1
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
2
|
Panneerselvam DS, Kanakaraja A, Sakthivelu M, Gopinath SCB, Raman P. A Comprehensive Review of Therapeutic Compounds from Plants for Neurodegenerative Diseases. Curr Med Chem 2025; 32:1887-1933. [PMID: 38367263 DOI: 10.2174/0109298673272435231204072922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 02/19/2024]
Abstract
Neurodegenerative diseases (NDDs) comprise a large number of disorders that affects the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination in neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses, which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered as a good source of biologically active molecules and hence phytochemical screening of plants will pave way for the discovering new drugs. Neurodegeneration has been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidative activity, making them a potential application in the management or prevention of neurodegenerative disorders. Further, it gives the insights to the future researchers about considering the peptide based therapeutics through various mechanisms for delaying or curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhaya Shankaran Panneerselvam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Abinaya Kanakaraja
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute Nano Electronic Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Center for Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Nguyen SV, Levintov L, Planalp RP, Vashisth H. Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane. Bioconjug Chem 2024; 35:371-380. [PMID: 38404183 PMCID: PMC10961729 DOI: 10.1021/acs.bioconjchem.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π-π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.
Collapse
Affiliation(s)
- Son V. Nguyen
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Lev Levintov
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Roy P. Planalp
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
4
|
Calvo-Rodriguez M, Kharitonova EK, Snyder AC, Hou SS, Sanchez-Mico MV, Das S, Fan Z, Shirani H, Nilsson KPR, Serrano-Pozo A, Bacskai BJ. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease. Mol Neurodegener 2024; 19:6. [PMID: 38238819 PMCID: PMC10797952 DOI: 10.1186/s13024-024-00702-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Reactive oxidative stress is a critical player in the amyloid beta (Aβ) toxicity that contributes to neurodegeneration in Alzheimer's disease (AD). Damaged mitochondria are one of the main sources of reactive oxygen species and accumulate in Aβ plaque-associated dystrophic neurites in the AD brain. Although Aβ causes neuronal mitochondria reactive oxidative stress in vitro, this has never been directly observed in vivo in the living mouse brain. Here, we tested for the first time whether Aβ plaques and soluble Aβ oligomers induce mitochondrial oxidative stress in surrounding neurons in vivo, and whether this neurotoxic effect can be abrogated using mitochondrial-targeted antioxidants. METHODS We expressed a genetically encoded fluorescent ratiometric mitochondria-targeted reporter of oxidative stress in mouse models of the disease and performed intravital multiphoton microscopy of neuronal mitochondria and Aβ plaques. RESULTS For the first time, we demonstrated by direct observation in the living mouse brain exacerbated mitochondrial oxidative stress in neurons after both Aβ plaque deposition and direct application of soluble oligomeric Aβ onto the brain, and determined the most likely pathological sequence of events leading to oxidative stress in vivo. Oxidative stress could be inhibited by both blocking calcium influx into mitochondria and treating with the mitochondria-targeted antioxidant SS31. Remarkably, the latter ameliorated plaque-associated dystrophic neurites without impacting Aβ plaque burden. CONCLUSIONS Considering these results, combination of mitochondria-targeted compounds with other anti-amyloid beta or anti-tau therapies hold promise as neuroprotective drugs for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
- Present address: Foundational Neuroscience Center, AbbVie Inc, Cambridge, MA, USA
| | - Elizabeth K Kharitonova
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Austin C Snyder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Maria Virtudes Sanchez-Mico
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
5
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
6
|
Atayik MC, Çakatay U. Mitochondria-associated cellular senescence mechanisms: Biochemical and pharmacological perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437976 DOI: 10.1016/bs.apcsb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Initially, endosymbiotic relation of mitochondria and other cellular compartments had been continued mutually. However, that evolutionary adaptation impaired because of the deterioration of endosymbiotic crosstalk due to aging and several pathological consequences in cellular redox status are seen, such as deterioration in redox integrity of mitochondria, interfered inter-organelle redox signaling and inefficient antioxidant response element mediated gene expression. Although the dysfunction of mitochondria is known to be a classical pattern of senescence, it is unresolved that why dysfunctional mitochondria is the core of senescence-associated secretory phenotype (SASP). Redox impairment and SASP-related disease development are generally together with weaken immunity. Impaired mitochondrial redox integrity and its ineffectiveness in immunity control render elders to be more prone to age-related diseases. As senotherapeutic agents, senolytics remove senescent cells whilst senomorphics/senostatics inhibits the secretion of SASP. Senotherapeutics and the novel approaches for ameliorating SASP-related unfavorable effects are recently thought to be promising ways as mitochondria-targeted gerotherapeutic options.
Collapse
|
7
|
Bhatti GK, Gupta A, Pahwa P, Khullar N, Singh S, Navik U, Kumar S, Mastana SS, Reddy AP, Reddy PH, Bhatti JS. Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed J 2022; 45:733-748. [PMID: 35568318 PMCID: PMC9661512 DOI: 10.1016/j.bj.2022.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali Punjab, India
| | - Anshika Gupta
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Paras Pahwa
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
Atayik MC, Çakatay U. Mitochondria-targeted senotherapeutic interventions. Biogerontology 2022; 23:401-423. [PMID: 35781579 DOI: 10.1007/s10522-022-09973-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Healthy aging is the art of balancing a delicate scale. On one side of the scale, there are the factors that make life difficult with aging, and on the other side are the products of human effort against these factors. The most important factors that make the life difficult with aging are age-related disorders. Developing senotherapeutic strategies may bring effective solutions for the sufferers of age-related disorders. Mitochondrial dysfunction comes first in elucidating the pathogenesis of age-related disorders and presenting appropriate treatment options. Although it has been widely accepted that mitochondrial dysfunction is a common characteristic of cellular senescence, it still remains unclear why dysfunctional mitochondria occupy a central position in the development senescence-associated secretory phenotype (SASP) related to age-related disorders. Mitochondrial dysfunction and SASP-related disease progression are closely interlinked to weaken immunity which is a common phenomenon in aging. A group of substances known as senotherapeutics targeted to senescent cells can be classified into two main groups: senolytics (kill senescent cells) and senomorphics/senostatics (suppress their SASP secretions) in order to extend health lifespan and potentially lifespan. As mitochondria are also closely related to the survival of senescent cells, using either mitochondria-targeted senolytic or redox modulator senomorphic strategies may help us to solve the complex problems with the detrimental consequences of cellular senescence. Killing of senescent cells and/or ameliorate their SASP-related negative effects are currently considered to be effective mitochondria-directed gerotherapeutic approaches for fighting against age-related disorders.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
9
|
Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022; 188:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
A new era of nanomedicines that involve nucleic acids/gene therapy has been opened after two decades in 21st century and new types of more efficient drug delivery systems (DDS) are highly expected and will include extrahepatic delivery. In this review, we summarize the possibility and expectations for the extrahepatic delivery of small interfering RNA/messenger RNA/plasmid DNA/genome editing to the spleen, lung, tumor, lymph nodes as well as the liver based on our studies as well as reported information. Passive targeting and active targeting are discussed in in vivo delivery and the importance of controlled intracellular trafficking for successful therapeutic results are also discussed. In addition, mitochondrial delivery as a novel strategy for nucleic acids/gene therapy is introduced to expand the therapeutic dimension of nucleic acids/gene therapy in the liver as well as the heart, kidney and brain.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud M Abd Elwakil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
10
|
Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. NANOMATERIALS 2022; 12:nano12050743. [PMID: 35269231 PMCID: PMC8911864 DOI: 10.3390/nano12050743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the "powerhouse" inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For several decades, cancer nanotherapeutics have been designed to specifically target mitochondria with several targeting moieties, and cause mitochondrial dysfunction via photodynamic, photothermal, or/and chemo therapies. These strategies have been shown to augment the killing of cancer cells in a tumor while reducing damage to its surrounding healthy tissues. Furthermore, mitochondria-targeting nanotechnologies have been demonstrated to be highly efficacious compared to non-mitochondria-targeting platforms both in vitro and in vivo for cancer therapies. Moreover, mitochondria-targeting nanotechnologies have been intelligently designed and tailored to the hypoxic and slightly acidic tumor microenvironment for improved cancer therapies. Collectively, mitochondria-targeting may be a promising strategy for the engineering of nanoparticles for drug delivery to combat cancer.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
11
|
Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S. Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer's disease. Biometals 2022; 35:1-25. [PMID: 35048237 DOI: 10.1007/s10534-021-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD. According to toxicology reports, Pb promotes mitochondrial oxidative stress by lowering complex III activity in the electron transport chain, boosting reactive oxygen species formation, and reducing the cell's antioxidant defence system. Here, we review recent advances in the role of mitochondria in Pb-induced AD pathology, as well as the mechanisms associated with the mitochondrial dysfunction, such as the depolarisation of the mitochondrial membrane potential, mitochondrial permeability transition pore opening; mitochondrial biogenesis, bioenergetics and mitochondrial dynamics alterations; and mitophagy and apoptosis. We also discuss possible therapeutic options for mitochondrial-targeted neurodegenerative disease (AD).
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Neelima Ayyalasomayajula
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
12
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
13
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
14
|
Zhang T, Zhou B, Sun J, Song J, Nie L, Zhu K. Fraxetin suppresses reactive oxygen species-dependent autophagy by the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells. J Appl Toxicol 2021; 42:617-628. [PMID: 34553399 DOI: 10.1002/jat.4243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022]
Abstract
Isoflurane, a common volatile anesthetic, has been widely used to provide general anesthesia in operations. However, exposure to isoflurane may cause widespread neurotoxicity in the developing animal brain. Fraxetin, a natural coumarin derivative extracted from the bark of Fraxinus rhynchophylla, possesses versatile pharmacological properties including anti-oxidative, anti-inflammatory, and neuroprotective effects. However, the effect and action mechanism of fraxetin on neurotoxicity induced by isoflurane are unknown. Reactive oxygen species (ROS) generation, cell viability, lactate dehydrogenase (LDH) release, and apoptosis were estimated by 2',7'-dichlorofluorescin-diacetate (DCFH-DA) staining, MTT, LDH release, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining assays, respectively. The protein levels of light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were detected by western blot analysis. Isoflurane induced ROS, LDH release, apoptosis, and autophagy, but inhibited the viability in HT22 cells, which were overturned by fraxetin or ROS scavenger N-acetyl-L-cysteine. Fraxetin suppressed isoflurane-induced PI3K/Akt inactivation in HT22 cells. PI3K/Akt inactivation by LY294002 resisted the effects of fraxetin on isoflurane-induced autophagy and autophagy-modulated neurotoxicity in HT22 cells. In conclusion, fraxetin suppressed ROS-dependent autophagy by activating the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Tongyin Zhang
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junyi Sun
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Jiangling Song
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Limin Nie
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Kairun Zhu
- Operating Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
15
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
16
|
Chen W, Sun Z, Lu L. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:5626-5643. [PMID: 32096328 DOI: 10.1002/anie.201914511] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Severe side effects and poor therapeutic efficacy are the main drawbacks of current anticancer drugs. These problems can be mitigated by targeting, but the targeting efficacy of current drugs is poor and urgently needs improvement. Taking this into consideration, this Review first summarizes the current targeting strategies for cancer therapy in terms of cancer tissue and organelles. Then, we analyse the systematic targeting of anticancer drugs and conclude that a typical journey for a targeted drug administered by intravenous injection is a CTIO cascade of at least four steps. Furthermore, to ensure high overall targeting efficacy, the properties of a targeting drug needed in each step are further analysed, and some guidelines for structure optimization to obtain effective targeting drugs are offered. Finally, some viewpoints highlighting the crucial problems and potential challenges of future research on targeted cancer therapy are presented. This review could actively promote the development of precision medicine against cancer.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
17
|
Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Ripoll C, Roldan M, Contreras-Montoya R, Diaz-Mochon JJ, Martin M, Ruedas-Rama MJ, Orte A. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:E3731. [PMID: 32466332 PMCID: PMC7279253 DOI: 10.3390/ijms21103731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The main role of mitochondria, as pivotal organelles for cellular metabolism, is the production of energy (ATP) through an oxidative phosphorylation system. During this process, the electron transport chain creates a proton gradient that drives the synthesis of ATP. One of the main features of tumoral cells is their altered metabolism, providing alternative routes to enhance proliferation and survival. Hence, it is of utmost importance to understand the relationship between mitochondrial pH, tumoral metabolism, and cancer. In this manuscript, we develop a highly specific nanosensor to accurately measure the intramitochondrial pH using fluorescence lifetime imaging microscopy (FLIM). Importantly, we have applied this nanosensor to establish differences that may be hallmarks of different metabolic pathways in breast cancer cell models, leading to the characterization of different metabophenotypes.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Mar Roldan
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
| | - Rafael Contreras-Montoya
- Departamento de Quimica Organica, Facultad de Ciencias, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Quimica Farmaceutica y Organica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Martin
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Bioquimica y Biologia Celular I, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| |
Collapse
|
19
|
Reelfs O, Abbate V, Cilibrizzi A, Pook MA, Hider RC, Pourzand C. The role of mitochondrial labile iron in Friedreich's ataxia skin fibroblasts sensitivity to ultraviolet A. Metallomics 2020; 11:656-665. [PMID: 30778428 PMCID: PMC6438355 DOI: 10.1039/c8mt00257f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondrial labile iron (LI) is a major contributor to the susceptibility of skin fibroblasts to ultraviolet A (UVA)-induced oxidative damage leading to necrotic cell death via ATP depletion. Mitochondria iron overload is a key feature of the neurodegenerative disease Friedreich's ataxia (FRDA). Here we show that cultured primary skin fibroblasts from FRDA patients are 4 to 10-fold more sensitive to UVA-induced death than their healthy counterparts. We demonstrate that FRDA cells display higher levels of mitochondrial LI (up to 6-fold on average compared to healthy counterparts) and show higher increase in mitochondrial reactive oxygen species (ROS) generation after UVA irradiation (up to 2-fold on average), consistent with their differential sensitivity to UVA. Pre-treatment of the FRDA cells with a bespoke mitochondrial iron chelator fully abrogates the UVA-mediated cell death and reduces UVA-induced damage to mitochondrial membrane and the resulting ATP depletion by a factor of 2. Our results reveal a link between FRDA as a disease of mitochondrial iron overload and sensitivity to UVA of skin fibroblasts. Our findings suggest that the high levels of mitochondrial LI in FRDA cells which contribute to high levels of mitochondrial ROS production after UVA irradiation are likely to play a crucial role in the marked sensitivity of these cells to UVA-induced oxidative damage. This study may have implications not only for FRDA but also for other diseases of mitochondrial iron overload, with the view to develop topical mitochondria-targeted iron chelators as skin photoprotective agents.
Collapse
Affiliation(s)
- Olivier Reelfs
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Li Q, Huang Y. Mitochondrial targeted strategies and their
application for cancer and other diseases treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00481-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 2019; 10:899-916. [PMID: 29923582 DOI: 10.1039/c8mt00048d] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The labile iron pool (LIP) is a pool of chelatable and redox-active iron, not only essential for a wide variety of metabolic process, but also as a catalyst in the Fenton reaction, causing the release of hazardous reactive oxygen species (ROS) with potential for inducing oxidative stress and cell damage. The cellular LIP represents the entirety of every heterogenous sub-pool of iron, not only present in the cytosol, but also in mitochondria, lysosomes and the nucleus, which have all been detected and characterized by various fluorescent methods. Accumulated evidence indicates that alterations in the intracellular LIP can substantially contribute to a variety of injurious processes and initiate pathological development. Herein, we present our understanding of the role of the cellular LIP. To fully review the LIP, firstly, the significance of cellular labile iron in different subcellular compartments is presented. And then, the trafficking processes of cellular labile iron between/in cytosol, mitochondria and lysosomes are discussed in detail. Then, the recent progress in uncovering and assessing the cellular LIP by fluorescent methods have been noted. Overall, this summary may help to comprehensively envision the important physiological and pathological roles of the LIP and shed light on profiling the LIP in a real-time and nondestructive manner with fluorescent methods. Undoubtedly, with the advent and development of iron biology, a better understanding of iron, especially the LIP, may also enhance treatments for iron-related diseases.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 7100072, Xi'an, Shaanxi, China
| | | |
Collapse
|
22
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
23
|
Islam BU, Jabir NR, Tabrez S. The role of mitochondrial defects and oxidative stress in Alzheimer's disease. J Drug Target 2019; 27:932-942. [PMID: 30775938 DOI: 10.1080/1061186x.2019.1584808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder. Recent reports suggest that it affects more than 36 million people worldwide and accounts 60-80% of all cases of dementia. It is characterised by aberrations of multiple interactive systems and pathways, which ultimately lead to memory loss and cognitive dysfunction. The exact mechanisms and initial triggering factors that underpin the known pathological defects in AD remain to be fully elucidated. In addition, an effective treatment strategy to reduce the progression of AD is yet to be achieved. In the light of above-mentioned facts, our article deals with the exploration of the mitochondrial defect and oxidative stress leading to this devastating disease. In this communication, we have highlighted specific mitochondrial and antioxidant-directed approach to ameliorate and manage AD. Nonetheless, new approaches should also be investigated that could tackle various molecular events involved in AD pathogenicity.
Collapse
Affiliation(s)
- Badar Ul Islam
- a Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University , Aligarh , India
| | - Nasimudeen R Jabir
- b King Fahd Medical Research Center, King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Shams Tabrez
- b King Fahd Medical Research Center, King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
24
|
Wu J, Li J, Wang H, Liu CB. Mitochondrial-targeted penetrating peptide delivery for cancer therapy. Expert Opin Drug Deliv 2018; 15:951-964. [PMID: 30173542 DOI: 10.1080/17425247.2018.1517750] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro. MPPs create new opportunities to develop new treatments for cancer. AREAS COVERED We review the target sites of mitochondria and the target-penetration mechanism of MPPs, different strategies, and various additional strategies decorated MPPs for tumor cell mitochondria targeting, the decorating mattes including metabolism molecules, RNA, DNA, and protein, which exploited considered as therapeutic combined with MPPs and target in human cancer treatment. EXPERT OPINION/COMMENTARY Therapeutic selectivity that preferentially targets the mitochondrial abnormalities in cancer cells without toxic impact on normal cells still need to be deepen. Moreover, it needs appropriate study designs for a correct evaluation of the target delivery outcome and the degradation rate of the drug in the cell. Generally, it is optimistic that the advances in mitochondrial targeting drug delivery by MPPs plasticity outlined here will ultimately help to the discovery of new approaches for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Jiao Wu
- a Affiliated Ren He Hospital of China Three Gorges University , Yichang , China
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| | - Jason Li
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Hu Wang
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chang-Bai Liu
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| |
Collapse
|
25
|
Paparidis G, Akrivou M, Tsachouridou V, Shegani A, Vizirianakis IS, Pirmettis I, Papadopoulos MS, Papagiannopoulou D. Synthesis and evaluation of 99mTc/Re-tricarbonyl complexes of the triphenylphosphonium cation for mitochondrial targeting. Nucl Med Biol 2017; 57:34-41. [PMID: 29227814 DOI: 10.1016/j.nucmedbio.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Lipophilic delocalized cations accumulate in tumor cell mitochondria due to their higher transmembrane potential. In this work, this strategy was adopted for the development of 99mTc tumor-targeted imaging agents. METHODS Two tridentate ligands containing the triphenylphosphonium cation, L1 (S-cysteinyl) and L2 (N-iminodiacetate) as well as the respective 99mTc/ReL1 and 99mTc/ReL2 tricarbonyl complexes were synthesized. The effect of the ligands and the Re complexes on cell growth in U-87 MG glioblastoma cells was assessed. In vitro stability studies and measurement of logP of the 99mTc tracers was performed. The cellular and mitochondrial uptake of the 99mTc tracers in U-87 MG cells was evaluated. Biodistribution of 99mTcL1 and 99mTcL2 were performed on SCID mice bearing U-87 MG tumors. RESULTS The ligands L1, L2 and the Re1 and ReL2 complexes were characterized spectroscopically. Single products 99mTcL1 and 99mTcL2, >90% stable in rat serum, were obtained. LogP was 0.40±0.14 for 99mTcL1 and -0.02±0.07 for 99mTcL2. L1, ReL1 and ReL2 caused no notable cytotoxicity and L2 was found to infer 40% inhibition of cellular growth at 10-5M as well as 80% cell death in culture at 10-4M. The cell uptake of 99mTcL1 and 99mTcL2 over 4h was 1.26±0.08% and 0.06±0.01% respectively, of which 13.41±3.63% and 18.61±6.19% was distributed in the mitochondria respectively. The initial tumor uptake in mice was found to be >1% ID/g for both 99mTc tracers. CONCLUSIONS In vitro mitochondrial and in vivo tumor targeting was observed, better in 99mTcL1, however these properties should be optimized in future studies. Advances in Knowledge and Implications for Patient Care: Continuous efforts in this direction may lead to a suitable mitochondrial-targeted 99mTc imaging agent for tumor detection.
Collapse
Affiliation(s)
- Georgios Paparidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Melpomeni Akrivou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vicky Tsachouridou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonio Shegani
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", Ag. Paraskevi, 15310 Athens, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", Ag. Paraskevi, 15310 Athens, Greece
| | - Minas S Papadopoulos
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", Ag. Paraskevi, 15310 Athens, Greece
| | - Dionysia Papagiannopoulou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1056] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
27
|
Mitochondria-Targeted Molecules as Potential Drugs to Treat Patients With Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:173-201. [PMID: 28253985 DOI: 10.1016/bs.pmbts.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common multifactorial mental illness affecting the elderly population in the world. Its prevalence increases as person ages. There is no known drug or agent that can delay or prevent the AD and its progression. Extensive research has revealed that multiple cellular pathways involved, including amyloid beta production, mitochondrial structural and functional changes, hyperphosphorylation of Tau and NFT formation, inflammatory responses, and neuronal loss in AD pathogenesis. Amyloid beta-induced synaptic damage, mitochondrial abnormalities, and phosphorylated Tau are major areas of present research investigations. Synaptic pathology and mitochondrial oxidative damage are early events in disease process. In this chapter, a systematic literature survey has been conducted and presented a summary of antioxidants used in (1) AD mouse models, (2) elderly populations, and (3) randomized clinical trials in AD patients. This chapter highlights the recent progress in developing and testing mitochondria-targeted molecules using AD cell cultures and AD mouse models. This chapter also discusses recent research on AD pathogenesis and therapeutics, focusing on mitochondria-targeted molecules as potential therapeutic targets to delay or prevent AD progression.
Collapse
|
28
|
|
29
|
Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI. Alzheimer's Disease: From Mitochondrial Perturbations to Mitochondrial Medicine. Brain Pathol 2016; 26:632-47. [PMID: 27327899 PMCID: PMC8028979 DOI: 10.1111/bpa.12402] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023] Open
Abstract
Age-related neurodegenerative diseases such as Alzheimer's disease (AD) are distressing conditions causing countless levels of suffering for which treatment is often insufficient or inexistent. Considered to be the most common cause of dementia and an incurable, progressive neurodegenerative disorder, the intricate pathogenic mechanisms of AD continue to be revealed and, consequently, an effective treatment needs to be developed. Among the diverse hypothesis that have been proposed to explain AD pathogenesis, the one concerning mitochondrial dysfunction has raised as one of the most discussed with an actual acceptance in the field. It posits that manipulating mitochondrial function and understanding the deficits that result in mitochondrial injury may help to control and/or limit the development of AD. To achieve such goal, the concept of mitochondrial medicine places itself as a promising gathering of strategies to directly manage the major insidious disturbances of mitochondrial homeostasis as well as attempts to directly or indirectly manage its consequences in the context of AD. The aim of this review is to summarize the evolution that occurred from the establishment of mitochondrial homeostasis perturbation as masterpieces in AD pathogenesis up until the development of mitochondrial medicine. Following a brief glimpse in the past and current hypothesis regarding the triad of aging, mitochondria and AD, this manuscript will address the major mechanisms currently believed to participate in above mentioned events. Both pharmacological and lifestyle interventions will also be reviewed as AD-related mitochondrial therapeutics.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Cristina Carvalho
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Sónia C. Correia
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Raquel M. Seiça
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- IBILI‐Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of CoimbraCoimbraPortugal
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
30
|
Gilliam LAA, Lark DS, Reese LR, Torres MJ, Ryan TE, Lin CT, Cathey BL, Neufer PD. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction. Am J Physiol Endocrinol Metab 2016; 311:E293-301. [PMID: 27329802 PMCID: PMC5005971 DOI: 10.1152/ajpendo.00540.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Laura A A Gilliam
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and
| | - Daniel S Lark
- East Carolina Diabetes and Obesity Institute, Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Lauren R Reese
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and
| | - Maria J Torres
- East Carolina Diabetes and Obesity Institute, Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Terence E Ryan
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and
| | - Brook L Cathey
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Department of Physiology, and Department of Kinesiology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
31
|
Cardoso S, Seiça RM, Moreira PI. Mitochondria as a target for neuroprotection: implications for Alzheimer´s disease. Expert Rev Neurother 2016; 17:77-91. [PMID: 27366815 DOI: 10.1080/14737175.2016.1205488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), the most common form of dementia, is marked by progressive loss of memory and impairment of cognitive ability. Despite decades of intensive research and scientific advances, the intricate pathogenic mechanisms of AD are still not fully understood and, consequently, an effective treatment is yet to be developed. As widely accepted, the alterations of mitochondrial function are actively engaged in a plethora of neurodegenerative diseases, including AD. With growing interest in the mitochondria as a potential target for understanding AD, it has even been hypothesized that deficits in these organelles may be at the heart of the progression of AD itself. Areas covered: The purpose of this review is to summarize relevant studies that suggest a role for mitochondrial (dys)function in AD and to provide a survey on latest developments regarding AD-related mitochondrial therapeutics. Expert commentary: As outlined in a plethora of studies, there is no doubt that mitochondria play a major role in several stages of AD progression. Even though more in-depth studies are needed before pharmaceutical industry can apply such knowledge to human medicine, the continuous advances in AD research field will certainly facilitate and accelerate the development of more effective preventive or therapeutic strategies to fight this devastating disease.
Collapse
Affiliation(s)
- Susana Cardoso
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,b Institute for Interdisciplinary Research , University of Coimbra , Coimbra , Portugal
| | - Raquel M Seiça
- c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d IBILI-Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
32
|
Reelfs O, Abbate V, Hider RC, Pourzand C. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation. J Invest Dermatol 2016; 136:1692-1700. [PMID: 27109868 PMCID: PMC4946793 DOI: 10.1016/j.jid.2016.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/24/2023]
Abstract
Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320–400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight.
Collapse
Affiliation(s)
- Olivier Reelfs
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Charareh Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| |
Collapse
|
33
|
Kim GH, Lee JJ, Lee SH, Chung YH, Cho HS, Kim JA, Kim MK. Exposure of isoflurane-treated cells to hyperoxia decreases cell viability and activates the mitochondrial apoptotic pathway. Brain Res 2016; 1636:13-20. [PMID: 26854136 DOI: 10.1016/j.brainres.2016.01.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/21/2016] [Accepted: 01/30/2016] [Indexed: 11/30/2022]
Abstract
Isoflurane has either neuroprotective or neurotoxic effects. High-dose oxygen is frequently used throughout the perioperative period. We hypothesized that hyperoxia will affect cell viability of rat pheochromocytoma (PC12) cells that were exposed to isoflurane and reactive oxygen species (ROS) may be involved. PC12 cells were exposed to 1.2% or 2.4% isoflurane for 6 or 24h respectively, and cell viability was evaluated. To investigate the effects of hyperoxia, PC12 cells were treated with 21%, 50%, or 95% oxygen and 2.4% isoflurane for 6h, and cell viability, TUNEL staining, ROS production, and expression of B-cell lymphoma 2 (BCL-2), BCL2-associated X protein (BAX), caspase-3 and beta-site APP cleaving enzyme (BACE) were measured. ROS involvement was evaluated using the ROS scavenger 2-mercaptopropiopylglycine (MPG). The viability of cells exposed to 2.4% isoflurane was lower than that of cells exposed to 1.2% isoflurane. Prolonged exposure (6h vs. 24h) to 2.4% isoflurane resulted in a profound reduction in cell viability. Treatment with 95% (but not 50%) oxygen enhanced the decrease in cell viability induced by 2.4% isoflurane alone. Levels of ROS, Bax, caspase-3 and BACE were increased, whereas expression of Bcl-2 was decreased, in cells treated with 95% oxygen plus 2.4% isoflurane compared with the control and 2.4% isoflurane plus air groups. MPG attenuated the effects of oxygen and isoflurane. In conclusion, isoflurane affects cell viability in a dose- and time-dependent manner. This effect is augmented by hyperoxia and may involve ROS, the mitochondrial apoptotic signaling pathway, and β-amyloid protein.
Collapse
Affiliation(s)
- Gunn Hee Kim
- Department of Anesthesiology and Pain Medicine, National Medical Center, South Korea
| | - Jeong Jin Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea.
| | - Sang Hyun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea
| | - Yang Hoon Chung
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea
| | - Hyun Sung Cho
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea
| | - Jie Ae Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea
| | - Min Kyung Kim
- Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
34
|
Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum Mol Genet 2016; 25:1739-53. [PMID: 26908605 DOI: 10.1093/hmg/ddw045] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.
Collapse
Affiliation(s)
| | | | - P Hemachandra Reddy
- Garrison Institute on Aging, Cell Biology and Biochemistry, Neuroscience & Pharmacology, Neurology and Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| |
Collapse
|
35
|
Constantinou C, Apidianakis Y, Psychogios N, Righi V, Mindrinos MN, Khan N, Swartz HM, Szeto HH, Tompkins RG, Rahme LG, Tzika AA. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury. Int J Mol Med 2015; 37:299-308. [PMID: 26648055 PMCID: PMC4716799 DOI: 10.3892/ijmm.2015.2426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.
Collapse
Affiliation(s)
- Caterina Constantinou
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Yiorgos Apidianakis
- Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Michael N Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, Lebanon, NH, USA
| | - Harold M Swartz
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, Lebanon, NH, USA
| | - Hazel H Szeto
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Ronald G Tompkins
- Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Lu P, Bruno BJ, Rabenau M, Lim CS. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 2015; 240:38-51. [PMID: 26482081 DOI: 10.1016/j.jconrel.2015.10.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Mitochondria are organelles that have pivotal functions in producing the energy necessary for life and executing the cell death pathway. Targeting drugs and macromolecules to the mitochondria may provide an effective means of inducing cell death for cancer therapy, and has been actively pursued in the last decade. This review will provide a brief overview of mitochondrial structure and function, how it relates to cancer, and importantly, will discuss different strategies of mitochondrial delivery including delivery using small molecules, peptides, genes encoding proteins and MTSs, and targeting polymers/nanoparticles with payloads to the mitochondria. The advantages and disadvantages for each strategy will be discussed. Specific examples using the latest strategies for mitochondrial targeting will be evaluated, as well as potential opportunities for specific mitochondrial compartment localization, which may lead to improvements in mitochondrial therapeutics. Future perspectives in mitochondrial targeting of drugs and macromolecules will be discussed. Currently this is an under-explored area that is prime for new discoveries in cancer therapeutics.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin J Bruno
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Malena Rabenau
- Department of Pharmaceutics and Biopharmacy, Phillips-Universität, 35037 Marburg, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochem J 2015; 469:357-66. [PMID: 26008950 DOI: 10.1042/bj20150149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitochondrial labile iron (LI) plays a crucial role in oxidative injuries and pathologies. At present, there is no organelle-specific sensitive iron sensor which can reside exclusively in the mitochondria and reliably monitor levels of LI in this organelle. In the present study, we describe the development of novel fluorescent and highly specific mitochondria iron sensors, using the family of mitochondria-homing 'SS-peptides' (short cell-permeant signal peptides mimicking mitochondrial import sequence) as carriers of highly specific iron chelators for sensitive evaluation of the mitochondrial LI. Microscopic analysis of subcellular localization of a small library of fluorescently labelled SS-like peptides identified dansyl (DNS) as the lead fluorophore for the subsequent synthesis of chimaeric iron chelator-peptides of either catechol (compounds 10 and 11) or hydroxypyridinone (compounds 13 and 14) type. The iron-sensing ability of these chimaeric compounds was confirmed by fluorescent quenching and dequenching studies both in solution and in cells, with compound 13 exhibiting the highest sensitivity towards iron modulation. The intramolecular fluorophore-chelator distance and the iron affinity both influence probe sensitivity towards iron. These probes represent the first example of highly sensitive mitochondria-directed fluorescent iron chelators with potential to monitor mitochondrial LI levels.
Collapse
|
38
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
39
|
Osborne NN, Álvarez CN, del Olmo Aguado S. Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov Today 2014; 19:1613-22. [DOI: 10.1016/j.drudis.2014.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
|
40
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2014; 15:19-40. [DOI: 10.1586/14737175.2015.955853] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:780179. [PMID: 25221640 PMCID: PMC4158152 DOI: 10.1155/2014/780179] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/29/2014] [Indexed: 01/02/2023]
Abstract
Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ), an important component in Alzheimer's disease (AD) pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP) formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.
Collapse
|
42
|
Camilleri A, Vassallo N. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease. CNS Neurosci Ther 2014; 20:591-602. [PMID: 24703487 DOI: 10.1111/cns.12264] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder leading to progressive motor impairment and for which there is no cure. From the first postmortem account describing a lack of mitochondrial complex I in the substantia nigra of PD sufferers, the direct association between mitochondrial dysfunction and death of dopaminergic neurons has ever since been consistently corroborated. In this review, we outline common pathways shared by both sporadic and familial PD that remarkably and consistently converge at the level of mitochondrial integrity. Furthermore, such knowledge has incontrovertibly established mitochondria as a valid therapeutic target in neurodegeneration. We discuss several mitochondria-directed therapies that promote the preservation, rescue, or restoration of dopaminergic neurons and which have been identified in the laboratory and in preclinical studies. Some of these have progressed to clinical trials, albeit the identification of an unequivocal disease-modifying neurotherapeutic is still elusive. The challenge is therefore to improve further, not least by more research on the molecular mechanisms and pathophysiological consequences of mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| | | |
Collapse
|
43
|
Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014; 171:2029-50. [PMID: 24117165 PMCID: PMC3976620 DOI: 10.1111/bph.12461] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/06/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
A decline in energy is common in aging, and the restoration of mitochondrial bioenergetics may offer a common approach for the treatment of numerous age-associated diseases. Cardiolipin is a unique phospholipid that is exclusively expressed on the inner mitochondrial membrane where it plays an important structural role in cristae formation and the organization of the respiratory complexes into supercomplexes for optimal oxidative phosphorylation. The interaction between cardiolipin and cytochrome c determines whether cytochrome c acts as an electron carrier or peroxidase. Cardiolipin peroxidation and depletion have been reported in a variety of pathological conditions associated with energy deficiency, and cardiolipin has been identified as a target for drug development. This review focuses on the discovery and development of the first cardiolipin-protective compound as a therapeutic agent. SS-31 is a member of the Szeto-Schiller (SS) peptides known to selectively target the inner mitochondrial membrane. SS-31 binds selectively to cardiolipin via electrostatic and hydrophobic interactions. By interacting with cardiolipin, SS-31 prevents cardiolipin from converting cytochrome c into a peroxidase while protecting its electron carrying function. As a result, SS-31 protects the structure of mitochondrial cristae and promotes oxidative phosphorylation. SS-31 represents a new class of compounds that can recharge the cellular powerhouse and restore bioenergetics. Extensive animal studies have shown that targeting such a fundamental mechanism can benefit highly complex diseases that share a common pathogenesis of bioenergetics failure. This review summarizes the mechanisms of action and therapeutic potential of SS-31 and provides an update of its clinical development programme.
Collapse
Affiliation(s)
- Hazel H Szeto
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| |
Collapse
|
44
|
Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol 2014; 171:2017-28. [PMID: 24134698 PMCID: PMC3976619 DOI: 10.1111/bph.12468] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiolipin plays an important role in mitochondrial respiration and cardiolipin peroxidation is associated with age-related diseases. Hydrophobic interactions between cytochrome c and cardiolipin converts cytochrome c from an electron carrier to a peroxidase. In addition to cardiolipin peroxidation, this impedes electron flux and inhibits mitochondrial ATP synthesis. SS-31 (D-Arg-dimethylTyr-Lys-Phe-NH2 ) selectively binds to cardiolipin and inhibits cytochrome c peroxidase activity. Here, we examined whether SS-31 also protected the electron carrier function of cytochrome c. EXPERIMENTAL APPROACH Interactions of SS-31 with cardiolipin were studied using liposomes and bicelles containing phosphatidylcholine alone or with cardiolipin. Structural interactions were assessed by fluorescence spectroscopy, turbidity and nuclear magnetic resonance. Effects of cardiolipin on electron transfer kinetics of cytochrome c were determined by cytochrome c reduction in vitro and oxygen consumption using mitoplasts, frozen and fresh mitochondria. KEY RESULTS SS-31 interacted only with liposomes and bicelles containing cardiolipin in about 1:1 ratio. NMR studies demonstrated that the aromatic residues of SS-31 penetrated deep into cardiolipin-containing bilayers. SS-31 restored cytochrome c reduction and mitochondrial oxygen consumption in the presence of added cardiolipin. In fresh mitochondria, SS-31 increased state 3 respiration and efficiency of ATP synthesis. CONCLUSIONS AND IMPLICATIONS SS-31 selectively targeted cardiolipin and modulated its interaction with cytochrome c. SS-31 inhibited the cytochrome c/cardiolipin complex peroxidase activity while protecting its ability to serve as an electron carrier, thus optimizing mitochondrial electron transport and ATP synthesis. This novel class of cardiolipin therapeutics has the potential to restore mitochondrial bioenergetics for treatment of numerous age-related diseases.
Collapse
Affiliation(s)
- A V Birk
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| | - W M Chao
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| | - C Bracken
- Department of Biochemistry, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
- Nuclear Magnetic Resonance Core Facility, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| | - J D Warren
- Department of Biochemistry, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
- Milstein Chemistry Core Facility, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| | - H H Szeto
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| |
Collapse
|
45
|
Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 2013; 62:65-75. [PMID: 23395780 PMCID: PMC3713115 DOI: 10.1016/j.freeradbiomed.2013.01.032] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential dietary nutrient, but an excess or accumulation can be toxic. Disease states, such as manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as providing an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body.
Collapse
Affiliation(s)
- Ebany J Martinez-Finley
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | | | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37240, USA; The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN 37240, USA.
| | - Thomas E Gunter
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
46
|
The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition. PLoS One 2013; 8:e69732. [PMID: 23922785 PMCID: PMC3726774 DOI: 10.1371/journal.pone.0069732] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is important for the transport of secretory cargo. Glycosylation is a major post-translational event. Recognition of O-glycans on proteins is necessary for glycoprotein trafficking. In this study, specific inhibition of O-glycosylation (Golgi stress) induced the expression of endoplasmic reticulum (ER)-resident heat shock protein (HSP) 47 in NIH3T3 cells, although cell death was not induced by Golgi stress alone. When HSP47 expression was downregulated by siRNA, inhibition of O-glycosylation caused cell death. Three days after the induction of Golgi stress, the Golgi apparatus was disassembled, many vacuoles appeared near the Golgi apparatus and extended into the cytoplasm, the nuclei had split, and cell death assay-positive cells appeared. Six hours after the induction of Golgi stress, HSP47-knockdown cells exhibited increased cleavage of Golgi-resident caspase-2. Furthermore, activation of mitochondrial caspase-9 and ER-resident unfolded protein response (UPR)-related molecules and efflux of cytochrome c from the mitochondria to the cytoplasm was observed in HSP47-knockdown cells 24 h after the induction of Golgi stress. These findings indicate that (i) the ER-resident chaperon HSP47 protected cells from Golgi stress, and (ii) Golgi stress-induced cell death caused by the inhibition of HSP47 expression resulted from caspase-2 activation in the Golgi apparatus, extending to the ER and mitochondria.
Collapse
|
47
|
Su K, Bourdette D, Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 2013; 4:169. [PMID: 23898299 PMCID: PMC3722885 DOI: 10.3389/fphys.2013.00169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) has traditionally been considered an autoimmune inflammatory disorder leading to demyelination and clinical debilitation as evidenced by our current standard anti-inflammatory and immunosuppressive treatment regimens. While these approaches do control the frequency of clinical relapses, they do not prevent the progressive functional decline that plagues many people with MS. Many avenues of research indicate that a neurodegenerative process may also play a significant role in MS from the early stages of disease, and one of the current hypotheses identifies mitochondrial dysfunction as a key contributing mechanism. We have hypothesized that pathological permeability transition pore (PTP) opening mediated by reactive oxygen species (ROS) and calcium dysregulation is central to mitochondrial dysfunction and neurodegeneration in MS. This focused review highlights recent evidence supporting this hypothesis, with particular emphasis on our in vitro and in vivo work with the mitochondria-targeted redox enzyme p66ShcA.
Collapse
Affiliation(s)
- Kimmy Su
- Vollum Institute, Oregon Health and Science University Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
48
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009357. [PMID: 22474616 DOI: 10.1101/cshperspect.a009357] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Great progress has been made toward understanding the pathogenesis of Parkinson's disease (PD) during the past two decades, mainly as a consequence of the discovery of specific gene mutations contributing to the onset of PD. Recently, dysregulation of the autophagy pathway has been observed in the brains of PD patients and in animal models of PD, indicating the emerging role of autophagy in this disease. Indeed, autophagy is increasingly implicated in a number of pathophysiologies, including various neurodegenerative diseases. This article will lead you through the connection between autophagy and PD by introducing the concept and physiological function of autophagy, and the proteins related to autosomal dominant and autosomal recessive PD, particularly α-synuclein and PINK1-PARKIN, as they pertain to autophagy.
Collapse
Affiliation(s)
- Melinda A Lynch-Day
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
50
|
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526. [PMID: 22229339 PMCID: PMC3329953 DOI: 10.1089/ars.2011.4179] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several "anti-aging" strategies that treat CVDs and improve healthy cardiac aging.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|