1
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
3
|
Zhu J, Yang T, Tang M, Yang Z, Pei H, Ye H, Tang Y, Cheng Z, Lin P, Chen L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed Pharmacother 2021; 137:111373. [PMID: 33761599 DOI: 10.1016/j.biopha.2021.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, inflammatory autoimmune disease mediated by T cells, and characterized with abnormal proliferation and differentiation of keratinocytes, and inflammatory infiltration. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway has been identified to play essential roles in mediating various of biological processes, and is closely related to autoimmune diseases. Dendritic cells (DCs) are important antigen presenting cells and play an important regulatory role in T cells. The proliferation, differentiation and function of DCs are regulated by JAK and FMS-like tyrosine kinase 3 (FLT3) signal pathways. Flonoltinib maleate (FM), a high selectivity dual JAK2/FLT3 inhibitor with IC50 values of 0.8 nM and 15 nM for JAK2 and FLT3, respectively, was developed by our laboratory. Moreover, FM was a potent JAK2 inhibitor with 863-fold and 696-fold selectivity over JAK1 and JAK3, respectively. In this study, the anti-psoriasis activity of FM was evaluated both in vitro and in vivo. FM effectively inhibited the proliferation of HaCaT, the inflammatory keratinocyte induced by M5 and markedly suppressed the generation and differentiation of DCs from bone marrow (BM), and inhibited the expression of FLT3 in DCs in vitro. FM effectively inhibited the ear thickening and improved the pathological changes of the ear in interleukin (IL)-23-induced psoriasis-like acanthosis mouse model. Further in keratin 14-vascular endothelial growth factor (K14-VEGF) transgenic homozygous mice model, FM could obviously improve the psoriatic symptom and pathological changes, significantly inhibit the generations of Th1 and Th17 cells in the spleen, and the accumulations of DCs in the ears. FM could also significantly reduce the expression of various inflammatory factors both in C57BL/6 and K14-VEGF mice ears, and the serum of K14-VEGF mice. Mechanism revealed that FM effectively suppressed the phosphorylation of JAK2, STAT3 and STAT5 in inflammatory keratinocytes and the mice ears of C57BL/6 and K14-VEGF, as well as the phosphorylation of FLT3 in K14-VEGF mice ears. In conclusion, FM plays an excellent anti-psoriasis activity, including inhibiting keratinocyte proliferation and regulating inflammatory response through inhibiting JAK2 and FLT3 signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhixuan Cheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Lin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Mansouri S, Katikaneni DS, Gogoi H, Jin L. Monocyte-Derived Dendritic Cells (moDCs) Differentiate into Bcl6 + Mature moDCs to Promote Cyclic di-GMP Vaccine Adjuvant-Induced Memory T H Cells in the Lung. THE JOURNAL OF IMMUNOLOGY 2021; 206:2233-2245. [PMID: 33879579 DOI: 10.4049/jimmunol.2001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Induction of lung mucosal immune responses is highly desirable for vaccines against respiratory infections. We recently showed that monocyte-derived dendritic cells (moDCs) are responsible for lung IgA induction. However, the dendritic cell subset inducing lung memory TH cells is unknown. In this study, using conditional knockout mice and adoptive cell transfer, we found that moDCs are essential for lung mucosal responses but are dispensable for systemic vaccine responses. Next, we showed that mucosal adjuvant cyclic di-GMP differentiated lung moDCs into Bcl6+ mature moDCs promoting lung memory TH cells, but they are dispensable for lung IgA production. Mechanistically, soluble TNF mediates the induction of lung Bcl6+ moDCs. Our study reveals the functional heterogeneity of lung moDCs during vaccination and paves the way for an moDC-targeting vaccine strategy to enhance immune responses on lung mucosa.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S, Tosselo J, Nuñez N, Richer W, Vincent-Salomon A, Saxena A, Wood K, Lladser A, Piaggio E, Helft J, Guermonprez P. Transcriptional and Functional Analysis of CD1c + Human Dendritic Cells Identifies a CD163 + Subset Priming CD8 +CD103 + T Cells. Immunity 2020; 53:335-352.e8. [PMID: 32610077 PMCID: PMC7445430 DOI: 10.1016/j.immuni.2020.06.002] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor β (TGF-β) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.
Collapse
Affiliation(s)
- Pierre Bourdely
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Giorgio Anselmi
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Kristine Vaivode
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Rodrigo Nalio Ramos
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Yoann Missolo-Koussou
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Sofia Hidalgo
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France; Laboratory of Immuno-oncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Jimena Tosselo
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Nicolas Nuñez
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Wilfrid Richer
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Anne Vincent-Salomon
- PSL Research University, Institut Curie, Department of Biopathology, Paris, France
| | - Alka Saxena
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Kristie Wood
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Alvaro Lladser
- Laboratory of Immuno-oncology, Fundación Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eliane Piaggio
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Pierre Guermonprez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149 Paris, France.
| |
Collapse
|
6
|
Lim KPH, Milne P, Poidinger M, Duan K, Lin H, McGovern N, Abhyankar H, Zinn D, Burke TM, Eckstein OS, Chakraborty R, Sengal A, Scull B, Newell E, Merad M, McClain KL, Man TK, Ginhoux F, Collin M, Allen CE. Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Adv 2020; 4:87-99. [PMID: 31899802 PMCID: PMC6960472 DOI: 10.1182/bloodadvances.2019000488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a myeloproliferative disorder that is characterized by the inflammatory lesions with pathogenic CD1a+CD207+ dendritic cells (DCs). BRAFV600E and other somatic activating MAPK gene mutations have been identified in differentiating bone marrow and blood myeloid cells, but the origin of the LCH lesion CD1a+CD207+ DCs and mechanisms of lesion formation remain incompletely defined. To identify candidate LCH CD1a+CD207+ DC precursor populations, gene-expression profiles of LCH lesion CD1a+CD207+ DCs were first compared with established gene signatures from human myeloid cell subpopulations. Interestingly, the CD1c+ myeloid DC (mDC) gene signature was most enriched in the LCH CD1a+CD207+ DC transcriptome. Additionally, the BRAFV600E allele was not only localized to CD1a+CD207- DCs and CD1a+CD207+ DCs, but it was also identified in CD1c+ mDCs in LCH lesions. Transcriptomes of CD1a+CD207- DCs were nearly indistinguishable from CD1a+CD207+ DCs (both CD1a+CD207low and CD1a+CD207high subpopulations). Transcription profiles of LCH lesion CD1a+CD207+ DCs and peripheral blood CD1c+ mDCs from healthy donors were compared to identify potential LCH DC-specific biomarkers: HLA-DQB2 expression was significantly increased in LCH lesion CD1a+CD207+ DCs compared with circulating CD1c+ mDCs from healthy donors. HLA-DQB2 antigen was identified on LCH lesion CD1a+CD207- DCs and CD1a+CD207+ DCs as well as on CD1c+(CD1a+CD207-) mDCs, but it was not identified in any other lesion myeloid subpopulations. HLA-DQB2 expression was specific to peripheral blood of patients with BRAFV600E+ peripheral blood mononuclear cells, and HLA-DQB2+CD1c+ blood cells were highly enriched for the BRAFV600E in these patients. These data support a model in which blood CD1c+HLA-DQB2+ mDCs with activated ERK migrate to lesion sites where they differentiate into pathogenic CD1a+CD207+ DCs.
Collapse
Affiliation(s)
- Karen Phaik Har Lim
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
- Graduate Program in Translational Biology and Molecular Medicine, College of Medicine, Baylor University, Houston, TX
| | - Paul Milne
- Human Dendritic Cell Laboratory, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Howard Lin
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Harshal Abhyankar
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Daniel Zinn
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Thomas M Burke
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
- Graduate Program in Translational Biology and Molecular Medicine, College of Medicine, Baylor University, Houston, TX
- Medical Scientist Training Program, College of Medicine, Baylor University, Houston, TX; and
| | - Olive S Eckstein
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Amel Sengal
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Brooks Scull
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Miriam Merad
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kenneth L McClain
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Tsz-Kwong Man
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Matthew Collin
- Human Dendritic Cell Laboratory, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carl E Allen
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
- Graduate Program in Translational Biology and Molecular Medicine, College of Medicine, Baylor University, Houston, TX
| |
Collapse
|
7
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
8
|
Viehmann SF, Böhner AM, Kurts C, Brähler S. The multifaceted role of the renal mononuclear phagocyte system. Cell Immunol 2018; 330:97-104. [DOI: 10.1016/j.cellimm.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
9
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
10
|
Puhr S, Lee J, Zvezdova E, Zhou YJ, Liu K. Dendritic cell development-History, advances, and open questions. Semin Immunol 2016; 27:388-96. [PMID: 27040276 DOI: 10.1016/j.smim.2016.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are uniquely potent in orchestrating T cell immune response, thus they are indispensable immune sentinels. They originate from progenitors in the bone marrow through hematopoiesis, a highly regulated developmental process involving multiple cellular and molecular events. This review highlights studies of DC development-from the discovery of DCs as glass-adherent antigen presenting cells to the debate and resolution of their origin and lineage map. In particular, we summarize the roles of lineage-specific cytokines, the placement of distinct hematopoietic progenitors within the DC lineage and transcriptional programs governing DC development, which together have allowed us to diagram the current view of DC hematopoiesis. Important open questions and debates on the DC development and relevant models are also discussed.
Collapse
Affiliation(s)
- Sarah Puhr
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Jaeyop Lee
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Ekaterina Zvezdova
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Yu J Zhou
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA
| | - Kang Liu
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| |
Collapse
|
11
|
Vremec D. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents. Methods Mol Biol 2016; 1423:61-87. [PMID: 27142009 DOI: 10.1007/978-1-4939-3606-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.
Collapse
Affiliation(s)
- David Vremec
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
12
|
Böttcher JP, Zelenay S, Rogers NC, Helft J, Schraml BU, Reis e Sousa C. Oncogenic Transformation of Dendritic Cells and Their Precursors Leads to Rapid Cancer Development in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5066-76. [PMID: 26459350 PMCID: PMC4635568 DOI: 10.4049/jimmunol.1500889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are powerful APCs that can induce Ag-specific adaptive immune responses and are increasingly recognized as important players in innate immunity to both infection and malignancy. Interestingly, although there are multiple described hematological malignancies, DC cancers are rarely observed in humans. Whether this is linked to the immunogenic potential of DCs, which might render them uniquely susceptible to immune control upon neoplastic transformation, has not been fully investigated. To address the issue, we generated a genetically engineered mouse model in which expression of Cre recombinase driven by the C-type lectin domain family 9, member a (Clec9a) locus causes expression of the Kirsten rat sarcoma viral oncogene homolog (Kras)(G12D) oncogenic driver and deletion of the tumor suppressor p53 within developing and differentiated DCs. We show that these Clec9a(Kras-G12D) mice rapidly succumb from disease and display massive accumulation of transformed DCs in multiple organs. In bone marrow chimeras, the development of DC cancer could be induced by a small number of transformed cells and was not prevented by the presence of untransformed DCs. Notably, activation of transformed DCs did not happen spontaneously but could be induced upon stimulation. Although Clec9a(Kras-G12D) mice showed altered thymic T cell development, peripheral T cells were largely unaffected during DC cancer development. Interestingly, transformed DCs were rejected upon adoptive transfer into wild-type but not lymphocyte-deficient mice, indicating that immunological control of DC cancer is in principle possible but does not occur during spontaneous generation in Clec9a(Kras-G12D) mice. Our findings suggest that neoplastic transformation of DCs does not by default induce anti-cancer immunity and can develop unhindered by immunological barriers.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/pathology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
- Rats
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Stem Cells/immunology
- Stem Cells/pathology
Collapse
Affiliation(s)
- Jan P Böttcher
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Santiago Zelenay
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Julie Helft
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Barbara U Schraml
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
13
|
Scott CL, Henri S, Guilliams M. Mononuclear phagocytes of the intestine, the skin, and the lung. Immunol Rev 2015; 262:9-24. [PMID: 25319324 DOI: 10.1111/imr.12220] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues that are in direct contact with the outside world face particular immunological challenges. The intestine, the skin, and the lung possess important mononuclear phagocyte populations to deal with these challenges, but the cellular origin of these phagocytes is strikingly different from one subset to another, with some cells derived from embryonic precursors and some from bone marrow-derived circulating monocytes. Here, we review the current knowledge regarding the developmental pathways that control the differentiation of mononuclear phagocytes in these barrier tissues. We have also attempted to build a theoretical model that could explain the distinct cellular origin of mononuclear phagocytes in these tissues.
Collapse
Affiliation(s)
- Charlotte L Scott
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
14
|
Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K, Persson EK, Luda K, Guilliams M, Lambrecht BN, Agace WW, Milling SWF, Mowat AM. CCR2(+)CD103(-) intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol 2015; 8:327-39. [PMID: 25138666 PMCID: PMC4270738 DOI: 10.1038/mi.2014.70] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/10/2014] [Indexed: 02/04/2023]
Abstract
The identification of intestinal macrophages (mφs) and dendritic cells (DCs) is a matter of intense debate. Although CD103(+) mononuclear phagocytes (MPs) appear to be genuine DCs, the nature and origins of CD103(-) MPs remain controversial. We show here that intestinal CD103(-)CD11b(+) MPs can be separated clearly into DCs and mφs based on phenotype, gene profile, and kinetics. CD64(-)CD103(-)CD11b(+) MPs are classical DCs, being derived from Flt3 ligand-dependent, DC-committed precursors, not Ly6C(hi) monocytes. Surprisingly, a significant proportion of these CD103(-)CD11b(+) DCs express CCR2 and there is a selective decrease in CD103(-)CD11b(+) DCs in mice lacking this chemokine receptor. CCR2(+)CD103(-) DCs are present in both the murine and human intestine, drive interleukin (IL)-17a production by T cells in vitro, and show constitutive expression of IL-12/IL-23p40. These data highlight the heterogeneity of intestinal DCs and reveal a bona fide population of CCR2(+) DCs that is involved in priming mucosal T helper type 17 (Th17) responses.
Collapse
Affiliation(s)
- C L Scott
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, Scotland, UK,VIB Ghent University, Inflammation Research Centre (IRC), Laboratory of Immunoregulation, Ghent (Zwijnaarde), Belgium
| | - C C Bain
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, Scotland, UK
| | - P B Wright
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, Scotland, UK
| | - D Sichien
- VIB Ghent University, Inflammation Research Centre (IRC), Laboratory of Immunoregulation, Ghent (Zwijnaarde), Belgium
| | - K Kotarsky
- Immunology Section, Lund University, Lund, Sweden
| | - E K Persson
- Immunology Section, Lund University, Lund, Sweden
| | - K Luda
- Immunology Section, Lund University, Lund, Sweden
| | - M Guilliams
- VIB Ghent University, Inflammation Research Centre (IRC), Laboratory of Immunoregulation, Ghent (Zwijnaarde), Belgium
| | - B N Lambrecht
- VIB Ghent University, Inflammation Research Centre (IRC), Laboratory of Immunoregulation, Ghent (Zwijnaarde), Belgium
| | - W W Agace
- Immunology Section, Lund University, Lund, Sweden,Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - S WF Milling
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, Scotland, UK
| | - A M Mowat
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, Scotland, UK,E-mail:
| |
Collapse
|
15
|
Lee J, Breton G, Oliveira TYK, Zhou YJ, Aljoufi A, Puhr S, Cameron MJ, Sékaly RP, Nussenzweig MC, Liu K. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. ACTA ACUST UNITED AC 2015; 212:385-99. [PMID: 25687283 PMCID: PMC4354373 DOI: 10.1084/jem.20141442] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liu, Nussenzweig, and colleagues track the differentiation of human progenitor cells into dendritic cells (DCs). They show that a granulocyte/monocyte/DC progenitor gives rise to a monocyte-DC progenitor that in turn gives rise to both monocytes and a common DC progenitor. The common DC progenitor produces the three major subsets of human DCs. In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.
Collapse
Affiliation(s)
- Jaeyop Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Gaëlle Breton
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Thiago Yukio Kikuchi Oliveira
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Yu Jerry Zhou
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Sarah Puhr
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | | | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Kang Liu
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
16
|
Johanson TM, Cmero M, Wettenhall J, Lew AM, Zhan Y, Chong MMW. A microRNA expression atlas of mouse dendritic cell development. Immunol Cell Biol 2014; 93:480-5. [PMID: 25533289 DOI: 10.1038/icb.2014.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system and are essential for inducing a proper immune response. The mechanisms driving the development of DCs are not fully understood. Although the roles of cytokines and transcription factors have been a major focus, there is now substantial interest in the role of microRNAs (miRNAs). miRNAs are small RNAs that regulate gene expression by targeting messenger RNAs for translational repression and ultimately degradation. By means of deep sequencing, we have assembled a comprehensive and quantitative resource of miRNA expression during DC development. We show that mature DCs and their hematopoietic progenitors can be distinguished based on miRNA expression profiles. On the other hand, we show that functionally distinct conventional and plasmacytoid DC subsets are indistinguishable based on miRNA profile. In addition, we identify differences between ex vivo purified conventional DCs and their in vitro Flt3L-generated counterparts. This miRNA expression atlas will provide a valuable resource for the study of miRNAs in DC development and function.
Collapse
Affiliation(s)
- Timothy M Johanson
- 1] Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia [3] Immunology and Diabetes, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Marek Cmero
- Immunology and Diabetes, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James Wettenhall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Andrew M Lew
- 1] Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhan
- 1] Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark M W Chong
- 1] Immunology and Diabetes, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia [2] Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
17
|
Evrard M, Chong SZ, Devi S, Chew WK, Lee B, Poidinger M, Ginhoux F, Tan SM, Ng LG. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol 2014; 97:611-9. [PMID: 25516753 DOI: 10.1189/jlb.1ta0514-274r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major "checkpoint" for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1(gfp/+) mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1(gfp/+)Flt3L(-/-) mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1(gfp/+)-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo.
Collapse
Affiliation(s)
- Maximilien Evrard
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shu Zhen Chong
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sapna Devi
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weng Keong Chew
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bernett Lee
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Michael Poidinger
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Florent Ginhoux
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suet Mien Tan
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- *Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; and School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
Bieber K, Autenrieth SE. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens. Immunobiology 2014; 220:215-26. [PMID: 25468558 DOI: 10.1016/j.imbio.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
19
|
De Kleer I, Willems F, Lambrecht B, Goriely S. Ontogeny of myeloid cells. Front Immunol 2014; 5:423. [PMID: 25232355 PMCID: PMC4153297 DOI: 10.3389/fimmu.2014.00423] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022] Open
Abstract
Granulocytes, monocytes, macrophages, and dendritic cells (DCs) represent a subgroup of leukocytes, collectively called myeloid cells. During the embryonic development of mammalians, myelopoiesis occurs in a stepwise fashion that begins in the yolk sac and ends up in the bone marrow (BM). During this process, these early monocyte progenitors colonize various organs such as the brain, liver, skin, and lungs and differentiate into resident macrophages that will self-maintain throughout life. DCs are constantly replenished from BM precursors but can also arise from monocytes in inflammatory conditions. In this review, we summarize the different types of myeloid cells and discuss new insights into their early origin and development in mice and humans from fetal to adult life. We specifically focus on the function of monocytes, macrophages, and DCs at these different developmental stages and on the intrinsic and environmental influences that may drive these adaptations.
Collapse
Affiliation(s)
- Ismé De Kleer
- VIB Inflammation Research Center, University of Ghent , Ghent , Belgium ; Department of Respiratory Medicine, University Hospital Ghent , Ghent , Belgium ; Department of Pulmonary Medicine, Erasmus MC , Rotterdam , Netherlands
| | - Fabienne Willems
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles , Charleroi , Belgium
| | - Bart Lambrecht
- VIB Inflammation Research Center, University of Ghent , Ghent , Belgium ; Department of Respiratory Medicine, University Hospital Ghent , Ghent , Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
20
|
Chopin M, Nutt SL. Establishing and maintaining the Langerhans cell network. Semin Cell Dev Biol 2014; 41:23-9. [PMID: 24513231 DOI: 10.1016/j.semcdb.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 01/30/2023]
Abstract
Langerhans cells (LCs) are the unique antigen-presenting cell of the epidermis. LCs have long been depicted in textbooks as the archetypical dendritic cell that alerts the immune system upon pathogen induced skin barrier breakage, however recent findings argue instead for a more tolerogenic function. While the LCs that populate the epidermis in steady-state arise from progenitors that seed the skin during embryogenesis, it is now apparent that a second pathway generating LCs from a bone marrow derived progenitor is active in inflammatory settings. This review emphasizes the determinants underpinning the establishment of the LC network in steady-state and under inflammatory conditions, as well as the transcriptional machinery governing their differentiation. The dual origin of LCs raises important questions about the functional differences between these subsets in balancing the epidermal immune response between immunity and tolerance.
Collapse
Affiliation(s)
- Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
Chopin M, Seillet C, Chevrier S, Wu L, Wang H, Morse HC, Belz GT, Nutt SL. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. ACTA ACUST UNITED AC 2013; 210:2967-80. [PMID: 24249112 PMCID: PMC3865480 DOI: 10.1084/jem.20130930] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Langerhans cell homeostasis and differentiation depends on PU.1, the latter via regulation of TGF-β–dependent binding of PU.1 to the regulatory elements of RUNX3. Langerhans cells (LCs) are the unique dendritic cells found in the epidermis. While a great deal of attention has focused on defining the developmental origins of LCs, reports addressing the transcriptional network ruling their differentiation remain sparse. We addressed the function of a group of key DC transcription factors—PU.1, ID2, IRF4, and IRF8—in the establishment of the LC network. We show that although steady-state LC homeostasis depends on PU.1 and ID2, the latter is dispensable for bone marrow–derived LCs. PU.1 controls LC differentiation by regulating the expression of the critical TGF-β responsive transcription factor RUNX3. PU.1 directly binds to the Runx3 regulatory elements in a TGF-β–dependent manner, whereas ectopic expression of RUNX3 rescued LC differentiation in the absence of PU.1 and promoted LC differentiation from PU.1-sufficient progenitors. These findings highlight the dual molecular network underlying LC differentiation, and show the central role of PU.1 in these processes.
Collapse
Affiliation(s)
- Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Riepsaame J, van Oudenaren A, den Broeder BJH, van Ijcken WFJ, Pothof J, Leenen PJM. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells. Front Immunol 2013; 4:353. [PMID: 24198819 PMCID: PMC3812696 DOI: 10.3389/fimmu.2013.00353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022] Open
Abstract
Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation.
Collapse
Affiliation(s)
- Joey Riepsaame
- Department of Immunology, Erasmus University Medical Center , Rotterdam , Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Ali OA, Tayalia P, Shvartsman D, Lewin S, Mooney DJ. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ.. ADVANCED FUNCTIONAL MATERIALS 2013; 23:4621-4628. [PMID: 24688455 PMCID: PMC3968866 DOI: 10.1002/adfm.201203859] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During infection, inflammatory cytokines mobilize and activate dendritic cells (DCs), which are essential for efficacious T cell priming and immune responses that clear the infection. Here we designed macroporous poly(lactide-co-glycolide) (PLG) matrices to release the inflammatory cytokines GM-CSF, Flt3L and CCL20, in order to mimic infection-induced DC recruitment. We then tested the ability of these infection mimics to function as cancer vaccines via induction of specific, anti-tumor T cell responses. All vaccine systems tested were able to confer specific anti-tumor T cell responses and longterm survival in a therapeutic, B16-F10 melanoma model. However, GM-CSF and Flt3L vaccines resulted in similar survival rates, and outperformed CCL20 loaded scaffolds, even though they had differential effects on DC recruitment and generation. GM-CSF signaling was identified as the most potent chemotactic factor for conventional DCs and significantly enhanced surface expression of MHC(II) and CD86(+), which are utilized for priming T cell immunity. In contrast, Flt3L vaccines led to greater numbers of plasmacytoid DCs (pDCs), correlating with increased levels of T cell priming cytokines that amplify T cell responses. These results demonstrate that 3D polymer matrices modified to present inflammatory cytokines may be utilized to effectively mobilize and activate different DC subsets in vivo for immunotherapy.
Collapse
Affiliation(s)
- Omar A. Ali
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Prakriti Tayalia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Dmitry Shvartsman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Sarah Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| |
Collapse
|
24
|
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604. [PMID: 23516985 DOI: 10.1146/annurev-immunol-020711-074950] [Citation(s) in RCA: 1752] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Oncological Sciences, Mount Sinai Medical School, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
25
|
Lannes N, Summerfield A. Regulation of porcine plasmacytoid dendritic cells by cytokines. PLoS One 2013; 8:e60893. [PMID: 23577175 PMCID: PMC3620061 DOI: 10.1371/journal.pone.0060893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/04/2013] [Indexed: 11/25/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the most potent producers of type-I interferon (IFN) and represent the main interferon (IFN)-α source in response to many viruses. Considering the important roles played by type I IFN's, not only as antiviral effectors but also as potent alarming cytokine of the immune system, we investigated how such responses are regulated by various cytokines. To this end, we stimulated enriched pDC in the presence or absence of particular cytokines with a strong activator, CpG DNA, or a weak activator of pDC, foot-and-mouth disease virus (FMDV). Alternatively, we pre-incubated pDC for 16 h before stimulation. The pro-inflammatory cytokines tested Interleukin (IL)-6, IL17A, tumour necrosis factor (TNF)-α did not influence IFN-α responses except TNF-α, which promoted responses induced by FMDV. The haematopoietic cytokines Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) had enhancing effects on pDC activation at least in one of the protocols tested. IFN-β and IFN-γ were the most potent at enhancing FMDV-induced IFN-α, up to 10-fold. Interestingly, also the Th2 cytokine IL-4 was an efficient promoter of pDC activity, while IL-10 was the only negative regulator of IFN-α in pDC identified. The cytokines enhancing IFN-α responses also promoted pDC survival in cell culture with the exception of GM-CSF. Taken together this work illustrates how the cytokine network can influence pDC activation, a knowledge of relevance for improving vaccines and therapeutic interventions during virus infections, cancers and autoimmune diseases in which pDC play a role.
Collapse
Affiliation(s)
- Nils Lannes
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| |
Collapse
|
26
|
Abstract
Vaccination, the revolutionary prophylactic immunotherapy developed in the eighteenth century, has become the most successful and cost-effective of medical remedies available to modern society. Due to the remarkable accomplishments of the past century, the number of diseases and pathogens for which a traditional vaccine approach might reasonably be employed has dwindled to unprecedented levels. While this happy scenario bodes well for the future of public health, modern immunologists and vaccinologists face significant challenges if we are to address the scourge of recalcitrant pathogens like HIV and HCV and well as the significant obstacles to immunotherapy imposed by neoplastic self. Here, the authors review the clinical and preclinical literature to highlight the manner by which the host immune system can be successfully manipulated by cytokine adjuvants, thereby significantly enhancing the efficacy of a wide variety of vaccination platforms.
Collapse
|
27
|
Urdziková L, Likavčanová-Mašínová K, Vaněček V, Růžička J, Sedý J, Syková E, Jendelová P. Flt3 ligand synergizes with granulocyte-colony-stimulating factor in bone marrow mobilization to improve functional outcome after spinal cord injury in the rat. Cytotherapy 2011; 13:1090-104. [PMID: 21539498 DOI: 10.3109/14653249.2011.575355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS The effect of granulocyte-colony-stimulating factor (G-CSF) and/or the cytokine fms-like thyrosin kinase 3 (Flt3) ligand on functional outcome and tissue regeneration was studied in a rat model of spinal cord injury (SCI). METHODS Rats with a balloon-induced compression lesion were injected with G-CSF and/or Flt3 ligand to mobilize bone marrow cells. Behavioral tests (Basso-Beattie-Bresnahan and plantar test), blood counts, morphometric evaluation of the white and gray matter, and histology were performed 5 weeks after SCI. RESULTS The mobilization of bone marrow cells by G-CSF, Flt3 ligand and their combination improved the motor and sensory performance of rats with SCI, reduced glial scarring, increased axonal sprouting and spared white and gray matter in the lesion. The best results were obtained with a combination of G-CSF and Flt3. G-CSF alone or in combination with Flt3 ligand significantly increased the number of white blood cells, but not red blood cells or hemoglobin content, during and after the time-course of bone marrow stimulation. The combination of factors led to infiltration of the lesion by CD11b(+) cells. CONCLUSIONS The observed improvement in behavioral and morphologic parameters and tissue regeneration in animals with SCI treated with a combination of both factors could be associated with a prolonged time-course of mobilization of bone marrow cells. The intravenous administration of G-CSF and/or Flt3 ligand represents a safe and effective treatment modality for SCI.
Collapse
Affiliation(s)
- Lucia Urdziková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
It is now well established that most cervical cancers are causally associated with HPV infection. This realization has led to efforts to control HPV-associated malignancy through prevention or treatment of HPV infection. Currently, commercially available HPV vaccines are not designed to control established HPV infection and associated premalignant and malignant lesions. To treat and eradicate pre-existing HPV infections and associated lesions which remain prevalent in the U.S. and worldwide, effective therapeutic HPV vaccines are needed. DNA vaccination has emerged as a particularly promising form of therapeutic HPV vaccines due to its safety, stability and ability to induce antigen-specific immunity. This review focuses on improving the potency of therapeutic HPV vaccines through modification of dendritic cells (DCs) by [1] increasing the number of antigen-expressing/antigen-loaded DCs, [2] improving HPV antigen expression, processing and presentation in DCs, and [3] enhancing DC and T cell interaction. Continued improvement in therapeutic HPV DNA vaccines may ultimately lead to an effective DNA vaccine for the treatment of HPV-associated malignancies.
Collapse
|
29
|
Blank F, von Garnier C, Obregon C, Rothen-Rutishauser B, Gehr P, Nicod L. Role of dendritic cells in the lung: in vitro models, animal models and human studies. Expert Rev Respir Med 2010; 2:215-33. [PMID: 20477250 DOI: 10.1586/17476348.2.2.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human lung and are now recognized as crucial initiators of immune responses in general. They are arranged as sentinels in a dense surveillance network inside and below the epithelium of the airways and alveoli, where they are ideally situated to sample inhaled antigen. DCs are known to play a pivotal role in maintaining the balance between tolerance and active immune response in the respiratory system. It is no surprise that the lungs became a main focus of DC-related investigations as this organ provides a large interface for interactions of inhaled antigens with the human body. During recent years there has been a constantly growing body of lung DC-related publications that draw their data from in vitro models, animal models and human studies. This review focuses on the biology and functions of different DC populations in the lung and highlights the advantages and drawbacks of different models with which to study the role of lung DCs. Furthermore, we present a number of up-to-date visualization techniques to characterize DC-related cell interactions in vitro and/or in vivo.
Collapse
Affiliation(s)
- Fabian Blank
- Institute of Anatomy, Division of Histology, University of Berne, Baltzerstrasse 2, CH-3000 Berne 9, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Schmid MA, Kingston D, Boddupalli S, Manz MG. Instructive cytokine signals in dendritic cell lineage commitment. Immunol Rev 2010; 234:32-44. [PMID: 20193010 DOI: 10.1111/j.0105-2896.2009.00877.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clarifying the signals that lead to dendritic cell (DC) development and identifying cellular intermediates on their way to DC differentiation are essential steps to understand the dynamic regulation of number, localization, and functionality of these cells. In the past decade, much knowledge on cytokines, transcription factors, and successive progenitors involved in steady-state and demand-adapted DC development was gained. From the stage of multipotent progenitors, DCs are generated from Flt3(+) intermediates, irrespective of lymphoid or myeloid commitment, making fms-related tyrosine kinase 3 ligand one of the major regulators for DC development. Additional key cytokines involved are granulocyte-macrophage colony-stimulating factor (GM-CSF) and M-CSF, with each being essential for particular DC subsets and leading to specific activation of downstream transcription factors. In this review, we seek to draw an integrative view on how instructive cytokine signals acting on intermediate progenitors might lead to the generation of specific DC subsets in steady-state and during inflammation. We hypothesize that the lineage potential of a progenitor might be determined by the set of cytokine receptors expressed that make it responsive to further receive lineage instructive signals. Commitment to a certain lineage might consequently occur when lineage-relevant cytokine receptors are further upregulated and others for alternative lineages are lost. Along this line, we emphasize the role that diverse microenvironments have in influencing the generation of DC subsets with specific functions throughout the body.
Collapse
Affiliation(s)
- Michael A Schmid
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | | | | | | |
Collapse
|
31
|
Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 2010; 234:55-75. [PMID: 20193012 DOI: 10.1111/j.0105-2896.2009.00885.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) have been extensively studied in mice lymphoid organs, but less is known about the origin and the mechanisms that regulate DC development and function in non-lymphoid tissues. Here, we discuss recent evidence establishing the contribution of the DC-restricted lineage to the non-lymphoid tissue DC pool and discuss the mechanisms that control the homeostasis of non-lymphoid tissue DCs. We also review recent results underlining the functional specialization of tissue DCs and discuss the potential implications of these findings in tissue immunity and in the development of novel vaccine strategies.
Collapse
Affiliation(s)
- Julie Helft
- Department of Gene and Cell Medicine and Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
32
|
Guzylack-Piriou L, Alves MP, McCullough KC, Summerfield A. Porcine Flt3 ligand and its receptor: generation of dendritic cells and identification of a new marker for porcine dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:455-464. [PMID: 20015454 DOI: 10.1016/j.dci.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 05/28/2023]
Abstract
Based on the known importance of Flt3 ligand (Flt3L) for the development of mouse dendritic cells (DCs), the present study compared the phenotype and function of DC derived from porcine bone marrow haematopoietic cells using either granulocyte-macrophage colony-stimulating factor or Flt3L (GMCSF-DC and Flt3L-DC, respectively). To this end, porcine Flt3L was cloned resulting in the identification of three isoforms of Flt3L. Compared to GMCSF-DC which were uniformly CD14(+), Flt3L-DC had a more diverse phenotype comprised of CD172a(-)CD11a(-) progenitor cells, CD172a(+)CD14(-)CD163(-) DC and CD172a(+)CD14(+)CD163(+) DC. In addition, only the Flt3L-DC contained interferon-producing plasmacytoid DC, although their frequency was low. Only the CD14(-) Flt3L-DC responded to TLR2, -3, -4, -7 and -9 agonists by upregulating CD80/86. This population of DC was also more potent in T-cell stimulation assays when compared to the CD14(+) counterpart. Interestingly, Flt3 was not only highly expressed on DC precursors, but also found on Flt3L-DC but not on GMCSF-DC or monocyte-derived DC. Furthermore, also DC circulating in the blood but not monocytes or other leukocytes expressed this receptor. Taken together, our study demonstrates that Flt3L-DCs are more suitable to study the interaction of pathogens with DC. Moreover, we show that also in the pig Flt3 remains expressed in a restricted manner on DC originating from a bone marrow DC precursors, typically representing steady-state DC in lymphoid tissue and blood.
Collapse
Affiliation(s)
- Laurence Guzylack-Piriou
- INRA, Unité de Pharmacologie-Toxicologie, 180 chemin de Tournefeuille, 31931 Toulouse cedex 9, France
| | | | | | | |
Collapse
|
33
|
Abstract
Langerhans cells (LCs) refer to the dendritic cells (DCs) that populate the epidermis. Strategically located at one of the body's largest interfaces with the external environment, they form the first line of defense against pathogens that breach the skin. Although LCs share several phenotypical and functional features with lymphoid and non-lymphoid organ DCs, they also have unique properties that distinguish them from most DC populations. In this review, we will discuss the key mechanisms that regulate LC homeostasis in quiescent and inflamed skin. We will also discuss recent evidence that suggests that LCs arise from dedicated precursors during early embryonic development.
Collapse
|
34
|
Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, Price J, Yin N, Bromberg J, Lira SA, Stanley ER, Nussenzweig M, Merad M. The origin and development of nonlymphoid tissue CD103+ DCs. ACTA ACUST UNITED AC 2009; 206:3115-30. [PMID: 20008528 PMCID: PMC2806447 DOI: 10.1084/jem.20091756] [Citation(s) in RCA: 597] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.
Collapse
Affiliation(s)
- Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, Stanley ER, Nussenzweig M, Lira SA, Randolph GJ, Merad M. Origin of the lamina propria dendritic cell network. Immunity 2009; 31:513-25. [PMID: 19733489 DOI: 10.1016/j.immuni.2009.08.010] [Citation(s) in RCA: 685] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/27/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.
Collapse
Affiliation(s)
- Milena Bogunovic
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Curran MA, Allison JP. Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 2009; 69:7747-55. [PMID: 19738077 DOI: 10.1158/0008-5472.can-08-3289] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transformation of a healthy cell into a malignant neoplasm involves numerous genetic mutations and aberrations in gene expression. As few of these changes are shared between individuals or types of cancer, the best source for eliciting broad-spectrum tumor immunity remains each patient's own tumor. Previously, we have shown that combining blockade of the T-cell-negative costimulatory molecule CTL-associated antigen 4 (CTLA-4) and vaccination with irradiated B16 tumor expressing granulocyte macrophage colony-stimulating factor (GM-CSF; Gvax) promotes rejection of established murine melanomas. Here we show that, like GM-CSF, the cytokine Flt3 ligand (Flt3L) expressed in B16 and coupled with CTLA-4 blockade promotes both prophylactic and therapeutic rejection of B16. When administered at the site of growing tumor, Gvax fails to prevent tumor outgrowth in any mice, whereas the B16-Flt3L vaccine (Fl3vax) induces the rejection of 75% of melanomas implanted 3 days before vaccination. Relative to Gvax, Fl3vax promotes greater infiltration of both the vaccine site and the tumor site by CD8+ T cells and "sentinel" and plasmacytoid dendritic cells. Gvax and Fl3vax did not synergize when used in combination in treating B16 melanoma even in the context of CD25+ regulatory T-cell depletion. Further, we show that a combination of Flt3L expression and CTLA-4 blockade can also promote the rejection of established TRAMP prostate adenocarcinomas, proving that the utility of this treatment extends beyond melanoma. Engineering Flt3L to be constitutively secreted and attaching an IgG2a tail yielded a B16 vaccine that, when combined with CTLA-4 blockade, prevented the outgrowth of significantly more 5-day implanted B16-BL6 tumors than did Gvax.
Collapse
Affiliation(s)
- Michael A Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
37
|
Defective homing and impaired induction of cytotoxic T cells by BCR/ABL-expressing dendritic cells. Blood 2009; 113:4681-9. [DOI: 10.1182/blood-2008-05-156471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro–generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.
Collapse
|
38
|
Chen LS, Wei PC, Liu T, Kao CH, Pai LM, Lee CK. STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response. J Biomed Sci 2009; 16:22. [PMID: 19272190 PMCID: PMC2653529 DOI: 10.1186/1423-0127-16-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/19/2009] [Indexed: 01/14/2023] Open
Abstract
Interferons (IFNs) are key regulators for both innate and adaptive immune responses. By screening ENU-mutagenized mice, we identified a pedigree- P117 which displayed impaired response to type I, but not type II, IFNs. Through inheritance test, genetic mapping and sequencing, we found a T to A point mutation in the 5' splice site of STAT2 intron 4–5, leading to cryptic splicing and frame shifting. As a result, the expression of STAT2 protein was greatly diminished in the mutant mice. Nonetheless, a trace amount of functional STAT2 protein was still detectable and was capable of inducing, though to a lesser extent, IFNα-downstream gene expressions, suggesting that P117 is a STAT2 hypomorphic mutant. The restoration of mouse or human STAT2 gene in P117 MEFs rescued the response to IFNα, suggesting that the mutation in STAT2 is most likely the cause of the phenotypes seen in the pedigree. Development of different subsets of lymphocytes appeared to be normal in the mutant mice except that the percentage and basal expression of CD86 in splenic pDC and cDC were reduced. In addition, in vitro Flt3L-dependent DC development and TLR ligand-mediated DC differentiation were also defective in mutant cells. These results suggest that STAT2 positively regulates DC development and differentiation. Interestingly, a severe impairment of antiviral state and increased susceptibility to EMCV infection were observed in the mutant MEFs and mice, respectively, suggesting that the remaining STAT2 is not sufficient to confer antiviral response. In sum, the new allele of STAT2 mutant reported here reveals a role of STAT2 for DC development and a threshold requirement for full functions of type I IFNs.
Collapse
Affiliation(s)
- Lan-Sun Chen
- Graduate Institute of Immunology, National Taiwan University College of Medicine, 1 Jen-Ai Road, Section 1, Rm 513, Taipei 100, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
39
|
Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008; 8:935-47. [PMID: 19029989 DOI: 10.1038/nri2455] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin(+) DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin(+) DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
40
|
Abstract
Dendritic cells (DCs) are a heterogenous population of cells that can be grouped into the conventional DCs (cDCs) and plasmacytoid DCs (pDCs), or interferon-producing cells. pDCs are thought to develop in the bone marrow and migrate to the periphery as mature cells. In contrast, cDC precursors are thought to migrate to the periphery, where they further differentiate into cDCs. In the case of migratory cDCs, these precursors are thought to be monocytes, whereas resident cDCs derive from a different precursor. Recent activity on this subject has shed some light on the precursors that differentiate into resident cDCs and pDCs, but often with conflicting findings. Here, we review some of these findings and discuss some of the outstanding issues in the field.
Collapse
Affiliation(s)
- P Sathe
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | |
Collapse
|
41
|
Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86:439-52. [DOI: 10.1038/icb.2008.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shalin H Naik
- Immunology Divison, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
42
|
Ichim TE, Zheng X, Suzuki M, Kubo N, Zhang X, Min LR, Beduhn ME, Riordan NH, Inman RD, Min WP. Antigen-specific therapy of rheumatoid arthritis. Expert Opin Biol Ther 2008; 8:191-9. [PMID: 18194075 DOI: 10.1517/14712598.8.2.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immunotherapy offers the promise of antigen-specific suppression of pathological immune responses in conditions such as autoimmunity and organ transplantation. Substantial advances have been made in recent years in terms of understanding basic immunological mechanisms of autoreactivity, as well as clinically implementing immune-based therapies that are antigen nonspecific. OBJECTIVE To provide an integrated overview of the current state of the art in terms of antigen-specific tolerance induction, as well as to predict future directions for the field. METHODS Examples of successes and failures of antigen-specific immunotherapy were sought. Particular attention was paid to the well-established collagen II-induced model of arthritis. RESULTS/CONCLUSIONS Previous failures of antigen-specific immunotherapy were associated with lack of identification of clinically relevant antigens, as well as inappropriate tolerogenic methodologies. The advances in proteomics combined with novel gene-specific immune modulatory techniques place today's translational researchers in a unique position to tackle the problem of antigen-specific immunotherapeutic protocols.
Collapse
Affiliation(s)
- Thomas E Ichim
- University of Western Ontario, Departments of Surgery, Pathology, Microbiology & Immunology, 339 Windermere Road, University Hospital C9-136, London, Ontario, N6A 5A5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|