1
|
Van Gelder RD, Gokhale NS, Genoyer E, Omelia DS, Anderson SK, Young HA, Savan R. Interleukin-2-mediated NF-κB-dependent mRNA splicing modulates interferon gamma protein production. EMBO Rep 2025; 26:16-35. [PMID: 39578552 PMCID: PMC11724048 DOI: 10.1038/s44319-024-00324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Interferon-gamma (IFNγ) is a pleiotropic cytokine produced by natural killer (NK) cells during the early infection response. IFNγ expression is tightly regulated to mount sterilizing immunity while preventing tissue pathology. Several post-transcriptional effectors dampen IFNγ expression through IFNG mRNA degradation. In this study, we identify mRNA splicing as a positive regulator of IFNγ production. While treatment with the combination of IL-12 and IL-2 causes synergistic induction of IFNG mRNA and protein, defying transcription-translation kinetics, we observe that NK cells treated with IL-12 alone transcribe IFNG with introns intact. When NK cells are treated with both IL-2 and IL-12, IFNG transcript is spliced to form mature mRNA with a concomitant increase in IFNγ protein. We find that IL-2-mediated intron splicing occurs independently of nascent transcription but relies upon NF-κB signaling. We propose that while IL-12 transcriptionally induces IFNG mRNA, IL-2 signaling stabilizes IFNG mRNA by splicing detained introns, allowing for rapid IFNγ protein production. This study uncovers a novel role for cytokine-induced splicing in regulating IFNγ through a mechanism potentially applicable to other inflammatory mediators.
Collapse
Affiliation(s)
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Emmanuelle Genoyer
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Dylan S Omelia
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Howard A Young
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
2
|
Louie JD, Barrios-Camacho CM, Bromberg BH, Hintschich CA, Schwob JE. Spatiotemporal dynamics exhibited by horizontal basal cells reveal a pro-neurogenic pathway during injury-induced olfactory epithelium regeneration. iScience 2024; 27:109600. [PMID: 38650985 PMCID: PMC11033173 DOI: 10.1016/j.isci.2024.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Horizontal basal cells (HBCs) mediate olfactory epithelium (OE) regeneration following severe tissue injury. The dynamism of the post-injury environment is well illustrated by in silico modeling of RNA sequencing data that demonstrate an evolving HBC transcriptome. Unfortunately, spatiotemporally dynamic processes occurring within HBCs in situ remain poorly understood. Here, we show that HBCs at 24 h post-OE injury spatially redistribute a constellation of proteins, which, in turn, helped to nominate Rac1 as a regulator of HBC differentiation during OE regeneration. Using our primary culture model to activate HBCs pharmacologically, we demonstrate that concurrent Rac1 inhibition attenuates HBC differentiation potential. This in vitro functional impairment manifested in vivo as decreased HBC differentiation into olfactory sensory neurons following HBC-specific Rac1 conditional knockout. Taken together, our data potentiate the design of hyposmia-alleviating therapies and highlight aspects of in situ HBC spatiotemporal dynamics that deserve further investigation.
Collapse
Affiliation(s)
- Jonathan D. Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Neuroscience Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Developmental, Molecular & Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Camila M. Barrios-Camacho
- Neuroscience Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Developmental, Molecular & Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Benjamin H. Bromberg
- Department of Developmental, Molecular & Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Constantin A. Hintschich
- Department of Developmental, Molecular & Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - James E. Schwob
- Department of Developmental, Molecular & Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
3
|
Lu M, Lee Z, Hu WS. Multi-omics kinetic analysis of recombinant adeno-associated virus production by plasmid transfection of HEK293 cells. Biotechnol Prog 2024; 40:e3428. [PMID: 38289617 DOI: 10.1002/btpr.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 04/19/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used vectors for gene therapy. It is commonly produced by transfection of HEK293 cells with three plasmids each containing the vector genome including gene of interest (GOI), helper functions, and rep and cap genes for genome replication and capsid formation. To meet the potential clinical needs, the productivity of the production system needs to be enhanced. A better process characterization of the production system will further advance our insights into ways to enhance productivity. Here, we employed transcriptomic analysis to quantify the dynamics of different isoforms of viral transcripts and to assess the shift of cellular physiology, and deployed targeted proteomic analysis for absolute quantification of viral proteins and tandem mass tags (TMTs) for assessing cellular responses at the protein level. Functional analysis at transcriptome and proteome levels identified defense and immune response, unfolded protein response, p53 signaling as enriched. The small molecule additive intervention study based on functional analysis showed the potential of such omics-guided productivity enhancement. Together, multi-omics analysis advanced understanding of rAAV production and provided insight into enhancing rAAV production by plasmid transfection.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Wolff K, Robinson K, Suh N, Michniak-Kohn B, Goedken M, Polunas M, Raskin I. Isothiocyanate-rich moringa seed extract reduces skin inflammation in mouse ear edema model. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100479. [PMID: 38037612 PMCID: PMC10688386 DOI: 10.1016/j.phyplu.2023.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Background Moringa (Moringa oleifera Lam.) seed extract (MSE) and its primary bioactive compound, moringa isothiocyanate-1(MIC-1), mitigate inflammation, oxidative stress, diabetes, and cancer in the in vivo rodent models following oral application. Purpose To investigate the topical anti-inflammatory activity of MSE and purified MIC-1 in a TPA-induced mouse ear edema model. Study Design The present study elucidates the topical anti-inflammatory effects and mechanisms of action of MSE, containing 38% of MIC-1 and purified MIC-1 using a mouse ear edema model utilizing 12-O-tetradecanoylphorbol-13-acetate (TPA), as the pro-inflammatory agent. Methods A time-dependent and dose-dependent response was determined by pretreating CD-1 mice with various doses of MSE and MIC-1, positive control, dexamethasone, or vehicle control, followed by TPA, and the subsequent difference in ear thickness was measured using digital Vernier calipers. The effective doses of MSE and MIC-1were then selected to evaluate the change in weight of the ears using 6 mm biopsy punches and the results were confirmed by microscopy. Inflammatory markers were quantified with Luminex multiplex immunoassay. Results MSE and MIC-1 were effective in a dose-dependent manner in a TPA-induced ear edema model, causing a reduction in ear thickness and a 48% and 49% decrease in ear punch weight, respectively. MSE and MIC-1 also caused a reduction in the levels of cytokine and chemokines, interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC) in the ear tissue. MSE and MIC-1 reduced IL-6 expression by 84% and 78%, MCP1 by 74% and 73%, and KC by 56% and 43%, respectively. Additionally, the anti-inflammatory effect of MSE and MIC-1 was confirmed by hematoxylin and eosin (H&E) staining, used to assess the thickness of the ear swelling. MSE significantly reduced the thickness of the ears by 20% compared to TPA. Conclusion These results reveal the topical anti-inflammatory properties of MSE, and MIC-1 likely transmitted via the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways as mentioned in previous studies. This work also suggests therapeutic uses of MSE and/or MIC-1 for skin inflammation.
Collapse
Affiliation(s)
- Khea Wolff
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Keyaara Robinson
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Nanjoo Suh
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Michael Goedken
- Rutgers Office for Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Marianne Polunas
- Rutgers Office for Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
6
|
Reichenbach P, Giordano Attianese GMP, Ouchen K, Cribioli E, Triboulet M, Ash S, Saillard M, Vuillefroy de Silly R, Coukos G, Irving M. A lentiviral vector for the production of T cells with an inducible transgene and a constitutively expressed tumour-targeting receptor. Nat Biomed Eng 2023; 7:1063-1080. [PMID: 37069267 PMCID: PMC10504085 DOI: 10.1038/s41551-023-01013-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
Vectors that facilitate the engineering of T cells that can better harness endogenous immunity and overcome suppressive barriers in the tumour microenvironment would help improve the safety and efficacy of T-cell therapies for more patients. Here we report the design, production and applicability, in T-cell engineering, of a lentiviral vector leveraging an antisense configuration and comprising a promoter driving the constitutive expression of a tumour-directed receptor and a second promoter enabling the efficient activation-inducible expression of a genetic payload. The vector allows for the delivery of a variety of genes to human T cells, as we show for interleukin-2 and a microRNA-based short hairpin RNA for the knockdown of the gene coding for haematopoietic progenitor kinase 1, a negative regulator of T-cell-receptor signalling. We also show that a gene encoded under an activation-inducible promoter is specifically expressed by tumour-redirected T cells on encountering a target antigen in the tumour microenvironment. The single two-gene-encoding vector can be produced at high titres under an optimized protocol adaptable to good manufacturing practices.
Collapse
Affiliation(s)
- Patrick Reichenbach
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Khaoula Ouchen
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elisabetta Cribioli
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melanie Triboulet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margaux Saillard
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Romain Vuillefroy de Silly
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Chen G, Li Y, Kong X, Zhao S, Li J, Wu X. Overexpression Bombyx mori HEXIM1 Facilitates Immune Escape of Bombyx mori Nucleopolyhedrovirus by Suppressing BmRelish-Driven Immune Responses. Viruses 2022; 14:v14122636. [PMID: 36560640 PMCID: PMC9782744 DOI: 10.3390/v14122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV), a typical arthropod-specific enveloped DNA virus, is one of the most serious pathogens in silkworm farming, but the potential mechanisms of the evasion of innate immune responses from BmNPV infection are still poorly understood. HEXIM1 is an RNA-binding protein, best known as an inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription elongation by RNA polymerase II. In this study, Bombyx mori HEXIM1 (BmHEXIM1) was cloned and characterized, and its expression was found to be remarkably upregulated after BmNPV infection. Furthermore, BmHEXIM1 was detected to increase the proliferation of BmNPV, and its full length is essential for assisting BmNPV immune escape by suppressing BmRelish-driven immune responses. This study brought new insights into the mechanisms of immune escape of BmNPV and provided theoretical guidance for the breeding of BmNPV-resistant silkworm varieties.
Collapse
Affiliation(s)
- Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Jiale Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
8
|
Huang YRJ, Chiu SC, Tseng JS, Chen JMM, Wei TYW, Chu CY, Kao HTE, Yang CYO, Shih YCE, Yang TY, Chiu KY, Teng CLJ, Yu CTR. The JMJD6/HURP axis promotes cell migration via NF-κB-dependent centrosome repositioning and Cdc42-mediated Golgi repositioning. J Cell Physiol 2022; 237:4517-4530. [PMID: 36250981 DOI: 10.1002/jcp.30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Golgi apparatus (GA) and centrosome reposition toward cell leading end during directional cell migration in a coupling way, thereby determining cell polarity by transporting essential factors to the proximal plasma membrane. The study provides mechanistic insights into how GA repositioning (GR) is regulated, and how GR and centrosome repositioning (CR) are coupled. Our previous published works reveals that PRMT5 methylates HURP at R122 and the HURP m122 inhibits GR and cell migration by stabilizing GA-associated acetyl-tubulin and then rigidifying GA. The current study further shows that the demethylase JMJD6-guided demethylation of HURP at R122 promotes GR and cell migration. The HURP methylation mimicking mutant 122 F blocks JMJD6-induced GR and cell migration, suggesting JMJD6 relays GR stimulating signal to HURP. Mechanistic studies reveal that the HURP methylation deficiency mutant 122 K promotes GR through NF-κB-induced CR and subsequently CR-dependent Cdc42 upregulation, where Cdc42 couples CR to GR. Taken together, HURP methylation statuses provide a unique opportunity to understand how GR is regulated, and the GA intrinsic mechanism controlling Golgi rigidity and the GA extrinsic mechanism involving NF-κB-CR-Cdc42 cascade collectively dictate GR.
Collapse
Affiliation(s)
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Postdoctoral Scholar, University of California, San Diego, California, USA
| | - Chen-Yu Chu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsu-Ting Eric Kao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | | | - Yong-Chun Erin Shih
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
9
|
ElGindi M, Sapudom J, Laws P, Garcia-Sabaté A, Daqaq MF, Teo J. 3D microenvironment attenuates simulated microgravity-mediated changes in T cell transcriptome. Cell Mol Life Sci 2022; 79:508. [PMID: 36063234 PMCID: PMC11803002 DOI: 10.1007/s00018-022-04531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed F Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
10
|
Yoon DS, Lee KM, Choi Y, Ko EA, Lee NH, Cho S, Park KH, Lee JH, Kim HW, Lee JW. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis. Cell Death Differ 2022; 29:1364-1378. [PMID: 35034101 DOI: 10.1038/s41418-021-00925-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3'-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1β (IL-1β), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea. .,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea. .,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea. .,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
11
|
Multi-pin contact drawing enables production of anisotropic collagen fiber substrates for alignment of fibroblasts and monocytes. Colloids Surf B Biointerfaces 2022; 215:112525. [PMID: 35500531 DOI: 10.1016/j.colsurfb.2022.112525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Type I collagen is the most abundant protein in the human body and is known to play important roles in numerous biological processes including tissue morphogenesis and wound healing. As such, it is one of the most frequently used substrates for cell culture, and there have been considerable efforts to develop collagen-based cell culture substrates that mimic the structural organization of collagen as it is found in native tissues, i.e., collagen fibers. However, producing collagen fibers from extracted collagen has been notoriously difficult, with existing methods providing only low throughput production of collagen fibers. In this study, we prepared collagen fibers using a highly efficient, bio-friendly, and cost-effective approach termed contact drawing, which uses an entangled polymer fluid to aid in fiber formation. Contact drawing technology has been demonstrated previously for collagen using highly concentrated dextran solutions with low concentrations of collagen. Here, we show that by replacing dextran with polyethylene oxide (PEO), high collagen content fibers may be readily formed from mixtures of soluble collagen and PEO, a polymer that readily forms fibers by contact drawing at concentrations as low as 0.5%wt. The presence of collagen and the formation of well-ordered collagen structures in the resulting fibers were characterized by attenuated total reflectance Fourier-transform infrared spectromicroscopy, Raman spectromicroscopy, and fluorescence microscopy. Corresponding to well-ordered collagen, the mechanical properties of the PEO-collagen fibers approximated those observed for native collagen fibers. Growth of cells on aligned PEO-collagen fibers attached to a polydimethyl siloxane support was examined for human dermal fibroblast (WS1) and human peripheral leukemia blood monocyte (THP-1) cell lines. WS1 and THP-1 cells readily attached, displayed alignment through migration and spreading, and proliferated on the collagen fiber substrate over the course of several days. We also demonstrated the retrieval of viable cells from the PEO-collagen fiber substrates through enzymatic digestion of the collagen substrate with collagenase IV.
Collapse
|
12
|
Nirgude S, Desai S, Mahadeva R, Ravindran F, Choudhary B. ST08 Altered NF-κB Pathway in Breast Cancer Cells In Vitro as Revealed by miRNA-mRNA Analysis and Enhanced the Effect of Cisplatin on Tumour Reduction in EAC Mouse Model. Front Oncol 2022; 12:835027. [PMID: 35615145 PMCID: PMC9125255 DOI: 10.3389/fonc.2022.835027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
ST08 is a novel curcumin derivative that exhibited apoptotic and anti-migratory activity in MDA-MB-231, triple-negative breast cancer cells reported earlier. In this study, we further explored the anticancer properties of ST08. ST08 reduced tumor burden in vivo and induced apoptosis through the mitochondrial pathway both in vitro and in vivo. ST08 potentiated the effect of cisplatin in vitro and in vivo in mouse EAC breast cancer models with minimal toxicity. ST08 induced alterations in the gene expression were studied by parallel analysis of miRNA and mRNA. 74 differentially expressed miRNA regulated 114 mRNA in triple-negative (MDA-MB-231) cancer cells. Pathway related to the ECM was altered in mesenchymal MDA-MB-231 cells. We constructed a unique miRNA-mRNA interaction network, and one of the pathways regulated by miRNA was NF-κB. Targets of NF-κB like MMP1, PTX3, and MMP2 were downregulated in MDA-MB-231 in response to ST08 treatment. PMA induced cell proliferation was abrogated by ST08 treatment, and no additional cell cytotoxicity was observed when used in combination with IKK-16 indicating ST08 regulation of NF-κB pathway in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
13
|
Dedifferentiation of Human Cardiac Myofibroblasts Is Independent of Activation of COX-2/PGE 2 Pathway. Int J Mol Sci 2022; 23:ijms23063023. [PMID: 35328443 PMCID: PMC8952377 DOI: 10.3390/ijms23063023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
The differentiation of cardiac fibroblasts to myofibroblasts is considered to be a critical step in activation and progression of cardiac fibrosis in heart disease. TGF-β is one of the key cytokines that promotes transition of fibroblasts to myofibroblasts. Dedifferentiation of formed myofibroblasts or reversal of formed myofibroblasts to fibroblasts remains incompletely understood. Prostaglandin E2 (PGE2) has been shown to dedifferentiate human lung myofibroblasts. The role of activation of the COX-2/PGE2 pathway in dedifferentiation of cardiac myofibroblasts remains unknown. Here, we show that phorbol 12-myristate 13-acetate (PMA) but not PGE2 induces dedifferentiation of de novo adult human cardiac myofibroblasts stimulated by TGF-β1 from human cardiac fibroblasts as evidenced by reduced expression of α-smooth muscle actin (α-SMA). PMA remarkably increased endogenous levels of PGE2 in human cardiac myofibroblasts. Pretreatment of myofibroblasts with NS-398, a selective COX-2 inhibitor, and PF-04418948, a selective PGE2 receptor type 2 (EP2) antagonist, had no effect on expression of α-SMA nor abolished the dedifferentiation induced by PMA. Our results indicated that endogenous and exogenous PGE2 has no effects on dedifferentiation of cardiac myofibroblasts. PMA-induced dedifferentiation of cardiac myofibroblast is independent of activation of COX-2 and PGE2 pathway. The mechanism in PMA-induced reversal of cardiac myofibroblasts needs to be explored further.
Collapse
|
14
|
Yang WS, Kim JH, Jeong D, Hong YH, Park SH, Yang Y, Jang YJ, Kim JH, Cho JY. 3-Deazaadenosine, an S-adenosylhomocysteine hydrolase inhibitor, attenuates lipopolysaccharide-induced inflammatory responses via inhibition of AP-1 and NF-κB signaling. Biochem Pharmacol 2020; 182:114264. [PMID: 33035507 DOI: 10.1016/j.bcp.2020.114264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
3-Deazadenosine (3-DA) is a general methylation inhibitor that depletes S-adenosylmethionine, a methyl donor, by blocking S-adenosylhomocysteine hydrolase (SAHH). In this study, we investigated the inhibitory activity and molecular mechanisms of 3-DA in inflammatory responses. 3-DA suppressed the secretion of inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide-treated RAW264.7 cells and phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells. It also reduced mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β (IL-1 β), and IL-6, indicating that 3-DA has anti-inflammatory properties in murine and human macrophages. Moreover, 3-DA strongly blocked AP-1 and NF-κB luciferase activity under PMA-, MyD88-, and TRIF-stimulated conditions and decreased the translocation of c-Jun, c-Fos, p65, and p50 into the nucleus. In addition, the p-ERK level in AP-1 signaling and the p-IκBα level in NF-kB signaling were diminished by 3-DA treatment. Interestingly, 3-DA did not alter the phosphorylation of MEK1/2, an ERK modulator, or IKKα/β, an IκBα regulator. Instead, 3-DA prevented MEK1/2 and IKKα/β from combining with ERK and IκBα, respectively, and directly suppressed MEK1/2 and IKKα/β kinase activity. These results indicate that MEK1/2 and IKKα/β are direct targets of 3-DA. In addition, suppression of SAHH by siRNA or treatment with adenosine dialdehyde, another SAHH inhibitor, showed inhibitory patterns against p-ERK and IκBα similar to those of 3-DA. Taken together, this study demonstrates that 3-DA inhibits AP-1 and NF-κB signaling by directly blocking MEK1/2 and IKKα/β or indirectly mediating SAHH, resulting in anti-inflammatory activity.
Collapse
Affiliation(s)
- Woo Seok Yang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Deok Jeong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Trinh TA, Hoang TX, Kim JY. All-trans retinoic acid increases NF-κB activity in PMA-stimulated THP-1 cells upon unmethylated CpG challenge by enhancing cell surface TLR9 expression. Mol Cell Biochem 2020; 473:167-177. [PMID: 32638255 DOI: 10.1007/s11010-020-03817-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
An active metabolite of vitamin A, all-trans retinoic acid (ATRA), is known to exert immunomodulatory functions. This study investigates the possible immune potentiating effect of ATRA on NF-κB activity in human monocytic THP-1 cells after exposure to unmethylated CpG DNA ODN2006. We observed that challenge with ODN2006 significantly enhanced the NF-κB activity of PMA-differentiated THP-1 cells. ATRA synergistically enhanced NF-κB activity of cells, in a concentration- and time-dependent manner. The enhanced NF-κB activity of PMA-differentiated THP-1 cells after ODN2006 challenge was dependent on the RAR/RXR pathway. To determine the mechanism involved in increasing in the NF-κB activity of stimulated THP-1 cells, we examined the effects of PMA and ATRA on the expression of TLR9 (a receptor of ODN2006) in THP-1 cells. PMA treatment significantly enhanced both the intracellular and cell surface expression of TLR9, while ATRA alone showed no effect. However, ATRA synergistically enhanced the cell surface TLR9 expression of PMA-differentiated cells. To determine whether the ATRA-enhanced NF-κB activity is due to the enhanced cell surface TLR9 expression, we examined NF-κB activity after treatment with anti-TLR9 blocking antibody. Results revealed that the anti-TLR9 antibody treatment almost completely reverses the ATRA-enhanced NF-κB activity, suggesting that ATRA enhances NF-κB activity through upregulation of the cell surface TLR9 expression in PMA-differentiated and unmethylated CpG challenged THP-1 cells.
Collapse
Affiliation(s)
- Tam-Anh Trinh
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea.
| |
Collapse
|
16
|
Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 2020; 253:117660. [PMID: 32294474 DOI: 10.1016/j.lfs.2020.117660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
AIMS Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (rBMSCs). The present study aimed to assess the influence of microRNA miR-186 on the proliferation and OD potential of rBMSCs. MAIN METHODS OD was performed and evaluated through Alizarin red S staining, alkaline phosphatase (ALP) activity, and specific marker expression. KEY FINDINGS miR-186 downregulation was observed during OD. rBMSCs with miR-186 overexpression were generated via transfection. Compared with vehicle negative controls, miR-186 upregulation significantly repressed rBMSCs' OD, as evidenced by a reduced ALP activity and decreased mRNA levels of osteogenic markers [osteocalcin, Runx2, BSP, and ALP]. Furthermore, bioinformatic prediction and dual-luciferase reporter assay demonstrated that miR-186 targeted SIRT6 3'-UTR for silencing. SIRT6 overexpression reversed the inhibitory effect of miR-186 on the OD of rBMSCs. Additionally, further examination showed that the activation of nuclear factor-kappa B (NFκB) pathway was involved in the miR-186/SIRT6 signal axis, and phorbol 12-myristate 13-acetate, a NFκB activator, also inhibited the OD of rBMSCs. SIGNIFICANCE The present study results may demonstrate a novel mechanism of rBMSCs OD via miR-186-SIRT6 interaction.
Collapse
|
17
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
18
|
Salles MB, Allegrini S, Yoshimoto M, Pérez-Díaz L, Calvo-Guirado JL, Gehrke SA. Analysis of Trauma Intensity during Surgical Bone Procedures Using NF-κB Expression Levels as a Stress Sensor: An Experimental Study in a Wistar Rat Model. MATERIALS 2018; 11:ma11122532. [PMID: 30545159 PMCID: PMC6316927 DOI: 10.3390/ma11122532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023]
Abstract
Aim and objectives: It is well known that the transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and functions as a pivotal mediator of inflammatory responses. In the present study, we evaluated the trauma generated (inflammatory reaction) after osteotomy bone surgical procedures and placement of implants in the femoral cortical bone of Wistar rats. Surgical stress was evaluated measuring the release and activation of the NF-κB factor. Materials and Methods: Rats were divided into four groups (n = 10) and submitted to different surgical treatments: Control Group (G1 group), only bone perforation was performed without irrigation; Implant Group (G2 group), a titanium implant was inserted after bone perforation without irrigation; Irrigated Group (G3 group) perforations were performed with intense irrigation; and Vitaminic Compound Group (G4 group) surgical perforation was performed without irrigation and a vitaminic compound containing the principal ions present in the natural bone structure was used to fill the bone defect. All animals were euthanized six hours after the surgical procedure and NF-κB levels were determined through immunohistochemical stain followed by direct counting of labeled and unlabeled osteocytes. Results: Among different treated groups, the overall mean of the NF-κB positive cell count in all positions were higher for G1 group (33.4 ± 2.45 cells). NF-κB values were lower in the G2 group (28.9 ± 2.70 cells), whereas in the G3 group (24.3 ± 2.72 cells) as well as in G4 group still lesser NF-κB positive cells were counted (26.5 ± 2.60 cells). Conclusions: The results here presented suggest that maneuvers performed during osteotomy procedures can significantly affect inflammation levels. The NF-κB activation during the surgical procedures can be minimized and/or controlled thought the adequate irrigation or application of adequate substances.
Collapse
Affiliation(s)
- Marcos Barbosa Salles
- Department of Anatomy, Universidade de São Paulo, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | - Sergio Allegrini
- Department of Anatomy, Universidade de São Paulo, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | - Marcelo Yoshimoto
- Department of Anatomy, Universidade de São Paulo, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, Iguá 4225, Montevideo, Canelones 11400, Uruguay.
| | - José Luis Calvo-Guirado
- Department of Research in Oral Implantology, Universidad Católica San Antonio (UCAM), 30107 Murcia, Spain.
| | - Sergio Alexandre Gehrke
- Department of Biotechnology, Biotecnos-Technology and Science, Cuareim 1483, Montevideo, Canelones 11100, Uruguay.
| |
Collapse
|
19
|
Njikan S, Manning AJ, Ovechkina Y, Awasthi D, Parish T. High content, high-throughput screening for small molecule inducers of NF-κB translocation. PLoS One 2018; 13:e0199966. [PMID: 29953522 PMCID: PMC6023200 DOI: 10.1371/journal.pone.0199966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
NF-κB is an important mediator of immune activity and its activation is essential in mounting immune response to pathogens. Here, we describe the optimization and implementation of a high-throughput screening platform that utilizes high content imaging and analysis to monitor NF-κB nuclear translocation. We screened 38,991 compounds from three different small molecule libraries and identified 103 compound as hits; 31% of these were active in a dose response assay. Several of the molecules lacked cytotoxicity or had a selectivity index of more than 2-fold. Our image-based approach provides an important first step towards identifying small molecules with immunomodulatory activity.
Collapse
Affiliation(s)
- Samuel Njikan
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Alyssa J. Manning
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Yulia Ovechkina
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Divya Awasthi
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Collignon E, Canale A, Al Wardi C, Bizet M, Calonne E, Dedeurwaerder S, Garaud S, Naveaux C, Barham W, Wilson A, Bouchat S, Hubert P, Van Lint C, Yull F, Sotiriou C, Willard-Gallo K, Noel A, Fuks F. Immunity drives TET1 regulation in cancer through NF-κB. SCIENCE ADVANCES 2018; 4:eaap7309. [PMID: 29938218 PMCID: PMC6010319 DOI: 10.1126/sciadv.aap7309] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/09/2018] [Indexed: 05/27/2023]
Abstract
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
Collapse
Affiliation(s)
- Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Annalisa Canale
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - Clémence Al Wardi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew Wilson
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, ULB, Brussels, Belgium
| | | | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| |
Collapse
|
21
|
Spitta LF, Diegeler S, Baumstark-Khan C, Hellweg CE. An in-vitro approach for water quality determination: activation of NF-κB as marker for cancer-related stress responses induced by anthropogenic pollutants of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3985-3995. [PMID: 27878482 DOI: 10.1007/s11356-016-7901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.
Collapse
Affiliation(s)
- Luis F Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany.
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christine E Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| |
Collapse
|
22
|
Bettaieb A, Koike S, Chahed S, Zhao Y, Bachaalany S, Hashoush N, Graham J, Huma F, Havel PJ, Gruzdev A, Zeldin DC, Hammock BD, Haj FG. Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J 2017; 284:1970-1986. [PMID: 28485854 PMCID: PMC5515292 DOI: 10.1111/febs.14100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide (LPS)-induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte-specific sEH-deficient (pod-sEHKO) mice. Following LPS challenge, podocyte sEH-deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL-6, IL-1β, and TNFα were significantly lower in LPS-treated pod-sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS-induced NF-κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria. ENZYMES Soluble epoxide hydrolase: EC 3.3.2.10.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Samah Chahed
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Yi Zhao
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Santana Bachaalany
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Nader Hashoush
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - James Graham
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Fatima Huma
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Peter J. Havel
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
| | - Fawaz G. Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817
| |
Collapse
|
23
|
Smole A, Lainšček D, Bezeljak U, Horvat S, Jerala R. A Synthetic Mammalian Therapeutic Gene Circuit for Sensing and Suppressing Inflammation. Mol Ther 2017; 25:102-119. [PMID: 28129106 DOI: 10.1016/j.ymthe.2016.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation, which is a highly regulated host response against danger signals, may be harmful if it is excessive and deregulated. Ideally, anti-inflammatory therapy should autonomously commence as soon as possible after the onset of inflammation, should be controllable by a physician, and should not systemically block beneficial immune response in the long term. We describe a genetically encoded anti-inflammatory mammalian cell device based on a modular engineered genetic circuit comprising a sensor, an amplifier, a "thresholder" to restrict activation of a positive-feedback loop, a combination of advanced clinically used biopharmaceutical proteins, and orthogonal regulatory elements that linked modules into the functional device. This genetic circuit was autonomously activated by inflammatory signals, including endogenous cecal ligation and puncture (CLP)-induced inflammation in mice and serum from a systemic juvenile idiopathic arthritis (sIJA) patient, and could be reset externally by a chemical signal. The microencapsulated anti-inflammatory device significantly reduced the pathology in dextran sodium sulfate (DSS)-induced acute murine colitis, demonstrating a synthetic immunological approach for autonomous anti-inflammatory therapy.
Collapse
Affiliation(s)
- Anže Smole
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urban Bezeljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Dias NJ, Selcer KW. Steroid sulfatase in the human MG-63 preosteoblastic cell line: Antagonistic regulation by glucocorticoids and NFκB. Mol Cell Endocrinol 2016; 420:85-96. [PMID: 26631368 DOI: 10.1016/j.mce.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Steroid sulfatase (STS) converts sulfated steroids into active forms in cells. Preosteoblastic cells possess STS, but its role and regulation in bone are unclear. We examined STS activity and gene expression during differentiation of human MG-63 preosteoblasts. STS activity and gene expression were decreased during differentiation in cells treated with osteogenic supplement containing dexamethasone (DEX). DEX also inhibited STS activity and expression in undifferentiated cells, and the glucocorticoid antagonist RU486 reversed DEX inhibition of STS. These data may have implications for glucocorticoid-induced osteoporosis. The NFκB activators lipopolysaccharide and phorbol myristate acetate increased STS expression in undifferentiated and differentiated MG-63 cells, while the NFκB inhibitor BAY-11-7082 partially blocked these responses. The antagonistic actions of glucocorticoids and NFkB on STS expression are similar to the regulation of inflammatory response proteins. We propose a model of STS regulation whereby inflammation leads to increased STS, resulting in increased estrogen, which modulates the inflammatory response.
Collapse
Affiliation(s)
- Natasha J Dias
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Htwe SS, Harrington H, Knox A, Rose F, Aylott J, Haycock JW, Ghaemmaghami AM. Investigating NF-κB signaling in lung fibroblasts in 2D and 3D culture systems. Respir Res 2015; 16:144. [PMID: 26619903 PMCID: PMC4666055 DOI: 10.1186/s12931-015-0302-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Inflammatory respiratory diseases are amongst major global health challenges. Lung fibroblasts have been shown to play a key role in lung inflammatory responses. However, their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Therefore, developing new tools that enable investigating the molecular pathways (e.g. nuclear factor-kappa B (NF-κB) activation) that underpin inflammatory responses in fibroblasts could be a valuable resource for scientists working in this area of research. RESULTS In order to investigate NF-κB activation in response to pro-inflammatory stimuli in real-time, we first developed two detection systems based on nuclear localization of NF-κB by immunostaining and luciferase reporter assay system. Furthermore using electrospun porous scaffolds, with similar geometry to human lung extracellular matrix, we developed 3D cultures of lung fibroblasts allowing comparing NF-κB activation in response to pro-inflammatory stimuli (i.e. TNF-α) in 2D and 3D. Our data clearly show that the magnitude of NF-κB activation in 2D cultures is substantially higher than 3D cultures. However, unlike 2D cultures, cells in the 3D model remained responsive to TNF-α at higher concentrations. The more subdued and wider dynamic range of NF-κB responses in 3D culture system was associated with a different expression pattern for TNF receptor I in 3D versus 2D cultures collectively reflecting a more in vivo like TNF receptor I expression and NF-κB activation pattern in the 3D system. CONCLUSION Our data suggest that lung fibroblasts are actively involved in the pathogenesis of lung inflammation by activation of NF-κB signaling pathway. The 3D culture detection system provides a sensitive and biologically relevant tool for investigating different pro-inflammatory events involving lung fibroblasts.
Collapse
Affiliation(s)
- Su Su Htwe
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| | - Helen Harrington
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| | - Alan Knox
- Division of Respiratory Medicine, University of Nottingham, City Hospital, Nottingham, UK.
| | - Felicity Rose
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - Jonathan Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Amir M Ghaemmaghami
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Hellweg CE, Dilruba S, Adrian A, Feles S, Schmitz C, Berger T, Przybyla B, Briganti L, Franz M, Segerer J, Spitta LF, Henschenmacher B, Konda B, Diegeler S, Baumstark-Khan C, Panitz C, Reitz G. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:73-89. [PMID: 26553641 DOI: 10.1016/j.lssr.2015.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of HEK cells to the β-rays emitted by the radiation source dose-dependently decreased cell growth and increased NF-κB activation. The signal of the fluorescent proteins after formaldehyde fixation was stable for at least six months after fixation, allowing storage of the MPUs after fixation for several months before the transport back to Earth and evaluation of the fluorescence intensity. In conclusion, these tests show the feasibility of CellRad on the ISS with the currently available transport mechanisms.
Collapse
Affiliation(s)
- Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany.
| | - Shahana Dilruba
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Astrid Adrian
- Airbus Defence and Space GmbH, TSPOE 3 / Payloads - Life Science, 88039 Friedrichshafen, Germany
| | - Sebastian Feles
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Claudia Schmitz
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Thomas Berger
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Bartos Przybyla
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Luca Briganti
- Airbus Defence and Space GmbH, TSPOE 3 / Payloads - Life Science, 88039 Friedrichshafen, Germany
| | - Markus Franz
- Airbus Defence and Space GmbH, TSPOE 3 / Payloads - Life Science, 88039 Friedrichshafen, Germany
| | - Jürgen Segerer
- Airbus Defence and Space GmbH, TSPOE 3 / Payloads - Life Science, 88039 Friedrichshafen, Germany
| | - Luis F Spitta
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Bernd Henschenmacher
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Bikash Konda
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Christa Baumstark-Khan
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| | - Corinna Panitz
- Universitätsklinikum Aachen, Institut für Pharmakologie und Toxikologie, Wendlingweg 2, 52074 Aachen, Germany
| | - Günther Reitz
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
27
|
Salles MB, Gehrke SA, Shibli JA, Allegrini S, Yoshimoto M, König B. Evaluating Nuclear Factor NF-κB Activation following Bone Trauma: A Pilot Study in a Wistar Rats Model. PLoS One 2015; 10:e0140630. [PMID: 26465330 PMCID: PMC4605579 DOI: 10.1371/journal.pone.0140630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
The present study investigated the moment of peak NF-kB activation and its dissipation in the cortical bone in the femur of Wistar rat stimulated by surgical trauma. Sixty-five Wistar rats were divided into 13 groups (n = 5 per group): eight experimental groups (expG 1–8) divided based on the euthanasia time point (zero, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h and 24 h) and five sham control groups (conG 1–5) killed at zero, 1 h, 2 h, 4 h and 6 h, respectively. A 1.8-mm-diameter defect was generated 0.5 mm from the femur proximal joint using a round bur to induce the surgical trauma. Overall, the activation peak of NF-κB in the cortical bone was 6 h (expG5 group) independent of the evaluated position; this peak was significantly different compared to those in the other groups (p < 0.05). The surgical trauma resulted in a spread of immune markings throughout the cortical bone with an accentuation in the knee region. The present study provides the first evidence that the NF-κB activation peak was established after 6 hours in the cortical bone of Wistar rats. The signs from a surgical trauma can span the entire cortical bone and are not limited to the damaged region.
Collapse
Affiliation(s)
- Marcos Barbosa Salles
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Implantology Department, São Leopoldo Mandic, Campinas, Brasil
| | - Sergio Alexandre Gehrke
- Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil
- Catholic University of Uruguay, Montevideo, Uruguay
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, SP, Brazil
- * E-mail:
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, SP, Brazil
| | - Sergio Allegrini
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Orthopedy Department, Ernst Moritz Arndt University, Greifswald, Germany
| | - Marcelo Yoshimoto
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Implantology Department, São Leopoldo Mandic, Campinas, Brasil
| | - Bruno König
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Babini G, Ugolini M, Morini J, Baiocco G, Mariotti L, de Fatis PT, Liotta M, Ottolenghi A. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway. RADIATION PROTECTION DOSIMETRY 2015; 166:157-160. [PMID: 25877540 DOI: 10.1093/rpd/ncv132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring non-irradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0-2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations.
Collapse
Affiliation(s)
- G Babini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - M Ugolini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - J Morini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy Dipartimento di Medicina Molecolare, Universitá degli Studi di Pavia, via Forlanini 14, I-27100 Pavia, Italy
| | - G Baiocco
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - L Mariotti
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - P Tabarelli de Fatis
- Servizio di Fisica Sanitaria, IRCCS Salvatore Maugeri, via Maugeri 4, I-27100 Pavia, Italy
| | - M Liotta
- Servizio di Fisica Sanitaria, IRCCS Salvatore Maugeri, via Maugeri 4, I-27100 Pavia, Italy
| | - A Ottolenghi
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| |
Collapse
|
29
|
Babini G, Morini J, Baiocco G, Mariotti L, Ottolenghi A. In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures. Sci Rep 2015; 5:9343. [PMID: 25791775 PMCID: PMC4366819 DOI: 10.1038/srep09343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.
Collapse
Affiliation(s)
- G Babini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - J Morini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy [3] Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - G Baiocco
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - L Mariotti
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - A Ottolenghi
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| |
Collapse
|
30
|
Sun J, Han J, Zhao Y, Zhu Q, Hu J. Curcumin induces apoptosis in tumor necrosis factor-alpha-treated HaCaT cells. Int Immunopharmacol 2012; 13:170-4. [DOI: 10.1016/j.intimp.2012.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 02/02/2023]
|
31
|
Sun J, Han J, Zhu Q, Li Z, Hu J. Camptothecin Fails to Induce Apoptosis in Tumor Necrosis Factor-Alpha-Treated HaCaT Cells. Pharmacology 2012; 89:58-63. [DOI: 10.1159/000335370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022]
|
32
|
Thorley AJ, Grandolfo D, Lim E, Goldstraw P, Young A, Tetley TD. Innate immune responses to bacterial ligands in the peripheral human lung--role of alveolar epithelial TLR expression and signalling. PLoS One 2011; 6:e21827. [PMID: 21789185 PMCID: PMC3137597 DOI: 10.1371/journal.pone.0021827] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/07/2011] [Indexed: 01/30/2023] Open
Abstract
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.
Collapse
Affiliation(s)
- Andrew J. Thorley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Davide Grandolfo
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Peter Goldstraw
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Alan Young
- AstraZeneca R&D, Loughborough, United Kingdom
| | - Teresa D. Tetley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
33
|
Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G. Activation of the Nuclear Factor κB pathway by heavy ion beams of different linear energy transfer. Int J Radiat Biol 2011; 87:954-63. [DOI: 10.3109/09553002.2011.584942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G. Carbon-ion-induced activation of the NF-κB pathway. Radiat Res 2011; 175:424-31. [PMID: 21222514 DOI: 10.1667/rr2423.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carbon-ion cancer therapy offers several physical and radiobiological advantages over conventional photon cancer therapy. The molecular mechanisms that determine cellular outcome, including the activation of transcription factors and the alteration of gene expression profiles, after carbon-ion exposure are still under investigation. We have previously shown that argon ions (LET 272 keV/µm) had a much higher potential to activate the transcription factor nuclear factor κB (NF-κB) than X rays. NF-κB is involved in the regulation of cellular survival, mostly by antiapoptosis and cell cycle-regulating target genes, which are important in the resistance of cancer cells to radiotherapy. Therefore, activation of the NF-κB pathway by accelerated carbon ions (LET 33 and 73 keV/µm) was examined. For comparison, cells were exposed to 150 kV X rays and to accelerated carbon ions. NF-κB-dependent gene induction after exposure was detected in stably transfected human 293 reporter cells. Carbon ions and X rays had a comparable potential to activate NF-κB in human cells, indicating a comparable usefulness of pharmacological NF-κB inhibition during photon and carbon-ion radiotherapy.
Collapse
Affiliation(s)
- Christine E Hellweg
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Culler SJ, Hoff KG, Smolke CD. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 2010; 330:1251-5. [PMID: 21109673 PMCID: PMC3171693 DOI: 10.1126/science.1192128] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor κB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.
Collapse
Affiliation(s)
- Stephanie J. Culler
- Division of Chemistry and Chemical Engineering, 1200 East California Blvd., MC 210-41, California Institute of Technology, Pasadena, California 91125, USA
| | - Kevin G. Hoff
- Division of Chemistry and Chemical Engineering, 1200 East California Blvd., MC 210-41, California Institute of Technology, Pasadena, California 91125, USA
| | - Christina D. Smolke
- Division of Chemistry and Chemical Engineering, 1200 East California Blvd., MC 210-41, California Institute of Technology, Pasadena, California 91125, USA
- Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
36
|
Baumstark-Khan C, Hellweg CE, Reitz G. Cytotoxicity and genotoxicity reporter systems based on the use of mammalian cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 118:113-51. [PMID: 20140660 DOI: 10.1007/10_2009_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the dramatic increase in the number of new agents arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop assays for rapid evaluation of potential risks to man and environment. The panel of conventional tests used for cytotoxicity and genotoxicity and the strategies to progress from small scale assays to high content screening in toxicology are discussed. The properties of components necessary as sensors and reporters for new reporter assays, and the application of genetic strategies to design assays are reviewed. The concept of cellular reporters is based on the use of promoters of chemical stress-regulated genes ligated to a suitable luminescent or fluorescent reporter gene. Current reporter assays designed from constructs transferred into suitable cell lines are presented.
Collapse
Affiliation(s)
- Christa Baumstark-Khan
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Linder Hoehe, 51147, Cologne, Germany,
| | | | | |
Collapse
|
37
|
Wang CJ, Lam W, Bussom S, Chang HM, Cheng YC. TREX1 acts in degrading damaged DNA from drug-treated tumor cells. DNA Repair (Amst) 2009; 8:1179-89. [PMID: 19617005 PMCID: PMC3640554 DOI: 10.1016/j.dnarep.2009.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 12/15/2022]
Abstract
The major mammalian exonuclease TREX1 has been proposed to play a role in DNA repair and drug resistance. However, no cellular evidence substantiates this claim. Recent reports indicate TREX1's involvement in autoimmunity. To further understand its role, we studied TREX1 expression and functionality in anticancer drug-treated tumor cells. We report that the expression and localization of TREX1 are cell-type dependent. Camptothecin and other DNA damaging agents induced both TREX1 protein and its mRNA in a dose- and time-dependent manner. Using a TREX1-inducible cell line, we performed clonogenic assays and found no change in sensitivity of the cells to the agents upon TREX1 induction, suggesting that TREX1 may not play a role in DNA repair or drug sensitivity. Nevertheless, TREX1 serves as a key enzyme in the degradation of DNA from dying cells leading to less cellular DNA. Ubiquitously expressed in normal tissues, TREX1 may act in degrading DNA in all cell types undergoing a dying process before phagocytosis occurs.
Collapse
Affiliation(s)
- Chuan-Jen Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Scott Bussom
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|