1
|
Mondal PP, Palakkal AS, Neogi S. Water-Resistant Fluoro-Switchable MOF and Reconfigurable Bio-Composite for Nanomolar Level Ultra-Fast Monitoring of Organo-Arsenic and Antibiotic Feed-Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501941. [PMID: 40289451 DOI: 10.1002/smll.202501941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Indexed: 04/30/2025]
Abstract
A mixed-ligand-based novel 3D Cd(II)-based metal-organic framework (MOF) is devised from π-electron-rich organic struts that shows two-fold interpenetrated bilayer-pillar structure. The strong luminescence of the MOF gets remarkably quenched by roxarsone (ROX) organo-arsenic in water. The material further exemplifies one-of-a-kind fluoro-switchable probe for antibiotics and exhibits massive turn-off emission by tetracycline (TTC), whereas sulfamethazine (SMZ) triggers an unprecedented 120% emission enhancement. Apart from regenerative, fast-responsive, and selective fluoro-detection of all three feed-additives, particularly significant is nanomolar limits of detection (LOD) of ROX (48.9 nm), whereas LOD for SMZ (33.9 nm) ranks lowest, and that of TTC (22.8 nm) stands second lowest among reported sensory MOFs. Besides varying degrees of energy transfer contribution for turn-off detection by ROX and TTC, density functional theory calculations manifest changes in MOF energy levels by individual organo-aromatics and additionally describe framework-analyte supramolecular interactions. The MOF sensor works equally well in different wastewater specimens and a wide pH range with good recovery percentage. To broaden the practical scope of the material, cheap MOF@paper strip as well as reconfigurable MOF@chitosan@paper bio-composite is developed and successfully employed for the instantaneous turn-off detection of ROX and fluoro-switchable monitoring of both the antibiotics at their low concentrations.
Collapse
Affiliation(s)
- Partha Pratim Mondal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
2
|
Tian S, Ma Y, Xu Y, Lin Y, Ma J, Wen G. Transformation of p-arsanilic acid by dissolved Mn(III) and enhanced arsenic removal: Mechanism, toxicity and performance in complicated water matrices. WATER RESEARCH 2024; 265:122252. [PMID: 39173353 DOI: 10.1016/j.watres.2024.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Dissolved Mn(III), as a potent one-electron transfer oxidant, is ubiquitous in natural waters and sediments and actively involved in the transformation of organics in biogeochemical processes and water treatment. However, the important role of Mn(III) has long been overlooked because of its short life. This study was the first to investigate the performance of Mn(III) in organoarsenic transformation and to highlight the environmental implications. Both homogeneous and heterogeneous Mn(III)-based systems were effective to remove p-arsanilic acid (p-ASA, 15 μM) with degradation efficiency approaching 40.4 %-98.3 %. Two degradation pathways of p-ASA were proposed, in which As-C bond and amino group were vulnerable sites to Mn(III) attack, leading to the formation of more toxic arsenate (As(V)) and nitarsone. Through transforming organoarsenic to inorganic arsenic species, the removal efficiency of total arsenic and dissolved organics were enhanced to 65.1 %-95.5 % and 16.6 %-36.6 %, respectively, by post-treatment of coagulation or adsorption, accompanied with significant reduction of cytotoxicity and environmental risks. Particularly, polymeric ferric sulfate and granular activated alumina showed superior performance in the total As removal. Moreover, oxidation efficiency of Mn(III) was hardly affected by common cations and anions (e.g., Ca2+, Mg2+, NH4+, NO3-, SO4-), halide ions (e.g., Cl-, Br-) and natural organic matter, showing high robustness for organoarsenic removal under complicated water matrices. Overall, this study shed light on the significance of Mn(III) to the fate of organoarsenics in manganese-rich environments, and demonstrated the promising potential of Mn(III)-based strategies to achieve targeted decontamination in water/wastewater purification.
Collapse
Affiliation(s)
- Shiqi Tian
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuwei Ma
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Xu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. A review on arsenic pollution, toxicity, health risks, and management strategies using nanoremediation approaches. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:269-289. [PMID: 36563406 DOI: 10.1515/reveh-2022-0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Over 50 countries are affected by arsenic contamination. The problem is becoming worse as the number of affected people increases and new sites are reported globally. CONTENT Various human activities have increased arsenic pollution, notably in both terrestrial and aquatic environments. Contamination of our water and soil by arsenic poses a threat to our environment and natural resources. Arsenic poisoning harms several physiological systems and may cause cancer and death. Excessive exposure may cause toxic build-up in human and animal tissues. Arsenic-exposed people had different skin lesion shapes and were vulnerable to extra arsenic-induced illness risks. So far, research shows that varying susceptibility plays a role in arsenic-induced diseases. Several studies have revealed that arsenic is a toxin that reduces metabolic activities. Diverse remediation approaches are being developed to control arsenic in surrounding environments. SUMMARY AND OUTLOOK A sustainable clean-up technique (nanoremediation) is required to restore natural equilibrium. More research is therefore required to better understand the biogeochemical processes involved in removing arsenic from soils and waters.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Ali A, Ullah Z, Ismaeel N, Rashid A, Khalid W, Siddique M, Iqbal J, Khan A, Waqas M, Ghani J. Integrated Approach to Hydrogeochemical Assessment of Groundwater Quality in Major Industrial Zone of Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34396-34414. [PMID: 38702486 DOI: 10.1007/s11356-024-33402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
Groundwater contamination with arsenic (As) is a significant concern in Pakistan's Punjab Province. This study analyzed 69 groundwater samples from Faisalabad, Gujranwala, Lahore, and Multan to understand hydrogeochemistry, health impacts, contamination sources, and drinking suitability. Results revealed varying as concentrations across districts, with distinctive cation and anion orders. Faisalabad exhibited Na+ > Mg2+ > Ca2+ > K+ > Fe2+ for cations and SO42- > Cl- > HCO3- > NO3- > F- for anions. Gujranwala showed Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. In Lahore, demonstrated: Na+ > Ca2+ > Mg2+ > Fe > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. Multan indicated K+ > Ca2+ > Mg2+ > Na+ > Fe for cations and HCO3- > SO42- > Cl- > F- > NO3- ) for anions. Hydrochemical facies were identified as CaHCO3 and CaMgCl types. Principal Component Analysis (PCA), highlighted the influence of natural processes and human activities on groundwater pollution. Water Quality Index (WQI) result reveal that most samples met water quality standards. The carcinogenic risk values for children exceeded permissible limits in all districts, emphasizing a significant cancer risk. The study highlights the need for rigorous monitoring to mitigate (As) contamination and protect public health from associated hazards.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Nayab Ismaeel
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Warda Khalid
- Environmental Protection Division, Zijin Mining Group Co., Ltd, Zijin Road, Zijin TowerShanghang, 364200, Longyan, Fujian Province, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Anwarzeb Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
- Department of Horticultural Science, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Muhammad Waqas
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Junaid Ghani
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
5
|
Håkonsholm F, Hetland MAK, Löhr IH, Lunestad BT, Marathe NP. Co-localization of clinically relevant antibiotic- and heavy metal resistance genes on plasmids in Klebsiella pneumoniae from marine bivalves. Microbiologyopen 2023; 12:e1368. [PMID: 37642489 PMCID: PMC10356976 DOI: 10.1002/mbo3.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 08/31/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with antibiotic resistance and present in a wide range of environments, including marine habitats. However, little is known about the development, persistence, and spread of antibiotic resistance in such environments. This study aimed to obtain the complete genome sequences of antibiotic-resistant K. pneumoniae isolated from marine bivalves in order to determine the genetic context of antibiotic- and heavy metal resistance genes in these isolates. Five antibiotic-resistant K. pneumoniae isolates, of which four also carried heavy metal resistance genes, were selected for complete genome sequencing using the Illumina MiSeq platform and the Oxford Nanopore Technologies GridION device. Conjugation experiments were conducted to examine the transfer potential of selected plasmids. The average length of the complete genomes was 5.48 Mbp with a mean chromosome size of 5.27 Mbp. Seven plasmids were detected in the antibiotic-resistant isolates. Three IncFIB, one IncFIB/IncFII, and one IncFIB/IncHIB plasmid, respectively, carried antibiotic resistance genes such as qnrS1, aph(6)-Id and aph(3')-Ia, aadA1, and aadA2. Four of these plasmids also carried genes encoding resistance to copper (pco), silver (sil), and arsenic (ars). One plasmid carrying tet(D) and blaSHV-1 as well as pco, sil, and ars genes was transferred to Escherichia coli by conjugation. We show the co-occurrence of antibiotic- and heavy metal resistance genes on a conjugative IncFIB plasmid from K. pneumoniae from marine bivalves. Our study highlights the importance of the marine environment and seafood as a possible dissemination route for antimicrobial resistance and provides insights into the potential for co-selection of antibiotic resistance genes by heavy metals.
Collapse
Affiliation(s)
- Fredrik Håkonsholm
- Institute of Marine ResearchBergenNorway
- Department of Medical Biology, Faculty of Health SciencesUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Marit A. K. Hetland
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Iren H. Löhr
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | | | | |
Collapse
|
6
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
7
|
Xu X, Xu X, Wu A, Song S, Kuang H, Xu C, Liu L. Ultrasensitive detection of four organic arsenic compounds at the same time using a five-link cardboard-based assay. Food Chem 2022; 390:133214. [PMID: 35597086 DOI: 10.1016/j.foodchem.2022.133214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
In order to effectively control the excessive use of organic arsenic reagents in livestock and poultry products, there is an urgent need to develop a method for rapid detection of multiple organic arsenic reagents. In this study, two haptens were designed and derivatized around the structural formula of roxarsone, and a highly-sensitive group-selective mAb 3F2 was prepared, which can simultaneously detect roxarsone, 4-aminophenylarsonic acid, 2-aminophenylarsonic acid and phenylarsonic acid. We further developed a colloidal gold immunochromatographic test strip (ICS) and prepared a five-link card that can simultaneously detect four organic arsenics in chicken and pork samples. Its quantitative detection limits (LOQ) for the four compounds in chicken and pork samples were 0.06 and 0.32 ng/mL, 0.11 and 0.29 ng/mL, 0.34 and 0.99 ng/mL, and 0.88 and 1.5 ng/mL, respectively. This multi-ICS detection provides a powerful tool for the on-site detection and rapid screening of organic arsenic reagents in actual samples.
Collapse
Affiliation(s)
- Xiaoxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
8
|
Wengang L, Fang C, Rong Z, Cuihong C. Biochar-Mediated Degradation of Roxarsone by Shewanella oneidensis MR-1. Front Microbiol 2022; 13:846228. [PMID: 35369465 PMCID: PMC8964303 DOI: 10.3389/fmicb.2022.846228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
It is widely believed that biochar plays an essential role in sequestrating pollutants. The impacts of biochar on microbial growth, and consequently on the environmental fate of pollutants, however, remains poorly understood. In this study, wheat-straw-derived biochar was used to investigate how biochar amendment affected Shewanella oneidensis MR-1 growth and roxarsone transformation in water under anaerobic conditions. Three biochar with different physicochemical properties were used to mediate the roxarsone degradation. The results showed that the degradation rate of roxarsone could be accelerated by the increase of biochar pyrolysis temperature. From the characterization of biochar, the total specific surface area, micropore surface area and micropore volume of biochar increase, but the average pore diameter decreases as the pyrolysis temperature increases. Through infrared spectroscopy analysis, it was found that as the pyrolysis temperature increases, the degree of condensation of biochar increases, thereby increasing the pollutant removal rate. From the changes of the relative concentration of MR-1 and its secreted extracellular polymer content, the growth promotion ability of biochar also increases as the pyrolysis temperature increases. These results suggest that wheat-straw-derived biochar may be an important agent for activating microbial growth and can be used to accelerate the transformation of roxarsone, which could be a novel strategy for roxarsone remediation.
Collapse
Affiliation(s)
- Li Wengang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China
- Tangshan Ecological Environmental Bureau, Tangshan, China
| | - Chen Fang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhong Rong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Chen Cuihong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Pennino MJ, Leibowitz SG, Compton JE, Beyene MT, LeDuc SD. Wildfires can increase regulated nitrate, arsenic, and disinfection byproduct violations and concentrations in public drinking water supplies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149890. [PMID: 34520927 PMCID: PMC10084414 DOI: 10.1016/j.scitotenv.2021.149890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 05/21/2023]
Abstract
Wildfires are a concern for water quality in the United States, particularly in the wildland-urban interface of populous areas. Wildfires combust vegetation and surface soil organic matter, reduce plant nutrient uptake, and can alter the composition of runoff and receiving waters. At the wildland-urban interface, fires can also introduce contaminants from the combustion of man-made structures. We examine post-wildfire effects on drinking water quality by evaluating concentrations and maximum contaminant level (MCL) violations of selected contaminants regulated in the U.S. at public drinking water systems (PWSs) located downstream from wildfire events. Among contaminants regulated under the U.S. Safe Drinking Water Act, nitrate, arsenic, disinfection byproducts, and volatile organic compounds (VOCs) were analyzed in watersheds that experienced major wildfires. Surface water sourced drinking water (SWDW) nitrate violations increased by an average of 0.56 violations per PWS and concentrations increased by 0.044 mg-N/L post-wildfire. Groundwater sourced drinking water (GWDW) nitrate violations increased by 0.069 violations per PWS and concentrations increased by 0.12 mg-N/L post-wildfire. SWDW total trihalomethane (TTHM) violations increased by 0.58 violations per PWS and concentrations increased by 10.4 μg/L. SWDW total haloacetic acid (HAA5) violations increased by 0.82 violations per PWS and concentrations increased by 8.5 μg/L. Arsenic violations increased by 1.08 violations per PWS and concentrations increased by 0.92 μg/L. There was no significant effect of wildfires on average VOC violations. Nitrate violations increased in 75% of SWDW sites and 34% of GWDW sites post-wildfire, while about 71% and 50% of SWDW sites showed an increase in TTHM and HAA5 violations. Violations also increased for 35% of arsenic and 44% of VOC sites post-wildfire. These findings support the need for increased awareness about the impact of wildfires on drinking water treatment to help PWS operators adapt to the consequences of wildfires on source water quality, particularly in wildfire-prone regions.
Collapse
Affiliation(s)
- Michael J Pennino
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Health & Environmental Effects Assessment Division, Washington, DC, USA.
| | - Scott G Leibowitz
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Jana E Compton
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Mussie T Beyene
- Oak Ridge Institute for Science and Education (ORISE), U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Stephen D LeDuc
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Health & Environmental Effects Assessment Division, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Xu J, Wu Y, Ma M, Luo T, Xia J, Zhang X. A novel transformation pathway of p-arsanilic acid in water by colloid ferric hydroxide under UVA light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5043-5051. [PMID: 34415520 DOI: 10.1007/s11356-021-15975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Iron species that occur in natural surface water could affect the photochemical behavior of pollutants. Complexation between iron species and polycarboxylate or heavy metals has been widely reported, where the ligands could be oxidized via ligand-to-metal charge transfer (LMCT) by light inducement. Such complexation and photochemical reactions might also occur for low valance metal-containing organic compounds, which is worthy of investigation. This work studied the phototransformation of p-arsanilic acid (ASA), an organic arsenic compound that is widely used as a feed additive in the poultry industry, by colloidal ferric hydroxide (CFH) using black light lamps (λ = 365 nm) as the light source. The results revealed the contribution to ASA transformation at circumneutral conditions by CFH through an LMCT process, which is the same as that for As(III). The complexation between ASA and CFH was investigated using UV-vis spectroscopy. The estimated equilibrium constant for the CFH-ASA complex was log Kf271 = 4.22. The analysis of the photoproducts found the generation of both inorganic and organic arsenic. Our findings confirmed the similarities in the photochemical mechanisms of ASA and As(III) in the presence of CFH. The results help in further understanding the fate of organoarsenicals in the surface water environment.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Yi Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Mengling Ma
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Tao Luo
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Jun Xia
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Wang Y, Ma D, Zhang G, Wang X, Zhou J, Chen Y, You X, Liang C, Qi Y, Li Y, Wang A. An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules 2021; 27:molecules27010172. [PMID: 35011402 PMCID: PMC8746453 DOI: 10.3390/molecules27010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
A sensitive electrochemical immunosensor was prepared for rapid detection of ASA based on arsanilic acid (ASA) monoclonal antibody with high affinity. In the preparation of nanomaterials, polyethyleneimine (PEI) improved the stability of the solution and acted as a reducing agent to generate reduced graphene oxide (rGO) with relatively strong conductivity, thereby promoting the transfer of electrons. The dual conductivity of rGO and silver nanoparticles (AgNPs) improved the sensitivity of the sensor. The synthesis of nanomaterials were confirmed by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the optimal experiment conditions, the sensor could achieve the detection range of 0.50–500 ng mL−1 and the limit of detection (LOD) of 0.38 ng mL−1 (S/N = 3). Moreover, the sensor exhibited excellent specificity and acceptable stability, suggesting that the proposed sensor possessed a good potential in ASA detection. Thus, the as-prepared biosensor may be a potential way for detecting other antibiotics in meat and animal-derived foods.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Dongdong Ma
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xuannian Wang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang 453003, China;
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xiaojuan You
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yuya Li
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
- Correspondence:
| |
Collapse
|
12
|
Tyutereva YE, Sherin PS, Polyakova EV, Grivin VP, Plyusnin VF, Shuvaeva OV, Xu J, Wu F, Pozdnyakov IP. Synergetic effect of potassium persulfate on photodegradation of para-arsanilic acid in Fe(III) oxalate system. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhao F, Wang C, Sun D, Zhang L, Wang Z, Piao J, Piao J, Jin M. Effects of sodium arsenite and dimethyl arsenic acid on Liaoning cashmere goat skin fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37918-37928. [PMID: 33721167 DOI: 10.1007/s11356-021-12457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/01/2020] [Indexed: 06/12/2023]
Abstract
The morphology and oxidation state of arsenic in its compounds affects the skin cell toxicity. Accordingly, the present study was conducted to explore the effects of two different arsenic compounds on the proliferation and survival of Liaoning cashmere goat skin fibroblasts. Based on MTT assay results, at 24 h, the proliferation concentration, critical concentration, and half inhibitory concentration (IC50) of sodium arsenite were 0.50, 5.00, and 45.66 μmol/L, respectively. The corresponding values for dimethyl arsenic acid were 0.85, 1.00, and 38.68 mmol/L. Immunofluorescence, transmission electron microscopy, and mitochondria membrane potential (MMP) assays showed that sodium arsenite promotes microtubule polymerization and increases MMP, while cells treated with dimethyl arsenic acid exhibited cytoskeletal collapse and decreased MMP. In the IC50 groups for both arsenic agents, the cytoskeletons collapsed, microtubules were gathered into bundles, and MMP was significantly decreased. Dimethyl arsenic acid had a stronger effect on MMP than sodium arsenite. Flow cytometry revealed a slightly lower occurrence of apoptosis in the sodium arsenite proliferation group, while it was slightly increased in the dimethyl arsenic acid proliferation group. Apoptosis was increased more significantly in the sodium arsenite IC50 group than in the dimethyl arsenic acid IC50 group. These results indicate that the differences in cell proliferation and cytotoxicity induced by inorganic and organic arsenic are related to their effects on cellular structures.
Collapse
Affiliation(s)
- Fengqin Zhao
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Chuang Wang
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Dongyu Sun
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Linlin Zhang
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Zhiyue Wang
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Jun Piao
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Jingai Piao
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China
| | - Mei Jin
- Liaoning Normal University, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Dalian, 116029, China.
| |
Collapse
|
14
|
Tang R, Wang Y, Yuan S, Wang W, Yue Z, Zhan X, Hu ZH. Organoarsenic feed additives in biological wastewater treatment processes: Removal, biotransformation, and associated impacts. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124789. [PMID: 33310328 DOI: 10.1016/j.jhazmat.2020.124789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Aromatic organoarsenicals are widely used in animal feeding operations and cause arsenic contamination on livestock wastewater and manure, thereby raising the risk of surface water pollution. Biological wastewater treatment processes are often used for livestock wastewater treatment. Organoarsenic removal and biotransformation under aerobic and anaerobic conditions, and the associated impacts have received extensive attention due to the potential threat to water security. The removal efficiency and biotransformation of organoarsenicals in biological treatment processes are reviewed. The underlying mechanisms are discussed in terms of functional microorganisms and genes. The impacts associated with organoarsenicals and their degradation products on microbial activity and performance of bioreactors are also documented. Based on the current research advancement, knowledge gaps and potential research in this field are discussed. Overall, this work delivers a comprehensive understanding on organoarsenic behaviors in biological wastewater treatment processes, and provides valuable information on the control of arsenic contamination from the degradation of organoarsenicals in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Li Z, Chen X, Zhang X, Wang Y, Li D, Gao H, Duan X. Selective solid-phase extraction of four phenylarsonic compounds from feeds, edible chicken and pork with tailoring imprinted polymer. Food Chem 2021; 347:129054. [PMID: 33484954 DOI: 10.1016/j.foodchem.2021.129054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Abstract
The novel molecularly imprinted microspheres for four phenylarsonic compounds have been firstly prepared with the reversible addition-fragmentation chain transfer polymerization in a suspension system. The resulting polymeric microspheres were characterized by infrared spectrum, scanning electron microscope and differential scanning calorimetry. With serial adsorption experiments, the polymeric microspheres showed highly specific molecular recognition, fast mass transfer rate and robust adsorption of the substrates. Then, the imprinted polymer was used as the solid-phase extraction adsorbent to extract the phenylarsonic compounds from the feeds, edible chicken and pork. The cartridge was washed with 2 mL ethyl acetate and eluted with 3 mL of methanol- acetic acid (90:10, v/v). The recoveries of the molecularly imprinted solid-phase extraction (MISPE) column ranged from 83.4% to 95.1%. This work provided a versatile approach for the specific extraction of the organoarsenic compounds from complicated matrices and exhibited a bright future for the application of MISPE column.
Collapse
Affiliation(s)
- Zhaozhou Li
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiujin Chen
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiwen Zhang
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Wang
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Daomin Li
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hongli Gao
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xu Duan
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
16
|
Cavalera S, Di Nardo F, Spano G, Anfossi L, Manesiotis P, Baggiani C. Stoichiometric molecular imprinting using polymerisable urea and squaramide receptors for the solid phase extraction of organo-arsenic compound roxarsone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5729-5736. [PMID: 33220662 DOI: 10.1039/d0ay01635g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design, preparation and evaluation of molecularly imprinted polymers for roxarsone (4-hydroxy-3-nitrophenylarsonic acid), an organo-arsenic swine and poultry feed additive, using bi-substituted ureas and squaramide receptors as the functional monomers, are demonstrated. Pre-polymerisation studies of the template-monomer complexation performed by 1H NMR experiments show that squaramide-based monomers provide association equilibrium constant values higher than urea-based monomers. Equilibrium rebinding experiments in methanol show that two squaramide-based materials have good molecular recognition properties towards roxarsone, with high affinity (Keq = 16.85 × 103 L mol-1 and 14.65 × 103 L mol-1, respectively), high imprinting factors (4.73 and 3.64 respectively) and good selectivity towards two roxarsone-related compounds, acetarsone (3-acetamido-4-hydroxyphenylarsonic acid) and nitarsone (4-nitrophenylarsonic acid). Polymer MIP-SQ2 was successfully used to setup an experimental protocol for the direct solid phase extraction of roxarsone from surface water samples. The method gives clean HPLC traces, with recoveries between 91% and 95% at concentration levels of 5.0, 10, and 25 mg L-1. Sample preconcentration with good recoveries between 87% and 97%, are shown, confirming that it is possible to employ the developed materials to measure roxarsone down to 1 μg L-1 in water samples.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Torino, Via Giuria 5, 10125-Torino, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Tyutereva YE, Sherin PS, Polyakova EV, Koscheeva OS, Grivin VP, Plyusnin VF, Shuvaeva OV, Pozdnyakov IP. Photodegradation of para-arsanilic acid mediated by photolysis of iron(III) oxalate complexes. CHEMOSPHERE 2020; 261:127770. [PMID: 32731031 DOI: 10.1016/j.chemosphere.2020.127770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Organic arsenicals are important environment pollutants due to wide use in livestock and toxicity of degradation products. In this work we report about the efficient photodegradation of the p-arsanilic acid (p-ASA) and its decomposition products in the Fe(III)-oxalate assisted approach under nature-relevant conditions. At neutral pH under near-visible UV irradiation the Fe(III) oxalate complexes generate the primary oxidizing intermediate, OH radical (the quantum yield of ϕOH ∼ 0.06), which rapidly reacts with p-ASA with high rate constant, (8.6 ± 0.5) × 109 M-1s-1. Subsequent radical reactions result in the complete photooxidation of both p-ASA and basic aromatic photoproducts with the predominant formation of inorganic arsenic species, mainly As(V), under optimal conditions. Comparing with the direct UV photolysis, the presented Fe(III)-oxalate mediated degradation of p-ASA has several advantages: higher efficiency at low p-ASA concentration and complete degradation of organic arsenic by-products without use of short-wavelength UV radiation. The obtained results illustrate that the Fe(III)-oxalate complexes are promising natural photosensitizers for the removal of arsenic pollutants from contaminated waters.
Collapse
Affiliation(s)
- Yuliya E Tyutereva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Petr S Sherin
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; International Tomography Center, 3a Institutskaya str., 630090, Novosibirsk, Russian Federation.
| | - Evgeniya V Polyakova
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Olga S Koscheeva
- Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Vyacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Victor F Plyusnin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Olga V Shuvaeva
- Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
18
|
Liu B, Liu Z, Wu H, Pan S, Cheng X, Sun Y, Xu Y. Effective and simultaneous removal of organic/inorganic arsenic using polymer-based hydrated iron oxide adsorbent: Capacity evaluation and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140508. [PMID: 32629256 DOI: 10.1016/j.scitotenv.2020.140508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, resin-based hydrated iron oxide (HFOR) composites were prepared and used as a functional adsorbent for the simultaneous removal of p-Arsanilic acid (p-ASA) and arsenate (As (V)). The effects of solution pH and coexisting substances on the adsorption of different arsenic species were also investigated. Results showed that the coexisting substances slightly affected the adsorption process of two arsenic species. Analysis of the adsorption behavior, isotherm equilibrium, and adsorption kinetics, as well as that results of the X-ray photoelectron spectroscopy, zeta potential, and other analytical methods revealed that the satisfactory adsorption performance of HFOR can be attributed to the electrostatic interactions induced by the positively charged groups and the coordination of the hydrated iron oxide nanoparticles, which exhibited excellent specific adsorption for both arsenic species. Moreover, HFOR showed high acid and alkali resistance and reusability, as well as a constant co-removal performance for different arsenic species in five consecutive operating cycles (55 mg As/g of As(V) and 18 mg/g of p-ASA). Results of continuous running fixed-bed column experiments confirmed that HFOR enabled excellent simultaneous adsorption for p-ASA and As(V).
Collapse
Affiliation(s)
- Biming Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhenxue Liu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Shunlong Pan
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xing Cheng
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
19
|
Mehta K, Kaur B, Pandey KK, Kaler S, Dhar P. Curcumin supplementation shows modulatory influence on functional and morphological features of hippocampus in mice subjected to arsenic trioxide exposure. Anat Cell Biol 2020; 53:355-365. [PMID: 32929054 PMCID: PMC7527119 DOI: 10.5115/acb.18.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/13/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Since, oxidative stress has been suggested as one of the mechanisms underlying arsenic-induced toxicity, the present study focused on the role of antioxidant (curcumin) supplementation on behavioral, biochemical, and morphological alterations with context to mice hippocampus (CA1) following arsenic trioxide (As2O3) administration. Healthy male Swiss albino mice were divided into control and experimental groups. As2O3 (2 mg/kg bw) alone or along with curcumin (100 mg/kg bw) was administered to experimental groups by oral route for 45 days whereas the control groups received either no treatment or vehicle for curcumin. Animals were subjected to behavioral study towards the end of the experimental period (day 33-45). On day 46, the brain samples were obtained and subjected either to immersion fixation (for morphometric observations) or used afresh for biochemical test. Behavioral tests (open field, elevated plus maze, and Morris water maze) revealed enhanced anxiety levels and impairment of cognitive functions in As2O3 alone treated groups whereas a trend of recovery was evident in mice simultaneously treated with As2O3 and curcumin. Morphological observations showed noticeable reduction in stratum pyramidale thickness (CA1), along with decrease in density and size of pyramidal neurons in As2O3 alone exposed group as compared to As2O3+Cu co-treated group. Hippocampal glutathione levels were found to be downregulated in animals receiving As2O3 as against the levels of controls and curcumin supplemented animals, thereby, suggestive of beneficial role of curcumin on As2O3 induced adverse effects.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Xue L, Zhao Z, Zhang Y, Liao J, Wu M, Wang M, Sun J, Gong H, Guo M, Li S, Zheng Y. Dietary exposure to arsenic and human health risks in western Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138840. [PMID: 32417471 DOI: 10.1016/j.scitotenv.2020.138840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The health effects of drinking water exposure to inorganic arsenic are well known but are less well defined for dietary exposure. The rising concerns of arsenic risks from diet motivated this study of arsenic concentrations in highland barley, vegetables, meat, and dairy products to evaluate arsenic exposure source and to assess health risks among rural residents of Ngari area, western Tibet. Total arsenic and arsenic speciation were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography combined with ICP-MS (HPLC-ICP-MS) respectively. Average total arsenic concentrations of 0.18 ± 0.21 (n = 45, median: 0.07 mg·kg-1), 0.40 ± 0.57 (n = 17, median: 0.15 mg·kg-1), 0.21 ± 0.16 (n = 12, median: 0.17 mg·kg-1), and 0.18 ± 0.08 (n = 11, median: 0.22 mg·kg-1) were observed in highland barley, vegetables, meat, and dairy products, respectively. Inorganic arsenic was determined to be the main species of arsenic in highland barley, accounting for about 64.4 to 99.3% (average 83.3%) of total arsenic. Nearly half (44.4%) of the local residents had ingested >3.0 × 10-4 mg·kg-1·d-1 daily dose of arsenic from highland barley alone, above the maximum oral reference dose recommended by the United States Environmental Protection Agency (USEPA). The inorganic arsenic daily intake from highland barley was 3.6 × 10-4 mg·kg-1·d-1. Dietary exposure to inorganic arsenic alone increased the cancer risk probability to 5.4 in 10,000, assuming that the inorganic arsenic in highland barley has the same carcinogenic effects as that in water.
Collapse
Affiliation(s)
- Lili Xue
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjie Zhao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinfeng Zhang
- National Plateau Wetlands Research Center, The College of Wetlands, Southwest Forestry University, Kunming 650000, China
| | - Jie Liao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wu
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingguo Wang
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Jing Sun
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hongqiang Gong
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Min Guo
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Shehong Li
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
21
|
Wang G, Han N, Liu L, Ke Z, Li B, Chen G. Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114370. [PMID: 32443212 DOI: 10.1016/j.envpol.2020.114370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 106 electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Neng Han
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengchen Ke
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
22
|
An K, Xue MJ, Zhong JY, Yu SN, Lan TS, Qi ZQ, Xia JJ. Arsenic trioxide ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice by inducing CD4 + T cell apoptosis. J Neuroinflammation 2020; 17:147. [PMID: 32375831 PMCID: PMC7201567 DOI: 10.1186/s12974-020-01829-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice. METHODS ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting. RESULTS ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation, and decreased the expression levels of IL-2, IFN-γ, IL-1β, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord. CONCLUSIONS Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Collapse
Affiliation(s)
- Ke An
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng-Jiao Xue
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jia-Ying Zhong
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Nan Yu
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Tian-Shu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Zhong-Quan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| | - Jun-Jie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
23
|
Tao C, Wei X, Zhang B, Zhao M, Wang S, Sun Z, Qi D, Sun L, Rajput SA, Zhang N. Heavy Metal Content in Feedstuffs and Feeds in Hubei Province, China. J Food Prot 2020; 83:762-766. [PMID: 32294760 DOI: 10.4315/0362-028x.jfp-18-539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Heavy metal pollution threatens the health and life of animals and humans through the food chain. This study was performed to survey the heavy metal contamination in feedstuffs and feeds in Hubei Province, People's Republic of China, from 2012 to 2016. Samples were analyzed for cadmium (306 samples), mercury (117 samples), chromium (149 samples), and arsenic (4,358 samples) using atomic absorption spectrometry or atomic fluorescence spectrometry. The incidence rates of cadmium, mercury, chromium, and arsenic contamination of feedstuffs and feeds were high, and feeds were most often contaminated with chromium, followed by arsenic, cadmium, and mercury. The concentrations of heavy metals in samples positive for cadmium, mercury, chromium, and arsenic ranged from 0.001 to 1.200, 0.002 to 6.540, 0.060 to 8737.000, and 0.070 to 33.000 mg/kg, respectively. The mineral and additive samples had higher concentrations of heavy metals. The present study findings highlight the importance of monitoring heavy metals in feedstuffs and feeds and implementing feed management and bioremediation strategies to reduce heavy metal exposure. HIGHLIGHTS
Collapse
Affiliation(s)
- Can Tao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-6138-498X [C.T.])
| | - Xiaotian Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhangjian Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
24
|
Fu W, Lu DL, Yao H, Yuan S, Wang W, Gong M, Hu ZH. Simultaneous roxarsone photocatalytic degradation and arsenic adsorption removal by TiO 2/FeOOH hybrid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18434-18442. [PMID: 32185737 DOI: 10.1007/s11356-020-08310-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) is an extensively used organoarsenic feed additive. The effective removal of arsenic from roxarsone degradation before discharging is of great importance for controlling artificial arsenic pollution in aquatic environment. In this study, a bifunctional TiO2/ferrihydrite (TiO2/FeOOH) hybrid was synthesized by a hydrothermal method for the simultaneously photocatalytic degradation of roxarsone and adsorption removal of released arsenic. The analysis of the prepared TiO2/FeOOH by field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Raman spectra, X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the hybrid of crystalline TiO2 and no crystalline FeOOH. TiO2/FeOOH hybrid had better adsorption capacity for As(V) than roxarsone. Compared to TiO2, the TiO2/FeOOH hybrid exhibited much superior UV-driven photocatalytic activities for roxarsone degradation. After 12 h irradiation, more than 96% of roxarsone was degraded by 1:1 TiO2/FeOOH hybrid, and the released As(V) was simultaneously removed from the solution. The residual As(V) concentration was lower than 0.02 mg L-1. The reusability test indicated that TiO2/FeOOH hybrid had excellent stability and reliability. The possible mechanism of roxarsone degradation and released inorganic arsenics removal by this hybrid was also proposed. These results clearly indicated that the TiO2/FeOOH hybrid could be used for the removal of roxarsone and its degradation product.
Collapse
Affiliation(s)
| | | | - Hang Yao
- College of Civil Engineering and Architecture, Tongling University, Tongling, 244000, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Miao Gong
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
25
|
Tang R, Yuan S, Wang Y, Wang W, Wu G, Zhan X, Hu Z. Arsenic volatilization in roxarsone-loaded digester: Insight into the main factors and arsM genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135123. [PMID: 31818587 DOI: 10.1016/j.scitotenv.2019.135123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The extensive use of roxarsone (ROX) in livestock and poultry husbandry causes the production of arylarsenic-contaminated manure/wastewater. Anaerobic digestion is a conventional technique for livestock manure/wastewater treatment. However, the factors affecting arsenic volatilization are poorly understood in arylarsenic-loaded anaerobic reactors. The main factors such as ROX loading, exposure time of anaerobic granular sludge (AGS) to ROX, and volatile fatty acid (VFA) levels, affecting arsenic volatilization were investigated in this study. The results indicated that ROX loading of 5.70 mg-As·L-1 triggered the maximum volatile arsenic yield of 6.78 ng-As·g-1-VSS·d-1, which was 4.95 times higher compared to the ROX-free assay. The conversion of ROX into inorganic arsenic was an essential step for arsenic volatilization. The 160-day and 270-day exposure of AGS to ROX caused 6-fold and 8-fold increase in volatile arsenic yield, respectively, compared to the 0-day exposure. With the longer-time exposure to ROX, AGS provided more available arsenic for volatilization and its arsenic-volatilizing capacity was significantly enhanced. VFA level was positively associated with arsenic volatilization (r = 0.832-0.950; p < 0.05). The abundance of arsM genes in AGS increased by 34.62-129.05% after the 100-day incubation, and was strongly correlated to arsenic volatilization. Based on these results, possible pathway of arsenic volatilization in ROX-loaded digesters were proposed. The result from this study improves a better understanding of the potential of arsenic volatilization in arylarsenic-contaminated environments.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guangxue Wu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xinmin Zhan
- College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
26
|
Zhao D, Wang J, Yin D, Li M, Chen X, Juhasz AL, Luo J, Navas-Acien A, Li H, Ma LQ. Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121178. [PMID: 31525688 DOI: 10.1016/j.jhazmat.2019.121178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Organoarsenicals have been used in poultry production for years, however, studies focused on roxarsone (ROX), with little attention to p-arsanilic acid (ASA). We assessed arsenic (As) concentration and speciation in chicken meat collected from 10 cities in China. The geometric mean for total As in 249 paired raw and cooked samples was 4.85 and 7.27 μg kg-1 fw, respectively. Among 81 paired raw and cooked samples, ASA and ROX were detected in >90% samples, suggesting the prevalence of organoarsenical use in China. ASA contributed the most (45% on average) to total As in cooked samples, followed by As(V), DMA, As(III), and ROX (7.2-22%). ASA was found to contribute more to total As in chicken meat compared to ROX for the first time. Arsenic in chicken meat showed considerable geographic variation, with higher inorganic arsenic (iAs) being detected from cities with higher ROX and ASA, indicating that organoarsenical use increased iAs concentration in chicken meat. When health risk was estimated, dietary exposure to iAs would result in an increase of 3.2 bladder and lung cancer cases per 100,000 adults. The result supports the removal of organoarsenicals in poultry production from Chinese market and further supports its removal from the global markets.
Collapse
Affiliation(s)
- Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, 10032, United States
| | - Jueyang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Daixia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mengya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaoqiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, 10032, United States
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, Florida, 32611, United States
| |
Collapse
|
27
|
N-Hydroxyarylamine O-Acetyltransferases Catalyze Acetylation of 3-Amino-4-Hydroxyphenylarsonic Acid in the 4-Hydroxy-3-Nitrobenzenearsonic Acid Transformation Pathway of Enterobacter sp. Strain CZ-1. Appl Environ Microbiol 2020; 86:AEM.02050-19. [PMID: 31676473 DOI: 10.1128/aem.02050-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022] Open
Abstract
The organoarsenical feed additive 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone [ROX]) is widely used and released into the environment. We previously showed a two-step pathway of ROX transformation by Enterobacter sp. strain CZ-1 involving the reduction of ROX to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and the acetylation of 3-AHPAA to N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA) (K. Huang, H. Peng, F. Gao, Q. Liu, et al., Environ Pollut 247:482-487, 2019, https://doi.org/10.1016/j.envpol.2019.01.076). In this study, we identified two nhoA genes (nhoA1 and nhoA2), encoding N-hydroxyarylamine O-acetyltransferases, as responsible for 3-AHPAA acetylation in Enterobacter sp. strain CZ-1. The results of genetic disruption and complementation showed that both nhoA genes are involved in ROX biotransformation and that nhoA1 is the major 3-AHPAA acetyltransferase gene. Quantitative reverse transcription-PCR analysis showed that the relative expression level of nhoA1 was 3-fold higher than that of nhoA2 Each of the recombinant NhoAs was overexpressed in Escherichia coli BL21 and homogenously purified as a dimer by affinity chromatography. Both purified NhoAs catalyzed acetyl coenzyme A-dependent 3-AHPAA acetylation. The Km values of 3-AHPAA for NhoA1 and NhoA2 were 151.5 and 428.3 μM, respectively. Site-directed mutagenesis experiments indicated that two conserved arginine and cysteine residues of each NhoA were necessary for their enzyme activities.IMPORTANCE Roxarsone (ROX) is an organoarsenic feed additive that has been widely used in poultry industries for growth promotion, coccidiosis control, and meat pigmentation improvement for more than 70 years. Most ROX is excreted in the litter and dispersed into the environment, where it is transformed by microbes into different arsenic-containing compounds. A major product of ROX transformation is N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), which is also used as a clinical drug for treating refractory bacterial vaginosis. Here, we report the cloning and functional characterization of two genes encoding N-hydroxyarylamine O-acetyltransferases, NhoA1 and NhoA2, in Enterobacter sp. strain CZ-1, which catalyze the acetylation of 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) formed by the reduction of ROX to N-AHPAA. This study provides new insights into the function of N-hydroxyarylamine O-acetyltransferase in the transformation of an important organoarsenic compound.
Collapse
|
28
|
Coryell M, Roggenbeck BA, Walk ST. The Human Gut Microbiome's Influence on Arsenic Toxicity. CURRENT PHARMACOLOGY REPORTS 2019; 5:491-504. [PMID: 31929964 PMCID: PMC6953987 DOI: 10.1007/s40495-019-00206-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Arsenic exposure is a public health concern of global proportions with a high degree of interindividual variability in pathologic outcomes. Arsenic metabolism is a key factor underlying toxicity, and the primary purpose of this review is to summarize recent discoveries concerning the influence of the human gut microbiome on the metabolism, bioavailability, and toxicity of ingested arsenic. We review and discuss the current state of knowledge along with relevant methodologies for studying these phenomena. RECENT FINDINGS Bacteria in the human gut can biochemically transform arsenic-containing compounds (arsenicals). Recent publications utilizing culture-based approaches combined with analytical biochemistry and molecular genetics have helped identify several arsenical transformations by bacteria that are at least possible in the human gut and are likely to mediate arsenic toxicity to the host. Other studies that directly incubate stool samples in vitro also demonstrate the gut microbiome's potential to alter arsenic speciation and bioavailability. In vivo disruption or elimination of the microbiome has been shown to influence toxicity and body burden of arsenic through altered excretion and biotransformation of arsenicals. Currently, few clinical or epidemiological studies have investigated relationships between the gut microbiome and arsenic-related health outcomes in humans, although current evidence provides strong rationale for this research in the future. SUMMARY The human gut microbiome can metabolize arsenic and influence arsenical oxidation state, methylation status, thiolation status, bioavailability, and excretion. We discuss the strength of current evidence and propose that the microbiome be considered in future epidemiologic and toxicologic studies of human arsenic exposure.
Collapse
Affiliation(s)
- Michael Coryell
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Barbara A. Roggenbeck
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| |
Collapse
|
29
|
Chen Y, Lin C, Zhou Y, Long L, Li L, Tang M, Liu Z, Pozdnyakov IP, Huang LZ. Transformation of roxarsone during UV disinfection in the presence of ferric ions. CHEMOSPHERE 2019; 233:431-439. [PMID: 31176907 DOI: 10.1016/j.chemosphere.2019.05.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The transformation of roxarsone (ROX) during UV disinfection with Fe(III) has been investigated. Fe(OH)2+, as the main Fe(III) species at pH = 3, produces HO under UV irradiation leading to the oxidation of ROX. Dissolved oxygen plays a very important role in the continuous conversion of generated Fe2+ to Fe3+, which ensures a Fe(III)-Fe(II) cycle in the system. The presence of Cl-/HCO3-/NO3- has little influence on the ROX transformation, whereas PO43- achieves an obvious inhibitory effect. The transformation of ROX leads to the formation of inorganic arsenic consisting of a much higher amount of As(V) than As(III). LC-MS analysis shows that phenol, o-nitrophenol and arsenic acid were the main transformation products. Both the radical scavenger experiment and electron spin resonance data confirm that the HO is responsible for ROX transformation. The toxic transformation products are found to have potential environmental risks for the natural environment, organisms and human beings.
Collapse
Affiliation(s)
- Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China; Engineering Research Center of Urban Disasters Prevention and Fire Rescue Technology of Hubei Province, Wuhan University, Wuhan, 430072, China
| | - Chuanjing Lin
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China; State Key Lab Urban Water Resource & Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiyi Zhou
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Li Long
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Lili Li
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Min Tang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China; Engineering Research Center of Urban Disasters Prevention and Fire Rescue Technology of Hubei Province, Wuhan University, Wuhan, 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China; Engineering Research Center of Urban Disasters Prevention and Fire Rescue Technology of Hubei Province, Wuhan University, Wuhan, 430072, China.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russian Federation
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China; Engineering Research Center of Urban Disasters Prevention and Fire Rescue Technology of Hubei Province, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
30
|
Foster SA, Pennino MJ, Compton JE, Leibowitz SG, Kile ML. Arsenic Drinking Water Violations Decreased across the United States Following Revision of the Maximum Contaminant Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11478-11485. [PMID: 31502444 PMCID: PMC7075409 DOI: 10.1021/acs.est.9b02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arsenic poses a threat to public health due to widespread environmental prevalence and known carcinogenic effects. In 2001, the US EPA published the Final Arsenic Rule (FAR) for public drinking water, reducing the maximum contaminant level (MCL) from 50 to 10 μg/L. We investigated impacts of the FAR on drinking water violations temporally and geographically using the Safe Drinking Water Information System. Violations exceeding the MCL and the population served by violating systems were analyzed across the conterminous US from 2006 (onset of FAR enforcement) to 2017. The percentage of public water system violations declined from 1.3% in 2008 to 0.55% in 2017 (p < 0.001, slope = -0.070), and the population served decreased by over 1 million (p < 0.001, slope = -106 886). Geographical analysis demonstrated higher mean violations and populations served in certain counties rather than evenly distributed across states. The decline in violations is likely due to the adoption of documented and undocumented treatment methods and possibly from reduced environmental releases. Considering other studies that have shown decreased urinary arsenic levels in the population served by public water systems since the new standard, it may be inferred that the FAR is facilitating the reduction of arsenic exposure in the US.
Collapse
Affiliation(s)
- Stephanie A Foster
- College of Public Health and Human Sciences , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Michael J Pennino
- National Center for Environmental Assessment , US EPA, Office of Research and Development , Washington , District of Columbia 20460 , United States
| | - Jana E Compton
- National Health and Environmental Effects Research Laboratory, Western Ecology Division , US Environmental Protection Agency , Corvallis , Oregon 97333 , United States
| | - Scott G Leibowitz
- National Health and Environmental Effects Research Laboratory, Western Ecology Division , US Environmental Protection Agency , Corvallis , Oregon 97333 , United States
| | - Molly L Kile
- College of Public Health and Human Sciences , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
31
|
UVC-induced photodegradation of p-arsanilic acid assisted by humic substances. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tyutereva YE, Sherin PS, Parkhats MV, Liu Z, Xu J, Wu F, Plyusnin VF, Pozdnyakov IP. New insights into mechanism of direct UV photolysis of p-arsanilic acid. CHEMOSPHERE 2019; 220:574-581. [PMID: 30597365 DOI: 10.1016/j.chemosphere.2018.12.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
The mechanism of direct UV photolysis of p-arsanilic acid (p-ASA), a widely used veterinary drug, was revised by means of laser flash photolysis coupled with high resolution liquid chromatography - mass spectrometry (LC-MS). None of p-ASA triplet state or singlet oxygen was found to directly participate in the photodegradation of p-ASA as it was assumed in previous works. Here we demonstrate that the main primary photoprocess is a monophotonic ionization (ϕion266nm = 0.032) leading to the formation of hydrated electron and corresponding anilinyl cation radical. These primary species react with dissolved oxygen yielding secondary reactive oxygen species. The final organic photoproducts, such as aminophenol and different dimeric products, originate from various reactions between these secondary species. The generation of inorganic arsenic, both As(V) and As(III), was also observed in agreement with previous works. For the first time we report the quantum yield of p-ASA photodegradation, which decreases from 0.058 to 0.035 with the excitation wavelength from 222 to 308 nm.
Collapse
Affiliation(s)
- Yuliya E Tyutereva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Petr S Sherin
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; International Tomography Center, 3a Institutskaya str., 630090, Novosibirsk, Russian Federation
| | - Marina V Parkhats
- B.I. Stepanov Institute of Physics National Academy of sciences of Belarus, 220072, Minsk, Belarus
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430079, China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Feng Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Victor F Plyusnin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
33
|
Jones MR, Tellez-Plaza M, Vaidya D, Grau-Perez M, Post WS, Kaufman JD, Guallar E, Francesconi KA, Goessler W, Nachman KE, Sanchez TR, Navas-Acien A. Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:310-322. [PMID: 29795237 PMCID: PMC6252166 DOI: 10.1038/s41370-018-0042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/03/2017] [Accepted: 01/27/2018] [Indexed: 05/18/2023]
Abstract
Differences in residential location as well as race/ethnicity and dietary habits may result in differences in inorganic arsenic (iAs) exposure. We investigated the association of exposure to iAs with race/ethnicity, geography, and dietary intake in a random sample of 310 White, Black, Hispanic, and Chinese adults in the Multi-Ethnic Study of Atherosclerosis from 6 US cities with inorganic and methylated arsenic (ΣAs) measured in urine. Dietary intake was assessed by food-frequency questionnaire. Chinese and Hispanic race/ethnicity was associated with 82% (95% CI: 46%, 126%) and 37% (95% CI: 10%, 70%) higher urine arsenic concentrations, respectively, compared to White participants. No differences were observed for Black participants compared to Whites. Urine arsenic concentrations were higher for participants in Los Angeles, Chicago, and New York compared to other sites. Participants that ate rice ≥2 times/week had 31% higher urine arsenic compared to those that rarely/never consumed rice. Participants that drank wine ≥2 times/week had 23% higher urine arsenic compared to rare/never wine drinkers. Intake of poultry or non-rice grains was not associated with urinary arsenic concentrations. At the low-moderate levels typical of the US population, exposure to iAs differed by race/ethnicity, geographic location, and frequency of rice and wine intake.
Collapse
Affiliation(s)
- Miranda R Jones
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Institute for Biomedical Research Hospital Clinico de Valencia-INCLIVA, Valencia, Spain
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences,School of Public Health, University of Washington, Seattle, WA, USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | - Keeve E Nachman
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Ana Navas-Acien
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Huang K, Peng H, Gao F, Liu Q, Lu X, Shen Q, Le XC, Zhao FJ. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:482-487. [PMID: 30703681 DOI: 10.1016/j.envpol.2019.01.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) is an arsenic-containing compound widely used as a feed additive in poultry industries. ROX excreted in chicken manure can be transformed by microbes to different arsenic species in the environment. To date, most of the studies on microbial transformation of ROX have focused on anaerobic microorganisms. Here, we isolated a pure cultured aerobic ROX-transforming bacterial strain, CZ-1, from an arsenic-contaminated paddy soil. On the basis of 16S rRNA gene sequence, strain CZ-1 was classified as a member of the genus Enterobacter. During ROX biotransformation by strain CZ-1, five metabolites including arsenate (As[V]), arsenite (As[III]), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and a novel sulfur-containing arsenic species (AsC9H13N2O6S) were detected and identified based on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), HPLC-ICP-MS/electrospray ionization mass spectrometry (ESI-MS) and HPLC-electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (ESI-qTOF-MS) analyses. N-AHPAA and 3-AHPAA were the main products, and 3-AHPAA could also be transformed to N-AHPAA. Based on the results, we propose a novel ROX biotransformation pathway by Enterobacter. sp CZ-1, in which the nitro group of ROX is first reduced to amino group (3-AHPAA) and then acetylated to N-AHPAA.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Fan Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - QingQing Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Qirong Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Giannenas I, Bonos E, Filliousis G, Stylianaki I, Kumar P, Lazari D, Christaki E, Florou-Paneri P. Effect of a Polyherbal or an Arsenic-Containing Feed Additive on Growth Performance of Broiler Chickens, Intestinal Microbiota, Intestinal Morphology, and Lipid Oxidation of Breast and Thigh Meat. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Xu J, Zhang H, Luo T, Liu Z, Xia J, Zhang X. Phototransformation of p-arsanilic acid in aqueous media containing nitrogen species. CHEMOSPHERE 2018; 212:777-783. [PMID: 30179842 DOI: 10.1016/j.chemosphere.2018.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
The effects of co-existing nitrogen species in surface water on the phototransformation of organoarsenical p-arsanilic acid (p-ASA) have been investigated using a xenon lamp as a simulated solar light source. Significant enhancements of p-ASA phototransformation efficiency were observed in the presence of nitrate and nitrite, increasing with the concentration of these species and pH, whereas ammonia showed no obvious effect. The products, including inorganic arsenic species and organic derivatives, have been analyzed in order to reveal the phototransformation pathways. In the nitrate and nitrite systems, only small proportions of inorganic arsenic species were generated, with the majority of p-ASA being converted into other organoarsenical derivatives through hydroxylation, nitration, and nitrosation. Phototransformation of p-ASA in collected natural surface water was also observed. This work has implications for the phototransformation of p-ASA in nitrogen-contaminated surface water.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Heng Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Tao Luo
- Department of Environmental Science, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Xia
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
Peng L, Mianzhi W, Weixin Z, Qin Z, Xiying X, Junyi W, Yongxue S. Stress-responsive genes (hsp70 and mt) and genotoxicity elicited by roxarsone exposure in Carassius auratus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:132-139. [PMID: 30005308 DOI: 10.1016/j.etap.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, comet assay (single-cell gel electrophoresis), real-time quantitative PCR (qPCR) and proteomics approach were used to comprehensively assess toxicity elicited by roxarsone exposure in C. auratus at 50, 150 and 300 μg/L for 7, 14 and 21 days. Results of comet assay showed that DNA were seriously damaged under the pressure of roxarsone, especially the concentration of 50 μg/L that always maintained a sustained and increased damage effect to fish liver cell during the 21 days experiment. The expressions of biomarker genes showed that hsp70 gene expressions raised significantly and the group of 50 μg/L also showed a continued increased response effect, whereas mt gene was only slightly increased. Results of proteomics for the concentration of 300 μg/L found that thirty six significantly changed proteins were identified by MALDI-TOF/TOF-MS. They are involved in many important processes including energy producing, cytoskeleton stabilization, substance metabolism and stress response. Among these metabolites, carbohydrate metabolism (mainly occurred during day 1-14) and cytoskeleton proteins (mainly occurred during day 14-21) were the most identified proteins. These results revealed that the low levels of 50 μg/L probably led to a continuous damage than the higher groups during the experiment time. Furthermore, proteomics results might implied that though cell system expected to mobilize almost all the functional proteins to quickly establish a new homeostasis together when facing the roxarsone at first, but in the end the destroyed cell cytoskeleton structure might burst the bubble.
Collapse
Affiliation(s)
- Liu Peng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Wang Mianzhi
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Zhong Weixin
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Zhou Qin
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Xie Xiying
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Wangxiao Junyi
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China
| | - Sun Yongxue
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, China.
| |
Collapse
|
38
|
Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040787. [PMID: 29670010 PMCID: PMC5923829 DOI: 10.3390/ijerph15040787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/14/2018] [Indexed: 01/04/2023]
Abstract
We investigated if geologic factors are linked to elevated arsenic (As) concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells), we evaluated occurrences of elevated As (above 5 μg/L) based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5%) having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.
Collapse
|
39
|
Hu Y, Zhang W, Chen G, Cheng H, Tao S. Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:667-676. [PMID: 29227952 DOI: 10.1016/j.envpol.2017.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Because most chickens are reared in intensive farms, where a range of feed additives are used routinely, concerns have been raised on the potential public health risk of chicken product consumption. This study was conducted to characterize the contents of trace metals in fresh chicken tissues (354 samples) on the food markets in Guangdong province of southern China, a major region of chicken production with heavy per capita chicken consumption, and to assess the public health risk from chronic dietary exposure to the trace metals through chicken consumption. With the exception of Cr, Ni, and Pb, the contents of trace metals were generally higher in the chicken giblets (livers, gizzards, hearts, and kidneys) compared to muscles (breasts and drumsticks). Chicken tissues from the urban markets generally contained higher levels of As, Cu, Mn, and Zn than those from the rural markets, while the contents of Pb were typically higher in the chicken muscles from the rural markets. Results of statistical analyses indicate that Cu, Zn, and As in the chicken tissues derived mainly from the feeds, which is consistent with the widespread use of Cu, Zn, and phenylarsenic compounds as feed supplements/additives in intensive poultry farming. No non-carcinogenic risk is found with the consumption of fresh chicken meat products on the food markets, while approximately 70% of the adult population in Guangzhou and 30% of those in Lianzhou have bladder and lung cancer risk above the serious or priority level (10-4), which arises from the inorganic arsenic contained in the chicken tissues. These findings indicate that the occurrence of inorganic arsenic at elevated levels in chicken tissues on the food markets in Guangdong province poses a significant public health risk, thus the use of phenylarsenic feed additives in China's poultry farming should be significantly reduced and eventually phased out.
Collapse
Affiliation(s)
- Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wenfeng Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gang Chen
- Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310, United States
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Liu Q, Leslie EM, Moe B, Zhang H, Douglas DN, Kneteman NM, Le XC. Metabolism of a Phenylarsenical in Human Hepatic Cells and Identification of a New Arsenic Metabolite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1386-1392. [PMID: 29280623 DOI: 10.1021/acs.est.7b05081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental contamination and human consumption of chickens could result in potential exposure to Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), an organic arsenical that has been used as a chicken feed additive in many countries. However, little is known about the metabolism of Roxarsone in humans. The objective of this research was to investigate the metabolism of Roxarsone in human liver cells and to identify new arsenic metabolites of toxicological significance. Human primary hepatocytes and hepatocellular carcinoma HepG2 cells were treated with 20 or 100 μM Roxarsone. Arsenic species were characterized using a strategy of complementary chromatography and mass spectrometry. The results showed that Roxarsone was metabolized to more than 10 arsenic species in human hepatic cells. A new metabolite was identified as a thiolated Roxarsone. The 24 h IC50 values of thiolated Roxarsone for A549 lung cancer cells and T24 bladder cancer cells were 380 ± 80 and 42 ± 10 μM, respectively, more toxic than Roxarsone, whose 24 h IC50 values for A549 and T24 were 9300 ± 1600 and 6800 ± 740 μM, respectively. The identification and toxicological studies of the new arsenic metabolite are useful for understanding the fate of arsenic species and assessing the potential impact of human exposure to Roxarsone.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| | - Elaine M Leslie
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta , 7-08A Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Birget Moe
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta, Canada T2N 4N1
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| | - Donna N Douglas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Walter C. Mackenzie Health Sciences Centre , Edmonton, Alberta, Canada T6G 2B7
| | - Norman M Kneteman
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Walter C. Mackenzie Health Sciences Centre , Edmonton, Alberta, Canada T6G 2B7
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
41
|
Bloem E, Albihn A, Elving J, Hermann L, Lehmann L, Sarvi M, Schaaf T, Schick J, Turtola E, Ylivainio K. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:225-242. [PMID: 28692893 DOI: 10.1016/j.scitotenv.2017.06.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Organic nutrient sources such as farmyard manure, sewage sludge, their biogas digestates or other animal by-products can be valuable fertilizers delivering organic matter to the soil. Currently, especially phosphorus (P) is in the focus of research since it is an essential plant nutrient with finite resources, estimated to last only for some more decades. Efficient utilization of organic P sources in agriculture will help to preserve P resources and thereby has the potential to close nutrient cycles and prevent unwanted P-losses to the environment, one of the major causes for eutrophication of water bodies. Unfortunately, organic P sources usually contain also various detrimental substances, such as potentially toxic elements or organic contaminants like pharmaceuticals as well as pathogenic microorganisms. Additionally, the utilization of some of these substrates such as sewage sludge or animal by-products is legally limited in agriculture because of the potential risk to contaminate sites with potentially toxic elements and organic contaminants. Thus, to close nutrient cycles it is important to develop solutions for the responsible use of organic nutrient sources. The aim of this review is to give an overview of the contamination of the most important organic nutrient sources with potentially toxic elements, antibiotics (as one important organic contaminant) and pathogenic microorganisms. Changes in manure and sewage sludge management as well as the increasing trend to use such substrates in biogas plants will be discussed with respect to potential risks posed to soils and water bodies. Some examples for abatement options by which contamination can be reduced to produce P fertilizers with high amounts of plant available P forms are presented.
Collapse
Affiliation(s)
- E Bloem
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 50, 38116 Braunschweig, Germany.
| | - A Albihn
- National Veterinary Institute, SVA, SE-751 89 Uppsala, Sweden
| | - J Elving
- National Veterinary Institute, SVA, SE-751 89 Uppsala, Sweden
| | - L Hermann
- Outotec GmbH, Ludwig-Erhard-Straße 21, 61440 Oberursel, Germany
| | - L Lehmann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 50, 38116 Braunschweig, Germany
| | - M Sarvi
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| | - T Schaaf
- Outotec GmbH, Ludwig-Erhard-Straße 21, 61440 Oberursel, Germany
| | - J Schick
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 50, 38116 Braunschweig, Germany
| | - E Turtola
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| | - K Ylivainio
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| |
Collapse
|
42
|
Ghaffar A, Hussain R, Abbas G, Ahmad MN, Abbas A, Rahim Y, Younus M, Shahid M, Mohiuddin M. Sodium arsenate and/or urea differently affect clinical attributes, hemato-biochemistry and DNA damage in intoxicated commercial layer birds. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1342096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abdul Ghaffar
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| | - Ghulam Abbas
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan,
| | - Muhammad Nasir Ahmad
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| | - Akhtar Abbas
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| | - Yasir Rahim
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| | - Muhammad Younus
- Department of Pathobiology, College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences Lahore, Jhang, Pakistan, and
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mudassar Mohiuddin
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,
| |
Collapse
|
43
|
Yao L, Huang L, Bai C, He Z, Zhou C. Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16429-16439. [PMID: 28551741 DOI: 10.1007/s11356-017-9242-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Roxarsone (ROX), a widely used feed organoarsenic additive, occurs as itself and its metabolites in animal manure that is commonly land used as fertilizer. Soil property impacts arsenic (As) speciation and bioavailability. Fourteen soils across China were used to conduct culture experiments to investigate As uptake by garland chrysanthemum (ChrysanthemumL coronarium), with the soils fertilized with chicken manure bearing ROX and its metabolites. The results show As(III) was the sole As form in garland chrysanthemum shoots, and As(III) and As(V) occurred in roots. Only inorganic As was detected in all soils when the plants were harvested. Stepwise regression analysis shows soil-exchangeable Ca predominated shoot As(III) concentration (shoot As(III) = 1.60030 soil Ca, R 2 = 0.8832***). Therefore, ROX is transferred into the human food chain finally as inorganic As in plants. Application of animal manure bearing ROX and its metabolites is not recommended in Ca-rich soils to avoid excess inorganic As dietary exposure.
Collapse
Affiliation(s)
- Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, 510642, China.
| | - Lianxi Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, 510642, China
| | - Zhaohuan He
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
44
|
Hu Y, Zhang W, Cheng H, Tao S. Public Health Risk of Arsenic Species in Chicken Tissues from Live Poultry Markets of Guangdong Province, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3508-3517. [PMID: 28219238 DOI: 10.1021/acs.est.6b06258] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arsenic-based feed additives, such as roxarsone (ROX), are still legally and widely used in food animal production in many countries. This study was conducted to systematically characterize the content and speciation of arsenic in chicken tissues from live poultry markets and in commercial chicken feeds in Guangdong, a major poultry production and consumption province in China, and to assess the corresponding public health risk. The total arsenic contents in the commercial feeds could be modeled as a mixture of two log-normal distributions (geometric means: 0.66 and 17.5 mg/kg), and inorganic arsenic occurred at high levels (0.19-9.7 mg/kg) in those with ROX detected. In general, chicken livers had much higher contents of total arsenic compared to the muscle tissues (breast and drumstick), and chicken muscle from the urban markets contained arsenic at much higher levels than that from the rural markets. The incremental lifetime cancer risk (bladder and lung cancer) from dietary exposure to arsenic contained in chicken meat products on local markets was above the serious or priority level (10-4) for 70% and 30% of the adult populations in Guangzhou and Lianzhou, respectively. These findings indicate the significant need to phase out the use of arsenic-based feed additives in China.
Collapse
Affiliation(s)
- Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Wenfeng Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
45
|
Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A. Poultry Consumption and Arsenic Exposure in the U.S. Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:370-377. [PMID: 27735790 PMCID: PMC5332189 DOI: 10.1289/ehp351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown. OBJECTIVES Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone. METHODS We evaluated 3,329 participants ≥ 6 years old from the 2003-2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake. RESULTS After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p-trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p-trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer. CONCLUSIONS Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003-2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic exposure in the U.S. CITATION Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A. 2017. Poultry consumption and arsenic exposure in the U.S. Environ Health Perspect 125:370-377; http://dx.doi.org/10.1289/EHP351.
Collapse
Affiliation(s)
- Anne E. Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Epidemiology,
- Department of Environmental Health Sciences,
- Address correspondence to A.E. Nigra, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th St., 11th Floor, Room 1105, New York, NY 10032 USA. E-mail: , or A. Navas-Acien, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th St., 11th Floor, Room 1105, New York, NY 10032 USA. Telephone: 212-342-4712. E-mail:
| | - Keeve E. Nachman
- Department of Environmental Health Sciences,
- Center for a Livable Future, and
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David C. Love
- Department of Environmental Health Sciences,
- Center for a Livable Future, and
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Environmental Health Sciences,
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Epidemiology,
- Department of Environmental Health Sciences,
- Address correspondence to A.E. Nigra, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th St., 11th Floor, Room 1105, New York, NY 10032 USA. E-mail: , or A. Navas-Acien, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th St., 11th Floor, Room 1105, New York, NY 10032 USA. Telephone: 212-342-4712. E-mail:
| |
Collapse
|
46
|
Nachman KE, Love DC, Baron PA, Nigra AE, Murko M, Raber G, Francesconi KA, Navas-Acien A. Nitarsone, Inorganic Arsenic, and Other Arsenic Species in Turkey Meat: Exposure and Risk Assessment Based on a 2014 U.S. Market Basket Sample. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:363-369. [PMID: 27735789 PMCID: PMC5332177 DOI: 10.1289/ehp225] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Use of nitarsone, an arsenic-based poultry drug, may result in dietary exposures to inorganic arsenic (iAs) and other arsenic species. Nitarsone was withdrawn from the U.S. market in 2015, but its use in other countries may continue. OBJECTIVES We characterized the impact of nitarsone use on arsenic species in turkey meat and arsenic exposures among turkey consumers, and we estimated cancer risk increases from consuming turkey treated with nitarsone before its 2015 U.S. withdrawal. METHODS Turkey from three cities was analyzed for total arsenic, iAs, methylarsonate (MA), dimethylarsinate, and nitarsone, which were compared across label type and month of purchase. Turkey consumption was estimated from NHANES data to estimate daily arsenic exposures for adults and children 4-30 months of age and cancer risks among adult consumers. RESULTS Turkey meat from conventional producers not prohibiting nitarsone use showed increased mean levels of iAs (0.64 μg/kg) and MA (5.27 μg/kg) compared with antibiotic-free and organic meat (0.39 μg/kg and 1.54 μg/kg, respectively) and meat from conventional producers prohibiting nitarsone use (0.33 μg/kg and 0.28 μg/kg, respectively). Samples with measurable nitarsone had the highest mean iAs and MA (0.92 μg/kg and 10.96 μg/kg, respectively). Nitarsone was higher in October samples than in March samples, possibly resulting from increased summer use. Based on mean iAs concentrations in samples from conventional producers with no known policy versus policies prohibiting nitarsone, estimated lifetime daily consumption by an 80-kg adult, and a recently proposed cancer slope factor, we estimated that use of nitarsone by all turkey producers would result in 3.1 additional cases of bladder or lung cancer per 1,000,000 consumers. CONCLUSIONS Nitarsone use can expose turkey consumers to iAs and MA. The results of our study support the U.S. Food and Drug Administration's removal of nitarsone from the U.S. market and further support its removal from the global marketplace. Citation: Nachman KE, Love DC, Baron PA, Nigra AE, Murko M, Raber G, Francesconi KA, Navas-Acien A. 2017. Nitarsone, inorganic arsenic, and other arsenic species in turkey meat: exposure and risk assessment based on a 2014 U.S. market basket sample. Environ Health Perspect 125:363-369; http://dx.doi.org/10.1289/EHP225.
Collapse
Affiliation(s)
- Keeve E. Nachman
- Johns Hopkins Center for a Livable Future,
- Department of Environmental Health Sciences,
- Department of Health Policy and Management,
- Risk Sciences and Public Policy Institute, and
- Address correspondence to K.E. Nachman, 615 N. Wolfe St., W7010-E, Baltimore, MD 21205 USA. Telephone: (410) 502-7578. E-mail:
| | - David C. Love
- Johns Hopkins Center for a Livable Future,
- Department of Environmental Health Sciences,
| | - Patrick A. Baron
- Johns Hopkins Center for a Livable Future,
- Department of Environmental Health Sciences,
| | - Anne E. Nigra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Manuela Murko
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Georg Raber
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences,
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
47
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Sattar A, Xie S, Hafeez MA, Wang X, Hussain HI, Iqbal Z, Pan Y, Iqbal M, Shabbir MA, Yuan Z. Metabolism and toxicity of arsenicals in mammals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:214-224. [PMID: 27829199 DOI: 10.1016/j.etap.2016.10.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world.
Collapse
Affiliation(s)
- Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | | | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hafiz Iftikhar Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Abubakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
49
|
Yao L, Huang L, He Z, Zhou C, Lu W, Bai C. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1152-1158. [PMID: 27265740 DOI: 10.1016/j.scitotenv.2016.05.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
Roxarsone (ROX), a widely used feed additive, occurs as itself and its metabolites in animal manure. Rice is prone to accumulate As than other staple food. Four diets with 0, 40, 80 and 120mgROXkg(-1) were fed in chickens, and four chicken manures (CMs) were collected to fertilize rice plants in a soil culture experiment. Linear regression analysis shows that the slopes of As species including 4-hydroxy-phenylarsonic acid, As(V), As(III), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in CM versus dietary ROX were 0.033, 0.314, 0.033, 0.054 and 0.138, respectively. Both As(III) and DMA were determined in all rice grains, and As(III), As(V), MMA and DMA in rice hull, but detectable As forms in rice straws and soils increased with increasing ROX dose. Grain As(III) was unrelated to ROX dose but exceeded the Chinese rice As limit (0.15mgAs(III)kg(-1)). Dietary ROX enhanced straw As(III) mostly, with the slope of 0.020, followed by hull DMA (0.006) and grain DMA (0.002). The slopes of soil As(V) and As(III) were 0.003 and 0.001. This is the first report illustrating the quantitative delivery of ROX via food chain, which helps to evaluate health and environmental risks caused by ROX use in animal production.
Collapse
Affiliation(s)
- Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lianxi Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhaohuan He
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weisheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
50
|
Nookabkaew S, Rangkadilok N, Prachoom N, Satayavivad J. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3119-3126. [PMID: 27058252 DOI: 10.1021/acs.jafc.5b06160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.
Collapse
Affiliation(s)
| | - Nuchanart Rangkadilok
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education , Bangkok 10400, Thailand
| | - Norratouch Prachoom
- Inter-University Program on Environmental Toxicology, Technology and Management, Asian Institute of Technology, Chulabhorn Research Institute, and Mahidol University , Bangkok, Thailand
| | - Jutamaad Satayavivad
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education , Bangkok 10400, Thailand
| |
Collapse
|