1
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Sharma N, Kabeer SW, Singh IP, Tikoo K. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri potentiates its efficacy and attenuates its toxicity. Int J Biol Macromol 2023; 225:227-240. [PMID: 36354077 DOI: 10.1016/j.ijbiomac.2022.10.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of newer cisplatin analogs is constantly being investigated owing to its low solubility, poor pharmacokinetics, and dose-related toxicity. In order to address the limitations of current cisplatin therapy, the present study was undertaken. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri (LG-EPS) showed remarkably enhanced and selective anticancer activity by targeting tumor cells overexpressing glucose transporter 1 (GLUT1). The EPS-cisplatin complex exhibited a 600-fold increase in aqueous solubility with a better pharmacokinetic profile (longer half-life) in comparison to cisplatin. Cell viability assay and western blotting demonstrated a strong correlation between the cytotoxicity profile and GLUT1 expressions in different cell lines. The concentration of DNA-bound platinum was also found to be significantly higher in EPS-cisplatin-treated cells. Quercetin, a competitive inhibitor of GLUTs, was shown to prevent this selective uptake of EPS-cisplatin complex. Surprisingly, EPS-cisplatin complex showed an exceptionally safer profile (4 times the maximum tolerated dose of cisplatin) in the acute toxicity study and was also more efficacious against the xenograft mice model. The study suggests that this green glycoconjugation can be an effective and safer strategy to broaden the therapeutic potential of anti-cancer drugs in general and cisplatin in particular.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
4
|
Glycosylation in Renal Cell Carcinoma: Mechanisms and Clinical Implications. Cells 2022; 11:cells11162598. [PMID: 36010674 PMCID: PMC9406705 DOI: 10.3390/cells11162598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most prevalent malignant tumors of the urinary system, accounting for around 2% of all cancer diagnoses and deaths worldwide. Clear cell RCC (ccRCC) is the most prevalent and aggressive histology with an unfavorable prognosis and inadequate treatment. Patients' progression-free survival is considerably improved by surgery; however, 30% of patients develop metastases following surgery. Identifying novel targets and molecular markers for RCC prognostic detection is crucial for more accurate clinical diagnosis and therapy. Glycosylation is a critical post-translational modification (PMT) for cancer cell growth, migration, and invasion, involving the transfer of glycosyl moieties to specific amino acid residues in proteins to form glycosidic bonds through the activity of glycosyltransferases. Most cancers, including RCC, undergo glycosylation changes such as branching, sialylation, and fucosylation. In this review, we discuss the latest findings on the significance of aberrant glycans in the initiation, development, and progression of RCC. The potential biomarkers of altered glycans for the diagnosis and their implications in RCC have been further highlighted.
Collapse
|
5
|
Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol 2022; 86:325-333. [PMID: 35809880 DOI: 10.1016/j.semcancer.2022.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022]
Abstract
Tumors have long been known to rewire their metabolism to endorse their proliferation, growth, survival, and invasiveness. One of the common characteristics of these alterations is the enhanced glucose uptake and its subsequent transformation into lactic acid by means of glycolysis, regardless the availability of oxygen or the mitochondria effectiveness. This phenomenon is called the "Warburg effect", which has turned into a century of age now, since its first disclosure by German physiologist Otto Heinrich Warburg. Since then, this peculiar metabolic switch in tumors has been addressed by extensive studies covering several areas of research. In this historical perspective, we aim at illustrating the evolution of these studies over time and their implication in various fields of science.
Collapse
|
6
|
Rashidnejad H, Kordi MA, Pesyan NN, Allahyari-devin M, Frashchi AH, Ramezanitaghartapeh M. Cascade Synthesis of 1,4-Butanediol Monomesylate Glycoconjugates: Anticancer Candidates for Leukemia. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1875:188464. [PMID: 33157161 DOI: 10.1016/j.bbcan.2020.188464] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Glycosylation is a well-regulated cell and microenvironment specific post-translational modification. Several glycosyltransferases and glycosidases orchestrate the addition of defined glycan structures on the proteins and lipids. Recent advances and systemic approaches in glycomics have significantly contributed to a better understanding of instrumental roles of glycans in health and diseases. Emerging research evidence recognized aberrantly glycosylated proteins as the modulators of the malignant phenotype of cancer cells. The Cancer Genome Atlas has identified alterations in the expressions of glycosylation-specific genes that are correlated with cancer progression. However, the mechanistic basis remains poorly explored. Recent researches have shown that specific changes in the glycan structures are associated with 'stemness' and epithelial-to-mesenchymal transition of cancer cells. Moreover, epigenetic changes in the glycosylation pattern make the tumor cells capable of escaping immunosurveillance mechanisms. The deciphering roles of glycans in cancer emphasize that glycans can serve as a source for the development of novel clinical biomarkers. The ability of glycans in intervening various stages of tumor progression and the biosynthetic pathways involved in glycan structures constitute a promising target for cancer therapy. Advances in the knowledge of innovative strategies for identifying the mechanisms of glycan-binding proteins are hoped to hold great potential in cancer therapy. This review discusses the fundamental role of glycans in regulating tumorigenesis and tumor progression and provides insights into the influence of glycans in the current tactics of targeted therapies in the clinical setting.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
10
|
Molejon MI, Weiz G, Breccia JD, Vaccaro MI. Glycoconjugation: An approach to cancer therapeutics. World J Clin Oncol 2020; 11:110-120. [PMID: 32257842 PMCID: PMC7103525 DOI: 10.5306/wjco.v11.i3.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer constitutes the second leading cause of death globally and is considered to have been responsible for an estimated 9.6 million fatalities in 2018. Although treatments against gastrointestinal tumors have recently advanced, those interventions can only be applied to a minority of patients at the time of diagnosis. Therefore, new therapeutic options are necessary for advanced stages of the disease. Glycosylation of antitumor agents, has been found to improve pharmacokinetic parameters, reduce side effects, and expand drug half-life in comparison with the parent compounds. In addition, glycosylation of therapeutic agents has been proven to be an effective strategy for their targeting tumor tissue, thereby reducing the doses of the glycodrugs administered to patients. This review focusses on the effect of the targeting properties of glycosylated antitumor agents on gastrointestinal tumors.
Collapse
Affiliation(s)
- Maria I Molejon
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Gisela Weiz
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Javier D Breccia
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Maria Ines Vaccaro
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
11
|
Successful Targeting of the Warburg Effect in Prostate Cancer by Glucose-Conjugated 1,4-Naphthoquinones. Cancers (Basel) 2019; 11:cancers11111690. [PMID: 31671612 PMCID: PMC6896172 DOI: 10.3390/cancers11111690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Treatment of castration-resistant prostate cancer (CRPC) remains challenging due to the development of drug resistance. The Warburg effect describes the ability of cancer cells to consume larger amounts of glucose compared to normal tissues. We identified derivatives of natural 1,4-naphthoquinones to be active in CRPC and further synthetically modified them via glucose conjugation to increase selectivity by Warburg effect targeting. Mechanisms of action were examined by quantitative proteomics followed by bioinformatical analysis and target validation. Four synthesized molecules revealed the highest selectivity towards human CRPC cells, which correlated with higher GLUT-1 activity and expression. The compounds were able to induce pro-apoptotic signs and to inhibit the pro-survival processes and mechanisms of drug resistance (i.e., AR-signaling and autophagy). Proteome analysis suggested a disruption of the mitochondria/oxidative phosphorylation, which was validated by further functional analysis: thus, mitochondria depolarization, elevated levels of cytotoxic ROS, an increase of Bax/Bcl-2 ratio as well as release of mitochondrial AIF and cytochrome C to cytoplasm were observed. In conclusion, glucose-conjugated 1,4-naphthoquinones show potent activity and selectivity in human CRPC exerted via mitochondrial targeting. The compounds can overcome drug resistance against current standard therapies and suppress pro-survival mechanisms. This unique combination of properties makes them new promising candidates for the treatment of CRPC.
Collapse
|
12
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
13
|
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 2018; 116:206-226. [DOI: 10.1002/bit.26845] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/30/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ana S. Nunes
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Andreia S. Barros
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Elisabete C. Costa
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - André F. Moreira
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
| | - Ilídio J. Correia
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI); Covilhã Portugal
- Departamento de Engenharia Química; Universidade de Coimbra, (CIEPQF); Coimbra Portugal
| |
Collapse
|
14
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Granchi C, Fortunato S, Minutolo F. Anticancer agents interacting with membrane glucose transporters. MEDCHEMCOMM 2016; 7:1716-1729. [PMID: 28042452 DOI: 10.1039/c6md00287k] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The altered metabolism observed in cancer cells generally consists in increased glucose uptake and glycolytic activity. This is associated with an overexpression of glucose transporter proteins (GLUTs), which facilitate glucose uptake across the plasma membrane and play a crucial role in the survival of cancer cells. Therefore GLUTs are considered as suitable targets for the treatment of cancer. Herein we review some of the most relevant GLUT inhibitors that have been recently developed as prospective anticancer agents.
Collapse
Affiliation(s)
- C Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - S Fortunato
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - F Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
16
|
Mumcuoglu D, Sardan Ekiz M, Gunay G, Tekinay T, Tekinay AB, Guler MO. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11280-11287. [PMID: 27097153 DOI: 10.1021/acsami.6b01526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.
Collapse
Affiliation(s)
- Didem Mumcuoglu
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | | | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
17
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Galactose conjugated platinum(II) complex targeting the Warburg effect for treatment of non-small cell lung cancer and colon cancer. Eur J Med Chem 2016; 110:32-42. [PMID: 26807543 DOI: 10.1016/j.ejmech.2016.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 11/23/2022]
Abstract
Malignant neoplasms exhibit a higher rate of glycolysis than normal cells; this is known as the Warburg effect. To target it, a galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-chloromalonato-platinum(II) complex (Gal-Pt) was designed, synthesized, and evaluated in five human cancer cell lines and against two different xenograft tumour models. Gal-Pt exhibits much higher aqueous solubility (over 25 times) and improved cytotoxicity than oxaliplatin, especially in human colon (HT29) and lung (H460) cancer cell lines. The safety profile of Gal-Pt was investigated in vivo by exploring the maximum tolerated dose (MTD) and animal mortality rate. The ratios of the animal lethal dosage values to the cytotoxicity in HT29 (LD50/IC50) showed that Gal-Pt was associated with an increased therapeutic index by over 30-fold compared to cisplatin and oxaliplatin. We evaluated in vivo antitumor activity by single agent intravenous treatment comparison studies of Gal-Pt (50 mg/kg as 65% MTD) and cisplatin (3 mg/kg, as 80% MTD) in a H460 lung cancer xenograft model, and with oxaliplatin (7 mg/kg, as 90% MTD) in a HT29 colon cancer xenograft model. The results show that Gal-Pt was more efficacious against H460 than cisplatin, and had superior potency in HT29 cells compared to oxaliplatin under nontoxic dosage conditions. The dependency between cytotoxicity of Gal-Pt and glucose transporters (GLUTs) was investigated by using quercetin as an inhibitor of GLUTs in HT29 cells. The cytotoxic potency of Gal-Pt was highly reduced by the inhibitor, suggesting that the uptake of Gal-Pt was regulated by glucose transporters. The GLUT mediated transportability and cellular uptake of Gal-Pt was also demonstrated using a fluorescent glucose bioprobe in HT29 competition assay.
Collapse
|
19
|
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14:203-19. [DOI: 10.1038/nrd4519] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 2013; 4:2319-2333. [PMID: 24077675 DOI: 10.1039/c3sc22205e] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cancers of diverse origins exhibit marked glucose avidity and high rates of aerobic glycolysis. Increased understanding of this dysfunctional metabolism known as the Warburg effect has led to an interest in targeting it for cancer therapy. One promising strategy for such targeting is glycoconjugation, the linking of a drug to glucose or another sugar. This review summarizes the most salient examples of glycoconjugates, in which known cytotoxins or targeted anticancer therapeutics have been linked to glucose (or another glucose transporter substrate sugar) for improved cancer targeting and selectivity. Building on these examples, this review also provides a series of guidelines for the design and mechanistic evaluation of future glycoconjugates.
Collapse
|
21
|
Granchi C, Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012; 7:1318-50. [PMID: 22684868 PMCID: PMC3516916 DOI: 10.1002/cmdc.201200176] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Indexed: 12/12/2022]
Abstract
Can we consider cancer to be a "metabolic disease"? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have increased needs for both energy and biosynthetic intermediates to support their growth and invasiveness. However, their high proliferation rate often generates regions that are insufficiently oxygenated. Therefore, their carbohydrate metabolism must rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the Warburg effect, constitutes a fundamental adaptation of tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that antiglycolytic agents may cause serious side effects toward normal cells. The key to selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anticancer drugs with minimal toxicity. There is growing evidence to support many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant antiglycolytic agents that have been investigated thus far for the treatment of cancer.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| | - Filippo Minutolo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| |
Collapse
|
22
|
Wang D, Wang H. Oxazaphosphorine bioactivation and detoxification The role of xenobiotic receptors. Acta Pharm Sin B 2012; 2. [PMID: 24349963 DOI: 10.1016/j.apsb.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxazaphosphorines, with the most representative members including cyclophosphamide, ifosfamide, and trofosfamide, constitute a class of alkylating agents that have a broad spectrum of anticancer activity against many malignant ailments including both solid tumors such as breast cancer and hematological malignancies such as leukemia and lymphoma. Most oxazaphosphorines are prodrugs that require hepatic cytochrome P450 enzymes to generate active alkylating moieties before manifesting their chemotherapeutic effects. Meanwhile, oxazaphosphorines can also be transformed into non-therapeutic byproducts by various drug-metabolizing enzymes. Clinically, oxazaphosphorines are often administered in combination with other chemotherapeutics in adjuvant treatments. As such, the therapeutic efficacy, off-target toxicity, and unintentional drug-drug interactions of oxazaphosphorines have been long-lasting clinical concerns and heightened focuses of scientific literatures. Recent evidence suggests that xenobiotic receptors may play important roles in regulating the metabolism and clearance of oxazaphosphorines. Drugs as modulators of xenobiotic receptors can affect the therapeutic efficacy, cytotoxicity, and pharmacokinetics of coadministered oxazaphosphorines, providing a new molecular mechanism of drug-drug interactions. Here, we review current advances regarding the influence of xenobiotic receptors, particularly, the constitutive androstane receptor, the pregnane X receptor and the aryl hydrocarbon receptor, on the bioactivation and detoxification of oxazaphosphorines, with a focus on cyclophosphamide and ifosfamide.
Collapse
|
23
|
Lacombe D. Glufosfamide: can we improve the process of anticancer agent development? Expert Opin Investig Drugs 2012; 21:749-54. [DOI: 10.1517/13543784.2012.670218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Denis Lacombe
- EORTC,
Headquarters, Ave E Mounier 83, Brussels, 1200, Belgium
| |
Collapse
|
24
|
Glut-1 Expression Correlates with Basal-like Breast Cancer. Transl Oncol 2011; 4:321-7. [PMID: 22190995 DOI: 10.1593/tlo.11256] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Glucose transporter 1 (Glut-1) is a facilitative glucose transporter expressed in many cancers including breast cancer. Basal-like breast cancer (BLBC) is a high-risk disease associated with poor prognosis and lacks the benefit of targeted therapy. The aim of this study was to characterize the immunohistochemical (IHC) expression of Glut-1 in patients with BLBC compared with non-BLBC. MATERIALS AND METHODS We identified 523 cases of invasive breast carcinoma from our database. The clinicopathologic findings and the biologic markers including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2) status were reviewed. IHC stains for cytokeratin 5/6 (CK5/6), epidermal growth factor receptor (EGFR), p53, and Glut-1 were performed on tissue microarray using standard procedures. BLBC was defined as ER-,PR-, Her2-, and CK5/6+ and/or EGFR+. RESULTS Of informative cases, 14.7% were categorized as BLBC versus 85.3% as non-BLBC. Glut-1 was expressed in 42 (76.4%) of 55 BLBCs, whereas only 55 (23.8%) of 231 non-BLBCs showed immunostaining for Glut-1 (P < .001). Overall, Glut-1 expression was significantly associated with high histologic grade, ER negativity, PR negativity, CK5/6 positivity, EGFR expression, and high p53 expression (P < .001). However, there was no correlation between Glut-1 immunostaining and patient's outcome. CONCLUSIONS Our results show that Glut-1 is significantly associated with BLBC and might be a potential therapeutic target for this aggressive subgroup of breast cancer, and this warrants further investigations.
Collapse
|
25
|
Abstract
Glufosfamide (β-D-glucose-isophosphoramide mustard, D-19575) belongs to the oxazaphosphorine class. Glufosfamide is a novel glucose conjugate of ifosfamide in which isophosphoramide mustard, the alkylating metabolite of ifosfamide, is glycosidically linked to the β-D-glucose molecule. Glufosfamide represents an attractive new agent for cancer therapy. Its mode of action on normal and pathological cells is still under experimental and clinical investigations. An assessment of the anticancer potential of glufosfamide is of key importance in therapy. The researchers reviewed the current knowledge available on glufosfamide tested in the preclinical studies/clinical trials, based on a collection of the original papers and conference abstracts published and relevant articles searched in the SCOPUS and MEDLINE database and websites.
Collapse
|
26
|
Semaan A, Munkarah AR, Arabi H, Bandyopadhyay S, Seward S, Kumar S, Qazi A, Hussein Y, Morris RT, Ali-Fehmi R. Expression of GLUT-1 in epithelial ovarian carcinoma: correlation with tumor cell proliferation, angiogenesis, survival and ability to predict optimal cytoreduction. Gynecol Oncol 2010; 121:181-6. [PMID: 21167567 DOI: 10.1016/j.ygyno.2010.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/10/2010] [Accepted: 11/13/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE GLUT-1 is involved at various steps in the processes of tumor progression. The objective of this study was to examine the relationship between GLUT-1 expression and tumor proliferation and angiogenesis in epithelial ovarian carcinoma. MATERIALS AND METHODS Specimens from 213 patients with epithelial ovarian carcinoma were evaluated by immunohistochemistry for GLUT-1, Ki-67, and vascular endothelial growth factor. Tumor microvessel density was assessed with CD34 immunostaining. We investigated the relationships between GLUT-1 expression and clinicopathologic characteristics, tumor angiogenesis (tumor MVD and vascular endothelial growth factor expression), and tumor proliferation (Ki-67). The effect of GLUT-1 expression on patient survival and on the volume of residual disease after cytoreduction was determined. RESULTS There was a significant positive correlation between expression of GLUT-1, Ki-67, and microvessel density. In univariate survival analysis, high GLUT-1 expression, high Ki-67 expression and high tumor microvessel density showed a significant impact on patient survival (p=0.0001). In multivariate analysis including patients with all tumor stages, after controlling for age, race, stage, grade, MVD, and the 3 markers (GLUT-1, Ki-67 and VEGF), only age (HR 1.5; 95% CI 1-2.3), stage (HR 3.6; 95% CI 1.8-7.5) and grade (HR 2.3; 95% CI 1.2-4.5) retained their significance as independent poor prognostic factors. Tumors simultaneously overexpressing GLUT-1 and Ki-67 were less likely to be optimally cytoreduced as compared to tumors overexpressing only one or neither of those two markers (OR: 3.8, p=0.01). CONCLUSION Expression of GLUT-1 correlates with tumor proliferation and microvessel density in epithelial ovarian carcinoma. In addition, patients with rapidly proliferating advanced stage tumors overexpressing GLUT-1 have a lesser chance for optimal cytoreduction.
Collapse
Affiliation(s)
- Assaad Semaan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chiorean EG, Dragovich T, Hamm J, Barrios CH, Gorini CF, Langmuir VK, Kroll S, Jung DT, Tidmarsh GT, Loehrer PJ. A phase 2 trial of glufosfamide in combination with gemcitabine in chemotherapy-naive pancreatic adenocarcinoma. Am J Clin Oncol 2010; 33:111-6. [PMID: 19687729 DOI: 10.1097/coc.0b013e3181979204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES A dose-escalation study of glufosfamide plus gemcitabine showed that the combination could be administered safely at full doses. The purpose of this phase II study was to evaluate the safety and efficacy of this combination in chemotherapy-naive pancreatic adenocarcinoma. METHODS Eligible patients had metastatic and/or locally advanced pancreatic adenocarcinoma, Karnofsky performance status >or=70, creatinine clearance (CrCL) >or=60 mL/min, and acceptable organ function. Patients received glufosfamide 4500 mg/m intravenous on day 1 and gemcitabine 1000 mg/m intravenous on Days 1, 8, and 15 of every 28-day cycle. The primary end point was response rate. RESULTS Twenty-nine patients were enrolled; 14 male, median age 58 years. Twenty-three (79%) patients had distant metastases. Median cycles on treatment was 4 (range: 1-18+). Of 28, 5 (18%; 95% CI: 6%-37%) patients had a confirmed partial response (median duration: 8.4 months) and 1 had an unconfirmed partial response. Eleven patients (39%) had stable disease. Median progression-free survival was 3.7 months, median overall survival was 6 months, and 1-year survival was 32%. Grade 3/4 neutropenia occurred in 23 (79%) patients and grade 3/4 thrombocytopenia in 10 (34%) patients. The CrCL fell below 60 mL/min in 10 of 27 (37%) patients. Renal failure occurred in 4 patients. Decrease in CrCL was correlated with glufosfamide and isophosphoramide mustard pharmacokinetic area under the curve. CONCLUSIONS The combination of glufosfamide plus gemcitabine is active in pancreatic cancer; however, hematologic and renal toxicity were pronounced. Alternative dosing of glufosfamide plus gemcitabine should be explored.
Collapse
Affiliation(s)
- Elena G Chiorean
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
29
|
Sonnenblick A, Meirovitz A. Renal tubular acidosis secondary to capecitabine, oxaliplatin, and cetuximab treatment in a patient with metastatic colon carcinoma: a case report and review of the literature. Int J Clin Oncol 2010; 15:420-2. [DOI: 10.1007/s10147-010-0050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/28/2009] [Indexed: 12/01/2022]
|
30
|
Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C, Peeters M. Expression of SGLT1, Bcl-2 and p53 in Primary Pancreatic Cancer Related to Survival. Cancer Invest 2009; 26:852-9. [DOI: 10.1080/07357900801956363] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ciuleanu TE, Pavlovsky AV, Bodoky G, Garin AM, Langmuir VK, Kroll S, Tidmarsh GT. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer 2009; 45:1589-96. [DOI: 10.1016/j.ejca.2008.12.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
32
|
Shimizu T, Okamoto I, Tamura K, Satoh T, Miyazaki M, Akashi Y, Ozaki T, Fukuoka M, Nakagawa K. Phase I clinical and pharmacokinetic study of the glucose-conjugated cytotoxic agent d-19575 (glufosfamide) in patients with solid tumors. Cancer Chemother Pharmacol 2009; 65:243-50. [DOI: 10.1007/s00280-009-1028-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 05/04/2009] [Indexed: 12/01/2022]
|
33
|
Loo DDF, Hirayama BA, Sala-Rabanal M, Wright EM. How drugs interact with transporters: SGLT1 as a model. J Membr Biol 2008; 223:87-106. [PMID: 18592293 DOI: 10.1007/s00232-008-9116-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 05/20/2008] [Indexed: 11/29/2022]
Abstract
Drugs are transported by cotransporters with widely different turnover rates. We have examined the underlying mechanism using, as a model system, glucose and indican (indoxyl-beta-D-glucopyranoside) transport by human Na+/glucose cotransporter (hSGLT1). Indican is transported by hSGLT1 at 10% of the rate for glucose but with a fivefold higher apparent affinity. We expressed wild-type hSGLT1 and mutant G507C in Xenopus oocytes and used electrical and optical methods to measure the kinetics of glucose (using nonmetabolized glucose analogue alpha-methyl-D-glucopyranoside, alphaMDG) and indican transport, alone and together. Indican behaved as a competitive inhibitor of alphaMDG transport. To examine protein conformations, we recorded SGLT1 capacitive currents (charge movements) and fluorescence changes in response to step jumps in membrane voltage, in the presence and absence of indican and/or alphaMDG. In the absence of sugar, voltage jumps elicited capacitive SGLT currents that decayed to steady state with time constants (tau) of 3-20 ms. These transient currents were abolished in saturating alphaMDG but only slightly reduced (10%) in saturating indican. SGLT1 G507C rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages. Maximal fluorescence increased approximately 150% in saturating indican but decreased approximately 50% in saturating alphaMDG. Modeling indicated that the rate-limiting step for indican transport is sugar translocation, whereas for alphaMDG it is dissociation of Na+ from the internal binding sites. The inhibitory effects of indican on alphaMDG transport are due to its higher affinity and a 100-fold lower translocation rate. Our results indicate that competition between substrates and drugs should be taken into consideration when targeting transporters as drug delivery systems.
Collapse
Affiliation(s)
- Donald D F Loo
- Department of Physiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Los Angeles, CA 90095-1751, USA.
| | | | | | | |
Collapse
|
34
|
Anderson P, Aguilera D, Pearson M, Woo S. Outpatient Chemotherapy plus Radiotherapy in Sarcomas: Improving Cancer Control with Radiosensitizing Agents. Cancer Control 2008; 15:38-46. [DOI: 10.1177/107327480801500105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Cancer control by radiotherapy (RT) can be improved with concurrent chemotherapy. Outpatient strategies for sarcomas that combine chemotherapy and RT are possible since supportive care and RT techniques have improved. Methods The current status of non-anthracycline chemotherapy in combination with radiation for high-risk sarcoma is reviewed. Results Ifosfamide with mesna and newer activated ifosfamide agents (ZIO-201 and glufosfamide) have high potential to improve sarcoma cancer control. In Ewing's sarcoma and osteosarcoma, high-dose ifosfamide with mesna (2.8 g/m2/day of each x 5 days; mesna day 6) can be safely given to outpatients using continuous infusion. Reducing ifosfamide nephrotoxicity and central nervous system side effects are discussed. Other outpatient radiosensitization regimens include gemcitabine (600–1000 mg/m2/dose IV over 1 hour weekly x 2–3 doses), temozolomide (75 mg/m2/daily x 3–6 weeks), or temozolomide (100 mg/m2/dose daily x 5) + irinotecan (10 mg/m2/dose daily x 5 x 2 weeks). In osteosarcoma with osteoblastic metastases on bone scan, samarium (1 mCi/kg; day 3 of RT) and gemcitabine (600 mg/m2 IV over 1 hour day 9 of RT) is a radiosensitization strategy. Future drugs for radiosensitization include beta-D-glucose targeted activated ifosfamide (glufosfamide) and sapacitabine, an oral nucleoside with in vitro activity against solid tumors including sarcomas. Conclusions The potential to treat major causes of sarcoma treatment failure (local recurrence and distant metastases) with concurrent chemotherapy during radiation should be considered in high-grade sarcomas.
Collapse
Affiliation(s)
- Pete Anderson
- Departments of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Dolly Aguilera
- Departments of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Margaret Pearson
- Departments of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Shaio Woo
- Radiation Oncology at The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Ammons WS, Wang JW, Yang Z, Tidmarsh GF, Hoffman RM. A novel alkylating agent, glufosfamide, enhances the activity of gemcitabine in vitro and in vivo. Neoplasia 2007; 9:625-33. [PMID: 17786181 PMCID: PMC1950432 DOI: 10.1593/neo.07343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 12/15/2022] Open
Abstract
Glufosfamide is an alkylating agent consisting of iphosphoramide mustard conjugated to glucose that is currently included in clinical studies of pancreatic cancer. We studied the effects of glufosfamide, in combination with gemcitabine, on in vitro and in vivo models of pancreatic cancer. In proliferation assays, glufosfamide and gemcitabine inhibited the growth of MiaPaCa-2, H766t, and PANC-1 cells, but the combination of the two agents provided greater effects. Apoptosis of MiaPaCa-2 cells, measured by fluorescence-activated cell sorting, was enhanced by the combination of the two drugs, compared to single-agent treatment. Glufosfamide alone inhibited the growth of red fluorescent protein-expressing MiaPaCa-2 tumors in an orthotopic nude mouse model in a dose-dependent manner. Combining glufosfamide (30 mg/kg) with gemcitabine resulted in enhanced inhibition of tumor growth and significantly prolonged survival. Immunohistochemistry of excised tumors revealed that both glufosfamide and gemcitabine increased levels of apoptosis (measured by terminal deoxynucleotidyl transferase-mediated nick end labeling staining) and reduced proliferation (measured by proliferating cell nuclear antigen staining). No effects on microvessel density were observed. These results support the use of the alkylating agent glufosfamide and the DNA synthesis inhibitor gemcitabine, rather than the use of either agent alone, to provide greater benefits and demonstrate that this combination treatment should be useful in the clinical treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- W Steve Ammons
- Department of Pharmacology and Toxicology, Threshold Pharmaceuticals, Inc., Redwood City, CA 94061, USA.
| | | | | | | | | |
Collapse
|
36
|
Ozcan A, Shen SS, Zhai QJ, Truong LD. Expression of GLUT1 in primary renal tumors: morphologic and biologic implications. Am J Clin Pathol 2007; 128:245-54. [PMID: 17638658 DOI: 10.1309/hv6njvrqkk4qhm9f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This study aimed to assess whether glucose transporter 1 (GLUT1) is useful in prognostication or differential diagnosis of renal tumors. GLUT1 immunostain for 228 renal tumors showed a membranous or cytoplasmic pattern. The membranous pattern was seen in 86.2% of 145 clear cell renal cell carcinomas (RCCs) and 100% of 11 transitional cell carcinomas (TCCs) but in no oncocytomas, other subtypes of RCC, or sarcomatoid areas of RCCs. The cytoplasmic pattern was seen in 55.2% of 145 clear cell RCCs, 38% of papillary RCCs (11/29), 13% of chromophobe RCCs (2/16), 22% of oncocytomas (5/23), and 82% of TCCs (9/11). Western blot showed a markedly increased GLUT1 protein content in clear cell RCCs compared with a low level in papillary RCCs and normal kidney specimens. GLUT1 expression in clear cell RCC was not significantly correlated with patient survival, tumor grade, or tumor stage. GLUT1 may be a novel target for immunotherapy and a useful marker in the differential diagnosis and classification of renal tumors.
Collapse
Affiliation(s)
- Ayhan Ozcan
- Department of Pathology, Methodist Hospital, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Chiorean EG, Dragovich T, Hamm J, Langmuir VK, Kroll S, Jung DT, Colowick AB, Tidmarsh GF, Loehrer PJ. A Phase 1 dose-escalation trial of glufosfamide in combination with gemcitabine in solid tumors including pancreatic adenocarcinoma. Cancer Chemother Pharmacol 2007; 61:1019-26. [PMID: 17661038 DOI: 10.1007/s00280-007-0559-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate safety and pharmacokinetics and to establish the maximum tolerated dose of glufosfamide when administered in combination with gemcitabine in advanced solid tumors. METHODS This Phase 1 dose-escalation study evaluated the combination of glufosfamide + gemcitabine in patients with advanced solid tumors. Cohorts of three to six patients were treated with glufosfamide doses from 1,500 to 4,500 mg/m(2) i.v. over 4 h on Day 1 and gemcitabine 1,000 mg/m(2) i.v. over 30 min on Days 1, 8 and 15 of every 28-day cycle. Detailed PK sampling was performed on days 1 and 8 of the first two cycles. RESULTS Nineteen patients were enrolled. Two patients had dose-limiting toxicity: Grade 3 fatigue at 2,500 mg/m(2) and Grade 4 thrombocytopenia at 4,500 mg/m(2). Five patients completed six cycles and one patient remained on study for ten cycles. Two patients discontinued for adverse events. Grade 3/4 neutropenia and thrombocytopenia occurred in seven patients and five patients, respectively. The CrCL fell below 60 mL/min in two patients. There was one unconfirmed partial response and 10 of 19 (52.6%) patients had stable disease or better at 8 weeks and three patients had continuing stable disease at 24 weeks. Pharmacokinetic analyses suggest no interaction between glufosfamide and gemcitabine. CONCLUSION Phase I data indicate that full dose glufosfamide (4,500 mg/m(2)) can be given safely in combination with gemcitabine. A Phase II study in patients with pancreatic adenocarcinoma is ongoing.
Collapse
Affiliation(s)
- E Gabriela Chiorean
- Indiana University Cancer Center, 535 Barnhill Drive, Room 414, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evans A, Bates V, Troy H, Hewitt S, Holbeck S, Chung YL, Phillips R, Stubbs M, Griffiths J, Airley R. Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Cancer Chemother Pharmacol 2007; 61:377-93. [PMID: 17520257 DOI: 10.1007/s00280-007-0480-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The facilitative glucose transporter Glut-1 is overexpressed and confers poor prognosis in a wide range of solid tumours. The peri-necrotic pattern of expression often seen in human tumour samples is linked with its transcriptional control in hypoxic conditions by hypoxia-inducible factor HIF-1 or through a reduced rate of oxidative phosphorylation. Hypoxia-regulated genes offer promise as novel therapeutic targets as a means of preventing the proliferation and eventual metastatic spread of tissue originating from residual chemically and radio resistant hypoxic cells that have survived treatment. Inhibiting the expression or functionality of Glut-1 may be a way of specifically targeting hypoxic cells within the tumour that depend upon a high rate of glucose uptake for anaerobic glycolysis. We used an array of formalin-fixed, paraffin-embedded samples of the NCI-60 panel of cell lines to carry out immunohistochemical detection of Glut-1 and to select possible candidate lead compounds by COMPARE analysis with agents from the NCI diversity screen, which may work via inhibition of Glut-1 or Glut-1-dependent processes. "Positive" COMPARE hits were mostly conjugated Pseudomonas toxins binding the epidermal growth factor receptor (EGFR). However, correlations with standard anticancer agents were virtually all negative, indicating a link between Glut-1 and chemoresistance. MTT proliferation assays carried out using stable, Glut-1 overexpressing cell lines generated from the bladder EJ138, human fibrosarcoma HT 1080 and the hepatoma wild type Hepa and HIF-1B-deficient c4 tumour cell lines revealed a cell line-dependent increase in chemoresistance to dacarbazine, vincristine and the bioreductive agent EO9 in Glut-1 overexpressing EJ138 relative to WT and empty vector controls. Metabolomic analysis ((31)P-MRS and (1)H MRS) carried out using cell lysates and xenografts generated from Glut-1 overexpressing Hepa and c4 cell lines showed higher glucose levels in Glut-1 overxpressing c4 relative to parental tumour extracts occurred in the absence of an increase in lactate levels, which were in turn significantly higher in the Glut-1 overexpressing Hepa xenografts. This implies that Glut-1 over-expression without a co-ordinate increase in HIF-1-regulated glycolytic enzymes increases glucose uptake but not the rate of glycolysis. Glut-1 overexpressing xenografts also showed higher levels of phosphodiester (PDE), which relates to the metabolite turnover of phospholipids and is involved in membrane lipid degradation, indicating a mechanism by which Glut-1 may increase cell turnover.
Collapse
Affiliation(s)
- Andrew Evans
- Tumour Metabolism and Therapeutics Group, School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang J, Tian Q, Chan SY, Duan W, Zhou S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist Updat 2005; 8:271-97. [PMID: 16154799 DOI: 10.1016/j.drup.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
42
|
Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005; 202:654-62. [PMID: 15389572 DOI: 10.1002/jcp.20166] [Citation(s) in RCA: 894] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.
Collapse
Affiliation(s)
- Maria L Macheda
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | | | | |
Collapse
|
43
|
Sorg BL, Hull WE, Kliem HC, Mier W, Wiessler M. Synthesis and NMR characterization of hydroxyurea and mesylglycol glycoconjugates as drug candidates for targeted cancer chemotherapy. Carbohydr Res 2005; 340:181-9. [PMID: 15639238 DOI: 10.1016/j.carres.2004.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 11/26/2004] [Indexed: 11/19/2022]
Abstract
Tumor targeting of glycoconjugated antineoplastic agents is a strategy currently under investigation for cancer chemotherapy. We have synthesized the glucosides and galactosides of the clinically established drug hydroxyurea and of mesylglycol, the reactive moiety of the anticancer drug busulfan. Glycosides of hydroxyurea were obtained by carbamoylation of hydroxylamine glycosides. The glycosides of mesylglycol were synthesized by mesylation of protected glycol glycosides. All compounds were characterized by detailed 1H and 13C NMR analysis.
Collapse
Affiliation(s)
- Bernd L Sorg
- Division of Molecular Toxicology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Chen X, Sun Y, Cao X, Jin F, Zhong D. Determination of glufosfamide in rat plasma by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1839-43. [PMID: 15945026 DOI: 10.1002/rcm.1991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A sensitive and selective high-performance analytical method based on liquid chromatography with tandem mass spectrometric detection (LC/MS/MS) was developed for the quantification of glufosfamide in rat plasma. Zidovudine was employed as internal standard. Glufosfamide was determined after methanol-mediated plasma protein precipitation using LC/MS/MS with an electrospray ionization interface in negative ion mode. Two sets of standard curves were developed, from 0.005 to 1.0 microg/mL and from 1.0 to 50.0 microg/mL. The assay was accurate (% deviations from nominal concentrations < 5%), precise and reproducible (intra- and inter-day coefficients of variation < 10%). Glufosfamide in rat plasma was stable over three freeze/thaw cycles, and at ambient temperatures, for at least 2 h. The validated method was successfully applied to the determination of glufosfamide plasma concentrations in rats for 24 h following an intravenous administration of 25 mg/kg.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | |
Collapse
|
45
|
Giaccone G, Smit EF, de Jonge M, Dansin E, Briasoulis E, Ardizzoni A, Douillard JY, Spaeth D, Lacombe D, Baron B, Bachmann P, Fumoleau P. Glufosfamide administered by 1-hour infusion as a second-line treatment for advanced non-small cell lung cancer; a phase II trial of the EORTC-New Drug Development Group. Eur J Cancer 2004; 40:667-72. [PMID: 15010066 DOI: 10.1016/j.ejca.2003.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 10/27/2003] [Indexed: 11/25/2022]
Abstract
The activity of glufosfamide (beta-D-glucosylisophosphoramide mustard) was tested in a multicentre phase II clinical trial in patients with advanced non-small cell lung cancer (NSCLC) who had received one prior line of platinum-based chemotherapy. Patients were treated with 5000 mg/m(2) glufosfamide by a 1-h intravenous (i.v.) infusion every 3 weeks following registration at the European Organisation for Research and Treatment of Cancer (EORTC) Data Center. Patients were randomised between hydration and no hydration to evaluate the nephroprotective effects of forced diuresis. Patients experiencing >/= 35 micromol/l increase of serum creatinine compared with baseline values were taken off the treatment. The Response evaluation criteria in solid tumours (RECIST) criteria were applied for the response assessment. Blood sampling was performed for a pharmacokinetic analysis. 39 patients from seven institutions were registered and a median of three cycles was given (range 0-6) cycles; 20 patients were randomised to the hydration arm. Haematological toxicity was mild, but treatment-related metabolic and electrolytic abnormalities and increases of serum creatinine occurred in several patients. Hydration did not have any significant influence on the plasma pharmacokinetics of glufosfamide and did not show any nephroprotective effect. Only one confirmed partial remission was observed (response rate 3%; 95% (Confidence Interval (CI) 0-14) and 18 cases with stable disease (49%) were recorded as assessed by an independent panel. Median survival of all patients treated was 5.8 months (95% CI 4.2-7.9). In conclusion, glufosfamide administered by a 1-h infusion every 3 weeks has modest activity in advanced NSCLC patients after one prior platinum-based chemotherapy.
Collapse
Affiliation(s)
- G Giaccone
- Department of Medical Oncology, Vrije Universiteit Medical Center, 1117 De Boelelaan, HV 1081 Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447:510-8. [PMID: 12748858 DOI: 10.1007/s00424-003-1063-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Accepted: 03/28/2003] [Indexed: 01/10/2023]
Abstract
The sodium/glucose cotransporter family (SLCA5) has 220 or more members in animal and bacterial cells. There are 11 human genes expressed in tissues ranging from epithelia to the central nervous system. The functions of nine have been revealed by studies using heterologous expression systems: six are tightly coupled plasma membrane Na(+)/substrate cotransporters for solutes such as glucose, myo-inositol and iodide; one is a Na(+)/Cl(-)/choline cotransporter; one is an anion transporter; and another is a glucose-activated ion channel. The exon organization of eight genes is similar in that each comprises 14-15 exons. The choline transporter (CHT) is encoded in eight exons and the Na(+)-dependent myo-inositol transporter (SMIT) in one exon. Mutations in three genes produce genetic diseases (glucose-galactose malabsorption, renal glycosuria and hypothyroidism). Members of this family are multifunctional membrane proteins in that they also behave as uniporters, urea and water channels, and urea and water cotransporters. Consequently it is a challenge to determine the role(s) of these genes in human physiology and pathology.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
47
|
Briasoulis E, Pavlidis N, Terret C, Bauer J, Fiedler W, Schöffski P, Raoul JL, Hess D, Selvais R, Lacombe D, Bachmann P, Fumoleau P. Glufosfamide administered using a 1-hour infusion given as first-line treatment for advanced pancreatic cancer. A phase II trial of the EORTC-new drug development group. Eur J Cancer 2003; 39:2334-40. [PMID: 14556925 DOI: 10.1016/s0959-8049(03)00629-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of glufosfamide (beta-D-glucopyranosyl-N,N'-di-(2-chloroethyl)-phosphoric acid diamide) against pancreatic cancer was investigated in a multicentre, phase II clinical study. Chemotherapy-nai;ve patients with advanced or metastatic disease were treated with glufosfamide (5 g/m(2)) using a 1-h intravenous (i.v.) infusion every 3 weeks. Patients were randomised between active-hydration and normal fluids to evaluate the nephroprotective effect of forced diuresis. Patients experiencing >0.4 mg/dl (>35 micromol/l) increase in serum creatinine compared with their baseline value were taken off treatment for safety reasons. The evaluation of response was according to the Response evaluation criteria in solid tumours (RECIST). Blood sampling was performed for pharmacokinetic analyses. 35 patients from 13 institutions were registered over a 13-month period. A total of 114 treatment cycles (median 3, range 1-8) were administered to 34 patients; 18 patients were allocated to the hydration arm. Overall haematological toxicity was mild. Metabolic acidosis occurred in 2 patients treated in the active-hydration arm, grade 3 hypokalaemia was recorded in 5 patients and grade 3 hypophosphataemia in 4 patients. One patient had a grade 4 increase in serum creatinine level, concomitantly to disease progression. Active-hydration did not show a nephroprotective effect and the plasma pharmacokinetics (Pk) of glufosfamide was not significantly influenced by hydration. Two confirmed partial remissions (PR) were reported (response rate 5.9%, 95% Confidence Interval (CI) 0.7-19.7%) and 11 cases obtained disease stabilisation (32.4%). An extra mural review panel confirmed all of the responses. Median overall survival was 5.3 months (95% CI 3.9-7.1) and time to progression (TTP) was 1.4 months (95% CI 1.3-2.7). In conclusion, glufosfamide administered using a 1-h infusion every 3 weeks has a modest activity in advanced pancreatic adenocarcinoma. Haematological toxicity is particularly mild, but regular monitoring of renal function is recommended.
Collapse
Affiliation(s)
- E Briasoulis
- Medical Oncology Department, School of Medicine, University of Ioannina, 451 10, Ioannina, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The sodium/glucose cotransporter family (SLCA5) has 220 or more members in animal and bacterial cells. There are 11 human genes expressed in tissues ranging from epithelia to the central nervous system. The functions of nine have been revealed by studies using heterologous expression systems: six are tightly coupled plasma membrane Na(+)/substrate cotransporters for solutes such as glucose, myo-inositol and iodide; one is a Na(+)/Cl(-)/choline cotransporter; one is an anion transporter; and another is a glucose-activated ion channel. The exon organization of eight genes is similar in that each comprises 14-15 exons. The choline transporter (CHT) is encoded in eight exons and the Na(+)-dependent myo-inositol transporter (SMIT) in one exon. Mutations in three genes produce genetic diseases (glucose-galactose malabsorption, renal glycosuria and hypothyroidism). Members of this family are multifunctional membrane proteins in that they also behave as uniporters, urea and water channels, and urea and water cotransporters. Consequently it is a challenge to determine the role(s) of these genes in human physiology and pathology.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
49
|
Abstract
Lung cancer is one of the most frequent causes of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of cases and no curative treatment is available for the advanced stages of disease (stages III and IV), which comprise the majority of cases. Current treatment regimens with standard chemotherapy offer only a limited survival benefit, and, therefore, the development of new therapeutic strategies is needed. Novel chemotherapeutic drugs such as the epothilones, MEN 10755 and S-1 are being studied in patients with advanced stages of disease. Furthermore, a large number of therapies targeted against critical biological abnormalities in NSCLC are being investigated in clinical trials. The latter approach includes inhibition of growth factors, interference with abnormal signal transduction, inhibition of angiogenesis and gene replacement therapy. Promising results have thus far been obtained with some of these therapies. This review describes the role of new therapeutic agents in the treatment of NSCLC.
Collapse
Affiliation(s)
- Linda E Bröker
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 2001; 92:874-9. [PMID: 11509120 PMCID: PMC5926833 DOI: 10.1111/j.1349-7006.2001.tb01175.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cancer cells show increased glucose uptake and utilization in comparison with their normal counterparts. Glucose transporters play an important role in glucose uptake. We previously reported the differential gene expression of the GLUT family in primary and metastatic lesions of lung cancer. To investigate the role of Na( +) / glucose cotransporter (SGLT) genes in cancers, we examined the levels of expression of SGLT1 and SGLT2 genes in primary lung cancers and their metastatic lesions. Ninety-six autopsy samples (35 primary lung cancers, 35 corresponding normal lung tissues, 10 metastatic liver lesions, and 16 metastatic lymph nodes) from 35 patients were analyzed for SGLT1 and SGLT2 expression by reverse transcription (RT)-polymerase chain reaction (PCR). There were no significant differences in the level of expression of either gene between the primary lung cancers and normal lung tissues. The level of SGLT1 expression in the metastatic lesions and primary lung cancers did not differ significantly. The level of SGLT2 expression was, however, significantly higher in the metastatic lesions of both the liver and lymph node than in the primary lung cancers. These results suggest that SGLT2 plays a role in glucose uptake in the metastatic lesions of lung cancer.
Collapse
Affiliation(s)
- N Ishikawa
- Second Department of Internal Medicine, Hiroshima University Faculty of Medicine, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|