1
|
Han Y, Kou M, Quan K, Wang J, Zhang H, Ihara H, Takafuji M, Qiu H. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles. Anal Chem 2024; 96:2173-2182. [PMID: 38261544 DOI: 10.1021/acs.analchem.3c05150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Enantioselective discrimination of chiral molecules is essential in chemistry, biology, and medical science due to the configuration-dependent activities of enantiomers. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer by using nanomaterials with outstanding performance are of great significance. Herein, blue- and green-emitting chiral silicon nanoparticles named bSiNPs and gSiNPs, respectively, with excellent water solubility, salt resistance, pH stability, photobleaching resistance, biocompatibility, and ability to promote soybean germination, were fabricated in a facile one-step method. Especially, chiral gSiNPs presented excellent fluorescence recognition ability for glutamic acid enantiomers within 1 min, and the enantiomeric recognition difference factor was as high as 9.0. The mechanism for enantiomeric fluorescence recognition was systematically explored by combining the fluorescence spectra with density functional theory (DFT) calculation. Presumably, the different Gibbs free energy and hydrogen-bonding interaction of the chiral recognition module with glutamic acid enantiomers mainly contributed to the difference in the fluorescence signals. Most noteworthy was the fact that the chiral gSiNPs can showcase not only the ability to recognize l- and d-glutamic acids in living cells but also the test strips fabricated by soaking gSiNPs can be applied for d-glutamic acid visual detection. As a result, this study provided insights into the design of multifunctional chiral sensing nanoplatforms for enantiomeric detection and other applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manchang Kou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Juanjuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kumar A, Kulkarni S, Pandey A, Mutalik S, Subramanian S. Nano-tracers for sentinel lymph node detection: current trends in technique and application. Nanomedicine (Lond) 2024; 19:59-77. [PMID: 38197375 DOI: 10.2217/nnm-2023-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Sentinel lymph node (SLN) detection and biopsy is a critical staging component for several cancers. Apart from established methods using dyes or radiolabeled colloids, newer techniques are emerging, like near-infrared fluorescent compounds, targeted molecular radiopharmaceuticals and magnetic nano-tracers. In the overview section of this review, we categorize SLN detection tracers based on their principle of use. We discuss the merits of existing tracers and provide a glimpse of in-development formulations. A subsequent clinical section explores the expanded role of SLN detection in management of various cancers, citing current medical guidelines and the leading conclusions of long-term clinical trials. The concluding section tries to provide a perspective of promising developments and the work required to bring them to clinical fruition.
Collapse
Affiliation(s)
- Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
3
|
Han Y, Wang Y, Zhang H, Zhao L, Qiu H. Facile synthesis of yellow-green fluorescent silicon nanoparticles and their application in detection of nitrophenol isomers. Talanta 2023; 257:124347. [PMID: 36801561 DOI: 10.1016/j.talanta.2023.124347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
A clear formation mechanism is essential for the controllable synthesis of nanomaterials with different optical properties, which is also one of the challenges facing the preparation of fluorescent silicon nanomaterials. In this work, a one-step room temperature synthesis method was established to prepare yellow-green fluorescent silicon nanoparticles (SiNPs). The obtained SiNPs exhibited excellent pH stability, salt tolerance, anti-photobleaching ability and biocompatibility. Based on X-ray photoelectron spectroscopy, transmission electron microscopy, ultra high performance liquid chromatography tandem mass spectrometry and other characterization data, the formation mechanism of the SiNPs was proposed, which provided a theoretical basis and important reference for the controllable preparation of SiNPs and other fluorescent nanomaterials. In addition, the obtained SiNPs illustrated excellent sensitivity for nitrophenol isomers, the linear range of o-nitrophenol, m-nitrophenol, p-nitrophenol was 0.05-600 μM, 20-600 μM and 0.01-600 μM under the λex and λem were set as 440 nm and 549 nm, and related limit detection was 16.7 nM, 6.7 μM and 3.3 nM, respectively. The developed SiNP-based sensor achieved satisfactory recoveries in detecting nitrophenol isomers in a river water sample, showing great promise in practical applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Lee N, Kim S, Lee KH, Lee SM, Lee DW. Synthesis of fluorescent dye-embedded silica nanoparticles for vitamin D3 detection using sandwich-like assay. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Alminderej FM, Younis AM, Albadri AE, El-Sayed WA, El-Ghoul Y, Ali R, Mohamed AM, Saleh SM. The superior adsorption capacity of phenol from aqueous solution using Modified Date Palm Nanomaterials: A performance and kinetic study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
6
|
Varshney S, Nigam A, Pawar SJ, Mishra N. An overview on biomedical applications of versatile silica nanoparticles, synthesized via several chemical and biological routes: A review. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.2017434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shagun Varshney
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abhishek Nigam
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - S. J. Pawar
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
7
|
Farshchi F, Hasanzadeh M. Nanomaterial based aptasensing of prostate specific antigen (PSA): Recent progress and challenges in efficient diagnosis of prostate cancer using biomedicine. Biomed Pharmacother 2020; 132:110878. [DOI: 10.1016/j.biopha.2020.110878] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
|
8
|
Biswas A, Shukla A, Maiti P. Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12285-12305. [PMID: 31125238 DOI: 10.1021/acs.langmuir.9b00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This feature article provides an overview of different kinds of futuristic biomaterials which have the potential to be used for fluorescent imaging and drug delivery, often simultaneously. The synthesis route or preparation process, fluorescence property, release profile, biocompatibility, bioimaging, and mechanistic approaches are vividly discussed. These include bioimaging with fluorescently doped quantum dots, mesoporous silica, noble metals, metal clusters, hydrophilic/hydrophobic polymers, semiconducting polymer dots, carbon/graphene dots, dendrimers, fluorescent proteins, and other nanobiomaterials. Another section discusses the controlled and targeted drug, gene, or biologically active material delivery using various vehicles such as micelles, 2D nanomaterials, organic nanoparticles, polymeric nanohybrids, and chemically modified polymers. In the last section, we discuss biomaterials, which can deliver biologically active molecules, and imaging the cell/tissue.
Collapse
Affiliation(s)
- Arpan Biswas
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Aparna Shukla
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Pralay Maiti
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| |
Collapse
|
9
|
Saleh S, Younis A, Ali R, Elkady E. Phenol removal from aqueous solution using amino modified silica nanoparticles. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0217-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Thurner GC, Debbage P. Molecular imaging with nanoparticles: the dwarf actors revisited 10 years later. Histochem Cell Biol 2018; 150:733-794. [PMID: 30443735 PMCID: PMC6267421 DOI: 10.1007/s00418-018-1753-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 11/14/2022]
Abstract
We explore present-day trends and challenges in nanomedicine. Creativity in the laboratories continues: the published literature on novel nanoparticles is now vast. Nanoagents are discussed here which are composed entirely of strongly photoluminescent materials, tunable to desired optical properties and of inherently low toxicity. We focus on "quantum nanoparticles" prepared from allotropes of carbon. The principles behind strong, tunable photoluminescence are quantum mechanical: we present them in simple outline. The major industries racing to develop these materials can offer significant technical guidance to nanomedicine, which could help to custom-design strongly signalling nanoagents specifically for stated clinical applications. Since such agents are small, they can be targeted easily, making active targeting possible. We consider it timely now to study the interactions nanoparticles undergo with tissue components in living animals and to learn to understand and overcome the numerous barriers the organism interposes between the blood and targets in or on parenchymal cells. As the near infra-red spectrum opens up, detection of glowing nanoparticles several centimeters deep in a living human subject becomes calculable and we present a simple way to do this. Finally, we discuss the slow-fuse and resource-inefficient entry of nanoparticles into clinical application. A first possible reason is failure to target across the body's barriers, see above. Second, in the sparse translational landscape funding and support gaps yawn widely between academic research and subsequent development. We consider the agendas of the numerous "stakeholders" participating in this sad landscape and point to some faint glimmers of hope for the future.
Collapse
Affiliation(s)
- Gudrun C Thurner
- Department of Radiology, Innsbruck Medical University, 6020, Innsbruck, Austria
| | - Paul Debbage
- Division of Histology and Embryology, Department of Anatomy, Medical University Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Peteni S, Nyokong T. Effect of doping vs covalent linking of a low symmetry zinc phthalocyanine to silica nanoparticles on singlet oxygen production. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Effect of nature of nanoparticles on the photophysicochemical properties of asymmetrically substituted Zn phthalocyanines. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Karaman DŞ, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Multimodality Imaging of Silica and Silicon Materials In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703651. [PMID: 29388264 DOI: 10.1002/adma.201703651] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Recent progress in the development of silica- and silicon-based multimodality imaging nanoprobes has advanced their use in image-guided drug delivery, and the development of novel systems for nanotheranostic and diagnostic applications. As biocompatible and flexibly tunable materials, silica and silicon provide excellent platforms with high clinical potential in nanotheranostic and diagnostic probes with well-defined morphology and surface chemistry, yielding multifunctional properties. In vivo imaging is of great value in the exploration of methods for improving site-specific nanotherapeutic delivery by silica- and silicon-based drug-delivery systems. Multimodality approaches are essential for understanding the biological interactions of nanotherapeutics in the physiological environment in vivo. The aim here is to describe recent advances in the development of in vivo imaging tools based on nanostructured silica and silicon, and their applications in single and multimodality imaging.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Mirkka P Sarparanta
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Anu J Airaksinen
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| |
Collapse
|
14
|
Cen MJ, Chang T, Yin YB, Li XL, He YW. A novel ratiometric fluorescent sensor for Ag+ based on two fluorophores. Methods Appl Fluoresc 2018; 6:035005. [DOI: 10.1088/2050-6120/aabcf1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Xu D, Liu M, Zou H, Huang Q, Huang H, Tian J, Jiang R, Wen Y, Zhang X, Wei Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Mazrad ZAI, Choi CA, Kim SH, Lee G, Lee S, In I, Lee KD, Park SY. Target-specific induced hyaluronic acid decorated silica fluorescent nanoparticles@polyaniline for bio-imaging guided near-infrared photothermal therapy. J Mater Chem B 2017; 5:7099-7108. [DOI: 10.1039/c7tb01606a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heating properties of FNPs(Si/HA)@PANI nanoparticles could lead to new options for photothermal therapy guided by tumor targeted bioimaging to track treatment progress.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Cheong A Choi
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Sung Han Kim
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Sangkug Lee
- IT Convergence Material R&D Group
- Korea Institute of Industrial Technology
- Cheonan-si
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Kang-Dae Lee
- Department of Otolaryngology–Head and Neck Surgery
- Kosin University College of Medicine
- Busan 49267
- Republic of Korea
| | - Sung Young Park
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Chemical and Biological Engineering
| |
Collapse
|
17
|
García-Calvo J, Calvo-Gredilla P, Ibáñez-Llorente M, Rodríguez T, Torroba T. Detection of Contaminants of High Environmental Impact by Means of Fluorogenic Probes. CHEM REC 2016; 16:810-24. [DOI: 10.1002/tcr.201500253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 01/19/2023]
Affiliation(s)
- José García-Calvo
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| | | | | | - Teresa Rodríguez
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| | - Tomás Torroba
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| |
Collapse
|
18
|
Abstract
This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol-gels, hydrophilic polymers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nanomaterials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug delivery or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI.
Collapse
Affiliation(s)
- Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
19
|
Liu Y, Williams MG, Miller TJ, Teplyakov AV. Nanoparticle layer deposition for highly controlled multilayer formation based on high- coverage monolayers of nanoparticles. THIN SOLID FILMS 2016; 598:16-24. [PMID: 26726273 PMCID: PMC4696505 DOI: 10.1016/j.tsf.2015.11.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers - nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular - layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of "click chemistry". Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed "click reaction" with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mackenzie G. Williams
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Timothy J. Miller
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Andrew V. Teplyakov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
20
|
Cserép GB, Herner A, Kele P. Bioorthogonal fluorescent labels: a review on combined forces. Methods Appl Fluoresc 2015; 3:042001. [DOI: 10.1088/2050-6120/3/4/042001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Chemistry of one dimensional silicon carbide materials: Principle, production, application and future prospects. PROG SOLID STATE CH 2015. [DOI: 10.1016/j.progsolidstchem.2015.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Fashina A, Amuhaya E, Nyokong T. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 140:256-264. [PMID: 25615674 DOI: 10.1016/j.saa.2014.12.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes.
Collapse
Affiliation(s)
- Adedayo Fashina
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Edith Amuhaya
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
23
|
Sanusi K, Stone JM, Nyokong T. Nonlinear optical behaviour of indium-phthalocyanine tethered to magnetite or silica nanoparticles. NEW J CHEM 2015. [DOI: 10.1039/c4nj01619j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced nonlinear optical properties (NLO) were observed for an indium phthalocyanine–magnetite nanocomposite at 532 nm compared to the performance of the bare phthalocyanine and its silica nanoparticle dyad.
Collapse
Affiliation(s)
- Kayode Sanusi
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| | - Justin M. Stone
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| | - Tebello Nyokong
- Department of Chemistry
- Rhodes University
- Grahamstown 6140
- South Africa
| |
Collapse
|
24
|
Yin F, Zhang B, Zeng S, Lin G, Tian J, Yang C, Wang K, Xu G, Yong KT. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo. J Mater Chem B 2015; 3:6081-6093. [DOI: 10.1039/c5tb00587f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folic acid-conjugated fluorescent silica nanoparticles with biocompatibility and high-selectivity show great potential forin vivotumor imaging.
Collapse
Affiliation(s)
- Feng Yin
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Butian Zhang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- CINTRA CNRS/NTU/THALES
| | - Guimiao Lin
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Jinglin Tian
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Chengbin Yang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kuan Wang
- Nanomedicine Program and Institute of Biological Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Gaixia Xu
- CINTRA CNRS/NTU/THALES
- UMI 3288
- Singapore
- Singapore
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
25
|
Fashina A, Antunes E, Nyokong T. A comparative photophysicochemical study of mono substituted phthalocyanines grafted onto silica nanoparticles. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we report on the covalent linking of carboxylic acid functionalized silica nanoparticles with zinc phthalocyanine mono-substituted non-peripherally and peripherally with either a 4-amino phenoxy (1, peripheral and 2, non-peripheral) or an amino group (3 peripheral). The grafting is achieved via the formation of an amide bond between the carboxylic acid of the silica nanoparticles and the amino group of the phthalocyanine complexes. The hybrid nanoparticles retained the amorphous nature of silica nanoparticles after conjugation. A slight decrease in fluorescence and a general improvement in triplet quantum yields compared to free Pcs were observed. Triplet lifetimes for 2- SiNPs and 3- SiNPs also improved when compared to the free phthalocyanine. The changes in singlet oxygen quantum yields upon conjugation were minimal.
Collapse
Affiliation(s)
- Adedayo Fashina
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Edith Antunes
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
26
|
Abstract
Nanomedicine, the use of nanotechnology for biomedical applications, has potential to change the landscape of the diagnosis and therapy of many diseases. In the past several decades, the advancement in nanotechnology and material science has resulted in a large number of organic and inorganic nanomedicine platforms. Silica nanoparticles (NPs), which exhibit many unique properties, offer a promising drug delivery platform to realize the potential of nanomedicine. Mesoporous silica NPs have been extensively reviewed previously. Here we review the current state of the development and application of nonporous silica NPs for drug delivery and molecular imaging.
Collapse
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
27
|
Fashina A, Antunes E, Nyokong T. Characterization and photophysical behavior of phthalocyanines when grafted onto silica nanoparticles. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.01.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Chen G, Song F, Xiong X, Peng X. Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET). Ind Eng Chem Res 2013. [DOI: 10.1021/ie303485n] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gengwen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Xiaoqing Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| |
Collapse
|
29
|
Lee CS, Chang HH, Bae PK, Jung J, Chung BH. Bifunctional Nanoparticles Constructed Using One-Pot Encapsulation of a Fluorescent Polymer and Magnetic (Fe3
O4
) Nanoparticles in a Silica Shell. Macromol Biosci 2012; 13:321-31. [DOI: 10.1002/mabi.201200308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/07/2012] [Indexed: 11/07/2022]
|
30
|
Fabbri F, Rossi F, Melucci M, Manet I, Attolini G, Favaretto L, Zambianchi M, Salviati G. Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires. NANOSCALE RESEARCH LETTERS 2012; 7:680. [PMID: 23244177 PMCID: PMC3534015 DOI: 10.1186/1556-276x-7-680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
A new class of nanostructured hybrid materials is developed by direct grafting of a model thiophene-based organic dye on the surface of 3C-SiC/SiO2 core/shell nanowires. TEM-EDX analysis reveals that the carbon distribution is more spread than it would be, considering only the SiC core size, suggesting a main contribution from C of the oligothiophene framework. Further, the sulfur signal found along the treated wires is not detected in the as-grown samples. In addition, the fluorescent spectra are similar for the functionalized nanostructures and T3Pyr in solution, confirming homogeneous molecule grafting on the nanowire surface. Chemical and luminescence characterizations confirm a homogeneous functionalization of the nanowires. In particular, the fluorophore retains its optical properties after functionalization.
Collapse
Affiliation(s)
- Filippo Fabbri
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma, 43124, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma, 43124, Italy
| | - Manuela Melucci
- ISOF-CNR Institute, via P. Gobetti, 101, Bologna, 40129, Italy
| | - Ilse Manet
- ISOF-CNR Institute, via P. Gobetti, 101, Bologna, 40129, Italy
| | - Giovanni Attolini
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma, 43124, Italy
| | - Laura Favaretto
- ISOF-CNR Institute, via P. Gobetti, 101, Bologna, 40129, Italy
| | | | | |
Collapse
|
31
|
Wang C, Ouyang J, Ye DK, Xu JJ, Chen HY, Xia XH. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip. LAB ON A CHIP 2012; 12:2664-71. [PMID: 22648530 DOI: 10.1039/c2lc20977b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
32
|
Karagoz B, Durmaz YY, Gacal BN, Bicak N, Yagci Y. Functionalization of Poly(divinylbenzene) Microspheres by Combination of Hydrobromination and Click Chemistry Processes: A Model Study. Des Monomers Polym 2012. [DOI: 10.1163/138577209x12478288343198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Bunyamin Karagoz
- a Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Yasemin Yuksel Durmaz
- b Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Bahadir N. Gacal
- c Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Niyazi Bicak
- d Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Yusuf Yagci
- e Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
33
|
Bae SW, Tan W, Hong JI. Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun (Camb) 2012; 48:2270-82. [DOI: 10.1039/c2cc16306c] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Lee CS, Chang HH, Jung J, Lee NA, Song NW, Chung BH. A novel fluorescent nanoparticle composed of fluorene copolymer core and silica shell with enhanced photostability. Colloids Surf B Biointerfaces 2011; 91:219-25. [PMID: 22138116 DOI: 10.1016/j.colsurfb.2011.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
A variety of fluorescent nanoparticles have been developed for demanding applications such as optical biosensing and fluorescence imaging in live cells. Silica-based fluorescent nanoparticles offer diverse advantages for biological applications. For example, they can be used as labeling probes due to their low toxicity, high sensitivity, resolution, and stability. In this research, a new class of highly fluorescent, efficient nanoparticles composed of a newly synthesized poly[di(2-methoxy-5-(2-ethylhexyloxy))-2,7-(9,9-dioctyl-9H-fluorene)] (PDDF) core and a silica shell (designated as PDDF@SiO(2)) were prepared using a simple reverse micelle method, and their fluorescent properties were evaluated using methods such as single-dot photoluminescence measurements. The enhanced photostability of the particles and their potential applications for bioanalysis are discussed in this article. The morphology, size, and fluorescent properties for prepared PDDF@SiO(2) nanoparticles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and photoluminescence spectroscopy. The prepared particles size, which was approximately 60 nm, resulted in an excellent colloidal stability in a physiological environment. The photobleaching dynamics, total numbers of emitted photons (TNEP) and statistical measurements of individual nanoparticles were observed using laser scanning fluorescence microscopy to assess the structure and photostability of PDDF@SiO(2) nanoparticles. Additionally, PDDF@SiO(2) nanoparticles were used in cell toxicity and permeation tests for biological analyses, demonstrating a great potential for use as powerful, novel materials within the emerging fields of biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
35
|
Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 2011; 84:183-90. [PMID: 19936708 DOI: 10.1007/s00204-009-0488-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/28/2009] [Indexed: 02/01/2023]
Abstract
As the biosafety of nanotechnology becomes a growing concern, the in vivo nanotoxicity of NPs has drawn a lot of attention. Silica nanoparticles (SiNPs) have been widely developed for biomedical use, but their biodistribution and toxicology have not been investigated extensively in vivo. Although investigations of in vivo qualitative distribution of SiNPs have been reported, the time-dependent and quantitative informations about the distribution of SiNPs are still lacking. Here we investigated the long-term (30 days) quantitative tissue distribution, and subcellular distribution, as well as potential toxicity of two sizes of intravenously administered SiNPs in mice using radiolabeling, radioactive counting, transmission electron microscopy and histological analysis. The results indicated that SiNPs accumulate mainly in lungs, liver and spleen and are retained for over 30 days in the tissues because of the endocytosis by macrophages, and could potentially cause liver injury when intravenously injected.
Collapse
|
36
|
New silica and polystyrene nanoparticles labeled with longwave absorbing and fluorescent chameleon dyes. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Glänzende Aussichten für lumineszierende Siliciumdioxidnanopartikel. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angew Chem Int Ed Engl 2011; 50:4056-66. [DOI: 10.1002/anie.201004996] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/16/2010] [Indexed: 12/31/2022]
|
39
|
Link M, Li X, Kleim J, Wolfbeis OS. Click Chemistry Based Method for the Preparation of Maleinimide-Type Thiol-Reactive Labels. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Dong M, Wang YW, Peng Y. Highly Selective Ratiometric Fluorescent Sensing for Hg2+ and Au3+, Respectively, in Aqueous Media. Org Lett 2010; 12:5310-3. [DOI: 10.1021/ol1024585] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ya-Wen Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Peng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
41
|
Berndl S, Herzig N, Kele P, Lachmann D, Li X, Wolfbeis OS, Wagenknecht HA. Comparison of a nucleosidic vs non-nucleosidic postsynthetic "click" modification of DNA with base-labile fluorescent probes. Bioconjug Chem 2010; 20:558-64. [PMID: 19220008 DOI: 10.1021/bc8004864] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The azides 1 and 2 bearing a phenoxazinium and a coumarin fluorophore, respectively, were applied in postsynthetic "click"-type bioconjugation and coupled to oligonucleotides modified with alkyne groups using two alternative approaches: (i) as a nucleotide modification at the 2'-position of uridine and (ii) as a nucleotide substitution using (S)-(-)-3-amino-1,2-propanediol as an acyclic linker between the phosphodiester bridges. The corresponding alkynylated phosporamidites 3 and 6 were used as DNA building blocks for the preparation of alkyne-bearing DNA duplexes. The base pairs adjacent to the site of modification and the base opposite to it were varied in the DNA sequences. The modified duplexes were investigated by UV/vis absorption spectroscopy (including melting temperatures) and fluorescence spectroscopy in order to study the different optical properties of the two chromophores and to evaluate their potential for bioanalytical applications. The sequence-selective fluorescence quenching of phenoxazinium 1 differs only slightly and does not depend on the type of modification, meaning whether it has been attached to the 2'-position of uridine or as DNA base surrogate using the acyclic glycol linker. The 2'-chromophore-modified uridine still recognizes adenine as the counterbase, and the duplexes exhibit a sufficient thermal stability that is comparable to that of unmodified duplexes. Thus, the application of the 2'-modification site of uridine is preferred in comparison to glycol-assisted DNA base surrogates. Accordingly, the coumarin dye azide 2 was attached only to the 2'-position of uridine. The significant Stokes shift of approximately 100 nm and the good quantum yields make the coumarin chromophore a powerful fluorescent label for nucleic acids.
Collapse
Affiliation(s)
- Sina Berndl
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Mader HS, Kele P, Saleh SM, Wolfbeis OS. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 2010; 14:582-96. [PMID: 20829098 DOI: 10.1016/j.cbpa.2010.08.014] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 01/17/2023]
Abstract
Upconverting luminescent nanoparticles (UCNPs) display the unique property of emitting visible light following photoexcitation with near-infrared laser light. This results in features such as virtually zero autofluorescence of (biological) matter and easy separation of the emission peaks from stray light. Other features include rather narrow emission bands, very high chemical stability, the lack of bleaching, and the absence of blinking effects. This article reviews the work performed in the past few years with UCNPs in terms of surface modifications, bioconjugation, and optical (cellular) imaging.
Collapse
Affiliation(s)
- Heike S Mader
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
43
|
Doussineau T, Schulz A, Lapresta-Fernandez A, Moro A, Körsten S, Trupp S, Mohr G. On the Design of Fluorescent Ratiometric Nanosensors. Chemistry 2010; 16:10290-9. [DOI: 10.1002/chem.201000829] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Schulze P, Link M, Schulze M, Thuermann S, Wolfbeis OS, Belder D. A new weakly basic amino-reactive fluorescent label for use in isoelectric focusing and chip electrophoresis. Electrophoresis 2010; 31:2749-53. [DOI: 10.1002/elps.201000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Mader H, Link M, Achatz D, Uhlmann K, Li X, Wolfbeis O. Surface-Modified Upconverting Microparticles and Nanoparticles for Use in Click Chemistries. Chemistry 2010; 16:5416-24. [DOI: 10.1002/chem.201000117] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Achatz DE, Mező G, Kele P, Wolfbeis OS. Probing the Activity of Matrix Metalloproteinase II with a Sequentially Click-Labeled Silica Nanoparticle FRET Probe. Chembiochem 2009; 10:2316-20. [DOI: 10.1002/cbic.200900261] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Kele P, Mezö G, Achatz D, Wolfbeis O. Dual Labeling of Biomolecules by Using Click Chemistry: A Sequential Approach. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804514] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kele P, Mezö G, Achatz D, Wolfbeis O. Dual Labeling of Biomolecules by Using Click Chemistry: A Sequential Approach. Angew Chem Int Ed Engl 2009; 48:344-7. [DOI: 10.1002/anie.200804514] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|