1
|
Hussung S, Hess ME, Haghighi EB, Wittel UA, Boerries M, Fritsch RM. Integrated Analysis of Cell-Free DNA and Novel Protein Biomarkers for Stratification and Therapy Monitoring in Stage IV Pancreatic Cancer: A Preliminary Study. Diagnostics (Basel) 2024; 15:49. [PMID: 39795577 PMCID: PMC11720586 DOI: 10.3390/diagnostics15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Given the poor prognosis of metastatic pancreatic adenocarcinoma (mPDAC), closer disease monitoring through liquid biopsy, most frequently based on serial measurements of cell-free mutated KRAS (KRASmut cfDNA), has become a highly active research focus, aimed at improving patients' long-term outcomes. However, most of the available data show only a limited predictive and prognostic value of single-parameter-based methods. We hypothesized that a combined longitudinal analysis of KRASmut cfDNA and novel protein biomarkers could improve risk stratification and molecular monitoring of patients with mPDAC. Methods: We prospectively collected 160 plasma samples from 47 patients with mPDAC at our institution. Highly sensitive single-target ddPCR assays were employed to detect and quantify KRASmut cfDNA. Additionally, analysis of ten protein biomarkers was performed through Enzyme-linked Immunosorbent Assay (ELISA), and Carbohydrate-Antigen 19-9 (CA 19-9) dynamics were registered. Results: KRASmut cfDNA was detectable in 37/47 (78.7%) patients throughout the course of study, and CA 19-9 levels were elevated in 40 out of 47 (85.1%) patients. KRASmut cfDNA increase at the time of the first follow-up could predict inferior progression-free survival (PFS) (Hazard ratio (HR) = 3.40, p = 0.0003) and overall survival (OS) (HR = 4.91, p < 0.0001). In contrast to CA 19-9 kinetics, which were not predictive of outcome, integrated analysis of KRASmut cfDNA combined with six evaluated circulating protein biomarkers allowed basal risk stratification at the time of the first follow-up (HR = 10.2, p = 0.0014). Conclusions: A combined longitudinal analysis of KRASmut cfDNA with selected protein biomarkers offers significantly improved prognostic value for patients with mPDAC compared to single-parameter methods. This innovative approach is a step forward in the molecular monitoring of mPDAC and should be validated in further prospective studies.
Collapse
Affiliation(s)
- Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, 79106 Freiburg, Germany;
- Department of Medical Oncology and Hematology, Zurich University Hospital, 8091 Zurich, Switzerland
| | - Maria E. Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (M.E.H.); (E.B.H.); (M.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Elham Bavafaye Haghighi
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (M.E.H.); (E.B.H.); (M.B.)
| | - Uwe A. Wittel
- Department of Surgery, Freiburg University Medical Center, 79106 Freiburg, Germany;
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (M.E.H.); (E.B.H.); (M.B.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ralph M. Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, 79106 Freiburg, Germany;
- Department of Medical Oncology and Hematology, Zurich University Hospital, 8091 Zurich, Switzerland
- Department of Surgery, Freiburg University Medical Center, 79106 Freiburg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Battaglin F, Lenz HJ. Clinical Applications of Circulating Tumor DNA Profiling in GI Cancers. JCO Oncol Pract 2024; 20:1481-1490. [PMID: 39531845 PMCID: PMC11567053 DOI: 10.1200/op.24.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/16/2024] Open
Abstract
Over the next few years, the analysis of circulating tumor DNA (ctDNA) through liquid biopsy is expected to enter clinical practice and revolutionize the approach to biomarker testing and treatment selection in GI cancers. In fact, growing evidence support the use of ctDNA testing as a noninvasive, effective, and highly specific tool for molecular profiling in GI cancers. Analysis of blood ctDNA has been investigated in multiple settings including early tumor detection, minimal residual disease evaluation, tumor diagnosis and evaluation of prognostic/predictive biomarkers for targeted treatment selection, longitudinal monitoring of treatment response, and identification of resistance mechanisms. Here, we review the clinical applications, advantages, and limitations of ctDNA profiling for precision oncology in GI cancers.
Collapse
Affiliation(s)
- Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Son J, Zhang Y, Lin H, Mirallas O, Ballesteros PA, Nardo M, Clark N, Hillman RT, Campbell E, Holla V, Johnson AM, Biter AB, Yuan Y, Cobb LP, Gershenson DM, Jazaeri AA, Lu KH, Soliman PT, Westin SN, Euscher ED, Lawson BC, Yang RK, Meric-Bernstam F, Hong DS. Clinical and Genomic Landscape of RAS Mutations in Gynecologic Cancers. Clin Cancer Res 2024; 30:2986-2995. [PMID: 38687597 PMCID: PMC11250057 DOI: 10.1158/1078-0432.ccr-23-2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE We aimed to describe RAS mutations in gynecologic cancers as they relate to clinicopathologic and genomic features, survival, and therapeutic implications. EXPERIMENTAL DESIGN Gynecologic cancers with available somatic molecular profiling data at our institution between February 2010 and August 2022 were included and grouped by RAS mutation status. Overall survival was estimated by the Kaplan-Meier method, and multivariable analysis was performed using the Cox proportional hazard model. RESULTS Of 3,328 gynecologic cancers, 523 (15.7%) showed any RAS mutation. Patients with RAS-mutated tumors were younger (57 vs. 60 years nonmutated), had a higher prevalence of endometriosis (27.3% vs. 16.9%), and lower grades (grade 1/2, 43.2% vs. 8.1%, all P < 0.0001). The highest prevalence of KRAS mutation was in mesonephric-like endometrial (100%, n = 9/9), mesonephric-like ovarian (83.3%, n = 5/6), mucinous ovarian (60.4%), and low-grade serous ovarian (44.4%) cancers. After adjustment for age, cancer type, and grade, RAS mutation was associated with worse overall survival [hazard ratio (HR) = 1.3; P = 0.001]. Specific mutations were in KRAS (13.5%), NRAS (2.0%), and HRAS (0.51%), most commonly KRAS G12D (28.4%) and G12V (26.1%). Common co-mutations were PIK3CA (30.9%), PTEN (28.8%), ARID1A (28.0%), and TP53 (27.9%), of which 64.7% were actionable. RAS + MAPK pathway-targeted therapies were administered to 62 patients with RAS-mutated cancers. While overall survival was significantly higher with therapy [8.4 years [(95% confidence interval (CI), 5.5-12.0) vs. 5.5 years (95% CI, 4.6-6.6); HR = 0.67; P = 0.031], this effect did not persist in multivariable analysis. CONCLUSIONS RAS mutations in gynecologic cancers have a distinct histopathologic distribution and may impact overall survival. PIK3CA, PTEN, and ARID1A are potentially actionable co-alterations. RAS pathway-targeted therapy should be considered.
Collapse
Affiliation(s)
- Ji Son
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingao Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oriol Mirallas
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Research Unit for Molecular Therapy of Cancer (UITM), Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pablo Alvarez Ballesteros
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Clark
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, University of Louisville, Louisville, KY, USA
| | - R Tyler Hillman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vijaykumar Holla
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber M Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amadeo B Biter
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren P Cobb
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth D Euscher
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barrett C Lawson
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard K Yang
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
5
|
Maloney S, Clarke SJ, Sahni S, Hudson A, Colvin E, Mittal A, Samra J, Pavlakis N. The role of diagnostic, prognostic, and predictive biomarkers in the management of early pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:13437-13450. [PMID: 37460806 PMCID: PMC10587199 DOI: 10.1007/s00432-023-05149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2023] [Indexed: 10/20/2023]
Abstract
Despite modern advances in cancer medicine, pancreatic cancer survival remains unchanged at just 12%. For the small proportion of patients diagnosed with 'early' (upfront or borderline resectable) disease, recurrences are common, and many recur soon after surgery. Whilst chemotherapy has been shown to increase survival in this cohort, the morbidity of surgery renders many candidates unsuitable for adjuvant treatment. Due to this, and the success of upfront chemotherapy in the advanced setting, use of neoadjuvant chemotherapy has been introduced in patients with upfront or borderline resectable disease. Randomized controlled trials have been conducted to compare upfront surgery to neoadjuvant chemotherapy in this patient cohort, opinions on the ideal upfront treatment approach are divided. This lack of consensus has highlighted the need for biomarkers to assist in clinical decision making. This review analyses the potential diagnostic, prognostic and predictive biomarkers that may assist in the diagnosis and management of early (upfront and borderline resectable) pancreatic cancer.
Collapse
Affiliation(s)
- Sarah Maloney
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia.
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia.
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia.
| | - Stephen J Clarke
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Emily Colvin
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Jaswinder Samra
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|
6
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
7
|
Sellahewa R, Moghaddam SM, Lundy J, Jenkins BJ, Croagh D. Circulating Tumor DNA Is an Accurate Diagnostic Tool and Strong Prognostic Marker in Pancreatic Cancer. Pancreas 2023; 52:e188-e195. [PMID: 37751379 DOI: 10.1097/mpa.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.
Collapse
|
8
|
Watanabe F, Suzuki K, Noda H, Rikiyama T. Liquid biopsy leads to a paradigm shift in the treatment of pancreatic cancer. World J Gastroenterol 2022; 28:6478-6496. [PMID: 36569270 PMCID: PMC9782840 DOI: 10.3748/wjg.v28.i46.6478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most cancers. Its 5-year survival rate is very low. The recent induction of neoadjuvant chemotherapy and improvements in chemotherapy for patients with pancreatic cancer have resulted in improved survival outcomes. However, the prognosis of pancreatic cancer is still poor. To dramatically improve the prognosis, we need to develop more tools for early diagnosis, treatment selection, disease monitoring, and response rate evaluation. Recently, liquid biopsy (circulating free DNA, circulating tumor DNA, circulating tumor cells, exosomes, and microRNAs) has caught the attention of many researchers as a new biomarker that is minimally invasive, confers low-risk, and displays an overall state of the tumor. Thus, liquid biopsy does not employ the traditional difficulties of obtaining tumor samples from patients with advanced PDAC to investigate their molecular biological status. In addition, it allows for long-term monitoring of the molecular profile of tumor progression. These could help in identifying tumor-specific alterations that use the target structure for tailor-made therapy. Through this review, we highlighted the latest discoveries and advances in liquid biopsy technology in pancreatic cancer research and showed how it can be applied in clinical practice.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
9
|
Valladares-Ayerbes M, Garcia-Alfonso P, Muñoz Luengo J, Pimentel Caceres PP, Castillo Trujillo OA, Vidal-Tocino R, Llanos M, Llorente Ayala B, Limon Miron ML, Salud A, Cirera Nogueras L, Garcia-Carbonero R, Safont MJ, Falco Ferrer E, Aparicio J, Vicente Conesa MA, Guillén-Ponce C, Garcia-Teijido P, Medina Magan MB, Busquier I, Salgado M, Lloansí Vila A. Evolution of RAS Mutations in Cell-Free DNA of Patients with Tissue RAS Wild-Type Metastatic Colorectal Cancer Receiving First-Line Treatment: The PERSEIDA Study. Cancers (Basel) 2022; 14:6075. [PMID: 36551560 PMCID: PMC9776941 DOI: 10.3390/cancers14246075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The serial analysis of cell-free DNA (cfDNA) enables minimally invasive monitoring of tumor evolution, providing continuous genetic information. PERSEIDA was an observational, prospective study assessing the cfDNA RAS (KRAS/NRAS) mutational status evolution in first-line, metastatic CRC, RAS wild-type (according to baseline tumor tissue biopsy) patients. Plasma samples were collected before first-line treatment, after 20 ± 2 weeks, and at disease progression. One hundred and nineteen patients were included (102 received panitumumab and chemotherapy as first-line treatment-panitumumab subpopulation). Fifteen (12.6%) patients presented baseline cfDNA RAS mutations (n = 14 [13.7%], panitumumab subpopulation) (mutant allele fraction ≥0.02 for all results). No patients presented emergent mutations (cfDNA RAS mutations not present at baseline) at 20 weeks. At disease progression, 11 patients (n = 9; panitumumab subpopulation) presented emergent mutations (RAS conversion rate: 19.0% [11/58]; 17.7% [9/51], panitumumab subpopulation). In contrast, three (5.2%) patients presenting baseline cfDNA RAS mutations were RAS wild-type at disease progression. No significant associations were observed between overall response rate or progression-free survival and cfDNA RAS mutational status in the total panitumumab subpopulation. Although, in patients with left-sided tumors, a significantly longer progression-free survival was observed in cfDNA RAS wild-type patients compared to those presenting cfDNA RAS mutations at any time. Continuous evaluation of RAS mutations may provide valuable insights on tumor molecular dynamics that can help clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marta Llanos
- Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Spain
| | | | | | - Antonieta Salud
- Hospital Universitario Arnau de Vilanova, 25198 Lleida, Spain
| | | | | | | | | | - Jorge Aparicio
- Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | | | | | | | | | - Isabel Busquier
- Consorcio Hospitalario Provincial de Castellón, 12002 Castellón de la Plana, Spain
| | | | | |
Collapse
|
10
|
Li W, Zhang X, Li Y, Yue Q, Cui M, Liu J. Prognostic Value of KRAS Mutations in the Peripheral Blood of Patients with Pancreatic Cancer: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-021-03142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Li W, Wang J, Li Y, Yue Q, Cui M, Liu J. KRAS Mutations in Peripheral Blood (with or without CA19-9) for Differential Diagnosis of Pancreatic Cancer and Chronic Pancreatitis: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Woo SM, Kim MK, Park B, Cho EH, Lee TR, Ki CS, Yoon KA, Kim YH, Choi W, Kim DY, Hwang JH, Cho JH, Han SS, Lee WJ, Park SJ, Kong SY. Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study. Cancers (Basel) 2021; 13:5466. [PMID: 34771630 PMCID: PMC8582446 DOI: 10.3390/cancers13215466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic instability of circulating tumor DNA (ctDNA) as a prognostic biomarker has not been evaluated in pancreatic cancer. We investigated the role of the genomic instability index of ctDNA in pancreatic ductal adenocarcinoma (PDAC). We prospectively enrolled 315 patients newly diagnosed with resectable (n = 110), locally advanced (n = 78), and metastatic (n = 127) PDAC from March 2015 through January 2020. Low-depth whole-genome cell-free DNA sequencing identified genome-wide copy number alterations using instability score (I-score) to reflect genome-wide instability. Plasma cell-free and matched tumor tissue DNA from 15 patients with resectable pancreatic cancer was sequenced to assess the concordance of chromosomal copy number alteration profiles. Associations of I-score with clinical factors or survival were assessed. Seventy-six patients had high genomic instability with I-score > 7.3 in pre-treatment ctDNA; proportions of high I-score were 5.5%, 5.1%, and 52% in resectable, locally advanced, and metastatic stages, respectively. Correlation coefficients between Z-scores of plasma and tissue DNA at segment resolution were high (r2 = 0.82). Univariable analysis showed the association of I-score with progression-free survival in each stage. Multivariable analyses demonstrated that clinical stage-adjusted I-scores were significant factors for progression-free and overall survival. In these patients, ctDNA genomic I-scores provided prognostic information relevant to progression-free survival in each clinical stage.
Collapse
Affiliation(s)
- Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
| | - Min Kyeong Kim
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea;
| | - Boram Park
- Biostatistics Collaboration Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Eun-Hae Cho
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Tae-Rim Lee
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Chang-Seok Ki
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Yun-Hee Kim
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
- Molecular Imaging Branch, Division of Convergence Technology, National Cancer Center, Goyang 10408, Korea
| | - Wonyoung Choi
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
| | - Do Yei Kim
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jae Hee Cho
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21556, Korea;
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Sun-Young Kong
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea;
- Department of Laboratory Medicine, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
14
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
15
|
Milin-Lazovic J, Madzarevic P, Rajovic N, Djordjevic V, Milic N, Pavlovic S, Veljkovic N, Milic NM, Radenkovic D. Meta-Analysis of Circulating Cell-Free DNA's Role in the Prognosis of Pancreatic Cancer. Cancers (Basel) 2021; 13:3378. [PMID: 34298594 PMCID: PMC8303288 DOI: 10.3390/cancers13143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The analysis of cell-free DNA (cfDNA) for genetic abnormalities is a promising new approach for the diagnosis and prognosis of pancreatic cancer patients. Insights into the molecular characteristics of pancreatic cancer may provide valuable information, leading to its earlier detection and the development of targeted therapies. MATERIAL AND METHODS We conducted a systematic review and a meta-analysis of studies that reported cfDNA in pancreatic ductal adenocarcinoma (PDAC). The studies were considered eligible if they included patients with PDAC, if they had blood tests for cfDNA/ctDNA, and if they analyzed the prognostic value of cfDNA/ctDNA for patients' survival. The studies published before 22 October 2020 were identified through the PubMED, EMBASE, Web of Science and Cochrane Library databases. The assessed outcomes were the overall (OS) and progression-free survival (PFS), expressed as the log hazard ratio (HR) and standard error (SE). The summary of the HR effect size was estimated by pooling the individual trial results using the Review Manager, version 5.3, Cochrane Collaboration. The heterogeneity was assessed using the Cochran Q test and I2 statistic. RESULTS In total, 48 studies were included in the qualitative review, while 44 were assessed in the quantitative synthesis, with the total number of patients included being 3524. Overall negative impacts of cfDNA and KRAS mutations on OS and PFS in PDAC (HR = 2.42, 95% CI: 1.95-2.99 and HR = 2.46, 95% CI: 2.01-3.00, respectively) were found. The subgroup analysis of the locally advanced and metastatic disease presented similar results (HR = 2.51, 95% CI: 1.90-3.31). In the studies assessing the pre-treatment presence of KRAS, there was a moderate to high degree of heterogeneity (I2 = 87% and I2 = 48%, for OS and PFS, respectively), which was remarkably decreased in the analysis of the studies measuring post-treatment KRAS (I2 = 24% and I2 = 0%, for OS and PFS, respectively). The patients who were KRAS positive before but KRAS negative after treatment had a better prognosis than the persistently KRAS-positive patients (HR = 5.30, 95% CI: 1.02-27.63). CONCLUSION The assessment of KRAS mutation by liquid biopsy can be considered as an additional tool for the estimation of the disease course and outcome in PDAC patients.
Collapse
Affiliation(s)
- Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Petar Madzarevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Vladimir Djordjevic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nevena Veljkovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Heliant Ltd., 11000 Belgrade, Serbia
| | - Natasa M. Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Dejan Radenkovic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
16
|
Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Tumour Malignancies with Next-Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther 2021; 25:389-408. [PMID: 34018157 PMCID: PMC8249304 DOI: 10.1007/s40291-021-00534-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Circulating cell-free DNA (ccfDNA) has emerged as a promising diagnostic tool in oncology. Identification of tumour-derived ccfDNA (i.e. circulating tumour DNA [ctDNA]) provides non-invasive access to a malignancy’s molecular landscape to diagnose, inform therapeutic strategies, and monitor treatment efficacy. Current applications of ccfDNA to detect somatic mutations, however, have been largely constrained to tumour-informed searches and identification of common mutations because of the interaction between ctDNA signal and next-generation sequencing (NGS) noise. Specifically, the low allele frequency of ctDNA associated with non-metastatic and early-stage lesions may be indistinguishable from artifacts that accrue during sample preparation and NGS. Thus, using ccfDNA to achieve non-invasive and personalized molecular profiling to optimize individual patient care is a highly sought goal that remains limited in clinical practice. There is growing evidence, however, that further advances in the field of ccfDNA diagnostics may be achieved by improving detection of somatic mutations through leveraging the inherently shorter fragment lengths of ctDNA compared to non-neoplastic ccfDNA. Here, the origins and rationale for seeking to improve the mutation-based detection of ctDNA by using ccfDNA size profiling are reviewed. Subsequently, in vitro and in silico methods to enrich for a target ccfDNA fragment length are detailed to identify current practices and provide perspective into the potential of using ccfDNA size profiling to impact clinical applications in oncology.
Collapse
Affiliation(s)
- Hunter R Underhill
- Division of Medical Genetics, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA. .,Department of Radiology, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
18
|
Huerta M, Roselló S, Sabater L, Ferrer A, Tarazona N, Roda D, Gambardella V, Alfaro-Cervelló C, Garcés-Albir M, Cervantes A, Ibarrola-Villava M. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13050994. [PMID: 33673558 PMCID: PMC7956845 DOI: 10.3390/cancers13050994] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is a digestive tumor that is most difficult to treat and carries one of the worst prognoses. The anatomical location of the pancreas makes it very difficult to obtain enough tumor material to establish a molecular diagnosis, so knowing the biology of this tumor and implementing new targeted-therapies is still a pending issue. The use of liquid biopsy, a blood sample test to detect circulating-tumor DNA fragments (ctDNA), is key to overcoming this difficulty and improving the evolution of this tumor. Liquid biopsies are equally representative of the tissue from which they come and allow relevant molecular and diagnostic information to be obtained in a faster and less invasive way. One challenge related to ctDNA is the lack of consistency in the study design. Moreover, ctDNA accounts for only a small percentage of the total cell-free circulating DNA and prior knowledge about particular mutations is usually required. Thus, our aim was to understand the current role and future perspectives of ctDNA in pancreatic cancer using digital-droplet PCR technology. Abstract Pancreatic cancer (PC) is one of the most devastating malignant tumors, being the seventh leading cause of cancer-related death worldwide. Researchers and clinicians are endeavoring to develop strategies for the early detection of the disease and the improvement of treatment results. Adequate biopsy is still challenging because of the pancreas’s poor anatomic location. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as a non-invasive biomarker in early diagnosis, prognosis and management of PC. ctDNA is released from apoptotic and necrotic cancer cells, as well as from living tumor cells and even circulating tumor cells, and it can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. However, ctDNA sensibility remains a limitation and the accuracy of ctDNA as a biomarker for PC is relatively low and cannot be currently used as a screening or diagnostic tool. Increasing evidence suggests that ctDNA is an interesting biomarker for predictive or prognosis studies, evaluating minimal residual disease, longitudinal follow-up and treatment management. Promising results have been published and therefore the objective of our review is to understand the current role and the future perspectives of ctDNA in PC.
Collapse
Affiliation(s)
- Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Ana Ferrer
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Clara Alfaro-Cervelló
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain;
| | - Marina Garcés-Albir
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-862-894
| |
Collapse
|
19
|
Fang Z, Meng Q, Zhang B, Shi S, Liu J, Liang C, Hua J, Yu X, Xu J, Wang W. Prognostic value of circulating tumor DNA in pancreatic cancer: a systematic review and meta-analysis. Aging (Albany NY) 2020; 13:2031-2048. [PMID: 33318293 PMCID: PMC7880399 DOI: 10.18632/aging.202199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
Increasing evidence has revealed the potential correlation between circulating tumor DNA (ctDNA) and the prognosis of pancreatic cancer, but inconsistent findings have been reported. Therefore, a meta-analysis was performed to evaluate the prognostic value of ctDNA in pancreatic cancer. The Embase, MEDLINE, and Web of Science databases were searched for relevant articles published until April 2020. Articles reporting the correlation between ctDNA and the prognosis of pancreatic cancer were identified through database searches. The pooled hazard ratios (HRs) for prognostic data were calculated and analyzed using Stata software. A total of 2326 patients pooled from 25 eligible studies were included in the meta-analysis to evaluate the prognostic value of ctDNA in pancreatic cancer. Patients with mutations detected or high concentrations of ctDNA had a significantly poorer overall survival (OS) (univariate: HR = 2.54; 95% CI, 2.05-3.14; multivariate: HR = 2.07; 95% CI, 1.69-2.54) and progression-free survival (PFS) (univariate: HR = 2.18; 95% CI, 1.41-3.37; multivariate: HR = 2.20; 95% CI, 1.38-3.52). In conclusion, the present meta-analysis indicates that mutations detected or high concentrations of ctDNA are significant predictors of OS and PFS in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
21
|
Grunvald MW, Jacobson RA, Kuzel TM, Pappas SG, Masood A. Current Status of Circulating Tumor DNA Liquid Biopsy in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7651. [PMID: 33081107 PMCID: PMC7589736 DOI: 10.3390/ijms21207651] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a challenging disease with a low 5-year survival rate. There are areas for improvement in the tools used for screening, diagnosis, prognosis, treatment selection, and assessing treatment response. Liquid biopsy, particularly cell free DNA liquid biopsy, has shown promise as an adjunct to our standard care for pancreatic cancer patients, but has not yet been universally adopted into regular use by clinicians. In this publication, we aim to review cfDNA liquid biopsy in pancreatic cancer with an emphasis on current techniques, clinical utility, and areas of active investigation. We feel that researchers and clinicians alike should be familiar with this exciting modality as it gains increasing importance in the care of cancer patients.
Collapse
Affiliation(s)
- Miles W. Grunvald
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (M.W.G.); (R.A.J.); (S.G.P.)
| | - Richard A. Jacobson
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (M.W.G.); (R.A.J.); (S.G.P.)
| | - Timothy M. Kuzel
- Division of Hematology/Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Sam G. Pappas
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (M.W.G.); (R.A.J.); (S.G.P.)
| | - Ashiq Masood
- Division of Hematology/Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA;
- Rush Precision Oncology Program, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Zhu Y, Zhang H, Chen N, Hao J, Jin H, Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e18581. [PMID: 32011436 PMCID: PMC7220382 DOI: 10.1097/md.0000000000018581] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liquid biopsy is a novel method for cancer diagnosis, which has been applied in lung and breast cancers, demonstrating high diagnostic value. However, clinical value of it in pancreatic cancer (PC) remains to be verified. The aim of this meta-analysis was to evaluate overall diagnostic value of various liquid biopsy methods (circulating tumor DNA, circulating tumor cells and exosomes) in detecting PC. METHODS We comprehensively searched relevant studies in PubMed, Medline, Embase, and Web of Science without time limitation according to PRISMA. Data necessary for reconstructing a 2 × 2 table was calculated from the original articles. The methodological quality of included studies was evaluated by QUADAS-2. Statistical analysis including was performed by the software Meta-Disc version 1.4, and STATA 14.2. RESULTS A total of 19 studies including 1872 individuals were included in this meta-analysis. In which, 7 were studies about ctDNA, 7 were on CTCs and 6 were about exosomes (Sefrioui D, studied diagnostic accuracy of both ctDNA and CTCs, with no common patients in these 2 groups). The pooled sensitivity estimates for ctDNA, CTCs and exosomes in detecting PC with their 95% confidential intervals (95% CI) were 0.64 (95%CI 0.58-0.70), 0.74 (95%CI 0.68-0.79) and 0.93 (95%CI 0.90-0.95), respectively. The pooled specificity estimates were 0.92(95%CI 0.88-0.95), 0.83 (95%CI 0.78-0.88) and 0.92 (95%CI 0.88-0.95), respectively. The area under curve (AUC) of the sROC for ctDNA, CTCs and exosomes in detecting PC were 0.9478, 0.8166, and 0.9819, respectively. The overall sensitivity, specificity and AUC of the sROC curve for overall liquid biopsy in detecting PC were 0.80 (95%CI 0.77-0.82), 0.89 (95%CI 0.87-0.91) and 0.9478, respectively. CONCLUSION This meta-analysis confirmed that liquid biopsy had high diagnostic value in detecting PC. In ctDNA, CTCs and exosomes these 3 subgroups, exosomes showed highest sensitivity and specificity.
Collapse
Affiliation(s)
- Yuzhou Zhu
- Department of Biotherapy, Cancer Center
- Department of Gastrointestinal Surgery
| | - Hao Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University
| | | | | | | | - Xuelei Ma
- Department of Biotherapy, Cancer Center
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
24
|
Watanabe F, Suzuki K, Tamaki S, Abe I, Endo Y, Takayama Y, Ishikawa H, Kakizawa N, Saito M, Futsuhara K, Noda H, Konishi F, Rikiyama T. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS One 2019; 14:e0227366. [PMID: 31891652 PMCID: PMC6938323 DOI: 10.1371/journal.pone.0227366] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liquid biopsies enable the detection of circulating tumor DNA (ctDNA). However, the clinical significance of KRAS-mutated ctDNA for pancreatic cancer has been inconsistent with respect to its prognostic and predictive potential. METHODS AND FINDINGS A total of 422 blood samples were collected from 78 patients undergoing treatments for localized and metastatic pancreatic ductal adenocarcinoma. KRAS mutation in tissues and KRAS ctDNA levels in plasma were determined by RASKET and droplet digital polymerase chain reaction. Longitudinal monitoring of KRAS ctDNA was performed to assess its significance for predicting recurrence and prognosis and for evaluating therapeutic responses to chemotherapy compared with carbohydrate antigen 19-9 (CA19-9). In 67 tumor tissues, discrepancies in point mutations of KRAS were rarely observed among individual patients, implying that one targeted point mutation of KRAS can be determined in tumor tissues prior to longitudinal blood monitoring. One-time blood assessment of KRAS-mutated ctDNA before surgery or chemotherapy was not clearly associated with recurrence and prognosis. Sequential blood monitoring was performed in 39 patients who underwent surgery for potentially resectable tumors. Increased CA19-9 levels were significantly associated with recurrence, but not prognosis (P<0.001, P = 1.0, respectively), whereas emergence of KRAS ctDNA was significantly associated with prognosis (P<0.001) regardless of recurrence. Furthermore, in 39 patients who did not undergo surgery, detection of KRAS ctDNA was a predictive factor for prognosis (P = 0.005). Multivariate analysis revealed that detection of KRAS ctDNA was the only independent prognostic factor regardless of tumor resection (hazard ratios = 54.5 for patients who underwent surgery and 10.1 for patients who did not undergo surgery; P<0.001 for both). Patients without emergence of KRAS ctDNA within 1 year after surgery showed significantly better prognosis irrespective of recurrence (P<0.001). No detection or disappearance of KRAS ctDNA within 6 months of treatment was significantly correlated with therapeutic responses to first-line chemotherapy (P<0.001). Changes in KRAS status provided critical information for the prediction of therapeutic responses. CONCLUSIONS Our study showed for the first time that detection of KRAS ctDNA levels within a short period enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
- * E-mail:
| | - Sawako Tamaki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Iku Abe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Yuji Takayama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Hideki Ishikawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Kazushige Futsuhara
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| | - Fumio Konishi
- Nerima Hikarigaoka Hospital, Hikarigaoka, Nerima-ku, Tokyo, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan
| |
Collapse
|
25
|
Jain S, Lin SY, Song W, Su YH. Urine-Based Liquid Biopsy for Nonurological Cancers. Genet Test Mol Biomarkers 2019; 23:277-283. [PMID: 30986103 DOI: 10.1089/gtmb.2018.0189] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS The use of circulating cell-free DNA for detection of cancer genetics has been studied extensively. Liquid biopsy often refers to the use of blood as a minimally invasive source of body fluid for detecting circulating tumor DNA (ctDNA). However, urine collection, which is completely noninvasive, has been shown to also have great promise to serve as an alternate body fluid source for ctDNA. In this review article, we focus on the clinical utility of urine for genetic liquid biopsy of nonurological cancers. CONCLUSION Although still in early stages as compared with blood-based liquid biopsy, recent studies have demonstrated the value of urine-based liquid biopsies for: nonurological cancer screening; early detection; monitoring for recurrence and metastasis; and therapeutic efficacy. Overall, the completely noninvasive and patient-friendly nature of the urine-based biopsy warrants further development and offers a promising alternative to blood-based biopsies.
Collapse
Affiliation(s)
- Surbhi Jain
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | | | - Wei Song
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | - Ying-Hsiu Su
- 2 Department of Translational Medical Science, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| |
Collapse
|
26
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
27
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [PMID: 31416571 DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
28
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
29
|
Developing a blood-based gene mutation assay as a novel biomarker for oesophageal adenocarcinoma. Sci Rep 2019; 9:5168. [PMID: 30914682 PMCID: PMC6435702 DOI: 10.1038/s41598-019-41490-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
The Phosphatidylinositol glycan class A (PIG-A) gene mutation assay phenotypically measures erythrocyte mutations, assessed here for their correlation to neoplastic progression in the gastro-oesophageal reflux disease (GORD)-Barrett’s metaplasia (BM)-oesophageal adenocarcinoma (OAC) model. Endoscopy patients underwent venipuncture and erythrocytes fluorescently stained for glycosyl phosphatidylinositol (GPI)–anchored proteins; CD55 and CD59. Using flow cytometry, GPI–anchor negative erythrocytes (mutants) were scored and compared amongst groups. The study enlisted 200 patients and 137 healthy volunteers. OAC patients had a three–fold increase in erythrocyte mutant frequency (EMF) compared to GORD patients (p < 0.001) and healthy volunteers (p < 0.001). In OAC patients, higher EMF was associated with worsening tumour staging (p = 0.014), nodal involvement (p = 0.019) and metastatic disease (p = 0.008). Chemotherapy patients demonstrated EMF’s over 19–times higher than GORD patients. Patients were further classified into groups containing those with non-neoplastic disease and those with high-grade dysplasia/cancer with 72.1% of cases correctly classified by high EMF. Within the non-neoplastic group, aspirin users had lower EMF (p = 0.001) and there was a positive correlation between body mass index (p = 0.03) and age (p < 0.001) and EMF. Smokers had EMF’s over double that of non-smokers (p = 0.011). Results suggest this test could help detect OAC and may be a useful predictor of disease progression.
Collapse
|
30
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2019; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
31
|
Chen L, Zhang Y, Cheng Y, Zhang D, Zhu S, Ma X. Prognostic value of circulating cell-free DNA in patients with pancreatic cancer: A systemic review and meta-analysis. Gene 2018; 679:328-334. [PMID: 30227250 DOI: 10.1016/j.gene.2018.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
Because of the deep research about tumorigenesis mechanism, the cognition of cancer has been transferred to molecular level from morphology. Previous articles reported a potential connection between circulating cell-free DNA (cfDNA) and prognosis of pancreatic cancer. A total of 18 related articles including 1243 patients were enrolled to access the relationship between cfDNA and prognosis of pancreatic cancer. The hazard ratio (HR) was used to combine the univariate and multivariate results of included studies. Our result performed that the cfDNA had significant prognostic value in predicting OS (HR = 2.41, 95%CI: 1.93-3.02, I2 = 60%) and PFS (HR = 2.47, 95%CI: 1.80-3.40, I2 = 0%) in univariate analysis. The multivariate analyses about OS (HR = 2.57, 95%CI: 1.95-3.38, I2 = 66%) and PFS (HR = 2.31, 95%CI: 1.47-3.64, I2 = 0%) also showed significance. In conclusion, the cfDNA was a significant prognostic factor for OS and PFS in patients with pancreatic cancer. The mutation (Kras, ERBB2-exon17 and KrasG12V), circulating tumor DNA (ctDNA) presence, hypermethylation and higher concentration of cfDNA were both associated with worse survival results in pancreatic cancer.
Collapse
Affiliation(s)
- Linyan Chen
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yi Zhang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Sha Zhu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
32
|
Circulating tumor DNA – Current state of play and future perspectives. Pharmacol Res 2018; 136:35-44. [DOI: 10.1016/j.phrs.2018.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
|
33
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed the field of medical oncology; the introduction of patient-tailored therapies has significantly improved all measurable outcomes. Liquid biopsy is a revolutionary technique that is opening previously unexpected perspectives. It consists of the detection and isolation of circulating tumor cells, circulating tumor DNA and exosomes, as a source of genomic and proteomic information in patients with cancer. Many technical hurdles have been resolved thanks to newly developed techniques and next-generation sequencing analyses, allowing a broad application of liquid biopsy in a wide range of settings. Initially correlated to prognosis, liquid biopsy data are now being studied for cancer diagnosis, hopefully including screenings, and most importantly for the prediction of response or resistance to given treatments. In particular, the identification of specific mutations in target genes can aid in therapeutic decisions, both in the appropriateness of treatment and in the advanced identification of secondary resistance, aiming to early diagnose disease progression. Still application is far from reality but ongoing research is leading the way to a new era in oncology. This review summarizes the main techniques and applications of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
34
|
Salbe C, Trevisiol C, Ferruzzi E, Mancuso T, Nascimbeni R, Di Fabio F, Salerni B, Dittadi R. Molecular Detection of Codon 12 K-RAS Mutations in Circulating DNA from Serum of Colorectal Cancer Patients. Int J Biol Markers 2018; 15:300-7. [PMID: 11192825 DOI: 10.1177/172460080001500404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Point mutations of the K-RAS gene at codon 12 are found in about 40% of cases with colorectal cancer. The diagnostic implications of the detection of these mutations and their clinical utility are still unclear. The aim of this study was to test both the feasibility of the detection of the mutated K-RAS gene in serum and its potential role in colorectal cancer detection and monitoring. Codon 12 K-RAS mutations were examined in DNA extracted from the serum of 35 patients with colorectal cancer and were compared with the K-RAS status in the corresponding primary tumor. Molecular detection was performed by the mutant-enriched PCR (ME-PCR) assay, a sensitive method capable of distinguishing a small quantity of mutated DNA in the presence of abundant wild-type DNA. The occurrence of mutations was compared with clinicopathological parameters as well as CEA and CA19.9 serum levels. We found codon 12 K-RAS mutations in the tissue of 13/35 (37%) patients. Serum mutations were detected in 5/13 (38.5%) patients with mutated K-RAS in the tissue. 26/35 (74%) patients showed an identical K-RAS pattern in tissue and serum. No codon 12 K-RAS alterations were found in serum samples of 22 patients with benign gastrointestinal diseases. Elevated serum CEA levels were detected in 16 patients, four of whom also presented serum RAS mutations. Our results confirm that K-RAS mutations can be found in circulating DNA extracted from serum samples of patients with colorectal cancer and show that there is a correspondence between serum and tissue K-RAS patterns.
Collapse
Affiliation(s)
- C Salbe
- Center for Biological Markers of Malignancy, Regional Hospital ULSS 12, Venice, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Genetic profiling of cancer with circulating tumor DNA analysis. J Genet Genomics 2018; 45:79-85. [DOI: 10.1016/j.jgg.2017.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
|
36
|
Nordgård O, Tjensvoll K, Gilje B, Søreide K. Circulating tumour cells and DNA as liquid biopsies in gastrointestinal cancer. Br J Surg 2018; 105:e110-e120. [DOI: 10.1002/bjs.10782] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/02/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Abstract
Background
Blood is the most extensively studied body fluid and, because it contains circulating tumour cells (CTCs) and circulating tumour-derived cell-free DNA (ctDNA), it may represent a liquid biopsy for cancer. Methods for enrichment and detection of CTCs and ctDNA, their clinical applications and future opportunities in gastrointestinal cancers were the focus of this review.
Methods
The PubMed database was searched for literature up to 24 June 2017, with a focus on the past 10 years. Identified articles were further scrutinized for relevant references. Articles were those in English relating to colorectal, gastric and pancreatic cancer.
Results
Both CTCs and ctDNA are in low abundance compared with other cellular components of blood, but effective enrichment and highly sensitive techniques are available for their detection. Potential clinical applications of these liquid biopsies include screening, prognostic stratification, therapy administration, monitoring of treatment effect or resistance, and surveillance. Liquid biopsies provide opportunities to reduce the need for invasive tissue sampling, especially in the context of intratumoral heterogeneity and the need for tumour genotyping.
Conclusion
Liquid biopsies have applications in gastrointestinal cancers to improve clinical decision-making.
Collapse
Affiliation(s)
- O Nordgård
- Department of Haematology and Oncology, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
| | - K Tjensvoll
- Department of Haematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - B Gilje
- Department of Haematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - K Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Clinical Surgery, Royal Infirmary of Edinburgh and University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Chen I, Raymond VM, Geis JA, Collisson EA, Jensen BV, Hermann KL, Erlander MG, Tempero M, Johansen JS. Ultrasensitive plasma ctDNA KRAS assay for detection, prognosis, and assessment of therapeutic response in patients with unresectable pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:97769-97786. [PMID: 29228650 PMCID: PMC5716690 DOI: 10.18632/oncotarget.22080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Precision oncology requires sensitive and specific clinical biomarkers. Carbohydrate Antigen 19-9 (CA19-9) is widely used in pancreatic ductal adenocarcinoma (PDA) but lacks sensitivity and specificity. Nearly all PDAs harbor somatic KRAS mutations, nominating circulating tumor DNA (ctDNA) KRAS as an alternative disease biomarker, however, variable clinical performance has limited its clinical utility. We applied an ultrasensitive, PCR mutation enrichment, next generation sequencing ctDNA KRAS assay in a large cohort of patients with unresectable PDA (N = 189) recruited to the BIOPAC study between 2008-2015. Baseline and longitudinal serum CA19-9 and plasma ctDNA KRAS were correlated with time to progression (TTP) and overall survival (OS). Baseline ctDNA KRAS detection rate was 93.7% (86.4% in patients with non-elevated CA19-9). ctDNA KRAS and CA19-9 were positively correlated yet independently associated with TTP and OS (ctDNA KRAS p = 0.0018 and 0.0014; CA19-9 p = 0.0294 and 0.0007, respectively). A generated model quantitating longitudinal ctDNA KRAS correctly assessed greater than 80% of patient responses. Quantitative detection of KRAS ctDNA is an informative prognostic biomarker, complementary to CA19-9 in patients with unresectable PDA. Longitudinal ctDNA KRAS may inform therapeutic decision making and provides a kinetically dynamic and quantitative metric of patient response.
Collapse
Affiliation(s)
- Inna Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Eric A Collisson
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Benny V Jensen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirstine L Hermann
- Department of Radiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Margaret Tempero
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Economopoulou P, Kotsantis I, Kyrodimos E, Lianidou E, Psyrri A. Liquid biopsy: An emerging prognostic and predictive tool in Head and Neck Squamous Cell Carcinoma (HNSCC). Focus on Circulating Tumor Cells (CTCs). Oral Oncol 2017; 74:83-89. [DOI: 10.1016/j.oraloncology.2017.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/17/2023]
|
39
|
Adamo P, Cowley CM, Neal CP, Mistry V, Page K, Dennison AR, Isherwood J, Hastings R, Luo J, Moore DA, Howard PJ, Miguel ML, Pritchard C, Manson M, Shaw JA. Profiling tumour heterogeneity through circulating tumour DNA in patients with pancreatic cancer. Oncotarget 2017; 8:87221-87233. [PMID: 29152076 PMCID: PMC5675628 DOI: 10.18632/oncotarget.20250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed late so that surgery is rarely curative. Earlier detection could significantly increase the likelihood of successful treatment and improve survival. The aim of the study was to provide proof of principle that point mutations in key cancer genes can be identified by sequencing circulating free DNA (cfDNA) and that this could be used to detect early PDACs and potentially, premalignant lesions, to help target early effective treatment. Targeted next generation sequencing (tNGS) analysis of mutation hotspots in 50 cancer genes was conducted in 26 patients with PDAC, 14 patients with chronic pancreatitis (CP) and 12 healthy controls with KRAS status validated by digital droplet PCR. A higher median level of total cfDNA was observed in patients with PDAC (585 ng/ml) compared to either patients with CP (300 ng/ml) or healthy controls (175 ng/ml). PDAC tissue showed wide mutational heterogeneity, whereas KRAS was the most commonly mutated gene in cfDNA of patients with PDAC and was significantly associated with a poor disease specific survival (p=0.018). This study demonstrates that tNGS of cfDNA is feasible to characterise the circulating genomic profile in PDAC and that driver mutations in KRAS have prognostic value but cannot currently be used to detect early emergence of disease. Importantly, monitoring total cfDNA levels may have utility in individuals "at risk" and warrants further investigation.
Collapse
Affiliation(s)
- Patricia Adamo
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Caroline M Cowley
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Christopher P Neal
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Vilas Mistry
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Karen Page
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Robert Hastings
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - JinLi Luo
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - David A Moore
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Pringle J Howard
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | | | - Catrin Pritchard
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Margaret Manson
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Jacqui A Shaw
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
40
|
Single-Color Digital PCR Provides High-Performance Detection of Cancer Mutations from Circulating DNA. J Mol Diagn 2017; 19:697-710. [PMID: 28818432 PMCID: PMC6593258 DOI: 10.1016/j.jmoldx.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023] Open
Abstract
We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type–bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring.
Collapse
|
41
|
Del Re M, Vivaldi C, Rofi E, Vasile E, Miccoli M, Caparello C, d'Arienzo PD, Fornaro L, Falcone A, Danesi R. Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci Rep 2017; 7:7931. [PMID: 28801547 PMCID: PMC5554237 DOI: 10.1038/s41598-017-08297-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PDAC) is still lacking of reliable markers to monitor tumor response. CA 19-9 is the only biomarker approved, despite it has several limitations in sensitivity and specificity. Since mutations of KRAS occur in more than 90% of tumors, its detection in circulating free tumor DNA (cftDNA) could represent a biomarker to monitor chemotherapy response. Twenty-seven advanced PDAC patients given first-line 5-fluorouracil, irinotecan and oxaliplatin or gemcitabine and nab-paclitaxel were enrolled. Three ml of plasma were collected: 1) before starting chemotherapy (baseline); 2) at day 15 of treatment; and 3) at each clinical follow-up. cftDNA was extracted and analysed for KRAS mutations (mutKRAS) by digital droplet PCR. Nineteen patients displayed a mutKRAS in baseline plasma samples. There was a statistically significant difference in progression-free survival (PFS) and overall survival (OS) in patients with increase vs. stability/reduction of cftDNA in the sample collected at day 15 (median PFS 2.5 vs 7.5 months, p = 0.03; median OS 6.5 vs 11.5 months, p = 0.009). The results of this study demonstrate that cftDNA mutKRAS changes are associated with tumor response to chemotherapy and support the evidence that mutKRAS in plasma may be used as a new marker for monitoring treatment outcome and disease progression in PDAC.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Caterina Vivaldi
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Vasile
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Caparello
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paolo Davide d'Arienzo
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy.,Sant'Anna School of Advanced Studies, Department of Medical Sciences, Pisa, Italy
| | - Lorenzo Fornaro
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
The prognostic value of KRAS mutation by cell-free DNA in cancer patients: A systematic review and meta-analysis. PLoS One 2017; 12:e0182562. [PMID: 28796802 PMCID: PMC5552123 DOI: 10.1371/journal.pone.0182562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
KRAS mutation has been found in various types of cancer. However, the prognostic value of KRAS mutation in cell-free DNA (cfDNA) in cancer patients was conflicting. In the present study, a meta-analysis was conducted to clarify its prognostic significance. Literature searches of Cochrane Library, EMBASE, PubMed and Web of Science were performed to identify studies related to KRAS mutation detected by cfDNA and survival in cancer patients. Two evaluators reviewed and extracted the information independently. Review Manager 5.3 software was used to perform the statistical analysis. Thirty studies were included in the present meta-analysis. Our analysis showed that KRAS mutation in cfDNA was associated with a poorer survival in cancer patients for overall survival (OS, HR 2.02, 95% CI 1.63-2.51, P<0.01) and progression-free survival (PFS, HR 1.64, 95% CI 1.27-2.13, P<0.01). In subgroup analyses, KRAS mutation in pancreatic cancer, colorectal cancer, non-small cell lung cancer and ovarian epithelial cancer had HRs of 2.81 (95% CI 1.83-4.30, P<0.01), 1.67 (95% CI 1.25-2.42, P<0.01), 1.64 (95% CI 1.13-2.39, P = 0.01) and 2.17 (95% 1.12-4.21, p = 0.02) for OS, respectively. In addition, the ethnicity didn't influence the prognostic value of KRAS mutation in cfDNA in cancer patients (p = 0.39). Prognostic value of KRAS mutation was slightly higher in plasma than in serum (HR 2.13 vs 1.65), but no difference was observed (p = 0.37). Briefly, KRAS mutation in cfDNA was a survival prognostic biomarker in cancer patients. Its prognostic value was different in various types of cancer.
Collapse
|
43
|
Clinical value of ctDNA in upper-GI cancers: A systematic review and meta-analysis. Biochim Biophys Acta Rev Cancer 2017; 1868:394-403. [PMID: 28801248 DOI: 10.1016/j.bbcan.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/05/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The recent expanding technical possibilities to detect tumor derived mutations in blood, so-called circulating tumor DNA (ctDNA), has rapidly increased the interest in liquid biopsies. This review and meta-analysis explores the clinical value of ctDNA in malignancies of the upper gastro-intestinal tract. METHODS PubMed, Cochrane and Embase databases were searched to identify studies reporting the diagnostic, prognostic or predictive value of ctDNA in patients with esophageal, gastric and pancreatic cancer, until January 2017. The diagnostic accuracy and, using random-effect pair-wise meta-analyses, the prognostic value of ctDNA was assessed. RESULTS A total of 34 studies met the inclusion criteria. For esophageal and gastric cancer, amplification of oncogenes in blood, such as HER2 and MYC, can be relevant for diagnostic purposes, and to predict treatment response in certain patient subpopulations. Given the limited number of studies assessing the role of ctDNA in esophageal and gastric cancer, the meta-analysis estimated the diagnostic accuracy and predictive value of ctDNA in pancreatic cancer only (n=10). The pooled sensitivity and specificity of ctDNA as a diagnostic tool in pancreatic cancer were 28% and 95%, respectively. Patients with pancreatic cancer and detectable ctDNA demonstrated a worse overall survival compared to patients with undetectable ctDNA (HR 1.92, 95% confidence interval (CI) 1.15-3.22, p=0.01). CONCLUSION The presence of ctDNA is significantly associated with a poor prognosis in patients with pancreatic cancer. The use of ctDNA in clinical practice is promising, although standardization of sequencing techniques and further development of high-sensitive detection methods is needed.
Collapse
|
44
|
Circulating and disseminated tumor cells in pancreatic cancer and their role in patient prognosis: a systematic review and meta-analysis. Oncotarget 2017; 8:107223-107236. [PMID: 29291024 PMCID: PMC5739809 DOI: 10.18632/oncotarget.19928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Background Disseminated tumor cells (DTCs) and circulating tumor cells (CTCs) have been postulated to seed metastases and contribute to poorer patient outcomes in many types of solid cancer. To date, no systematic reviews have examined the role of both DTCs and CTCs in pancreatic cancer. We aimed to determine the prognostic value of DTCs/CTCs in pancreatic cancer using a systematic review and meta-analysis. Materials and Methods A comprehensive literature search identified studies examining DTCs and CTCs in the bone marrow and blood of pancreatic cancer patients at diagnosis with follow-up to determine disease-free/progression-free survival (DFS/PFS) and overall survival (OS). Statistical analyses were performed to determine the hazard ratio (HR) of DTCs/CTCs on DFS/PFS and OS. Results The literature search identified 16 articles meeting the inclusion criteria. The meta-analysis demonstrated statistically significant HR differences in DFS/PFS (HR = 1.93, 95% CI 1.19–3.11, P = 0.007) and OS (HR = 1.84, 95% CI 1.37–2.45, P =< 0.0001), indicating patients with detectable DTCs/CTCs at diagnosis have worse prognoses. Subgroup analyses suggested CTCs in the peripheral blood (HR =2.03) were more indicative of poor OS prognosis than DTCs in the bone marrow (HR = 1.91), although the difference between these was not statistically significant. Positivity of the CellSearch detection method for DTC/CTC had the highest correlation with decreased OS (HR = 2.79) while immunodetection (HR = 1.91) and RT-PCR (HR = 1.25) were less effective in determining prognosis. Conclusion The detection of DTCs/CTCs at diagnosis is associated with poorer DFS/PFS and OS in pancreatic cancer.
Collapse
|
45
|
Lu L, Zeng J. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas. PLoS One 2017; 12:e0181532. [PMID: 28742845 PMCID: PMC5526503 DOI: 10.1371/journal.pone.0181532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic alterations in K-ras and p53 are thought to be critical in pancreatic cancer development and progression. However, K-ras and p53 expression in pancreatic adenocarcinoma have not been systematically examined in The Cancer Genome Atlas (TCGA) Data Portal. Information regarding K-ras and p53 alterations, mRNA expression data, and protein/protein phosphorylation abundance was retrieved from The Cancer Genome Atlas (TCGA) databases, and analyses were performed by the cBioPortal for Cancer Genomics. The mutual exclusivity analysis showed that events in K-ras and p53 were likely to co-occur in pancreatic adenocarcinoma (Log odds ratio = 1.599, P = 0.006). The graphical summary of the mutations showed that there were hotspots for protein activation. In the network analysis, no solid association between K-ras and p53 was observed in pancreatic adenocarcinoma. In the survival analysis, neither K-ras nor p53 were associated with both survival events. As in the data mining study in the TCGA databases, our study provides a new perspective to understand the genetic features of K-ras and p53 in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Liming Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingchun Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Strotman LN, Millner LM, Valdes R, Linder MW. Liquid Biopsies in Oncology and the Current Regulatory Landscape. Mol Diagn Ther 2017; 20:429-36. [PMID: 27324559 DOI: 10.1007/s40291-016-0220-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a profound need in oncology to detect cancer earlier, guide individualized therapies, and better monitor progress during treatment. Currently, some of this information can be achieved through solid tissue biopsy and imaging. However, these techniques are limited because of the invasiveness of the procedure and the size of the tumor. A liquid biopsy can overcome these barriers as its non-invasive nature allows samples to be collected over time. Liquid biopsies may also allow earlier detection than traditional imaging. Liquid biopsies include the analysis of circulating tumor cells (CTCs), cell-free nucleic acid (cfNA), or extracellular vesicles obtained from a variety of biofluids, such as peripheral blood. In this review, we discuss different liquid biopsy types and how they fit into the current regulatory landscape.
Collapse
Affiliation(s)
- Lindsay N Strotman
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Lori M Millner
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Roland Valdes
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA.
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA.
| |
Collapse
|
47
|
Howell JA, Khan SA, Knapp S, Thursz MR, Sharma R. The clinical role of circulating free tumor DNA in gastrointestinal malignancy. Transl Res 2017; 183:137-154. [PMID: 28056336 DOI: 10.1016/j.trsl.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Circulating cell-free DNA (cfDNA) is DNA released from necrotic or apoptotic cells into the bloodstream. While both healthy cells and cancer cells release cfDNA, tumors are associated with higher levels of tumor-derived circulating cell-free DNA (ctDNA) detectable in blood. Absolute levels of ctDNA and its genetic mutations and epigenetic changes show promise as potentially useful biomarkers of tumor biology, progression, and response to therapy. Moreover, studies have demonstrated the discriminative accuracy of ctDNA levels for diagnosis of gastrointestinal cancer compared with benign inflammatory diseases. Therefore, ctDNA detected in blood offers a minimally invasive and easily repeated "liquid biopsy" of cancer, facilitating real-time dynamic analysis of tumor behavior that could revolutionize both clinical and research practices in oncology. In this review, we provide a critical summary of the evidence for the utility of ctDNA as a diagnostic and prognostic biomarker in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK; Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia; Department of Medicine, The University of Melbourne, Melbourne, Australia.
| | - Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Susanne Knapp
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Mark R Thursz
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
48
|
Szallasi Z. Detecting mutant KRAS in liquid biopsies: a biomarker searching for a role. Ann Oncol 2017; 28:677-678. [DOI: 10.1093/annonc/mdx056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 12/18/2022] Open
|
49
|
Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, Davis G, Kumar T, Katz M, Overman MJ, Foretova L, Fabianova E, Holcatova I, Janout V, Meric-Bernstam F, Gascoyne P, Wistuba I, Varadhachary G, Brennan P, Hanash S, Li D, Maitra A, Alvarez H. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol 2017; 28:741-747. [PMID: 28104621 PMCID: PMC5834026 DOI: 10.1093/annonc/mdx004] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 02/03/2023] Open
Abstract
Background Exosomes arise from viable cancer cells and may reflect a different biology than circulating cell-free DNA (cfDNA) shed from dying tissues. We compare exosome-derived DNA (exoDNA) to cfDNA in liquid biopsies of patients with pancreatic ductal adenocarcinoma (PDAC). Patients and methods Patient samples were obtained between 2003 and 2010, with clinically annotated follow up to 2015. Droplet digital PCR was performed on exoDNA and cfDNA for sensitive detection of KRAS mutants at codons 12/13. A cumulative series of 263 individuals were studied, including a discovery cohort of 142 individuals: 68 PDAC patients of all stages; 20 PDAC patients initially staged with localized disease, with blood drawn after resection for curative intent; and 54 age-matched healthy controls. A validation cohort of 121 individuals (39 cancer patients and 82 healthy controls) was studied to validate KRAS detection rates in early-stage PDAC patients. Primary outcome was circulating KRAS status as detected by droplet digital PCR. Secondary outcomes were disease-free and overall survival. Results KRAS mutations in exoDNA, were identified in 7.4%, 66.7%, 80%, and 85% of age-matched controls, localized, locally advanced, and metastatic PDAC patients, respectively. Comparatively, mutant KRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 57.9% of these individuals. Higher exoKRAS MAFs were associated with decreased disease-free survival in patients with localized disease. In the validation cohort, mutant KRAS exoDNA was detected in 43.6% of early-stage PDAC patients and 20% of healthy controls. Conclusions Exosomes are a distinct source of tumor DNA that may be complementary to other liquid biopsy DNA sources. A higher percentage of patients with localized PDAC exhibited detectable KRAS mutations in exoDNA than previously reported for cfDNA. A substantial minority of healthy samples demonstrated mutant KRAS in circulation, dictating careful consideration and application of liquid biopsy findings, which may limit its utility as a broad cancer-screening method.
Collapse
Affiliation(s)
| | | | - F. A. San Lucas
- Translational Molecular Pathology
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - G. Scelo
- Genetic Epidemiology Group International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | - M. Katz
- Departments of Surgical Oncology
| | - M. J. Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - L. Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - E. Fabianova
- Regional Authority of Public Health in Banska Bystrica, Banska Bystrica, Slovakia
| | - I. Holcatova
- Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague
| | - V. Janout
- Department of Preventive Medicine, Palacky University of Medicine, Olomouc
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - F. Meric-Bernstam
- Department of Investigational Cancer Therapeutics and the Institute for Personalized Cancer Therapy, Houston
| | | | | | - G. Varadhachary
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - P. Brennan
- Genetic Epidemiology Group International Agency for Research on Cancer, Lyon, France
| | - S. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - D. Li
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A. Maitra
- Pathology
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H. Alvarez
- Pathology
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
50
|
Choi SH, Kim HJ, Kim KW, An S, Hong SM, Kim SC, Kim MH. DPC4 gene expression in primary pancreatic ductal adenocarcinoma: relationship with CT characteristics. Br J Radiol 2017; 90:20160403. [PMID: 28339284 DOI: 10.1259/bjr.20160403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the relationship between CT imaging findings and DPC4 gene expression and to determine the prognostic value of DPC4 gene expression to predict overall survival in patients with pancreatic ductal adenocarcinoma. METHODS Between January and December 2011, we retrospectively analyzed 163 pancreatic ductal adenocarcinomas in 163 patients who had undergone surgical resection (mean age = 61.8 years; range = 35-81 years). We divided the study patients into two groups according to DPC4 gene expression: DPC4-expression or DPC4-non-expression group. The CT findings were analyzed by two reviewers. The associations between the CT imaging findings and DPC4 gene expression were evaluated using univariate analysis and multivariate logistic regression analysis. Overall survival was compared according to the DPC4 gene expression (DPC4-expression vs DPC4-non-expression) using Kaplan-Meier analysis and log-rank testing. To avoid bias, subgroup analyses of CT findings in T3 tumour and overall survival in patients with T3 tumour and R0 resection were performed. RESULTS Between DPC4-expression group (n = 75) and DPC4-non-expression group (n = 88), three CT findings (i.e., tumour margin, peripancreatic infiltration, and the presence of background intraductal pancreatic mucinous neoplasm) were significantly different in univariate analysis. Of these, a well-defined tumour margin was significantly associated with DPC4-expression tumour (adjusted odds ratio = 2.06; p = 0.032) in multivariate analysis. Of the total 163 patients, the mean overall survival of the DPC4-expression group was significantly longer than that of the DPC4-non-expression group (30.0 vs 22.0 months; p = 0.049). Of the 150 T3 tumours, the presence of well-defined tumour margins was also a significant CT finding (adjusted odd ratio = 2.00; p = 0.044) in multivariate analysis. However, of 131 patients with T3 tumour and R0 resection, the overall survival period of the DPC4-expression group was not significantly different from that of the DPC4-non-expression group (24.0 vs 22.0 months; p = 0.240). CONCLUSION The presence of well-defined tumour margins on CT was significantly linked with DPC4-expression tumour. Advances in knowledge: A well-defined tumour margin is an independent CT finding associated with DPC4-expression pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Sang Hyun Choi
- 1 Department of Radiology and the Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyoung Jung Kim
- 1 Department of Radiology and the Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung Won Kim
- 1 Department of Radiology and the Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soyeon An
- 2 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Mo Hong
- 2 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Song Cheol Kim
- 3 Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myung-Hwan Kim
- 4 Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|