1
|
Camila Marques DA, Cleni Mara Marzocchi M, Fabíola Attié DC, Natércia T, Cristina A, Felipe C, Nathália Cristina C, Maria Regina T. Antitumor and antiproliferative potential of crotoxin in triple negative breast tumors. Toxicon 2025; 258:108322. [PMID: 40120860 DOI: 10.1016/j.toxicon.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Triple negative breast carcinoma represents around 15 % of breast cancer cases. Is a type of breast cancer with poor prognosis, because it has a high rate of recurrence, metastasis and death and can be resistant to therapy. The recommended treatment is the use of anthracyclines with taxanes, however, these medications have several side effects. Thus, there is a need for new therapeutic approaches. Crotoxin, the main toxin found in the venom of the South American rattlesnake Crotalus durissus terrificus, is a potent β-neurotoxin that has phospholipase A2 (PLA2) activity. It exhibits preferential cytotoxic activity against several types of tumor cells and is most cytotoxic to cell lines that express high levels of epidermal growth factor receptors. Considering this, in this study, we evaluated the biological mechanisms that trigger the antitumor effects of crotoxin in a cell line representing triple negative breast carcinoma (MDA-MB-231 tumor cells). Results demonstrated that crotoxin had anti-apoptotic, anti-autophagic and pro-necrotic actions. The pro-necrotic effect occurred through mechanisms of apoptosis evasion, autophagy inhibition and DNA damage. Therefore, this study represents an important milestone to better understand the effects and mechanisms of action of crotoxin in triple negative breast cancer.
Collapse
Affiliation(s)
- De Andrade Camila Marques
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil.
| | - Machado Cleni Mara Marzocchi
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil
| | - De Castro Fabíola Attié
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil
| | - Teixeira Natércia
- University of Porto, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Porto, Portugal
| | - Amaral Cristina
- University of Porto, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Porto, Portugal
| | - Campos Felipe
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil
| | - Canicoba Nathália Cristina
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil
| | - Torqueti Maria Regina
- University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Food Sciences, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ghelli Luserna Di Rorà A, Ghetti M, Ledda L, Ferrari A, Bocconcelli M, Padella A, Napolitano R, Fontana MC, Liverani C, Imbrogno E, Bochicchio MT, Paganelli M, Robustelli V, Sanogo S, Cerchione C, Fumagalli M, Rondoni M, Imovilli A, Musuraca G, Martinelli G, Simonetti G. Exploring the ATR-CHK1 pathway in the response of doxorubicin-induced DNA damages in acute lymphoblastic leukemia cells. Cell Biol Toxicol 2023; 39:795-811. [PMID: 34519926 PMCID: PMC10406704 DOI: 10.1007/s10565-021-09640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna Di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy.
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Lorenzo Ledda
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Bocconcelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Chiara Fontana
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Chiara Liverani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Enrica Imbrogno
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Valentina Robustelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Seydou Sanogo
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Monica Fumagalli
- Hematology Division and Bone Marrow Transplantation Unit, San Gerardo Hospital, Monza, Italy
| | - Michela Rondoni
- Hematology Unit, Ospedale Santa Maria delle Croci, Ravenna, Italy
| | | | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| |
Collapse
|
4
|
Faid AH, Shouman SA, Badr YA, Sharaky M. Enhanced cytotoxic effect of doxorubicin conjugated gold nanoparticles on breast cancer model. BMC Chem 2022; 16:90. [PMID: 36352463 PMCID: PMC9648023 DOI: 10.1186/s13065-022-00889-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background The difficulty of achieving targeted drug delivery following administration of presently marketed anticancer therapeutics is still a concern. Metallic nanoparticles (NPs) appear to be promising in this regard. The present study focused on the use of gold nanoparticles (AuNPs) as a drug carrier for anticancer Doxorubicin (DOX) forming DOX–AuNPs nanocomposite. The anticancer effect of the prepared nanocomposite was evaluated using SRP essay on breast cancer cell line (MCF7) for different incubation times (24 h,48, and72hr). The prepared DOX–AuNPs nanocomposite was investigated by UV–visible spectroscopy, TEM, fluorescence spectroscopy, and FTIR spectroscopy. Results Our results showed that the prepared AuNPs and DOX–AuNPs nanocomposite have spherical and small size10 ± 2 nm and 12 ± 2 nm respectively. The potential cytotoxicity of the DOX-AuNPs nanocomposite on the MCF7 cell line was significantly increased compared to free DOX. The 20 µM DOX- AuNPs nanocomposite produced a similar decrease in cell survival as 80 µM free DOX. Conclusion Future work is in progress to investigate the positive effects of the prepared nanocomposite for chemo-photothermal combination treatment.
Collapse
|
5
|
Hum NR, Sebastian A, Martin KA, Rios-Arce ND, Gilmore SF, Gravano DM, Wheeler EK, Coleman MA, Loots GG. IL-17A Increases Doxorubicin Efficacy in Triple Negative Breast Cancer. Front Oncol 2022; 12:928474. [PMID: 35924165 PMCID: PMC9340269 DOI: 10.3389/fonc.2022.928474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Due to lack of targetable receptors and intertumoral heterogeneity, triple negative breast cancer (TNBC) remains particularly difficult to treat. Doxorubicin (DOX) is typically used as nonselective neoadjuvant chemotherapy, but the diversity of treatment efficacy remains unclear. Comparable to variability in clinical response, an experimental model of TNBC using a 4T1 syngeneic mouse model was found to elicit a differential response to a seven-day treatment regimen of DOX. Single-cell RNA sequencing identified an increase in T cells in tumors that responded to DOX treatment compared to tumors that continued to grow uninhibited. Additionally, compared to resistant tumors, DOX sensitive tumors contained significantly more CD4 T helper cells (339%), γδ T cells (727%), Naïve T cells (278%), and activated CD8 T cells (130%). Furthermore, transcriptional profiles of tumor infiltrated T cells in DOX responsive tumors revealed decreased exhaustion, increased chemokine/cytokine expression, and increased activation and cytotoxic activity. γδ T cell derived IL-17A was identified to be highly abundant in the sensitive tumor microenvironment. IL-17A was also found to directly increase sensitivity of TNBC cells in combination with DOX treatment. In TNBC tumors sensitive to DOX, increased IL-17A levels lead to a direct effect on cancer cell responsiveness and chronic stimulation of tumor infiltrated T cells leading to improved chemotherapeutic efficacy. IL-17A’s role as a chemosensitive cytokine in TNBC may offer new opportunities for treating chemoresistant breast tumors and other cancer types.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy D. Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
- *Correspondence: Gabriela G. Loots,
| |
Collapse
|
6
|
Zhang S, Zhou L, El-Deiry WS. Small-molecule NSC59984 induces mutant p53 degradation through a ROS-ERK2-MDM2 axis in cancer cells. Mol Cancer Res 2022; 20:622-636. [PMID: 34992144 DOI: 10.1158/1541-7786.mcr-21-0149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Increased reactive oxygen species (ROS) and hyper-stabilized mutant p53 are common in cancer. Hyper-stabilized mutant p53 contributes to its gain-of-function (GOF) which confers resistance to chemo- and radio-therapy. Targeting mutant p53 degradation is a promising cancer therapeutic strategy. We used a small-molecule NSC59984 to explore elimination of mutant p53 in cancer cells, and identified an inducible ROS-ERK2-MDM2 axis as a vulnerability for induction of mutant p53 degradation in cancer cells. NSC59984 treatment promotes a constitutive phosphorylation of ERK2 via ROS in cancer cells. The NSC59984-sustained ERK2 activation is required for MDM2 phosphorylation at serine-166. NSC59984 enhances phosphorylated-MDM2 binding to mutant p53, which leads to mutant p53 ubiquitination and degradation. High cellular ROS increases the efficacy of NSC59984 targeting mutant p53 degradation and anti-tumor effects. Our data suggest that mutant p53 stabilization has a vulnerability under high ROS cellular conditions, which can be exploited by compounds to target mutant p53 protein degradation through the activation of a ROS-ERK2-MDM2 axis in cancer cells. Implications: An inducible ROS-ERK2-MDM2 axis exposes a vulnerability in mutant p53 stabilization and can be exploited by small molecule compounds to induce mutant p53 degradation for cancer therapy.
Collapse
Affiliation(s)
- Shengliang Zhang
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University
| | | | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University
| |
Collapse
|
7
|
Elia SG, Al-Karmalawy AA, Nasr MY, Elshal MF. Loperamide potentiates doxorubicin sensitivity in triple-negative breast cancer cells by targeting MDR1 and JNK and suppressing mTOR and Bcl-2: In vitro and molecular docking study. J Biochem Mol Toxicol 2022; 36:e22938. [PMID: 34719826 DOI: 10.1002/jbt.22938] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
Multidrug resistance (MDR) is the leading cause of treatment failure in triple-negative breast cancer (TNBC) patients treated with doxorubicin (DXR). We aimed to investigate the potential of the antidiarrheal drug Loperamide (LPR) in sensitizing TNBC cells to DXR and elucidate the underlying molecular mechanisms. Therefore, we examined the effects of DXR alone or in combination with LPR on MDA-MD-231 cells viability using MTT assay, cell cycle, and apoptosis by flow cytometry, and the expression of the MDR-related genes (MDR1 and JNK1) and cell cycle/survival genes (p21, mTOR, and Bcl-2) by quantitative reverse transcription polymerase chain reaction. Results showed that adding LPR to DXR potentiated its antiproliferation effect and reduced its IC50 by twofolds compared with DXR alone. The value of the combination index of LPR/DXR was <1 indicating a synergistic effect. Combined DXR/LPR treatment also caused G1 arrest and potentiated apoptosis more than DXR-single treatment. At the molecular levels, LPR/DXR treatment downregulated the mRNA of MDR1 (1.35-folds), JNK1 (2.5-folds), mTOR (6.6-folds), Bcl-2 (9.5-folds); while upregulated p21 gene (8-folds) compared with DXR alone. Molecular docking analyses found LPR antagonizes MDR1 and JNK1 proteins, and hence supports the in vitro studies. In conclusion, the results confirmed the potential of LPR in sensitizing TNBCs to DXR by targeting MDR1 and JNK1 and suppressing Bcl-2 and mTOR genes, while upregulating the cell cycle inhibitor gene p21. Additionally, LPR could be repurposed to reduce the therapeutic doses of DXR as indicated by the dose reduction index (DRI) and subsequently decrease its side effects.
Collapse
Affiliation(s)
- Shenouda G Elia
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mohamed Y Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed F Elshal
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
8
|
Zhao J, Wozniak A, Adams A, Cox J, Vittal A, Voss J, Bridges B, Weinman SA, Li Z. SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:252. [PMID: 31196136 PMCID: PMC6567523 DOI: 10.1186/s13046-019-1246-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Background Optimal therapeutic strategies for hepatocellular carcinoma (HCC) patients are still challenging due to the high recurrence rate after surgical resection and chemotherapy resistance. Growing evidence shows that genetic and epigenetic alterations are involved in HCC progression and resistance to therapy, however the molecular mechanisms underlying resistance to therapy have not been fully understood. Methods Expression of SIRT7 in 17 paired paraffin-embedded HCC tissues and adjacent nontumoral liver tissues was examined by immunohistochemistry and Western blot. The mRNA expression of SIRT7 in 20 paired frozen HCC tissues and adjacent nontumoral liver tissues was analyzed by quantitative RT-PCR. The biologic consequences of overexpression and knockdown of SIRT7 in HCC therapy sensitivity were studied in vitro and in vivo. Interaction between SIRT7 and p53 were studied in HCC cell lines. Results SIRT7 expression was frequently upregulated in clinical HCC samples, and its expression was highly associated with TACE-resistance and poor survival (P = 0.008.) Depletion of SIRT7 from multiple liver cancer cell lines significantly increased doxorubicin toxicity while overexpression of SIRT7 largely abolished doxorubicin induced apoptosis. At the molecular level, we observed that SIRT7 interacts with and induces deacetylation of p53 at lysines 320 and 373. Deacetylated p53 showed significantly less affinity for the NOXA promoter and its transcription. In mouse xenografts, SIRT7 suppression increased doxorubicin induced p53 activation, inhibited tumor growth and induced apoptosis. Conclusion The newly identified SIRT7-p53-NOXA axis partially illustrates the molecular mechanism of HCC resistance to therapy and represents a novel potential therapeutic target for HCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1246-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Ann Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Abby Adams
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Anusha Vittal
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Jordan Voss
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Brian Bridges
- Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA. .,Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Zhuan Li
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Huang CY, Chen JY, Kuo CH, Pai PY, Ho TJ, Chen TS, Tsai FJ, Padma VV, Kuo WW, Huang CY. Mitochondrial ROS-induced ERK1/2 activation and HSF2-mediated AT 1 R upregulation are required for doxorubicin-induced cardiotoxicity. J Cell Physiol 2017; 233:463-475. [PMID: 28295305 DOI: 10.1002/jcp.25905] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/10/2017] [Indexed: 01/17/2023]
Abstract
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX-induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX-induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1 R) plays a critical role in DOX-induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1 R gene expression through DOX-induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1 R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX-induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK-mediated HSF2 nuclear translocation and AT1 R upregulation causing DOX-damaged heart failure in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Jia-Yi Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Tung-Sheng Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Jen Tsai
- Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Vijaya V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung
| |
Collapse
|
10
|
Santos GC, Almeida MR, Antunes LMG, Bianchi MLP. Effect of bixin on DNA damage and cell death induced by doxorubicin in HL60 cell line. Hum Exp Toxicol 2016; 35:1319-1327. [DOI: 10.1177/0960327116630352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bixin is a natural red pigment extracted from annatto. Although it is widely used as a coloring agent in food, there are few studies about the effect of this carotenoid on DNA. This study aimed to investigate the effects of bixin on cytotoxicity and genotoxicity induced by doxorubicin in HL60 cells. At concentrations above 0.3 μg/mL, bixin demonstrated cytotoxic effects in HL60 cells. Furthermore, this carotenoid was neither mutagenic nor genotoxic to HL60 cells and reduced the DNA damage induced by doxorubicin. Bixin and doxorubicin showed no apoptotic effect in HL60 cells, but the simultaneous combined treatments showed an increase in the percentage of apoptotic cells. In conclusion, our results showed that bixin modulates the cytotoxicity of doxorubicin via induction of apoptosis. The results of this study provide more knowledge about the toxic effects of anticancer treatments and how the natural compounds can be useful on these therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - MLP Bianchi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Lizcano LJ, Siles M, Trepiana J, Hernández ML, Navarro R, Ruiz-Larrea MB, Ruiz-Sanz JI. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells. Nutrients 2014; 7:179-95. [PMID: 25558904 PMCID: PMC4303832 DOI: 10.3390/nu7010179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 02/04/2023] Open
Abstract
There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.
Collapse
Affiliation(s)
- Leandro J Lizcano
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - Maite Siles
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - Jenifer Trepiana
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - M Luisa Hernández
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - Rosaura Navarro
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - M Begoña Ruiz-Larrea
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - José Ignacio Ruiz-Sanz
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| |
Collapse
|
12
|
Sato K, Yamanaka Y, Ishii M, Ishibashi K, Ogura Y, Ohtani-Kaneko R, Nishihara M, Nedachi T. Dual cell protective mechanisms activated by differing levels of oxidative stress in HT22 murine hippocampal cells. Biosci Biotechnol Biochem 2014; 78:1495-503. [DOI: 10.1080/09168451.2014.936343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Oxidative stress is recognized as one of the pathogenic mechanisms involved in neurodegenerative disease. However, recent evidence has suggested that regulation of cellular fate in response to oxidative stress appears to be dependent on the stress levels. In this study, using HT22 cells, we attempted to understand how an alteration in the oxidative stress levels would influence neuronal cell fate. HT22 cell viability was reduced with exposure to high levels of oxidative stress, whereas, low levels of oxidative stress promoted cell survival. Erk1/2 activation induced by a low level of oxidative stress played a role in this cell protective effect. Intriguingly, subtoxic level of H2O2 induced expression of a growth factor, progranulin (PGRN), and exogenous PGRN pretreatment attenuated HT22 cell death induced by high concentrations of H2O2 in Erk1/2-dependent manner. Together, our study indicates that two different cell protection mechanisms are activated by differing levels of oxidative stress in HT22 cells.
Collapse
Affiliation(s)
- Kazunori Sato
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Yuki Yamanaka
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Masaya Ishii
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| | | | - Yurina Ogura
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Gunma, Japan
- Bio-Nano Electronics Research Centre, Toyo University, Saitama, Japan
| | - Masugi Nishihara
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taku Nedachi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
13
|
Turner A, Li LC, Pilli T, Qian L, Wiley EL, Setty S, Christov K, Ganesh L, Maker AV, Li P, Kanteti P, Das Gupta TK, Prabhakar BS. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS One 2013; 8:e56817. [PMID: 23457619 PMCID: PMC3574069 DOI: 10.1371/journal.pone.0056817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/15/2013] [Indexed: 01/18/2023] Open
Abstract
The Map kinase Activating Death Domain containing protein (MADD) isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.
Collapse
Affiliation(s)
- Andrea Turner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Liang-Cheng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tania Pilli
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lixia Qian
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Louise Wiley
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Suman Setty
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Konstantin Christov
- Department of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lakshmy Ganesh
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ajay V. Maker
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Prasad Kanteti
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tapas K. Das Gupta
- Department of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Park EJ, Kwon HK, Choi YM, Shin HJ, Choi S. Doxorubicin induces cytotoxicity through upregulation of pERK-dependent ATF3. PLoS One 2012; 7:e44990. [PMID: 23028726 PMCID: PMC3441731 DOI: 10.1371/journal.pone.0044990] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/15/2012] [Indexed: 01/16/2023] Open
Abstract
Although doxorubicin is commonly used in the treatment of many cancer types, its use in chemotherapy has been limited, largely because of its severe side effects, including cardiotoxicity and nephrotoxicity. In this study, we aimed to identify the mechanism of doxorubicin-induced cytotoxicity by using the human kidney proximal tubule cell line HK-2. Furthermore, we investigated the role of activating transcription factor 3 (ATF3) as a mediator of doxorubicin-induced cytotoxicity by using wild-type mouse embryonic fibroblasts (MEF) cells and ATF3 knockout (KO) cells. In HK-2 cells, doxorubicin decreased cell viability in a dose-dependent manner and induced an increase in cells in the sub G1 and G2/M phases at all doses. Doxorubicin treatment showed the following dose-dependent effects: increase in the secretion of tumor necrosis factor alpha; decrease in the expression of phosphorylated protein kinase A and Bcl-2; and increase in the expression of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinase (ERK), and ATF3. Based on these results, we suggest that doxorubicin induces cytotoxicity through an ERK-dependent pathway, and ATF3 plays a pivotal role as a transcriptional regulator in this process.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yong-Min Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
15
|
Buqué X, Cano A, Miquilena-Colina ME, García-Monzón C, Ochoa B, Aspichueta P. High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes. Am J Physiol Endocrinol Metab 2012; 303:E504-14. [PMID: 22693206 DOI: 10.1152/ajpendo.00653.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepatocytes is currently unknown. To investigate this, FAT/CD36 protein content in isolated hepatocytes, subfractions of organelles, and density-gradient isolated membrane subfractions was analyzed in obese and lean Zucker rats by Western blotting in liver sections by immunohistochemistry and in hepatocytes by immunocytochemistry. The uptake of oleate and oleate incorporation into lipids were assessed in hepatocytes at short time points (30-600 s). We found that FAT/CD36 protein amount at the PM was higher in hepatocytes from obese rats than from lean controls. In obese rat hepatocytes, decreased cytoplasmatic content of FAT/CD36 and redistribution from low- to middle- to middle- to high-density subfractions of microsomes were found. Hallmarks of obese Zucker rat hepatocytes were increased amount of FAT/CD36 protein at the PM and enhanced FA uptake and incorporation into triglycerides, which were maintained only when exposed to hyperinsulinemic conditions (80 mU/l). In conclusion, high insulin levels are required for FAT/CD36 translocation to the PM in obese rat hepatocytes to enhance FA uptake and triglyceride synthesis. These results suggest that the hyperinsulinemia found in animal models and patients with insulin resistance and fatty liver might contribute to liver fat accumulation by inducing FAT/CD36 functional presence at the PM of hepatocytes.
Collapse
Affiliation(s)
- Xabier Buqué
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Myatt SS, Brosens JJ, Lam EWF. Sense and sensitivity: FOXO and ROS in cancer development and treatment. Antioxid Redox Signal 2011; 14:675-87. [PMID: 20649462 DOI: 10.1089/ars.2010.3383] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Forkhead box O (FOXO) transcription factors are at the center of an emerging paradigm that links longevity, cell fate, and tumor development. Key to these processes is the ability of FOXO to regulate, and be regulated by, oxidative stress. Perturbation of the mechanisms that tightly couple reactive oxygen species (ROS) production, oxidative stress signaling, and FOXO activity to the subsequent cellular response is a pivotal step in cancer development and progression. Consequently, the ROS-FOXO pathway is a major therapeutic target in cancer, not only as it mediates the cellular response to chemotherapy, but also because it underpins drug resistance. As the intimate and reciprocal relation between FOXO and ROS is being unravelled, new opportunities arise to develop more-effective cancer treatments that circumvent resistance to the conventional cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen S Myatt
- Cancer Research-UK Labs, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, England, United Kingdom
| | | | | |
Collapse
|
17
|
Sauter KAD, Magun EA, Iordanov MS, Magun BE. ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells. Cancer Biol Ther 2010; 10:258-66. [PMID: 20559024 DOI: 10.4161/cbt.10.3.12367] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin is an anthracycline drug that is one of the most effective and widely used anticancer agents for the treatment of both hematologic and solid tumors. The stress-activated protein kinases (SAPKs) are frequently activated by a number of cancer chemotherapeutics. When phosphorylated, the SAPKs initiate a cascade that leads to the production of proinflammatory cytokines. Some inhibitors of protein synthesis, known as ribotoxic stressors, coordinately activate SAPKs and lead to apoptotic cell death. We demonstrate that doxorubicin effectively inhibits protein synthesis, activates SAPKs, and causes apoptosis. Ribotoxic stressors share a common mechanism in that they require ZAK, an upstream MAP3K, to activate the pro-apoptotic and proinflammatory signaling pathways that lie downstream of SAPKs. By employing siRNA mediated knockdown of ZAK or administration of sorafenib and nilotinib, kinase inhibitors that have a high affinity for ZAK, we provide evidence that ZAK is required for doxorubicin-induced proinflammatory and apoptotic responses in HaCaT cells, a pseudo-normal keratinocyte cell line, but not in HeLa cells, a cancerous cell line. ZAK has two different isoforms, ZAK-α (91 kDa) and ZAK-β (51 kDa). HaCaT or HeLa cells treated with doxorubicin and immunoblotted for ZAK displayed a progressive decrease in the ZAK-α band and the appearance of ZAK-β bands of larger size. Abrogation of these changes after exposure of cells to sorafenib and nilotinib suggests that these alterations occur following stimulation of ZAK. We suggest that ZAK inhibitors such as sorafenib or nilotinib may be effective when combined with doxorubicin to treat cancer patients.
Collapse
Affiliation(s)
- Kristin A D Sauter
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | |
Collapse
|
18
|
N,N-Dimethyl phytosphingosine sensitizes HL-60/MX2, a multidrug-resistant variant of HL-60 cells, to doxorubicin-induced cytotoxicity through ROS-mediated release of cytochrome c and AIF. Apoptosis 2010; 15:982-93. [DOI: 10.1007/s10495-010-0512-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology 2010; 271:115-21. [PMID: 20346999 DOI: 10.1016/j.tox.2010.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 01/30/2023]
Abstract
The cytostatic drug doxorubicin is a well-known chemotherapeutic agent which is used in treatment of a wide variety of cancers. A key factor in the response of cancer cells to chemotherapeutic drugs is the activation of the apoptotic pathway, a pathway that is often impaired in chemoresistant colon cancer cells. The aim of the present study was to investigate the effects of doxorubicin in Hct-116 human colon carcinoma cells in order to clarify if a time/concentration range for optimal doxorubicin-induced apoptosis exists. We compared a treatment schedule were cells were bolus incubated for 3h with doxorubicin followed by 24h in drug-free medium, with a continuous doxorubicin treatment schedule for 24h. Bolus incubation was carried out to determine effects of doxorubicin accumulated during the first 3h, whereas continuous incubation allowed further (continuous) exposure to doxorubicin. We found that bolus (3h) treatment with doxorubicin resulted in a dose-dependent decrease of viable cells and concomitant increase of apoptosis. Additionally, bolus (3h) doxorubicin incubation led to phosphorylation of p53 at serine 392, induction of p21, G2 arrest and increase of proapoptotic protein Bax. In contrast, continuous (24h) treatment with doxorubicin reduced the number of living cells with no parallel raise in the amount of dead cells. Continuous (24h) treatment with 5 microM doxorubicin resulted in cell cycle arrest in G0/G1 phase that was neither accompanied by phosphorylation and activation of p53 nor enhanced expression of p21. These results suggest that doxorubicin is able to induce cell death by apoptosis only at particular dose and treatment conditions and imply a completely different cellular response following bolus or continuous exposure to doxorubicin.
Collapse
|
20
|
Hoffmann M, Schirmer MA, Tzvetkov MV, Kreuz M, Ziepert M, Wojnowski L, Kube D, Pfreundschuh M, Trümper L, Loeffler M, Brockmöller J. A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma. Cancer Res 2010; 70:2328-38. [PMID: 20215507 DOI: 10.1158/0008-5472.can-09-2388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NAD(P)H oxidase is a major endogenous source of reactive oxygen species (ROS). ROS may not only be involved in carcinogenesis but also in efficacy of chemotherapeutic agents like doxorubicin. By a comprehensive genotyping approach covering 48 genetic polymorphisms (single-nucleotide polymorphisms) in five subunits of phagocytic NAD(P)H oxidase, we asked whether they affect gene expression, enzymatic activity, and outcome of CHO(E)P chemotherapy. A highly consistent effect was observed for the CYBA 640A>G variant. In peripheral blood granulocytes of 125 healthy volunteers, the G allele of 640A>G was associated with lower NAD(P)H oxidase activity (P = 0.006). Moreover, the G allele was associated with lower mRNA and protein expression (both P = 0.02). Of clinical importance, the outcome of patients suffering from non-Hodgkin lymphoma and treated with CHO(E)P regimen was dependent on the CYBA 640A>G polymorphism. In an exploratory study (n = 401), carriers of 640GG had an event-free survival (EFS) risk ratio of 1.95 [95% confidence interval (95% CI), 1.31-2.90; P = 0.001] compared with 640AA. In a confirmatory set (n = 477), the risk ratios were 1.53 (1.04-2.25, P = 0.03). The complete set of 878 patients showed a relative risk of 1.72 (1.30-2.26) and 1.59 (1.14-2.21) for EFS and overall survival, respectively. Further molecular-biological experiments showed lower expression and reduced stability of transcripts with the G allele in lymphoblastoid cell lines. Transfection of allele-specific plasmids into HEK293 cells elicited lower activity for the G allele in a luciferase reporter gene construct. Thus, CYBA 640A>G was shown to be a functional polymorphism with possible consequences for patients receiving CHO(E)P chemotherapy and might have further implications for other ROS-mediated modalities.
Collapse
Affiliation(s)
- Marion Hoffmann
- Department of Clinical Pharmacology and Department of Hematology and Oncology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Martínez R, Navarro R, Lacort M, Ruiz-Sanz JI, Ruiz-Larrea MB. Doxorubicin induces ceramide and diacylglycerol accumulation in rat hepatocytes through independent routes. Toxicol Lett 2009; 190:86-90. [PMID: 19607893 DOI: 10.1016/j.toxlet.2009.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, whose clinical use is limited due to its toxicity. This toxicity has been associated with free radicals generated during the drug metabolism. We previously found that DOX increased the intracellular diacylglycerol (DAG) levels at 1h in isolated rat hepatocytes, probably by mobilizing choline-enriched phospholipids. In this work, we studied the effects of DOX on oxidative stress markers, and the possible contribution of ceramide metabolism to DAG accumulation. Other possible routes of DAG production, such as impairment of triacylglycerol (TAG) synthesis, and their connection with oxidative stress were also investigated. Time-course experiments revealed that DOX decreased intracellular GSH at 2h, but did not affect cell viability, ATP or malondialdehyde (MDA) levels at any time. DOX did not modify the intracellular levels of [(3)H]-ceramide during the first 90 min of exposure, but increased it significantly at 2h. [(3)H]-Sphingomyelin remained unchanged during the whole period. These results indicate that ceramide metabolism is not involved in the early DAG response to DOX. The drug markedly increased the incorporation of [(3)H]-oleate into intracellular DAG from 60 min. In contrast, DOX reduced the incorporation of [(3)H]-oleate into intracellular phospholipids and TAG. DOX inhibited TAG synthesis at the DAG acyltransferase step. These results suggest that DOX increases the intracellular levels of the lipid messengers, ceramide and DAG, by independent mechanisms. Activation of the de novo synthesis of ceramide is probably involved in the sphingolipid accumulation, while inhibition of TAG synthesis contributes to DAG accumulation, this response being independent of oxidative damage.
Collapse
Affiliation(s)
- Rosa Martínez
- Department of Physiology, Medicine and Dentistry School, University of the Basque Country, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
22
|
Lüpertz R, Chovolou Y, Unfried K, Kampkötter A, Wätjen W, Kahl R. The forkhead transcription factor FOXO4 sensitizes cancer cells to doxorubicin-mediated cytotoxicity. Carcinogenesis 2008; 29:2045-52. [PMID: 18687668 DOI: 10.1093/carcin/bgn184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The forkhead superfamily of transcription factors, which play major roles in control of cellular proliferation, oxidative stress and apoptosis, are becoming more and more considered as crucial therapeutic targets in cancer. In this study, we addressed the contribution of class O of forkhead box transcription factor (FOXO) 4 transcription factor, a forkhead superfamily member, to cytotoxicity mediated by the anthracyclic drug doxorubicin. FOXO4 can be phosphorylated by phosphatidylinositol-3-kinase/AKT signaling resulting in its inactivation and nuclear exclusion. Under stress conditions, FOXO4 can be phosphorylated via jun N-terminal kinase (JNK) leading to increased transcriptional activation of the transcription factor. Our results show that doxorubicin incubation led to phosphorylation of AKT and concomitantly to AKT-dependent inactivation and nuclear exclusion of the tumor suppressor FOXO4 in Hct-116 cells. We found that inhibition of FOXO4 nuclear exclusion by blockage of AKT phosphorylation following overexpression of dominant-negative AKT enhanced doxorubicin-mediated cytotoxicity. Overexpression of wild-type FOXO4 led to an increase in doxorubicin-mediated cytotoxicity, which was further exacerbated by overexpression of a solely nuclear-localized FOXO4 mutant. In contrast, though doxorubicin resulted in JNK activation, modulation of JNK-dependent regulation of FOXO4 was of no effect to doxorubicin cytotoxicity. These results show for the first time that in Hct-116 cells sustained nuclear localization of FOXO4 seems to be one crucial point enhancing doxorubicin-induced cytotoxicity and apoptosis. Targeting FOXO4 or AKT may lead to new chances in sensitizing cancer cells to cytostatic drugs thereby allowing use of lower drug concentrations and minimizing drug-induced adverse effects in patients.
Collapse
Affiliation(s)
- Regine Lüpertz
- Institute of Toxicology, Heinrich Heine University of Düsseldorf, PO Box 10 10 07, D-40001 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|