 25196834 PMCID: PMC4145326 DOI: 10.3390/md12084474] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/17/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Estrogens play well-recognized roles in reproduction across vertebrates, but also intervene in a wide range of other physiological processes, including mineral homeostasis. Classical actions are triggered when estrogens bind and activate intracellular estrogen receptors (ERs), regulating the transcription of responsive genes, but rapid non-genomic actions initiated by binding to plasma membrane receptors were recently described. A wide range of structurally diverse compounds from natural and anthropogenic sources have been shown to interact with and disrupt the normal functions of the estrogen system, and fish are particularly vulnerable to endocrine disruption, as these compounds are frequently discharged or run-off into waterways. The effect of estrogen disruptors in fish has mainly been assessed in relation to reproductive endpoints, and relatively little attention has been given to other disruptive actions. This review will overview the actions of estrogens in fish, including ER isoforms, their expression, structure and mechanisms of action. The estrogen functions will be considered in relation to mineral homeostasis and actions on mineralized tissues. The impact of estrogenic endocrine disrupting compounds on fish mineralized tissues will be reviewed, and the potential adverse outcomes of exposure to such compounds will be discussed. Current lacunae in knowledge are highlighted along with future research priorities.
Collapse
Affiliation(s)
- Patricia I S Pinto
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Maria D Estêvão
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Deborah M Power
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| |
Collapse
|
39
|
Wei L, Ke J, Prasadam I, Miron RJ, Lin S, Xiao Y, Chang J, Wu C, Zhang Y. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int 2014; 25:2089-96. [PMID: 24807629 DOI: 10.1007/s00198-014-2735-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/22/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy. INTRODUCTION Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy. METHODS In total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds. RESULTS The two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities. CONCLUSION The results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.
Collapse
Affiliation(s)
- L Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
A number of drug classes are licensed for the treatment of osteoporosis including bisphosphonates, recombinant human parathyroid hormone (PTH), strontium, hormone replacement therapy (HRT), selective oestrogen receptor modulators (SERMS) and denosumab. This review discusses the safety of osteoporosis treatments and their efficacies. Recent concerns about the safety of calcium and high-dose vitamin D are discussed. Bisphosphonates have substantial postmarketing experience and a clearer picture of safety issues is emerging. Along with the well recognized effects on the gastrointestinal tract and kidney function, recently described adverse effects such as osteonecrosis of the jaw, oesophageal cancer, atrial fibrillation, subtrochanteric femur fractures and ocular complications of bisphosphonate therapy are discussed. Therapy with PTH is limited to two years' duration because of the development of osteogenic sarcomas in animal studies, which appeared related to dose, duration and timing of therapy. Strontium should be used with caution in patients with renal impairment and its use has been associated with venous thromboembolism. The role of HRT and SERMs in the treatment of postmenopausal osteoporosis is restricted as a result of an increased risk of stroke, venous thromboembolism and breast cancer. Postmarketing experience with denusomab is limited but a number of potential safety concerns including osteonecrosis of the jaw are emerging. All of these drugs have been proven to reduce fractures. The decision to use a drug to reduce fracture risk should be based on risk-benefit analysis of the drug and its suitability for individual patients.
Collapse
Affiliation(s)
- Cora McGreevy
- Department of Medicine for the Elderly, RCSI and Beaumont Hospital, Dublin 9, Ireland
| | - David Williams
- Department of Medicine for the Elderly, RCSI and Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
41
|
Brance ML, Brun LR, Lioi S, Sánchez A, Abdala M, Oliveri B. Vitamin D levels and bone mass in rheumatoid arthritis. Rheumatol Int 2014; 35:499-505. [DOI: 10.1007/s00296-014-3071-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
|
42
|
Wang Y, Wang WL, Xie WL, Li LZ, Sun J, Sun WJ, Gong HY. Puerarin stimulates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:787-96. [PMID: 23639192 DOI: 10.1016/j.phymed.2013.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/14/2013] [Accepted: 03/09/2013] [Indexed: 05/13/2023]
Abstract
Puerarin, the main isoflavone glycoside found in the Chinese herb radix of Pueraria lobata (Willd.) Ohwi, has received increasing attention because of its possible role in the prevention of osteoporosis. Previously, we showed that puerarin could inhibit the bone absorption of osteoclasts and promote long bone growth in fetal mouse in vitro. Further study confirmed that puerarin stimulated proliferation and differentiation of osteoblasts in rat. However, the mechanisms underlying its actions on human bone cells have not been well defined. Here we show that puerarin increases proliferation and differentiation and opposes cisplatin-induced apoptosis in human osteoblastic MG-63 cells containing two estrogen receptor (ER) isoforms. Puerarin promotes proliferation by altering cell cycle distribution whereas puerarin-mediated survival may be associated with up-regulation of Bcl-xL expression. Treatment with the ER antagonist ICI 182,780 abolishes the above actions of puerarin on osteoblast-derived cells. Using small interfering double-stranded RNA technology, we further demonstrate that the effects of puerarin on proliferation, differentiation and survival are mediated by both ERα and ERβ. Moreover, we also demonstrate that puerarin functions at least partially through activation of MEK/ERK and PI3K/Akt signaling. This agent also shows much weaker effect on breast epithelial cell growth than that of estrogen. Therefore, puerarin will be a promising agent that prevents or retards osteoporosis.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mozzanega B, Gizzo S, Bernardi D, Salmaso L, Patrelli TS, Mioni R, Finos L, Nardelli GB. Cyclic variations of bone resorption mediators and markers in the different phases of the menstrual cycle. J Bone Miner Metab 2013; 31:461-7. [PMID: 23479185 DOI: 10.1007/s00774-013-0430-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Female hormones are very important in regulating bone homeostasis; the drop of estrogen levels occurring at menopause is linked to a dramatic prevalence of bone resorption on formation. Only a small number of studies investigated the relationship between changes in circulating female sex hormones and the markers and mediators of bone homeostasis and they showed conflicting results. To explore such relationships we studied 20 young fertile healthy women, aged between 19 and 32 years. None had received hormone treatment for at least 6 months. We assayed luteinizing hormone, follicle-stimulating hormone, progesterone and 17β-estradiol, as well as the levels of osteoprotegerin (OPG), C-terminal telopeptide of collagen type I (CTx) and RANKL (receptor activator of nuclear factor-B ligand) in samples drawn from every subject at four different times during the menstrual cycle when estrogens are lowest, at the start of the cycle: T 0 (2-4th day); when estrogens are highest, in the pre-ovulatory period: T 14 (12-14th day); when progesterone activity is highest, in the advanced luteal phase: T 26 (24-26th day); and again at the start of the next cycle: T 01 (2-4th day). We observed that CTx levels are highest at the start of the cycle, decreased significantly from T 0 to T 26 (pfwe = 0.0455) and then increased from T 26 to T 01 (pfwe = 0.0415); OPG, on the other hand, which was also highest at the start of the cycle, decreased significantly from T 0 to T 14 (pfwe = 0.02) and then increased, though not significantly, from T 14 to T 01; no variation was observed in RANKL values at any time. We observed inverse correlations between estradiol and OPG levels, which became highly significant at T 01 between estradiol nadir and OPG peak levels (pfw = 0.0095). Furthermore, the increase of estradiol from T 0 to T 14 was negatively correlated with the concomitant decrease of OPG (pfwe = 0.0277), as was the fall of estradiol from T 26 to T 01 with the OPG peak levels, both at T 01 (pfw = 0.0045) and at T 0 (pfwe = 0.0381). We also observed direct correlations between the OPG levels and the variations of progesterone in the preceding intervals, but they never attained statistical significance. We conclude that OPG and CTx fluctuation during the menstrual cycle are likely due to the physiological variations of sex steroids levels.
Collapse
Affiliation(s)
- Bruno Mozzanega
- Dipartimento della Salute della Donna del Bambino, U.O.C. di Clinica Ginecologica e Ostetrica, Via Giustiniani 3, 35128, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bezerra JP, de Siqueira A, Pires AG, Marques MR, Duarte PM, Bastos MF. Effects of Estrogen Deficiency and/or Caffeine Intake on Alveolar Bone Loss, Density, and Healing: A Study in Rats. J Periodontol 2013; 84:839-49. [DOI: 10.1902/jop.2012.120192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Matsumoto Y, Otsuka F, Takano-Narazaki M, Katsuyama T, Nakamura E, Tsukamoto N, Inagaki K, Sada KE, Makino H. Estrogen facilitates osteoblast differentiation by upregulating bone morphogenetic protein-4 signaling. Steroids 2013; 78:513-20. [PMID: 23499826 DOI: 10.1016/j.steroids.2013.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Imbalanced functions of osteoclasts and osteoblasts are involved in various types of bone damage including postmenopausal osteoporosis. In the present study, we investigated the cellular mechanism by which estrogen interacts in the process of osteoblastic differentiation regulated by BMP-4 using mouse MC3T3-E1 cells that express estrogen receptors (ER) and BMP-4. Estradiol enhanced BMP-4-induced Runx2, osterix, ALP and osteocalcin expression in MC3T3-E1 cells. BMP-4-induced mineralization shown by Alizarin red staining was also facilitated by estrogen treatment. It was revealed that estrogen upregulated BMP-4-induced Smad1/5/8 phosphorylation, BRE-Luc activity and Id-1 mRNA expression. The expression of BMPRII was increased by estrogen in MC3T3-E1 cells, and inhibition of BMPRII or ALK-2/3 signaling impaired the effect of estrogen on BMP-4 signaling. Of note, the enhanced expression of osterix, ALP and osteocalcin mRNAs induced by BMP-4 and estrogen was reversed in the presence of an ER antagonist. Given that membrane-impermeable estrogen also upregulated BMP-4-induced expression of osteoblastic markers and Id-1 mRNA, non-genomic ER activity is involved in the mechanism by which estrogen enhances BMP-4-induced osteoblast differentiation in MC3T3-E1 cells. On the other hand, the expression of ERα and endogenous BMP-4 was suppressed by BMP-4 treatment regardless of the presence of estrogen, implying the presence of a negative feedback loop for osteoblast differentiation. Thus, estrogen is functionally involved in the process of osteoblast differentiation regulated by BMP-4 through upregulating BMP sensitivity of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim HY, Alarcon C, Pourteymour S, Wergedal JE, Mohan S. Disruption of claudin-18 diminishes ovariectomy-induced bone loss in mice. Am J Physiol Endocrinol Metab 2013; 304:E531-7. [PMID: 23299504 PMCID: PMC3602660 DOI: 10.1152/ajpendo.00408.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Claudin-18 (Cldn-18), a member of the tight junction family of proteins, is a negative regulator of RANKL-induced osteoclast differentiation and bone resorption (BR) in vivo. Since estrogen deficiency decreases bone mass in part by a RANKL-mediated increase in BR, we evaluated whether estrogen regulates Cldn-18 expression in bone. We found that Cldn-18 expression was reduced in the bones of estrogen deficient mice, whereas it was increased by estrogen treatment in osteoblasts and osteoclasts in vitro. We next evaluated the role of Cldn-18 in mediating estrogen-induced bone loss. Cldn-18 knockout (KO) and littermate wild-type (WT) mice were ovariectomized (OVX) or sham operated at 6 wk of age, and the skeletal phenotype was evaluated at 14 wk of age. PIXImus revealed that total body, femur, and lumbar BMD were reduced 8-13% (P < 0.05) after 8 wk of OVX compared with sham in WT mice. As expected, total body, femur, and lumbar BMD were reduced 14-21% (P < 0.05) in Cldn-18 KO sham mice compared with sham WT mice. However, ovariectomy failed to induce significant changes in BMD of total body, femur, or vertebra in the Cldn-18 KO mice. μCT analysis of the distal femur revealed that trabecular (Tb) bone volume was decreased 50% in the OVX WT mice compared with sham that was caused by a 26% decrease in Tb number and a 30% increase in Tb separation (all P < 0.05). By contrast, none of the Tb parameters were significantly different in OVX Cldn-18 KO mice compared with sham KO mice. Histomorphometric analyses at the Tb site revealed that neither osteoclast surface nor osteoclast perimeter was increased significantly as a consequence of OVX in either genotype at the time point examined. Based on our findings, we conclude that the estrogen effects on osteoclasts may in part be mediated via regulation of Cldn-18 signaling.
Collapse
Affiliation(s)
- Ha-Young Kim
- Musculoskeletal Disease Center, Loma Linda Veterans Affairs Healthcare System, Loma Linda, CA 923257, USA
| | | | | | | | | |
Collapse
|
47
|
The 17-β-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol Res 2013; 68:7-15. [DOI: 10.1016/j.phrs.2012.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
|
48
|
Rahnama M, Jastrzębska I, Jamrogiewicz R, Kocki J. IL-1α and IL-1β levels in blood serum and saliva of menopausal women. Endocr Res 2013; 38:69-76. [PMID: 22894561 DOI: 10.3109/07435800.2012.713425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to examine the level of IL-1α and IL-1β in serum and saliva of postmenopausal women. DESIGN The study was designed to verify the possibility of using the salivary concentration of interleukin 1 as a marker in the diagnosis of osteoporosis. MATERIALS AND METHODS The study involved a group of 60 women during menopause-30 untreated and 30 treated with hormone replacement therapy. Patients were examined and anamnesis questionnaire was filled. Blood and saliva samples were collected. Densitometry was conducted on the femoral bone in order to compare the bone mineral density (BMD) of different research groups. RESULTS There were no significant differences in the concentrations of interleukins in the various research groups. The results of densitometric analysis showed a positive impact of hormone replacement therapy on the BMD (0.91-0.92 g/cm2) compared with the density in the group not treated with hormone therapy (0.77-0.8 g/cm2). There was no relationship between concentration of interleukins and the level of BMD. CONCLUSIONS. Further research on the level of cytokines in serum and saliva conducted on a broader group of patients is required. Determination of markers of bone turnover can be useful in the assessment of the treatment of metabolic bone changes.
Collapse
Affiliation(s)
- Mansur Rahnama
- The Department of Oral Surgery, Medical University of Lublin, Lublin, Poland
| | | | | | | |
Collapse
|
49
|
Vieira FA, Pinto PI, Guerreiro PM, Power DM. Divergent responsiveness of the dentary and vertebral bone to a selective estrogen-receptor modulator (SERM) in the teleost Sparus auratus. Gen Comp Endocrinol 2012; 179:421-7. [PMID: 23036732 DOI: 10.1016/j.ygcen.2012.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/21/2023]
Abstract
In teleosts the regulation of skeletal homeostasis and turnover by estrogen is poorly understood. For this reason raloxifene, a selective estrogen-receptor modulator (SERM), was administered to sea bream (Sparus auratus) and its effect on plasma calcium balance and transcript expression in dentary (dermal bone) and vertebra (perichondral bone) was studied. The concentration of total calcium or phosphorus in plasma was unchanged by raloxifene treatment for 6days. The activity of alkaline phosphatase (ALP) in dentary bone of raloxifene treated fish was significantly (p<0.05) higher than control fish but it was not changed in vertebral bone. Transcripts for estrogen receptor (ER) α were in very low abundance in the sea bream dentary and vertebra and were unchanged by raloxifene treatment. In contrast, raloxifene caused significant (p<0.05) up-regulation of the duplicate ERβ transcripts in the dentary but did not affect specific transcripts for osteoclast (TRAP), osteoblast (ALP, Runx2, osteonectin) or cartilage (IGF1, CILP2, FN1a). In the vertebra ERβb was not changed by raloxifene but ERβa was significantly (p<0.05) down-regulated as was the skeletal specific transcripts, TRAP, ALP, CILP2, FN1a. In summary, ERβs regulate estrogen sensitivity of the skeleton in sea bream, which responds in a non uniform manner. In common with mammals raloxifene appears to have an anti-resorptive role (in sea bream vertebra), but also an osteoblast stimulatory role, inducing ALP activity in the dentary of sea bream. Overall, the results indicate bone specific responsiveness to raloxifene in the sea bream. Further work will be required to understand the basis of bone responsiveness and the role of E(2) and ERs in teleost bone homeostasis.
Collapse
Affiliation(s)
- F A Vieira
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
50
|
In Vivo Study on the Pharmacological Interactions between a Chinese Herbal Formula ELP and Antiresorptive Drugs to Counteract Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:203732. [PMID: 23150739 PMCID: PMC3488414 DOI: 10.1155/2012/203732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 01/07/2023]
Abstract
Antiresorptive drugs, alendronate and raloxifene, are effective in lowering bone mineral density (BMD) loss in postmenopausal women. However, long-term treatment may be associated with serious side effects. Our research group has recently discovered that a Chinese herbal formula, ELP, could significantly reduce BMD loss in animal and human studies. Therefore, the present study aimed to investigate the potential synergistic bone-protective effects of different herb-drug combinations using ovariectomized rats. To assess the efficacy of different combinations, the total BMD was monitored biweekly in the 8-week course of daily oral treatment. Bone microarchitecture, bone strength, and deoxypyridinoline level were also determined after 8 weeks. From our results, coadministration of ELP and raloxifene increased the total tibial BMD by 5.26% (2.5 mg/kg/day of raloxifene; P = 0.014) and 5.94% (0.25 mg/kg/day of raloxifene; P = 0.026) when compared with the respective dosage groups with raloxifene alone. Similar synergistic effects were also observed in BMD increase at distal femur (0.25 mg/kg/day; P = 0.001) and reduction in urinary deoxypyridinoline crosslink excretion (2.5 and 0.25 mg/kg/day; both P = 0.02). However, such interactions could not be observed in all alendronate-treated groups. Our data provide first evidence that ELP could synergistically enhance the therapeutic effects of raloxifene, so that the clinical dosage of raloxifene could be reduced.
Collapse
|