1
|
Chianese T, Trinchese G, Leandri R, De Falco M, Mollica MP, Scudiero R, Rosati L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int J Mol Sci 2024; 25:7039. [PMID: 39000147 PMCID: PMC11241661 DOI: 10.3390/ijms25137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Glyphosate, the active ingredient of several broad-spectrum herbicides, is widely used throughout the world, although many adverse effects are known. Among these, it has been recognized as an endocrine disruptor. This work aimed to test the effects and potential endocrine disrupting action of glyphosate on PNT1A human prostate cells, an immortalized non-tumor epithelial cell line, possessing both ERα and ERβ estrogen receptors. The results showed that glyphosate induces cytotoxicity, mitochondrial dysfunction, and rapid activation of ERα and ERβ via nuclear translocation. Molecular analysis indicated a possible involvement of apoptosis in glyphosate-induced cytotoxicology. The apoptotic process could be attributed to alterations in mitochondrial metabolism; therefore, the main parameters of mitochondrial functionality were investigated using the Seahorse analyzer. Impaired mitochondrial function was observed in glyphosate-treated cells, with reductions in ATP production, spare respiratory capacity, and proton leakage, along with increased efficiency of mitochondrial coupling. Finally, the results of immunofluorescence analysis demonstrated that glyphosate acts as an estrogen disruptor determining the nuclear translocation of both ERs. Nuclear translocation occurred independent of dose, faster than the specific hormone, and persisted throughout treatment. In conclusion, the results collected show that in non-tumor prostate cells glyphosate can cause cell death and acts as a xenoestrogen, activating estrogen receptors. The consequent alteration of hormonal functions can have negative effects on the reproductive health of exposed animals, compromising their fertility.
Collapse
Affiliation(s)
- Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Giovanna Trinchese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rebecca Leandri
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Maria Pina Mollica
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
- CIRAM—Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
2
|
Liu X, Tang J, Peng L, Nie H, Zhang Y, Liu P. Cancer-associated fibroblasts promote malignant phenotypes of prostate cancer cells via autophagy : Cancer-associated fibroblasts promote prostate cancer development. Apoptosis 2023; 28:881-891. [PMID: 37000314 DOI: 10.1007/s10495-023-01828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
Dysregulation of autophagy in cancer-associated fibroblasts (CAFs) has been demonstrated to play a role in malignant phenotypes of human tumors. We intended to investigate the function of CAFs autophagy in prostate cancer (PCa). Firstly, CAFs and normal fibroblasts (NFs) were isolated from cancerous and adjacent normal tissues of PCa patients, for the following experimental preparation. In comparison with NFs, CAFs expressed higher levels of the myofibroblast marker ?-smooth muscle actin (?-SMA) and the mesenchymal marker Vimentin. Besides, CAFs possessed a higher autophagic level than NFs. As for malignant phenotypes, PCa cells co-cultured with CAFs-CM showed greater proliferation, migration and invasion capabilities, while these outcomes were obviously abolished by autophagy inhibition with 3-Methyladenine (3-MA). Moreover, silencing of ATG5 in CAFs inhibited fibroblasts autophagic level and suppressed malignant phenotypes of PCa cells, while ATG5 overexpression in NFs exerted opposite effects. Depletion of ATG5 in CAFs inhibited the xenograft tumor growth and lung metastasis of PCa cells. Taken together, our data demonstrated the promotive effect of CAFs on PCa malignant phenotypes through ATG5-dependent autophagy, suggesting a novel mechanism for PCa progression.
Collapse
Affiliation(s)
- XuKai Liu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - JiZu Tang
- Department of Orthopaedics, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - LiQiang Peng
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - HaiBo Nie
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - YuanGuang Zhang
- Department of Spine surgery, Zhuzhou Central Hospital, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan Province, 412007, P.R. China.
| | - Pan Liu
- Department of Emergency, Zhuzhou Central Hospital, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan Province, 412007, P.R. China.
| |
Collapse
|
3
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
4
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [PMID: 33246174 DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
5
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Chen M, Zhu J, Kang J, Lai X, Gao Y, Gan H, Yang F. Exploration in the Mechanism of Action of Licorice by Network Pharmacology. Molecules 2019; 24:molecules24162959. [PMID: 31443210 PMCID: PMC6720938 DOI: 10.3390/molecules24162959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Licorice is a popular sweetener and a thirst quencher in many food products particularly in Europe and the Middle East and also one of the oldest and most frequently used herbs in traditional Chinese medicine. As a wide application of food additive, it is necessary to clarify bioactive chemical ingredients and the mechanism of action of licorice. In this study, a network pharmacology approach that integrated drug-likeness evaluation, structural similarity analysis, target identification, network analysis, and KEGG pathway analysis was established to elucidate the potential molecular mechanism of licorice. First, we collected and evaluated structural information of 282 compounds in licorice and found 181 compounds that met oral drug rules. Then, structural similarity analysis with known ligands of targets in the ChEMBL database (similarity threshold = 0.8) was applied to the initial target identification, which found 63 compounds in licorice had 86 multi-targets. Further, molecular docking was performed to study their binding modes and interactions, which screened out 49 targets. Finally, 17 enriched KEGG pathways (p < 0.01) of licorice were obtained, exhibiting a variety of biological activities. Overall, this study provided a feasible and accurate approach to explore the safe and effective application of licorice as a food additive and herb medicine.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jingru Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Kang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xinmei Lai
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
7
|
Silva RDS, Lombardi APG, de Souza DS, Vicente CM, Porto CS. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. Int J Biochem Cell Biol 2018; 96:40-50. [PMID: 29341930 DOI: 10.1016/j.biocel.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and activation of gene transcription.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Ana Paola G Lombardi
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão de Souza
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina M Vicente
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
8
|
Evaluating Endocrine Disruption Activity of Deposits on Firefighting Gear Using a Sensitive and High Throughput Screening Method. J Occup Environ Med 2016; 57:e153-7. [PMID: 26641839 DOI: 10.1097/jom.0000000000000577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Adverse health outcomes related to exposure to endocrine disrupting chemicals, including increased incidences of coronary heart disease, prostate and testicular cancers, and congenital disabilities, have been reported in firefighters or their offspring. We, therefore, measured the estrogenic and antiestrogenic activity of extracts of used firefighter gear to assess exposure to these agents. METHODS Extracts and known chemical contaminants were examined for estrogenicity and antiestrogenicity in yeast cells expressing the estrogen receptor. RESULTS Most extracts of used gear and phthalate diesters detectable on this gear displayed strong antiestrogenic effects. Notably, new glove and hood extracts showed significant estrogenic activity. CONCLUSIONS Overall, our data suggest that firefighters are exposed to both estrogenic and antiestrogenic agents, possibly phthalates that may lead to health risks observed in this occupation as a result of perturbation of hormone homeostasis.
Collapse
|
9
|
Jia B, Gao Y, Li M, Shi J, Peng Y, Du X, Klocker H, Sampson N, Shen Y, Liu M, Zhang J. GPR30 Promotes Prostate Stromal Cell Activation via Suppression of ERα Expression and Its Downstream Signaling Pathway. Endocrinology 2016; 157:3023-35. [PMID: 27163843 DOI: 10.1210/en.2016-1035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play a vital role in malignant transformation and progression of prostate cancer (PCa), and accumulating evidence suggests an enhancing effect of estrogens on PCa. The present study aimed to investigate the possible origin of prostate CAFs and the effects of estrogen receptors, G protein-coupled receptor 30 (GPR30) and estrogen receptor (ER)-α, on stromal cell activation. High expression of fibroblast activation protein (FAP), CD44, and nonmuscle myosin heavy chain B (SMemb) accompanied by low expression of smooth muscle differentiation markers was found in the stromal cells of PCa tissues and in cultured human prostate CAFs. Additionally, SMemb expression, which is coupled to cell phenotype switching and proliferation, was coexpressed with FAP, a marker of activated stromal cells, and with the stem cell marker CD44 in the stromal cells of PCa tissue. Prostate CAFs showed high GPR30 and low ERα expression. Moreover, GPR30 was coexpressed with FAP, CD44, and SMemb. Furthermore, the study demonstrated that the overexpression of GPR30 or the knockdown of ERα in prostate stromal cells induced the up-regulation of FAP, CD44, Smemb, and the down-regulation of smooth muscle markers. The conditioned medium from these cells promoted the proliferation and migration of LNCaP and PC3 PCa cells. GPR30 knockdown or ERα overexpression showed opposite effects. Finally, we present a novel mechanism whereby GPR30 limits ERα expression via inhibition of the cAMP/protein kinase A signaling pathway. These results suggest that stem-like cells within the stroma are a possible source of prostate CAFs and that the negative regulation of ERα expression by GPR30 is centrally involved in prostate stromal cell activation.
Collapse
Affiliation(s)
- Bona Jia
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Yu Gao
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Mingming Li
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Yanfei Peng
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Helmut Klocker
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Natalie Sampson
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Mengyang Liu
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology (B.J., Y.G., M.L., J.S., X.D., Y.S., J.Z.), College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine (Y.P.), Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Urology (H.K., N.S.), Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; and Department of Nutrition and Food Science (M.L.), Texas A&M University, College Station, Texas 77843
| |
Collapse
|
10
|
Lombardi APG, Pisolato R, Vicente CM, Lazari MFM, Lucas TFG, Porto CS. Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3. Mol Cell Endocrinol 2016; 430:12-24. [PMID: 27107935 DOI: 10.1016/j.mce.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to characterize the mechanism underlying estrogen effects on the androgen-independent prostate cancer cell line PC-3. 17β-estradiol and the ERβ-selective agonist DPN, but not the ERα-selective agonist PPT, increased the incorporation of [methyl-(3)H]thymidine and the expression of Cyclin D2, suggesting that ERβ mediates the proliferative effect of estrogen on PC-3 cells. In addition, upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by 17β-estradiol and DPN were blocked by the ERβ-selective antagonist PHTPP in PC-3 cells. Upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by DPN were also blocked by PKF118-310, a compound that disrupts β-catenin-TCF (T-cell-specific transcription factor) complex, suggesting the involvement of β-catenin in the estradiol effects in PC-3 cells. A diffuse immunostaining for non-phosphorylated β-catenin was detected in the cytoplasm of PC-3 cells. Low levels of non-phosphorylated β-catenin immunostaining were also detected near the plasma membrane and in nuclei. Treatment of PC-3 cells with 17β-estradiol or DPN markedly increased non-phosphorylated β-catenin expression. These effects were blocked by pretreatment with the ERβ-selective antagonist PHTPP, PI3K inhibitor Wortmannin or AKT inhibitor MK-2206, indicating that ERβ-PI3K/AKT mediates non-phosphorylated β-catenin expression. Cycloheximide blocked the DPN-induced upregulation of non-phosphorylated β-catenin, suggesting de novo synthesis of this protein. In conclusion, these results suggest that estrogen may play a role in androgen-independent prostate cancer cell proliferation through a novel pathway, involving ERβ-mediated activation of β-catenin.
Collapse
Affiliation(s)
- Ana Paola G Lombardi
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Raisa Pisolato
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Carolina M Vicente
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Thaís F G Lucas
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
11
|
Pisolato R, Lombardi APG, Vicente CM, Lucas TFG, Lazari MFM, Porto CS. Expression and regulation of the estrogen receptors in PC-3 human prostate cancer cells. Steroids 2016; 107:74-86. [PMID: 26742628 DOI: 10.1016/j.steroids.2015.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/21/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
The aim of this study was to identify the expression, cellular localization and regulation of classic estrogen receptors ERα and ERβ, ER-α36 isoform and GPER in the androgen-independent prostate cancer cell line PC-3. In addition, we evaluated the relative contribution of these receptors to the activation of the ERK1/2 (extracellular signal-regulated protein kinases) signaling pathway. These four estrogen receptors were detected by Western blot assays and were shown by immunofluorescence assays to localize preferentially in extranuclear regions of PC-3 cells. In addition, treatment with 17β-estradiol (E2) (1 μM) for 24 h led to down-regulation of the classic estrogen receptors, whereas E2 at physiological concentration (0.1 nM) for 24h tended to increase the levels of ERα and ERβ. Furthermore, the ERα-selective agonist PPT selectively increased the expression of ERβ and the ERβ-selective agonist DPN increased ERα levels. None of these treatments affected expression of the ER-α36 isoform. The unusual cytoplasmic localization of the classic estrogen receptors in these cells differs from the nuclear localization in the majority of estrogen target cells and suggests that rapid signaling pathways may be preferentially activated. In fact, treatment with selective agonists of ERα, ERβ and GPER induced ERK1/2 phosphorylation that was blocked by the respective antagonists. On the other hand, activation of ERK1/2 induced by E2 may involve additional mechanisms because it was not blocked by the three antagonists. Taken together, the results indicate that there is a crosstalk between ERα and ERβ to regulate the expression of each other, and suggest the involvement of other receptors, such as ER-α36, in the rapid ERK1/2 activation by E2. The identification of new isoforms of ERs, regulation of the receptors and signaling pathways is important to develop new therapeutic strategies for the castration-resistant prostate cancer.
Collapse
Affiliation(s)
- R Pisolato
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | - A P G Lombardi
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | - C M Vicente
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | - T F G Lucas
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | - M F M Lazari
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | - C S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol 2016; 36:144-56. [PMID: 26483416 PMCID: PMC4702593 DOI: 10.1128/mcb.00625-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor β (ERβ) or Krüppel-like zinc finger transcription factor 5 (KLF5). Ιn addition, E2 suppressed KLF5-mediated transcription through ERβ, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ERβ-KLF5 pathway and regulated prostate tumor growth without ERβ transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ERβ and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation.
Collapse
Affiliation(s)
- Yuka Nakajima
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Asami Osakabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kensuke Akaogi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Junn Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Theophilou G, Lima KMG, Briggs M, Martin-Hirsch PL, Stringfellow HF, Martin FL. A biospectroscopic analysis of human prostate tissue obtained from different time periods points to a trans-generational alteration in spectral phenotype. Sci Rep 2015; 5:13465. [PMID: 26310632 PMCID: PMC4550877 DOI: 10.1038/srep13465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/28/2015] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is the most commonly-diagnosed malignancy in males worldwide; however, there is marked geographic variation in incidence that may be associated with a Westernised lifestyle. We set out to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) or Raman spectroscopy combined with principal component analysis-linear discriminant analysis or variable selection techniques employing genetic algorithm or successive projection algorithm could be utilised to explore differences between prostate tissues from differing years. In total, 156 prostate tissues from transurethral resection of the prostate procedures for benign prostatic hyperplasia from 1983 to 2013 were collected. These were distributed to form seven categories: 1983–1984 (n = 20), 1988–1989 (n = 25), 1993–1994 (n = 21), 1998–1999 (n = 21), 2003–2004 (n = 21), 2008–2009 (n = 20) and 2012–2013 (n = 21). Ten-μm-thick tissue sections were floated onto Low-E (IR-reflective) slides for ATR-FTIR or Raman spectroscopy. The prostate tissue spectral phenotype altered in a temporal fashion. Examination of the two categories that are at least one generation (30 years) apart indicated highly-significant segregation, especially in spectral regions containing DNA and RNA bands (≈1,000–1,490 cm−1). This may point towards alterations that have occurred through genotoxicity or through epigenetic modifications. Immunohistochemical studies for global DNA methylation supported this. This study points to a trans-generational phenotypic change in human prostate.
Collapse
Affiliation(s)
- Georgios Theophilou
- Centre for Biophotonics, LEC, Lancaster University, Lancaster LA1 4YQ, UK.,Department of Obstetrics and Gynaecology, Central Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Kássio M G Lima
- Centre for Biophotonics, LEC, Lancaster University, Lancaster LA1 4YQ, UK.,Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal 59072-970, RN-Brazil
| | - Matthew Briggs
- Department of Obstetrics and Gynaecology, Central Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Pierre L Martin-Hirsch
- Centre for Biophotonics, LEC, Lancaster University, Lancaster LA1 4YQ, UK.,Department of Obstetrics and Gynaecology, Central Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Helen F Stringfellow
- Department of Obstetrics and Gynaecology, Central Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Francis L Martin
- Centre for Biophotonics, LEC, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
14
|
Gara RK, Sundram V, Chauhan SC, Jaggi M. Anti-cancer potential of a novel SERM ormeloxifene. Curr Med Chem 2014; 20:4177-84. [PMID: 23895678 DOI: 10.2174/09298673113209990197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/21/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore.
Collapse
|
15
|
Jurečeková J, Sivoňová MK, Evinová A, Kliment J, Dobrota D. The association between estrogen receptor alpha polymorphisms and the risk of prostate cancer in Slovak population. Mol Cell Biochem 2013; 381:201-7. [PMID: 23737135 DOI: 10.1007/s11010-013-1703-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
Abstract
The aim of our study was to evaluate the effect of two polymorphisms in the estrogen receptor alpha, PvuII and XbaI, on the development of prostate cancer within Slovak population, as well as their correlation with selected clinical characteristics. The study was performed using 311 prostate cancer patients and 256 healthy male controls. Both polymorphisms were significantly associated with higher risk of prostate cancer development. At the same time, the CC genotype of PvuII polymorphism (OR = 1.98; 95% CI 0.94-4.21; p = 0.05) and the AG genotype of XbaI polymorphism (OR = 1.74; 95% CI 1.0-3.02; p = 0.04) significantly contributed to the development of low-grade carcinoma, while the AG and GG genotypes of the XbaI polymorphism contributed mainly to the development of high-grade prostate cancer (OR = 1.83; 95% CI 1.12-3.01; p = 0.01 and OR = 2.13; 95% CI 1.06-4.19; p = 0.03, respectively). Similarly, the AG and GG genotypes of XbaI polymorphism showed significant association with prostate cancer in patients with serum PSA level ≥10 ng/ml. Both polymorphisms were found at the same time to be more frequent in patients diagnosed before the age of 60. We conclude on the basis of these results that PvuII and XbaI polymorphisms of estrogen receptor alpha might be associated with prostate cancer risk within Slovak population. Although this is a pilot study and, as such, more detailed investigations are needed to confirm the role of these polymorphisms in prostate cancer development and progression within said Slovak population, our results might still provide a valuable basis for further research with larger patient groups.
Collapse
Affiliation(s)
- Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | |
Collapse
|
16
|
Abd Elmageed ZY, Moroz K, Srivastav SK, Fang Z, Crawford BE, Moparty K, Thomas R, Abdel-Mageed AB. High circulating estrogens and selective expression of ERβ in prostate tumors of Americans: implications for racial disparity of prostate cancer. Carcinogenesis 2013; 34:2017-23. [PMID: 23658372 DOI: 10.1093/carcin/bgt156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although estrogen receptor beta (ERβ) has been implicated in prostate cancer (PCa) progression, its potential role in health disparity of PCa remains elusive. The objective of this study was to examine serum estrogens and prostate tumor ERβ expression and examine their correlation with clinical and pathological parameters in African American (AA) versus Caucasian American (CA) men. The circulating 17β-estradiol (E2) was measured by enzyme immunoassay in blood procured from racially stratified normal subjects and PCa patients. Differential expression profile analysis of ERβ was analyzed by quantitative immunohistochemistry using ethnicity-based tissue microarray encompassing 300 PCa tissue cores. In situ ERβ expression was validated by quantitative reverse transcription-PCR in matched microdissected normal prostate epithelium and tumor cells and datasets extracted from independent cohorts. In comparison with normal age-matched subjects, circulating E2 levels were significantly elevated in all PCa patients. Further analysis demonstrates an increase in blood E2 levels in AA men in both normal and PCa in comparison with age- and stage-matched counterparts of CA decent. Histochemical score analysis reveals intense nuclear immunoreactivity for ERβ in tumor cores of AA men than in CA men. Gene expression analysis in microdissected tumors corroborated the biracial differences in ERβ expression. Gene expression analysis from independent cohort datasets revealed correlation between ERβ expression and PCa progression. However, unlike in CA men, adjusted multivariate analysis showed that ERβ expression correlates with age at diagnosis and low prostate-specific antigen recurrence-free survival in AA men. Taken together, our results suggest that E2-ERβ axis may have potential clinical utility in PCa diagnosis and clinical outcome among AA men.
Collapse
|
17
|
Gomes IM, Santos CR, Socorro S, Maia CJ. Six transmembrane epithelial antigen of the prostate 1 is down-regulated by sex hormones in prostate cells. Prostate 2013; 73:605-13. [PMID: 23060075 DOI: 10.1002/pros.22601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/10/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND STEAP1 is over-expressed in several types of tumors, especially prostate cancer, where it is localized in the plasma membrane of epithelial cells, at cell-cell junctions. Its role in prostate carcinogenesis and its regulation in prostate cells remain unknown. Therefore, we propose to study the effect of sex hormones in the regulation of STEAP1 expression in prostate cells in vitro and in vivo. METHODS LNCaP prostate cells were incubated with fetal bovine serum (FBS), charcoal-stripped FBS (CS-FBS), 5α-dihydrotestosterone (DHT), and 17β-estradiol (E2 ) for different periods of stimulation. In addition, adult male Wistar rats were castrated and treated with DHT and E2 . The levels of STEAP1 in response to treatments were analyzed by real-time PCR, Western blot, and immunohistochemistry. RESULTS The treatment of LNCaP cells with DHT or E2 induces a down-regulation of STEAP1 expression, while incubation with CS-FBS has the opposite effect. Experiments using inhibitors of androgen and estrogen receptor (AR and ER) showed that down-regulation of STEAP1 is AR-dependent, but ER-independent. However, the mediation of six transmembrane epithelial antigen of the prostate 1 (STEAP1) expression by AR seems to be dependent of de novo protein synthesis. In vivo studies showed that castrated rats express higher levels of STEAP1 protein when compared to intact rats, an effect reversed by DHT or E2 replacement. CONCLUSIONS STEAP1 is down-regulated by DHT and E2 in LNCaP cells and in rat prostate.
Collapse
Affiliation(s)
- Inês M Gomes
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | | | | | | |
Collapse
|
18
|
Jayapalan JJ, Ng KL, Shuib AS, Razack AHA, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis 2013; 34:1663-9. [PMID: 23417432 DOI: 10.1002/elps.201200583] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/20/2023]
Abstract
The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
19
|
Fernandez JW, Grizzell JA, Wecker L. The role of estrogen receptor β and nicotinic cholinergic receptors in postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:199-206. [PMID: 23063492 DOI: 10.1016/j.pnpbp.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 01/19/2023]
Abstract
Postpartum depression (PPD) is a devastating disease occurring in approximately 20% of women. Women who suffer from PPD appear to be more sensitive to postpartum hormonal changes than women who do not experience this form of depression. Furthermore, women who quit smoking prior to or during pregnancy, and who develop PPD, are at an increased risk of smoking relapse. Unfortunately, the mechanistic relationship between the pathophysiology of PPD and smoking relapse is unknown. Here we review the roles of both estrogen receptor beta (ERβ) and cholinergic nicotinic receptors (nAChRs) in the pathogenesis of depression and propose a mechanistic rationale to explain the high rate of smoking relapse exhibited by women who develop PPD.
Collapse
Affiliation(s)
- Jamie Winderbaum Fernandez
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E. Fletcher Avenue, Tampa, FL, 33611, USA.
| | | | | |
Collapse
|
20
|
Biology and Clinical Relevance of Estrogen Receptors in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. Estrogen receptors alpha (rs2234693 and rs9340799), and beta (rs4986938 and rs1256049) genes polymorphism in prostate cancer: evidence for association with risk and histopathological tumor characteristics in Iranian men. Mol Carcinog 2012; 51 Suppl 1:E104-17. [PMID: 22228197 DOI: 10.1002/mc.21870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/27/2011] [Accepted: 12/08/2011] [Indexed: 02/04/2023]
Abstract
We evaluated the effect of estrogen receptor (ER)-α and ER-β genes polymorphisms on development of prostate cancer (PCa) and its correlation with serum reproductive hormones and with clinicopathological characteristics in a sample of Iranian men. One hundred sixty-two men with PCa (mean age 63.7 ± 3.4 years) and 324 age-matched healthy controls (mean age 63.1 ± 3.2 years) were recruited in this study. Genotypes for ER-α and ER-β genes polymorphisms were identified by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Serum levels of reproductive hormones were also measured. Of PCa patients, 38.3%, and 61.7% had localized and advanced tumor, and 45.7%, and 54.3%, had low grade and high-grade cancer, respectively. There was a significant difference in genotype frequency distribution of ER-α gene polymorphism (P = 0.002), and ER-β gene polymorphism (P = 0.003) between cancer patients and controls. The ER-α Pvull C allele carriers (TC or CC) had a significantly increased risk of PCa compared with the TT homozygotes [odds ratio (OR) 3.12; 95% confidence interval (CI) 1.87-5.84, and OR = 4.73, 95% CI:2.44-7.33, respectively]. It was also found that the ER-α XbaI AG (OR = 4.36; 95% CI:2.47-6.68; P = 0.001) and ER-β AluI AG (OR = 2.66, 95% CI:1.61-4.16; P = 0.004) genotypes were significantly associated with increased risk of PCa. The ER-β RsaI genotype was not associated with PCa. Baseline serum free E2 levels tended to be lower in men with PCa (0.35 ± 0.04 pg/ml) compared to healthy men (0.48 ± 0.05 pg/ml). Genotypes which confer susceptibility for developing PCa, accompanied with lowest serum levels of free E2. In the Iranian population, genetic polymorphisms of the ER-α and ER-β genes may be involved in the etiology of PCa.
Collapse
Affiliation(s)
- Mohammad Reza Safarinejad
- Clinical Center for Urological Disease Diagnosis and Private Clinic Specialized in Urological and Andrological Genetics, Tehran, Iran
| | | | | | | |
Collapse
|
22
|
Re A, Aiello A, Nanni S, Grasselli A, Benvenuti V, Pantisano V, Strigari L, Colussi C, Ciccone S, Mazzetti AP, Pierconti F, Pinto F, Bassi P, Gallucci M, Sentinelli S, Trimarchi F, Bacchetti S, Pontecorvi A, Lo Bello M, Farsetti A. Silencing of GSTP1, a prostate cancer prognostic gene, by the estrogen receptor-β and endothelial nitric oxide synthase complex. Mol Endocrinol 2011; 25:2003-16. [PMID: 22052999 DOI: 10.1210/me.2011-1024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1. Silencing of GSTP1 is a common early event in prostate carcinogenesis, frequently caused by promoter hypermethylation. We validated loss of glutathione transferase (GST) P1-1 expression in vivo, in tissue microarrays from a retrospective cohort of patients, and correlated it with decreased disease-specific survival. Furthermore, we show that in PCa cultured cells ERβ/eNOS causes GSTP1 repression by being recruited at estrogen responsive elements in the gene promoter with consequential remodeling of local chromatin. Treatment with ERβ antagonist or its natural ligand 5α-androstane-3β,17β-diol, eNOS inhibitors or ERβ small interference RNA abrogated the binding and reversed GSTP1 silencing, demonstrating the direct involvement of the complex. In vitro, GSTP1 silencing by ERβ/eNOS was specific for cells from patients with worse clinical outcome where it appeared the sole mechanism regulating GSTP1 expression because no promoter hypermethylation was present. However, in vivo chromatin immunoprecipitation assays on fresh PCa tissues demonstrated that silencing by ERβ/eNOS can coexist with promoter hypermethylation. Our findings reveal that the ERβ/eNOS complex can exert transcriptional repression and suggest that this may represent an epigenetic event favoring inactivation of the GSTP1 locus by methylation. Moreover, abrogation of ERβ/eNOS function by 3β-adiol emphasizes the significance of circulating or locally produced sex steroid hormones or their metabolites in PCa biology with relevant clinical/therapeutic implications.
Collapse
Affiliation(s)
- A Re
- Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ho SM, Lee MT, Lam HM, Leung YK. Estrogens and prostate cancer: etiology, mediators, prevention, and management. Endocrinol Metab Clin North Am 2011; 40:591-614, ix. [PMID: 21889723 PMCID: PMC3167093 DOI: 10.1016/j.ecl.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mainstay targets for hormonal prostate cancer (PCa) therapies are based on negating androgen action. Recent epidemiologic and experimental data have pinpointed the key roles of estrogens in PCa development and progression. Racial and geographic differences, as well as age-associated changes, in estrogen synthesis and metabolism contribute significantly to the etiology. This article summarizes how different estrogens/antiestrogens/estrogen mimics contribute to prostate carcinogenesis, the roles of the different mediators of estrogen in the process, and the potentials of new estrogenic/antiestrogenic compounds for prevention and treatment of PCa.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, Center for Environmental Genetics, and the Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ming-tsung Lee
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Hung-Ming Lam
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Yuet-Kin Leung
- Department of Environmental Health, Center for Environmental Genetics, and The Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-5181, Fax 513-558-0071,
| |
Collapse
|
24
|
Abstract
Estrogen receptor (ER) β, the "second" ER, plays a gatekeeper role by inhibiting cell proliferation, promoting apoptosis, and impeding the progression of prostate cancer. Ironically, its presumed ligand, 17β-estradiol, promotes cancer development in experimental models. The mechanisms underlying the interplay between estrogens and ERβ in prostate cancer remain largely unclear. Research on a previously unknown tethering partner of ERβ, Krüppel-like zinc finger transcription factor 5 (KLF5), and its downstream gene target (FOXO1) helps to unlock this puzzle. 17β-Estradiol is not required to maintain the tumor-suppressive function of ERβ in the prostate, a tissue with limited estrogen availability; moreover, the presence of 17β-estradiol abrogates ERβ- and KLF5-mediated signaling and promotes cellular proliferation. Future research into ERβ will likely involve this estrogen independency and the preference for binding nonclassical DNA elements through tethering. The development of ERβ-based therapies may lead to improved drug efficacy.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Kettering Complex, Room 128, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267, USA
| | | |
Collapse
|
25
|
Yu L, Wang CY, Shi J, Miao L, Du X, Mayer D, Zhang J. Estrogens promote invasion of prostate cancer cells in a paracrine manner through up-regulation of matrix metalloproteinase 2 in prostatic stromal cells. Endocrinology 2011; 152:773-81. [PMID: 21248144 DOI: 10.1210/en.2010-1239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence suggests an enhancing effect of estrogens on prostate cancer (PCa) progression. Matrix metalloproteinase 2 (MMP2), which plays an important role in prostate cancer invasion, is mainly expressed in prostatic stromal cells (PrSC). Here we show that estradiol (E(2)) treatment up-regulates MMP2 production in PrSC, which promotes PCa cell invasion in a paracrine manner. Conditioned medium (CM) was collected from E(2)-treated prostatic stromal cell line WPMY-1 and primary PrSC. The CM of E(2)-treated WPMY-1 and PrSC promoted invasion of PCa cells, as measured by Matrigel transwell assays. Treatment with E(2) and 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, an estrogen receptor-alpha (ERα) specific agonist, significantly up-regulated MMP2 expression in WPMY-1 and PrSC cells at both mRNA and protein levels. The CM treated with an anti-MMP2 antibody lost the stimulatory effect on invasion of PCa cells. The ER inhibitor ICI 182,780, as well as a TGFβ1 neutralizing antibody and ERα-specific small interfering RNA effectively suppressed E(2)-induced MMP2 expression in WPMY-1 cells. Mechanistic studies showed that E(2) up-regulated MMP2 in an indirect manner: E(2) induced TGFβ1 expression via ERα; TGFβ1 stimulated MMP2 expression in PrSC; the invasion of PCa cells were stimulated by elevated MMP2 expression induced by E(2) in a paracrine manner. Our data show that E(2) induces MMP2 expression in WPMY-1 and PrSC cells, which was mediated by TGFβ1. The effect of E(2) on invasion of PCa cells is mediated by up-regulation of MMP2 in a paracrine mechanism.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Kontos S, Papatsoris A, Kominea A, Melachrinou M, Tanoglidi A, Kachrilas S, Karavitakis M, Balampani E, Sotiropoulou-Bonikou G. Expression of ERβ and Its Co-Regulators p300 and NCoR in Human Transitional Cell Bladder Cancer. Urol Int 2011; 87:151-8. [DOI: 10.1159/000324262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/04/2011] [Indexed: 12/30/2022]
|
27
|
Leung YK, Lam HM, Wu S, Song D, Levin L, Cheng L, Wu CL, Ho SM. Estrogen receptor beta2 and beta5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr Relat Cancer 2010; 17:675-89. [PMID: 20501637 PMCID: PMC2891483 DOI: 10.1677/erc-09-0294] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Estrogens play a pivotal role in the development and progression of prostate cancer (PCa). Their actions are mediated by estrogen receptors (ERs), particularly ERbeta in the prostate epithelium. With the discovery of ERbeta isoforms, data from previous studies that focused principally on the wild-type ERbeta (ERbeta1) may not be adequate in explaining the still controversial role of ERbeta(s) in prostate carcinogenesis. In this study, using newly generated isoform-specific antibodies, immunohistochemistry (IHC) was performed on a tumor microarray comprised of 144 specimens. IHC results were correlated with pathological and clinical follow-up data to delineate the distinct roles of ERbeta1, ERbeta2, and ERbeta5 in PCa. ERbeta2 was commonly found in the cytoplasm and was the most abundant isoform followed by ERbeta1 localized predominantly in the nucleus, and ERbeta5 was primarily located in the cytoplasm. Logistic regression analyses demonstrated that nuclear ERbeta2 (nERbeta2) is an independent prognostic marker for prostate specific antigen (PSA) failure and postoperative metastasis (POM). In a Kaplan-Meier analysis, the combined expression of both nERbeta2 and cytoplasmic ERbeta5 identified a group of patients with the shortest POM-free survival. Cox proportional hazard models revealed that nERbeta2 predicted shorter time to POM. In concordance with IHC data, stable, ectopic expression of ERbeta2 or ERbeta5 enhanced PCa cell invasiveness but only PCa cells expressing ERbeta5 exhibited augmented cell migration. This is the first study to uncover a metastasis-promoting role of ERbeta2 and ERbeta5 in PCa, and show that the two isoforms, singularly and conjointly, have prognostic values for PCa progression. These findings may aid future clinical management of PCa.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Center for Environmental GeneticsCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Cancer CenterCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Hung-Ming Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Shulin Wu
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBoston, Massachusetts, 02114USA
| | - Dan Song
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Linda Levin
- Division of Epidemiology and Biostatistics, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Liang Cheng
- Department of Pathology and Laboratory MedicineIndiana UniversityIndianapolis, Indiana, 46202USA
| | - Chin-Lee Wu
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBoston, Massachusetts, 02114USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Center for Environmental GeneticsCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Cancer CenterCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- (Correspondence should be addressed to S-M Ho at Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center; )
| |
Collapse
|
28
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
29
|
Montgomery B, Nelson PS, Vessella R, Kalhorn T, Hess D, Corey E. Estradiol suppresses tissue androgens and prostate cancer growth in castration resistant prostate cancer. BMC Cancer 2010; 10:244. [PMID: 20509933 PMCID: PMC2889894 DOI: 10.1186/1471-2407-10-244] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 05/28/2010] [Indexed: 11/30/2022] Open
Abstract
Background Estrogens suppress tumor growth in prostate cancer which progresses despite anorchid serum androgen levels, termed castration resistant prostate cancers (CRPC), although the mechanisms are unclear. We hypothesize that estrogen inhibits CRPC in anorchid animals by suppressing tumoral androgens, an effect independent of the estrogen receptor. Methods The human CRPC xenograft LuCaP 35V was implanted into orchiectomized male SCID mice and established tumors were treated with placebo, 17β-estradiol or 17β-estradiol and estrogen receptor antagonist ICI 182,780. Effects of 17β-estradiol on tumor growth were evaluated and tissue testosterone (T) and dihydrotestosterone (DHT) evaluated by mass spectrometry. Results Treatment of LuCaP 35V with 17β-estradiol slowed tumor growth compared to controls (tumor volume at day 21: 785 ± 81 mm3 vs. 1195 ± 84 mm3, p = 0.002). Survival was also significantly improved in animals treated with 17β-estradiol (p = 0.03). The addition of the estrogen receptor antagonist ICI 182,780 did not significantly change survival or growth. 17β-estradiol in the presence and absence of ICI 182,780 suppressed tumor testosterone (T) and dihydrotestosterone (DHT) as assayed by mass spectrometry. Tissue androgens in placebo treated LuCaP 35V xenografts were; T = 0.71 ± 0.28 pg/mg and DHT = 1.73 ± 0.36 pg/mg. In 17β-estradiol treated LuCaP35V xenografts the tissue androgens were, T = 0.20 ± 0.10 pg/mg and DHT = 0.15 ± 0.15 pg/mg, (p < 0.001 vs. controls). Levels of T and DHT in control liver tissue were < 0.2 pg/mg. Conclusions CRPC in anorchid animals maintains tumoral androgen levels despite castration. 17β-estradiol significantly suppressed tumor T and DHT and inhibits growth of CRPC in an estrogen receptor independent manner. The ability to manipulate tumoral androgens will be critical in the development and testing of agents targeting CRPC through tissue steroidogenesis.
Collapse
Affiliation(s)
- Bruce Montgomery
- Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Swedenborg E, Power KA, Cai W, Pongratz I, Rüegg J. Regulation of estrogen receptor beta activity and implications in health and disease. Cell Mol Life Sci 2009; 66:3873-94. [PMID: 19669093 PMCID: PMC11115682 DOI: 10.1007/s00018-009-0118-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
Together with the estrogen receptor (ER) alpha, estrogen receptor beta (ER beta ) mediates many of the physiological effects of estrogens. As ER beta is crucially involved in a variety of important physiological processes, its activity should be tightly regulated. ER beta regulation is achieved by hormone binding as well as by posttranslational modifications of the receptor. Furthermore, ER beta expression levels are under circadian control and can be regulated by DNA methylation of the ER beta promoter region. There are also a number of factors that can interfere with ER beta activity, such as phytoestrogens, endocrine disruptive chemicals, and growth factors. In this article, we outline different mechanisms of ER beta regulation and how they are implicated in various diseases. We also discuss how these insights might help to specifically target ER beta in drug design.
Collapse
Affiliation(s)
- Elin Swedenborg
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Krista A. Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Wen Cai
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Ingemar Pongratz
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Joëlle Rüegg
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| |
Collapse
|
31
|
Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 2009; 150:4681-91. [PMID: 19589859 PMCID: PMC2754680 DOI: 10.1210/en.2009-0499] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
32
|
Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S, Colussi C, Lirangi V, Illi B, D'Eletto M, Cianciulli AM, Gallucci M, De Carli P, Sentinelli S, Mottolese M, Carlini P, Strigari L, Finn S, Mueller E, Arcangeli G, Gaetano C, Capogrossi MC, Donnorso RP, Bacchetti S, Sacchi A, Pontecorvi A, Loda M, Farsetti A. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest 2009; 119:1093-108. [PMID: 19363294 DOI: 10.1172/jci35079] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/11/2009] [Indexed: 01/06/2023] Open
Abstract
The identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor beta (ERbeta). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production. Upon estrogen treatment, formation of ERbeta/eNOS, ERbeta/HIF-1alpha, or ERbeta/HIF-2alpha combinatorial complexes led to chromatin remodeling and transcriptional induction of prognostic genes. Tissue microarray analysis, using an independent cohort of patients, established a hierarchical predictive power for these proteins, with expression of eNOS plus ERbeta and nuclear eNOS plus HIF-2alpha being the most relevant indicators of adverse clinical outcome. Genetic or pharmacologic modulation of eNOS expression and activity resulted in reciprocal conversion of the transcriptional signature in cells from patients with bad or good outcome, respectively, highlighting the relevance of eNOS in PCa progression. Our work has considerable clinical relevance, since it may enable the earlier diagnosis of aggressive PCa through routine biopsy assessment of eNOS, ERbeta, and HIF-2alpha expression. Furthermore, proposing eNOS as a therapeutic target fosters innovative therapies for PCa with NO inhibitors, which are employed in preclinical trials in non-oncological diseases.
Collapse
Affiliation(s)
- Simona Nanni
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hodgson D. On lust and rage - prostate cancer, vasectomy and virility in the aging male. Aging Male 2009; 12:1-4. [PMID: 19326291 DOI: 10.1080/13685530902769976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Intermolecular interactions identify ligand-selective activity of estrogen receptor alpha/beta dimers. Proc Natl Acad Sci U S A 2008; 105:19012-7. [PMID: 19022902 DOI: 10.1073/pnas.0807274105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor (ER) dimerization is prerequisite for its activation of target gene transcription. Because the two forms of ER, ERalpha and ERbeta, exhibit opposing functions in cell proliferation, the ability of ligands to induce ERalpha/beta heterodimers vs. their respective homodimers is expected to have profound impacts on transcriptional outcomes and cellular growth. However, there is a lack of direct methods to monitor the formation of ERalpha/beta heterodimers in vivo and to distinguish the ability of estrogenic ligands to promote ER homo- vs. heterodimerization. Here, we describe bioluminescence resonance energy transfer (BRET) assays for monitoring the formation of ERalpha/beta heterodimers and their respective homodimers in live cells. We demonstrate that although both partners contribute to heterodimerization, ligand-bound ERalpha plays a dominant role. Furthermore, a bioactive component was found to induce ERbeta/beta homodimers, and ERalpha/beta heterodimers but had minimal activity on ERalpha/alpha homodimers, posing a model that compounds promoting ERalpha/beta heterodimer formation might have therapeutic value. Thus, ER homodimer and heterodimer BRET assays are applicable to drug screening for dimer-selective selective ER modulators. Furthermore, this strategy can be used to study other nuclear receptor dimers.
Collapse
|
35
|
Eisermann K, Tandon S, Bazarov A, Brett A, Fraizer G, Piontkivska H. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer. BMC Genomics 2008; 9:337. [PMID: 18631392 PMCID: PMC2515153 DOI: 10.1186/1471-2164-9-337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression analyses have led to a better understanding of growth control of prostate cancer cells. We and others have identified the presence of several zinc finger transcription factors in the neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer transcriptome. One of the transcription factors (TFs) identified in the prostate cancer epithelial cells was the Wilms tumor gene (WT1). To rapidly identify coordinately expressed prostate cancer growth control genes that may be regulated by WT1, we used an in silico approach. RESULTS Evolutionary conserved transcription factor binding sites (TFBS) recognized by WT1, EGR1, SP1, SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes from eight mammalian species. To test the relationship between sequence conservation and function, chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin immunoprecipitation (ChIP). Multiple putative TFBS in gene promoters of placental mammals were found to be shared with those in human gene promoters and some were conserved between genomes that diverged about 170 million years ago (i.e., primates and marsupials), therefore implicating these sites as candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related peptidase 3 (KLK3) gene commonly known as the prostate specific antigen (PSA) gene. This analysis located several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen receptor (AR) and vascular endothelial growth factor (VEGF), known to be transcriptionally regulated by WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP. CONCLUSION Overall, this targeted approach rapidly identified important candidate WT1-binding elements in genes coordinately expressed with WT1 in prostate cancer cells, thus enabling a more focused functional analysis of the most likely target genes in prostate cancer progression. Identifying these genes will help to better understand how gene regulation is altered in these tumor cells.
Collapse
Affiliation(s)
- Kurtis Eisermann
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Paulmurugan R, Tamrazi A, Katzenellenbogen JA, Katzenellenbogen BS, Gambhir SS. A human estrogen receptor (ER)alpha mutation with differential responsiveness to nonsteroidal ligands: novel approaches for studying mechanism of ER action. Mol Endocrinol 2008; 22:1552-64. [PMID: 18451095 DOI: 10.1210/me.2007-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Estrogens, acting through the estrogen receptors (ERs), play crucial roles in regulating the function of reproductive and other systems under physiological and pathological conditions. ER activity in regulating target genes is modulated by the binding of both steroidal and synthetic nonsteroidal ligands, with ligand binding inducing ERs to adopt various conformations that control their interactions with transcriptional coregulators. Previously, we developed an intramolecular folding sensor with a mutant form of ERalpha (ER(G521T)) that proved to be essentially unresponsive to the endogenous ligand 17beta-estradiol, yet responded very well to certain synthetic ligands. In this study, we have characterized this G521T-ER mutation in terms of the potency and efficacy of receptor response toward several steroidal and nonsteroidal ligands in two different ways: directly, by ligand effects on mutant ER conformation (by the split-luciferase complementation system), and indirectly, by ligand effects on mutant ER transactivation. Full-length G521T-ER shows no affinity for estradiol and does not activate an estrogen-responsive reporter gene. The synthetic pyrazole agonist ligand propyl-pyrazole-triol is approximately 100-fold more potent than estradiol in inducing intramolecular folding and reporter gene transactivation with the mutant ER, whereas both ligands have high potency on wild-type ER. This estradiol-unresponsive mutant ER can also specifically highlight the agonistic property of the selective ER modulator, 4-hydroxytamoxifen, by reporter gene transactivation, even in the presence of estradiol, and it can exert a dominant-negative effect on estrogen-stimulated wild-type ER. This system provides a model for ER-mutants that show differential ligand responsiveness to gene activation to gain insight into the phenomenon of hormone resistance observed in endocrine therapies of ER-positive breast cancers.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, James H Clark Center, Stanford, CA 94305-5427, USA.
| | | | | | | | | |
Collapse
|
37
|
Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008; 27:4353-62. [PMID: 18372916 DOI: 10.1038/onc.2008.79] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of oxidative stress in human cancer has been extensively studied. It is accepted that elevated reactive oxygen species (ROS) promote mutagenic DNA damage. Even with an extensive armament of cellular antioxidants and detoxification enzymes, alterations to DNA occur that initiate cellular transformation. Erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) is a basic-region leucine zipper transcription factor that mediates the expression of key protective enzymes through the antioxidant-response element (ARE). By analysing 10 human prostate cancer microarray data sets, we have determined that Nrf2 and members of the glutathione-S-transferase (GST) mu family are extensively decreased in human prostate cancer. Using the TRAMP transgene and Rb and Nrf2 knockout murine models, we demonstrated that the loss of Nrf2 initiates a detrimental cascade of reduced GST expression, elevated ROS levels and ultimately DNA damage associated with tumorigenesis. Based on overwhelming data from clinical samples and the current functional analysis, we propose that the disruption of the Nrf2-antioxidant axis leads to increased oxidative stress and DNA damage in the initiation of cellular transformation in the prostate gland.
Collapse
Affiliation(s)
- D A Frohlich
- Department of Urology, UMCC, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | | | | | | |
Collapse
|
38
|
Gene expression profiling identifies lobe-specific and common disruptions of multiple gene networks in testosterone-supported, 17beta-estradiol- or diethylstilbestrol-induced prostate dysplasia in Noble rats. Neoplasia 2008; 10:20-40. [PMID: 18231636 DOI: 10.1593/neo.07889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/09/2023] Open
Abstract
The xenoestrogen diethylstilbestrol (DES) is commonly believed to mimic the action of the natural estrogen 17beta-estradiol (E2). To determine if these two estrogens exert similar actions in prostate carcinogenesis, we elevated circulating levels of estrogen in Noble (NBL) rats with E(2/DES-filled implants, while maintaining physiological levels of testosterone (T) in the animals with T-filled implants. The two estrogens induced dysplasia in a lobe-specific manner, with E2 targeting only the lateral prostate (LP) and DES impacting only the ventral prostate (VP). Gene expression profiling identified distinct and common E2-disrupted versus DES-disrupted gene networks in each lobe. More importantly, hierarchical clustering analyses revealed that T + E2 treatment primarily affected the gene expression pattern in the LP, whereas T + DES treatment primarily affected the gene expression profile in the VP. Gene ontology analyses and pathway mapping suggest that the two hormone treatments disrupt unique and/or common cellular processes, including cell development, proliferation, motility, apoptosis, and estrogen signaling, which may be linked to dysplasia development in the rat prostate. These findings suggest that the effects of xenoestrogens and natural estrogens on the rat prostate are more divergent than previously suspected and that these differences may explain the lobe-specific carcinogenic actions of the hormones.
Collapse
|
39
|
Zhao C, Dahlman-Wright K, Gustafsson JA. Estrogen receptor beta: an overview and update. NUCLEAR RECEPTOR SIGNALING 2008; 6:e003. [PMID: 18301783 PMCID: PMC2254331 DOI: 10.1621/nrs.06003] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/14/2008] [Indexed: 12/14/2022]
Abstract
The discovery of a second estrogen receptor (ER), designated ERbeta (NR3A2), has redefined our knowledge about the mechanisms underlying cellular signaling by estrogens and has broad implications for our understanding of regulation of estrogen-responsive tissues. Highly variable and even contrasting effects of estrogens in different tissues seem to be at least partially explained by different estrogen signaling pathways, involving ERalpha (NR3A1) and/or ERbeta. To date, two key conclusions can be drawn from the significant body of work carried out on the specific roles of the two receptor subtypes in diverse estrogen target tissues. First, ERalpha and ERbeta have different biological functions, as indicated by their specific expression patterns and the distinct phenotypes observed in ERalpha and ERbeta knockout (alphaERKO and betaERKO) mice. Second, ERalpha and ERbeta appear to have overlapping but also unique sets of downstream target genes, as judged from a set of microarray experiments. Thus, ERalpha and ERbeta have different transcriptional activities in certain ligand, cell-type, and promoter contexts, which may help to explain some of the major differences in their tissue-specific biological actions. The phenotypes observed for betaERKO mice have suggested certain therapeutic areas to be further explored. The development of ERbeta-selective ligands active in animal disease models indicates new avenues for clinical exploration. ERbeta agonists are being explored and validated as drugs for a growing number of indications. Hopefully, some ERbeta targeted drugs will prove to be efficient in enhancing human health.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
40
|
Ricke WA, Wang Y, Cunha GR. Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation 2007; 75:871-82. [PMID: 17924963 DOI: 10.1111/j.1432-0436.2007.00224.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgens have long been known to be the major sex hormones that target the prostate during development, maturation, and carcinogenesis. It is now apparent that estrogens, both those synthesized by the body as well as those from our environment, also target the prostate during all stages of development. Little is known about the mechanisms involved in estrogen stimulation of carcinogenesis and less is known about how to prevent or treat prostate cancer through estrogenic pathways. To better understand how estrogens mediate their carcinogenic effects, the respective roles of estrogen receptor (ER)-alpha and ER-beta must be elucidated in the epithelial and stromal cells that constitute the prostate. Lastly, the significance of ER signaling during various ontogenic periods must be determined. Answers to these questions will further our understanding of the mechanisms of estrogen/ER signaling and will serve as a basis for chemopreventive and/or chemotherapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- William A Ricke
- Department of Urology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
41
|
Wang C, Christenson P, Swerdloff R. Editorial: Clinical relevance of racial and ethnic differences in sex steroids. J Clin Endocrinol Metab 2007; 92:2433-5. [PMID: 17616637 DOI: 10.1210/jc.2007-1085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Zhang X, Leung YK, Ho SM. AP-2 regulates the transcription of estrogen receptor (ER)-beta by acting through a methylation hotspot of the 0N promoter in prostate cancer cells. Oncogene 2007; 26:7346-54. [PMID: 17525739 DOI: 10.1038/sj.onc.1210537] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We reported previously that the loss of expression of estrogen receptor (ER)-beta during the development of prostate cancer (PCa) is associated with methylation of a CpG island located in the 5'-flanking sequence of the 0N promoter. Three methylation hotspots, referred to as centers 1, 2 and 3, were identified in the CpG island. In this study, we demonstrated that a 581-bp region with these three centers within it is sufficient for the promoter activity in PCa cells. Deletion analyses indicated that center 1 (16 bp), with a putative activator protein-2 (AP-2) binding site, is essential for gene transactivation. Chromatin immunoprecipitation assays showed that AP-2alpha occupies a short sequence containing center 1. Forced expression of AP-2alpha or -2gamma, but not -2beta, increased activity of the ERbeta 0N promoter and the accumulation of mRNA. Conversely, siRNA-mediated AP-2alpha and -2gamma knockdown reduced levels of ERbeta transcript and promoter activity. Quantitative reverse transcription-PCR showed that AP-2alpha and -2gamma are the predominant transcripts expressed in PCa cells, and levels of ERbeta transcript correlate with levels of these AP-2 transcripts among different PCa cell lines. These results provide the first evidence that ERbeta is an AP-2-regulated gene. They also support the hypothesis that certain cis-acting elements are methylation hotspots susceptible to epigenetic modifications during cancer progression.
Collapse
Affiliation(s)
- X Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | |
Collapse
|