1
|
Fan X, Xue H, Liu Z, Zhou Y, Huang X, Dong X, Sun Q, Yao J, Liu J. Restoration of A2M reduces drug resistance and malignancy in paclitaxel-resistant lung cancer cells. Int J Biochem Cell Biol 2025; 185:106789. [PMID: 40345481 DOI: 10.1016/j.biocel.2025.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
The development of acquired paclitaxel resistance poses a significant challenge in managing lung cancer clinically. Understanding the mechanism and developing effective strategies to counter paclitaxel resistance are highly desired. To explore the potential mechanisms of acquired paclitaxel resistance, we established a series of lung cancer cell lines exhibiting different levels of resistance to paclitaxel. Transcriptomic RNA-sequencing revealed a progressive decrease in alpha-2-macroglobulin (A2M) levels as paclitaxel resistance advanced in NCI-H446 cells. This was accompanied by the upregulation of known paclitaxel resistance inducers ABCB1, TMEM243, and ID1. A2M loss was further validated in paclitaxel-resistant A549 and HCC827 lung cancer cells. TCGA and CPTAC analyses demonstrated that A2M is downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), inversely correlating with tumor progression. Restoring A2M expression inhibited proliferation and invasion in paclitaxel-resistant lung cancer cells, suggesting its tumor-suppressing role in lung cancer. Notably, restoring A2M re-suppressed the expression of the paclitaxel resistance mediators (ABCB1, TMEM243 and ID1) in the drug-resistant cells, and re-sensitized them to paclitaxel. In summary, our data indicate that A2M is progressively lost during the development of paclitaxel resistance in lung cancer, and restoring A2M may help overcome this resistance. Thus, A2M deficiency may serve as both a predictor and a therapeutic target for paclitaxel resistance in lung cancer.
Collapse
Affiliation(s)
- Xiaona Fan
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hongsheng Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116001, China; Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Ziwei Liu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Zhou
- Department of Oncology, Beijing Chao-Yang Hospital Capital Medical University, Beijing 100020, China
| | - Xuying Huang
- Department of Oncology, Beijing Chao-Yang Hospital Capital Medical University, Beijing 100020, China
| | - Xiaomei Dong
- Department of Pathology, The First People's Hospital of Tancheng, Linyi, Shandong 276100, China
| | - Qianqian Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital Capital Medical University, Beijing 100020, China.
| | - Jian Liu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
2
|
Yu T, Zeng R, Guan Y, Pan B, Li HW, Gu J, Zheng PF, Qian Y, Ouyang Q. Discovery of new tricyclic spiroindole derivatives as potent P-glycoprotein inhibitors for reversing multidrug resistance enabled by a synthetic methodology-based library. RSC Med Chem 2024; 15:1675-1685. [PMID: 38784466 PMCID: PMC11110728 DOI: 10.1039/d4md00136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024] Open
Abstract
The discovery of novel and highly effective P-gp inhibitors is considered to be an effective strategy for overcoming tumor drug resistance. In this paper, a phenotypic screening via a self-constructed synthetic methodology-based library identified a new class of tricyclic spiroindole derivatives with excellent tumor multidrug resistance reversal activity. A stereospecific compound OY-103-B with the best reversal activity was obtained based on a detailed structure-activity relationship study, metabolic stability optimization and chiral resolution. For the VCR-resistant Eca109 cell line (Eca109/VCR), co-administration of 5.0 μM OY-103-B resulted in a reversal fold of up to 727.2, superior to the typical third-generation P-gp inhibitor tariquidar. Moreover, the compound inhibited the proliferation of Eca109/VCR cells in a concentration-dependent manner in plate cloning and flow cytometry. Furthermore, fluorescence substrate accumulation assay and chemotherapeutic drug reversal activity tests demonstrated that OY-103-B reversed tumor drug resistance via P-gp inhibition. In conclusion, this study provides a novel skeleton that inspires the design of new P-gp inhibitors, laying the foundation for the treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Rong Zeng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
- Department of Gastroenterology, Xinqiao Hospital, The Second Affiliated Hospital of Army Medical University (Third Military Medical University) Chongqing 400037 China
| | - Yu Guan
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Bin Pan
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Hong-Wei Li
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Jing Gu
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Peng-Fei Zheng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| |
Collapse
|
3
|
Han Z, Meng L, Huang X, Tan J, Liu W, Chen W, Zou Y, Cai Y, Huang S, Chen A, Zhan T, Huang M, Chen X, Tian X, Zhu Q. Inhibition of p38 MAPK increases the sensitivity of 5-fluorouracil-resistant SW480 human colon cancer cells to noscapine. Oncol Lett 2022; 23:52. [PMID: 35035538 PMCID: PMC8756816 DOI: 10.3892/ol.2021.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
A major cause of treatment failure in advanced colon cancer is resistance to chemotherapy. p38 mitogen-activated protein kinase (MAPK) has been associated with cellular apoptosis and plays an important role in multidrug resistance (MDR) in cancer cells. In the present study the effect of p38 MAPK on the sensitivity of 5-fluorouracil (5-FU)-resistant SW480 (SW480/5-FU) human colon cancer cells to noscapine was investigated. Following p38 MAPK interference, the inhibitory effect of noscapine on cell viability and proliferation was increased in the SW480/5-FU cells and there was also a decrease in the expression level of minichromosome maintenance proteins, recombinant Ki-67 and proliferating cell nuclear antigen. Inhibition of p38 MAPK also enhanced noscapine-induced G1-phase cell cycle arrest in the SW480/5-FU cells and there was also a decrease in the protein and mRNA expression level of cyclin D, cyclin E and cyclin-dependent kinase 2, and an increase in the expression level of P57. Furthermore, p38 MAPK interference increased noscapine-induced apoptosis of the SW480/5-FU cells and there was an increase in the protein and mRNA expression level of caspases-3 and 8 and Bax, and decreased Bcl-2 expression level. The sensitivity of the SW480/5-FU cells to noscapine was also increased following p38 MAPK interference, as demonstrated by MDR inhibition via decreased Akt activity and reduced protein expression level of the MDR proteins P-glycoprotein, multidrug resistance protein 1 and ATP-binding cassette G2. These observations indicated that inhibition of p38 MAPK increased the sensitivity of the SW480/5-FU cells to noscapine by suppressing proliferation, induction of cell cycle arrest and apoptosis, and reversal of MDR in the SW480/5-FU cells.
Collapse
Affiliation(s)
- Zheng Han
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Liu Meng
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Jie Tan
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Weijie Liu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Wei Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Yanli Zou
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Yishan Cai
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Shasha Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Aifang Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Ting Zhan
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Min Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xiaoli Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xia Tian
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Qingxi Zhu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
4
|
Devan AR, Kumar AR, Nair B, Anto NP, Muraleedharan A, Mathew B, Kim H, Nath LR. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2021; 14:656. [PMID: 34358082 PMCID: PMC8308499 DOI: 10.3390/ph14070656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance mechanism. Because of this hurdle, HCC patients are forced through incomplete therapy. Although multiple approaches have been employed in parallel to overcome multidrug resistance (MDR), the results are varying with insignificant outcomes. In the past decade, cancer immunotherapy has emerged as a breakthrough approach and has played a critical role in HCC treatment. The liver is the main immune organ of the lymphatic system. Researchers utilize immunotherapy because immune evasion is considered a major reason for rapid HCC progression. Moreover, the immune response can be augmented and sustained, thus preventing cancer relapse over the post-treatment period. In this review, we provide detailed insights into the immunotherapeutic approaches to combat MDR by focusing on HCC, together with challenges in clinical translation.
Collapse
Affiliation(s)
- Aswathy R. Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Ayana R. Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| |
Collapse
|
5
|
Chen ML, Sun A, Cao W, Eliason A, Mendez KM, Getzler AJ, Tsuda S, Diao H, Mukori C, Bruno NE, Kim SY, Pipkin ME, Koralov SB, Sundrud MS. Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes. J Exp Med 2020; 217:151682. [PMID: 32302378 PMCID: PMC7201929 DOI: 10.1084/jem.20191388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/21/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance-1 (MDR1) acts as a chemotherapeutic drug efflux pump in tumor cells, although its physiological functions remain enigmatic. Using a recently developed MDR1-knockin reporter allele (Abcb1aAME), we found that constitutive MDR1 expression among hematopoietic cells was observed in cytolytic lymphocytes—including CD8+ cytotoxic T lymphocytes (CTLs) and natural killer cells—and regulated by Runt-related (Runx) transcription factors. Whereas MDR1 was dispensable for naive CD8+ T cell development, it was required for both the normal accumulation of effector CTLs following acute viral infection and the protective function of memory CTLs following challenge with an intracellular bacterium. MDR1 acted early after naive CD8+ T cell activation to suppress oxidative stress, enforce survival, and safeguard mitochondrial function in nascent CTLs. These data highlight an important endogenous function of MDR1 in cell-mediated immune responses and suggest that ongoing efforts to intentionally inhibit MDR1 in cancer patients could be counterproductive.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Amy Sun
- Department of Pathology, New York University Medical Center, New York, NY
| | - Wei Cao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Amber Eliason
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Kayla M Mendez
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Shanel Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Clever Mukori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Nelson E Bruno
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Sang Yong Kim
- Rodent Genetic Engineering Core, New York University Medical Center, New York, NY
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Sergei B Koralov
- Department of Pathology, New York University Medical Center, New York, NY
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
6
|
Rociletinib (CO-1686) enhanced the efficacy of chemotherapeutic agents in ABCG2-overexpressing cancer cells in vitro and in vivo. Acta Pharm Sin B 2020; 10:799-811. [PMID: 32528828 PMCID: PMC7280144 DOI: 10.1016/j.apsb.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Overexpression of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) in cancer cells is known to cause multidrug resistance (MDR), which severely limits the clinical efficacy of chemotherapy. Currently, there is no FDA-approved MDR modulator for clinical use. In this study, rociletinib (CO-1686), a mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), was found to significantly improve the efficacy of ABCG2 substrate chemotherapeutic agents in the transporter-overexpressing cancer cells in vitro and in MDR tumor xenografts in nude mice, without incurring additional toxicity. Mechanistic studies revealed that in ABCG2-overexpressing cancer cells, rociletinib inhibited ABCG2-mediated drug efflux and increased intracellular accumulation of ABCG2 probe substrates. Moreover, rociletinib, inhibited the ATPase activity, and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling of ABCG2. However, ABCG2 expression at mRNA and protein levels was not altered in the ABCG2-overexpressing cells after treatment with rociletinib. In addition, rociletinib did not inhibit EGFR downstream signaling and phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Our results collectively showed that rociletinib reversed ABCG2-mediated MDR by inhibiting ABCG2 efflux function, thus increasing the cellular accumulation of the transporter substrate anticancer drugs. The findings advocated the combination use of rociletinib and other chemotherapeutic drugs in cancer patients with ABCG2-overexpressing MDR tumors.
Collapse
Key Words
- ABC, adenosine triphosphate-binding cassette
- ABCB1, ABC transporter subfamily B member 1
- ABCG2
- ABCG2, ABC transporter subfamily G member 2
- AKT, protein kinase B
- ATP, adenosine triphosphate
- ATPase
- DDP, cisplatin
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- DOX, doxorubicin
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal-regulated kinase
- FBS, fetal bovine serum
- FTC, fumitremorgin C
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- IAAP, iodoarylazidoprazosin
- IC50, half maximal (50%) inhibitory concentration
- MDR, multidrug resistance
- MTT, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide
- MX, mitoxantrone
- Multidrug resistance
- PBS, phosphate buffer saline
- PTK, protein tyrosine kinases
- Rho 123, rhodamine 123
- Rociletinib
- TKIs, tyrosine kinase inhibitors
- Tyrosine kinase inhibitor
- VCR, vincristine
- VRP, verapamil
Collapse
|
7
|
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades. Drug Deliv Transl Res 2019; 9:379-393. [PMID: 30194528 DOI: 10.1007/s13346-018-0584-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a complex phenomenon caused by numerous reasons in cancer chemotherapy. It is related to the abnormal tumor metabolism, precisely increased glycolysis and lactic acid production, extracellular acidification, and drug efflux caused by transport proteins. There are few strategies to increase drug delivery into cancer cells. One of them is the inhibition of carbonic anhydrases or certain proton transporters that increase extracellular acidity by proton extrusion from the cells. This prevents weakly basic chemotherapeutic drugs from ionization and increases their penetration through the cancer cell membrane. Another approach is the inhibition of MDR proteins that pump the anticancer agents into the extracellular milieu and decrease their intracellular concentration. Physical methods, such as ultrasound-mediated sonoporation, are being developed, as well. To increase the efficacy of sonoporation, various microbubbles are used. Ultrasound causes microbubble cavitation, i.e., periodical pulsation of the microbubble, and destruction which results in formation of temporary pores in the cellular membrane and increased permeabilization to drug molecules. This review summarizes the main approaches to reverse MDR related to the drug penetration along with its applications in preclinical and clinical studies.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania. .,Institute of Biotechnology, Vilnius University, Saulėtekio Ave. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
8
|
Ranjbar S, Khonkarn R, Moreno A, Baubichon-Cortay H, Miri R, Khoshneviszadeh M, Saso L, Edraki N, Falson P, Firuzi O. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol Appl Pharmacol 2019; 362:136-149. [DOI: 10.1016/j.taap.2018.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
|
9
|
Li X, Chen S, Liu Z, Zhao Z, Lu J. Syntheses and evaluations of the methoxy modified 99mTc-labeled triphenyl phosphonium cations: Potential radiometallic probes for multidrug resistance detection. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
11
|
Yuan WQ, Zhang RR, Wang J, Ma Y, Li WX, Jiang RW, Cai SH. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression. Oncotarget 2017; 7:31466-83. [PMID: 27129170 PMCID: PMC5058771 DOI: 10.18632/oncotarget.8965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Collapse
Affiliation(s)
- Wei-Qi Yuan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Rong-Rong Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Ma
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shao-Hui Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
12
|
Stefan K, Schmitt SM, Wiese M. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein. J Med Chem 2017; 60:8758-8780. [PMID: 29016119 DOI: 10.1021/acs.jmedchem.7b00788] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.
Collapse
Affiliation(s)
- Katja Stefan
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Schmitt
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
13
|
Zhou XW, Xia YZ, Zhang YL, Luo JG, Han C, Zhang H, Zhang C, Yang L, Kong LY. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8:101965-101983. [PMID: 29254218 PMCID: PMC5731928 DOI: 10.18632/oncotarget.21949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the mechanism by which tomentodione M (TTM), a novel natural syncarpic acid-conjugated monoterpene, reversed multi-drug resistance (MDR) in cancer cells. TTM increased the cytotoxicity of chemotherapeutic drugs such as docetaxel and doxorubicin in MCF-7/MDR and K562/MDR cells in a dose- and time-dependent manner. TTM reduced colony formation and enhanced apoptosis in docetaxel-treated MCF-7/MDR and K562/MDR cells, and it enhanced intracellular accumulation of doxorubicin and rhodamine 123 in MDR cancer cells by reducing drug efflux mediated by P-gp. TTM decreased expression of both P-gp mRNA and protein by inhibiting p38 MAPK signaling. Similarly, the p38 MAPK inhibitor SB203580 reversed MDR in cancer cells by decreasing P-gp expression. Conversely, p38 MAPK-overexpressing MCF-7 and K562 cells showed higher P-gp expression than controls. These observations indicate that TTM reverses MDR in cancer cells by decreasing P-gp expression via p38 MAPK inhibition.
Collapse
Affiliation(s)
- Xu-Wei Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
15
|
Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:69-79. [PMID: 27810353 DOI: 10.1016/j.bbamem.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
Multidrug resistance (MDR) is the main cause of diminished success in cancer chemotherapy. ABC transport proteins are considered to be one important factor of MDR. Besides P-glycoprotein (P-gp, ABCB1) and Breast Cancer Resistance Protein (BCRP, ABCG2), Multidrug Resistance-associated Protein 1 (MRP1, ABCC1) is associated with non-response to chemotherapy in different cancers. While considerable effort was spent in overcoming MDR during the last two decades, almost nothing is known with respect to activators of transport proteins. In this work we present certain pyrrolo[3,2-d]pyrimidine derivatives with variations at positions 4 and 5 and purine analogs with variations at position 6 as novel activators of MRP1-mediated transport of the MRP1 substrate calcein AM and the anticancer drug daunorubicin in low nanomolar concentration range. Two different MRP1 overexpressing cell lines were used, the doxorubicin-selected human lung cancer cell line H69 AR and the transfected Madin-Darby Canine Kidney cell line MDCK II MRP1. No effect was observed in the sensitive counterparts H69 and MDCK II wild type (wt). Derivatives with higher molecular weight possessed also inhibitory properties at low micromolar concentrations, although most compounds were rather poor MRP1 inhibitors. Purine analogs derived from potent MRP1 inhibitors of the pyrrolopyrimidine class showed equal activating, but no inhibiting effects at all. All tested compounds were non-toxic and had only minor impact on P-gp or BCRP, showing no inhibition or activation.
Collapse
|
16
|
Schmitt SM, Stefan K, Wiese M. Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1, ABCC1). J Med Chem 2016; 59:3018-33. [PMID: 26943020 DOI: 10.1021/acs.jmedchem.5b01644] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Five series of pyrrolo[3,2-d]pyrimidines were synthesized and evaluated with respect to potency and selectivity toward multidrug resistance-associated protein 1 (MRP1, ABCC1). This transport protein is a major target to overcome multidrug resistance in cancer patients. We investigated differently substituted pyrrolopyrimidines using the doxorubicin selected and MRP1 overexpressing small cell lung cancer cell line H69 AR in a calcein AM and daunorubicin cell accumulation assay. New compounds with high potency and selectivity were identified. Piperazine residues at position 4 bearing large phenylalkyl side chains proved to be beneficial for MRP1 inhibition. Its replacement by an amino group led to decreased activity. Aliphatic and aliphatic-aromatic variations at position 5 and 6 revealed compounds with IC50 values in high nanomolar range. All investigated compounds had low affinity toward P-glycoprotein (P-gp, ABCB1). Pyrrolopyrimidines with small substituents showed moderate inhibition against breast cancer resistance protein (BCRP, ABCG2).
Collapse
Affiliation(s)
- Sven Marcel Schmitt
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
17
|
Podolski-Renić A, Milošević Z, Dinić J, Stanković T, Banković J, Pešić M. Mutual regulation and targeting of multidrug resistance and cancer stem phenotype. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00391e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeting stemness mechanisms leads to the suppression of ABC transporter activity and elimination of CSCs.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Zorica Milošević
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Tijana Stanković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jasna Banković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| |
Collapse
|
18
|
Zhou X, Wang Y, Lee WYW, Or PMY, Wan DCC, Kwan YW, Yeung JHK. Miltirone Is a Dual Inhibitor of P-Glycoprotein and Cell Growth in Doxorubicin-Resistant HepG2 Cells. JOURNAL OF NATURAL PRODUCTS 2015; 78:2266-2275. [PMID: 26339922 DOI: 10.1021/acs.jnatprod.5b00516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Miltirone (1), an abietane-type diterpene quinone isolated from Salvia miltiorrhiza, possesses anticancer activity in p-glycoprotein (P-gp)-overexpressing human cancer cells. Results of the current study suggest a dual effect of miltirone on P-gp inhibition and apoptotic induction in a human hepatoma HepG2 cell line and its P-gp-overexpressing doxorubicin-resistant counterpart (R-HepG2). Miltirone (1) elicited a concentration-dependent cytotoxicity, with a similar potency (EC50 ≈ 7-12 μM), in HepG2 and R-HepG2 cells. Miltirone (1) (1.56-6.25 μM) produced synergistic effects on doxorubicin (DOX)-induced growth inhibition of R-HepG2 (synergism: 0.3 < combination index < 0.5). Molecular docking studies illustrated that miltirone (1) interacted with the active site of P-gp with a higher binding affinity than DOX, suggesting that it was a P-gp inhibitor. Flow cytometric analysis confirmed miltirone (1) as a competitive inhibitor of P-gp. At non-necrotic concentrations (1.56-25 μM), miltirone (1) activated caspase-dependent apoptotic pathways and triggered the generation of reactive oxygen species (ROS) and ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways (e.g., p38 MAPK, stress-activated protein kinase/c-Jun N-terminal kinase, and extracellular regulated kinase 1/2) in both HepG2 and R-HepG2 cells. Thus, we conclude that miltirone (1) is a dual inhibitor of P-gp and cell growth in human drug-resistant hepatoma cells.
Collapse
Affiliation(s)
- Xuelin Zhou
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Yan Wang
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Wayne Y W Lee
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Penelope M Y Or
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - David C C Wan
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - John H K Yeung
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| |
Collapse
|
19
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Reversing cancer multidrug resistance: insights into the efflux by ABC transports fromin silicostudies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Maria-José U. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J. V. A. dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
21
|
Werle M, Takeuchi H, Bernkop-Schnürch A. New-generation efflux pump inhibitors. Expert Rev Clin Pharmacol 2014; 1:429-40. [DOI: 10.1586/17512433.1.3.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Massey PR, Fojo T, Bates SE. ABC Transporters: Involvement in Multidrug Resistance and Drug Disposition. CANCER DRUG DISCOVERY AND DEVELOPMENT 2014. [DOI: 10.1007/978-1-4614-9135-4_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Emerging nanodelivery strategies of RNAi molecules for colon cancer therapy: preclinical developments. Ther Deliv 2012; 3:1117-30. [DOI: 10.4155/tde.12.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although local colonic delivery is achievable through several strategies, colon cancer is still considered one of the leading causes of death worldwide. Failure of chemotherapeutics to exhibit efficient anticancer activity might be attributed to the development of multidrug resistance (MDR) mechanisms including the overexpression of certain oncogenes such as MDR1/P-gp. One of the major reasons for the shortcoming of P-gp inhibitors in clinic is the nonspecific distribution of them to nontarget organs, which leads to reduced elimination and increased toxicity of its substrates including anticancer agents. Numerous studies have demonstrated the effectiveness of gene-silencing approaches in reversing the P-gp-mediated MDR. However, none have reached clinical trials yet. Several drug-delivery systems have been investigated primarily to address P-gp and the observed improved anticancer efficacy suggests that nanomedicine provides new opportunities to overcome MDR in cancer. In this review, novel therapeutic strategies for colon cancer therapy will be discussed in the context of P-gp inhibition by low-molecular-weight agents and RNAi molecules.
Collapse
|
24
|
FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1. Biochem Biophys Res Commun 2011; 411:62-8. [DOI: 10.1016/j.bbrc.2011.06.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022]
|
25
|
Peigñan L, Garrido W, Segura R, Melo R, Rojas D, Cárcamo JG, San Martín R, Quezada C. Combined use of anticancer drugs and an inhibitor of multiple drug resistance-associated protein-1 increases sensitivity and decreases survival of glioblastoma multiforme cells in vitro. Neurochem Res 2011; 36:1397-406. [PMID: 21544552 DOI: 10.1007/s11064-011-0464-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2011] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is a brain tumour characterised by a remarkably high chemoresistance and infiltrating capability. To date, chemotherapy with temozolomide has contributed only poorly to improved survival rates in patients. One of the most important mechanisms of chemoresistance comes about through the activity of certain proteins from the ATP-binding cassette superfamily that extrudes antitumour drugs, or their metabolites, from cells. We identify an increased expression of the multiple drug resistance-associated protein 1 (Mrp1) in glioblastoma multiforme biopsies and in T98G and G44 cell lines. The activity of this transporter was also confirmed by measuring the extrusion of the fluorescent substrate CFDA. The sensitivity of GBM cells was low upon exposure to temozolomide, vincristine and etoposide, with decreases in cell viability of below 20% seen at therapeutic concentrations of these drugs. However, combined exposure to vincristine or etoposide with an inhibitor of Mrp1 efficiently decreased cell viability by up to 80%. We conclude that chemosensitization of cells with inhibitors of Mrp1 activity might be an efficient tool for the treatment of human GBM.
Collapse
Affiliation(s)
- Lilia Peigñan
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, P.O. box 567, Valdivia, Chile
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mendes F, Paulo A, Santos I. Metalloprobes for functional monitoring of tumour multidrug resistance by nuclear imaging. Dalton Trans 2011; 40:5377-93. [DOI: 10.1039/c0dt01275k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release 2010; 143:290-301. [PMID: 20074598 DOI: 10.1016/j.jconrel.2010.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/10/2009] [Accepted: 01/04/2010] [Indexed: 01/12/2023]
Abstract
Cancer chemotherapy is believed to be impeded by multidrug resistance (MDR). Pluronic (triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), PEO-b-PPO-b-PEO) were previously shown to sensitize MDR tumors to antineoplastic agents. This study uses animal models of Lewis lung carcinoma (3LL-M27) and T-lymphocytic leukemia (P388/ADR and P388) derived solid tumors to delineate mechanisms of sensitization of MDR tumors by Pluronic P85 (P85) in vivo. First, non-invasive single photon emission computed tomography (SPECT) and tumor tissue radioactivity sampling demonstrate that intravenous co-administration of P85 with a Pgp substrate, 99Tc-sestamibi, greatly increases the tumor uptake of this substrate in the MDR tumors. Second, 31P magnetic resonance spectroscopy (31P-MRS) in live animals and tumor tissue sampling for ATP suggest that P85 and doxorubicin (Dox) formulations induce pronounced ATP depletion in MDR tumors. Third, these formulations are shown to increase tumor apoptosis in vivo by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and reverse transcription polymerase chain reaction (RT-PCR) for caspases 8 and 9. Altogether, formulation of Dox with P85 results in increased inhibition of the growth solid tumors in mice and represents novel and promising strategy for therapy of drug resistant cancers.
Collapse
|
28
|
Abidin AZ, Garassino MC, Califano R, Harle A, Blackhall F. Targeted therapies in small cell lung cancer: a review. Ther Adv Med Oncol 2010; 2:25-37. [PMID: 21789124 PMCID: PMC3126006 DOI: 10.1177/1758834009356014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer that is characterized by a rapid doubling time, early onset of dissemination and high sensitivity to chemotherapy. Despite the potential for cure in patients with limited disease with concurrent chemoradiation and an initial good response to chemotherapy in extensive disease, there is a high chance of disease relapse with an overall poor median survival for both stages. With increasing translational research and a better understanding of the molecular basis of cancer, a number of molecular targets have been identified in various preclinical studies. This review summarizes potentially viable targets and new agents that have been developed and employed in recent, ongoing and future clinical trials to attempt to improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Aidalena Z Abidin
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | | | | | | |
Collapse
|
29
|
Sivapackiam J, Gammon ST, Harpstrite SE, Sharma V. Targeted chemotherapy in drug-resistant tumors, noninvasive imaging of P-glycoprotein-mediated functional transport in cancer, and emerging role of Pgp in neurodegenerative diseases. Methods Mol Biol 2010; 596:141-81. [PMID: 19949924 DOI: 10.1007/978-1-60761-416-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) mediated by overexpression of P-glycoprotein (Pgp) is one of the best characterized transporter-mediated barriers to successful chemotherapy in cancer patients and is also a rapidly emerging target in the progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Therefore, strategies capable of delivering chemotherapeutic agents into drug-resistant tumors and targeted radiopharmaceuticals acting as ultrasensitive molecular imaging probes for detecting functional Pgp expression in vivo could be expected to play a vital role in systemic biology as personalized medicine gains momentum in the twenty-first century. While targeted therapy could be expected to deliver optimal doses of chemotherapeutic drugs into the desired targets, the interrogation of Pgp-mediated transport activity in vivo via noninvasive imaging techniques (SPECT and PET) would be beneficial in stratification of patient populations likely to benefit from a given therapeutic treatment, thereby assisting management of drug resistance in cancer and treatment of neurodegenerative diseases. Both strategies could play a vital role in advancement of personalized treatments in cancer and neurodegenerative diseases. Via this tutorial, authors make an attempt in outlining these strategies and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jothilingam Sivapackiam
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | |
Collapse
|
30
|
Colabufo NA, Berardi F, Cantore M, Contino M, Inglese C, Niso M, Perrone R. Perspectives of P-Glycoprotein Modulating Agents in Oncology and Neurodegenerative Diseases: Pharmaceutical, Biological, and Diagnostic Potentials. J Med Chem 2009; 53:1883-97. [DOI: 10.1021/jm900743c] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nicola Antonio Colabufo
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Francesco Berardi
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Mariangela Cantore
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Marialessandra Contino
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Carmela Inglese
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
31
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Zhang FY, Du GJ, Zhang L, Zhang CL, Lu WL, Liang W. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharm Res 2008; 26:914-25. [PMID: 19067124 DOI: 10.1007/s11095-008-9793-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Naringenin has shown paradoxical results to modulate the function of multidrug resistance-associated proteins (MRPs). The aim of this study is to interpret whether naringenin can reverse intrinsic and/or acquired resistance of cancer cells to chemotherapeutic agents. METHODS The effects of naringenin on the uptake, retention and cytotoxicity of doxorubicin were investigated in A549, MCF-7, HepG2 and MCF-7/DOX cells. Cellular efflux pathways modulated by naringenin were assessed with their specific substrates and inhibitors. The improved antitumor activity of doxorubicin in combination with naringenin was also investigated in vivo. RESULTS The IC(50) values of doxorubicin in combination with naringenin in A549 and MCF-7 cells were approximately 2-fold lower than that of doxorubicin alone. The increased sensitivity to doxorubicin by naringenin in HepG2 and MCF-7/DOX cells was not observed. Naringenin increased the cellular doxorubicin accumulation through inhibiting doxorubicin efflux in the cells expressing MRPs but not P-gp. In contrast to doxorubicin alone, doxorubicin in combination with naringenin enhanced antitumor activity in vivo with low systemic toxicity. CONCLUSION Naringenin enhances antitumor effect of doxorubicin by selective modulating drug efflux pathways. Naringenin will be a useful adjunct to improve the effectiveness of chemotherapeutic agents in treatment of human cancers.
Collapse
Affiliation(s)
- Fa Yun Zhang
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | |
Collapse
|
33
|
Drewa T, Styczynski J. Can conception of prostate cancer stem cells influence treatment dedicated to patients with disseminated disease? Med Hypotheses 2008; 71:694-9. [PMID: 18706770 DOI: 10.1016/j.mehy.2008.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/24/2008] [Accepted: 06/14/2008] [Indexed: 12/21/2022]
Abstract
No survival profit has been achieved for patients with disseminated prostate cancer since hormonal therapy was introduced. It is proposed that dissemination of rare prostatic cancer stem cells may lead to metastatic disease and that resistance of these cells to androgen ablation makes them responsible for failure of current treatments. In this paper, we will discuss the significance of the stem cell model for understanding prostate cancer pathogenesis. The concept of prostate cancer as a stem cell disease has the potential to change our view of its treatment in the particular case of disseminated disease. The major cellular target of prostate cancer therapy has to be directed against neoplastic stem cells. The combination of molecular-targeted therapy with the concept of the cancer stem cells should be introduced for the treatment of disseminated prostate cancer. Disseminated prostate cancer must be treated with agents directed toward stem cells, while hormone-therapy must be only an additional treatment leading to the decrease of tumor burden.
Collapse
Affiliation(s)
- Tomasz Drewa
- Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | | |
Collapse
|
34
|
Bolzati C, Cavazza-Ceccato M, Agostini S, Tokunaga S, Casara D, Bandoli G. Subcellular distribution and metabolism studies of the potential myocardial imaging agent [99mTc(N)(DBODC)(PNP5)]+. J Nucl Med 2008; 49:1336-44. [PMID: 18632814 DOI: 10.2967/jnumed.108.051482] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED 99mTc(N)-DBODC5 is the lead compound of a new series of monocationic 99mTc(N)-based potential myocardial imaging agents that exhibit original biodistribution properties. This study was addressed to elucidate the mechanisms of distribution, retention, and elimination of this promising 99mTc(N)-agent. METHODS The sex-related in vitro and in vivo stability and the subcellular distribution of 99mTc(N)-DBODC5 were investigated. Studies were performed by considering binding to the serum proteins; stability in rat serum, human serum, and rat liver homogenates; and the chemical integrity of the complex after extraction from rat tissues such as heart, liver, and kidney, as well as from intestinal fluids and urine. The effect of cyclosporin A on the in vivo pharmacokinetic properties of 99mTc(N)-DBODC5 was also evaluated. Subcellular distribution of 99mTc(N)-DBODC5 in ex vivo rat heart was determined by standard differential centrifugation techniques. RESULTS No significant in vitro serum protein binding and no notable biotransformation of the native compound into different species by the in vitro action of the serum and liver enzymes was evidenced. In vivo experiments showed that sex affects the pharmacokinetic profile of the 99mTc(N)-complexes including metabolism and excretion. Chromatographic profiles of 99mTc(N)-radioactivity extracted from tissues and fluids of female rats were always coincident with the control. Conversely, a small percentage of metabolized species was detected by high-performance liquid chromatography in liver extracts of male rats. Furthermore, administration of cyclosporin A caused a significant reduction of lung, liver, and kidney washout along with a considerable variation in activity distribution in the intestinal tract in both male and female rats, thus indicating a possible implication of Pgp transporters in determining the biologic behavior of 99mTc(N)-DBODC5. However, this phenomenon was more pronounced in females. Subcellular distribution studies showed that 86.3% +/- 7.4% of 99mTc(N)-DBODC5 was localized into mitochondrial fraction as a result of the interaction with the negative membrane potential. CONCLUSION Evidence showing that the new 99mTc(N)-myocardial tracers behave as multidrug resistance-associated protein P-glycoprotein substrates, combined with their selective mitochondrial accumulation, strongly supports the possibility that diagnostic application of 99mTc(N)-DBODC5 can be extended to tumor imaging and noninvasive multidrug resistance studies.
Collapse
|
35
|
Griffiths RW, Lorigan P, Thatcher N, Blackhall FH. Update on targeted therapies for small cell carcinoma of the lung. Target Oncol 2008. [DOI: 10.1007/s11523-008-0086-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Robey RW, Lazarowski A, Bates SE. P-glycoprotein--a clinical target in drug-refractory epilepsy? Mol Pharmacol 2008; 73:1343-6. [PMID: 18314494 DOI: 10.1124/mol.108.046680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
ATP-binding cassette transporters such as P-glycoprotein (Pgp), multidrug resistance-associated protein, and breast cancer resistance protein are known to transport a wide range of substrates and are highly expressed in the capillary endothelial cells that form part of the blood-brain barrier. It is noteworthy that P-glycoprotein has been shown to be up-regulated in animal models of refractory epilepsy, and adding a Pgp inhibitor to treatment regimens has been shown to reverse the drug-resistant phenotype. Limited data have suggested a role for Pgp in epilepsy in humans as well. However, few epilepsy drugs have been shown to be transported by Pgp, leading to controversy over whether Pgp actually plays a role in drug-resistant epilepsy. In this issue of Molecular Pharmacology, Bauer et al. (p. 1444) demonstrate that glutamate can cause localized up-regulation of Pgp via cyclooxygenase-2 (COX-2) and that this phenomenon can be prevented with COX-2 inhibitors. Localized rather than global up-regulation of Pgp may explain some of the difficulty investigators have had in proving a role for Pgp in epilepsy. The results add new support for future clinical trials targeting Pgp expression in drug-refractory epilepsy.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
37
|
Shukla S, Wu CP, Ambudkar SV. Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin Drug Metab Toxicol 2008; 4:205-23. [PMID: 18248313 DOI: 10.1517/17425255.4.2.205] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Multi-drug resistance (MDR) of cancer cells is an obstacle to effective chemotherapy of cancer. The ATP-binding cassette (ABC) transporters, including P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2, play an important role in the development of this resistance. An attractive approach to overcoming MDR is the inhibition of the pumping action of these transporters. Several inhibitors/modulators of ABC transporters have been developed, but cytotoxic effects and adverse pharmacokinetics have prohibited their use. The ongoing search for such inhibitors/modulators that can be applied in the clinic has led to three generations of compounds. The most recent inhibitors are more potent and less toxic than first-generation compounds, yet some are still prone to adverse effects, poor solubility and unfavorable changes in the pharmacokinetics of the anticancer drugs. OBJECTIVE This review provides an update of the published work on the development of potent modulators to overcome MDR in cancer cells, their present status in clinical studies and suggestions for further improvement to obtain better inhibitors. METHODS This review summarizes recent advances in the development of less toxic modulators, including small molecules and natural products. In addition, a brief overview of other novel approaches that can be used to inhibit ABC drug transporters mediating MDR has also been provided. CONCLUSION The multifactorial nature of MDR indicates that it may be important to develop modulators that can simultaneously inhibit both the function of the drug transporters and key signaling pathways, which are responsible for development of this phenomenon.
Collapse
Affiliation(s)
- Suneet Shukla
- National Cancer Institute, Laboratory of Cell Biology, Center for Cancer Research, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 2008; 75:1302-12. [PMID: 18234154 PMCID: PMC2346578 DOI: 10.1016/j.bcp.2007.12.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/15/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022]
Abstract
Cellular expression of ATP-binding cassette (ABC) transport proteins, such as P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), or ABCG2, is known to confer a drug-resistant phenotype. Thus, the development of effective transporter inhibitors could be of value to cancer treatment. CBT-1 is a bisbenzylisoquinoline plant alkyloid currently in development as a Pgp inhibitor. We characterized its interactions with the three major ABC transporters associated with drug resistance - Pgp, MRP1 and ABCG2 - and compared it to other known inhibitors. CBT-1 completely inhibited rhodamine 123 transport from Pgp-overexpressing cells at a concentration of 1muM. Additionally, 1 microM completely reversed Pgp-mediated resistance to vinblastine, paclitaxel and depsipeptide in SW620 Ad20 cells. CBT-1 was found to compete [(125)I]-IAAP labeling of Pgp with an IC(50) of 0.14 microM, and low concentrations of CBT-1 (<1 microM) stimulated Pgp-mediated ATP hydrolysis. In MRP1-overexpressing cells, 10 microM CBT-1 was found to completely inhibit MRP1-mediated calcein transport. CBT-1 at 25 microM did not have a significant effect on ABCG2-mediated pheophorbide a transport. Serum levels of CBT-1 in samples obtained from eight patients receiving CBT-1 increased intracellular rhodamine 123 levels in CD56+ cells 2.1- to 5.7-fold in an ex vivo assay. CBT-1 is able to inhibit the ABC transporters Pgp and MRP1, making it an attractive candidate for clinical trials in cancers where Pgp and/or MRP1 might be overexpressed. Further clinical studies with CBT-1 are warranted.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Del Vecchio S, Zannetti A, Fonti R, Iommelli F, Salvatore M. 99mTc-MIBI in the Evaluation of Breast Cancer Biology. Breast Cancer 2008. [DOI: 10.1007/978-3-540-36781-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Abstract
Transmembrane located transporter proteins can be responsible for the low bioavailability of orally administered drugs. Drug delivery systems which can overcome this barrier caused by efflux pumps are therefore highly on demand. Within the current review, intestinal located efflux transporters, methods to identify efflux pump substrates and inhibitors as well as strategies to minimize efflux pump mediated transport of drugs are discussed. Methods include in silico screening, transport and accumulation studies and monitoring of the ATPase activity. An emphasis has been placed on efflux pump inhibitors including low molecular mass inhibitors such as cyclosporine, PSC833 or KR30031 and polymeric inhibitors such as myrj, thiomers and cremophor EL. Also formulation approaches to circumvent intestinal segments with high efflux pump expression are briefly addressed.
Collapse
Affiliation(s)
- Martin Werle
- ThioMatrix GmbH, Research Center Innsbruck, Mitterweg 24, A-6020 Innsbruck, Austria.
| |
Collapse
|
41
|
Iwakiri T, Okumura M, Hidaka M, Kumagai Y, Ichihara E, Kawano Y, Arimori K. Inhibition of carrier-mediated uptake of epirubicin reduces cytotoxicity in primary culture of rat hepatocytes. J Appl Toxicol 2008; 28:329-36. [PMID: 17604344 DOI: 10.1002/jat.1283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epirubicin, an antineoplastic drug, is considered to be taken up by tumor cells via a common carrier by facilitated diffusion and is then pumped out in an energy-dependent manner because epirubicin is a substrate for P-glycoprotein (P-gp). However, this study investigated the details of the influx mechanism of epirubicin and demonstrated that epirubicin uptake was mediated by active carrier systems in addition to facilitated diffusion in the primary culture of rat hepatocytes. The uptake of epirubicin gradually increased in a saturated manner when the concentrations were between 1 x 10(-7) M and 1 x 10(-6) M. In contrast, the uptake increased progressively in a linear manner when the concentration was high (greater than 1 x 10(-6) M). The uptake of epirubicin at a clinical concentration (7.5 x 10(-7) M) was significantly reduced at 4 degrees C and significantly inhibited when pretreated with metabolic inhibitors (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), rotenone and sodium azide) by nearly 25%. Furthermore, an organic anion transporter inhibitor, namely, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS); organic anion transport substrates, namely, para-aminohippurate (PAH), taurocholic acid and estradiol 17-beta-D-glucuronide; and organic cation transporter inhibitors, namely, verapamil and tetraethylammonium significantly reduced the uptake of epirubicin. Furthermore, pretreatment with verapamil and PAH significantly prevented epirubicin-induced reduction of proliferative activity in rat hepatocytes. These results indicated that the uptake of epirubicin was induced, at least in part, by the active transport protein in rat hepatocytes; the inhibition of the probable transport protein protected the intact normal cells from the injury induced by the cytotoxicity of epirubicin.
Collapse
Affiliation(s)
- Tomomi Iwakiri
- Department of Pharmacy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Gandhi L, Harding MW, Neubauer M, Langer CJ, Moore M, Ross HJ, Johnson BE, Lynch TJ. A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer 2007; 109:924-32. [PMID: 17285598 DOI: 10.1002/cncr.22492] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tumors with multidrug resistance (MDR) frequently up-regulate efflux proteins, including MDR-associated protein (MRP-1) and P-glycoprotein (Pgp). MDR represents an obstacle to successful chemotherapy treatment and is reversible in Pgp- or MRP-1-expressing cells by the inhibitor VX-710. A Phase II study was designed to evaluate VX-710 in combination with doxorubicin and vincristine in patients with sensitive, recurrent small cell lung cancer (SCLC). METHODS Eligible patients had recurrent SCLC after a response to first-line chemotherapy. Stage 1 safety evaluation was completed with planned expansion if 9 responses were confirmed in the first 35 patients. Patients were treated every 21 days until progression or intolerable adverse events (AEs). RESULTS Thirty-six patients were enrolled from 1998 to 2000. Neutropenia was the major toxicity, occurring in 26 of 36 patients (72%). Neutropenia was more severe (30% vs 20% grade 4) and developed earlier (58% vs 38% in Cycle 1) among the 15 patients who were enrolled prior to an amendment that required neutropenia prophylaxis. Four patients died on study: 2 from infections likely related to therapy and 2 from cancer progression. Seven of 36 patients (19%) had partial responses; 6 patients sustained responses through 6 cycles of treatment, with 1 response lasting 3 years. Three additional patients had unconfirmed responses, and 4 patients had stable disease. The median survival was 6 months. No correlative (99m)Tc-sestamibi uptake in tumor tissue was observed with the addition of VX-710 in this study. CONCLUSIONS The addition of VX-710 to doxorubicin and vincristine therapy did not significantly enhance antitumor activity or survival. Although there were durable responses, criteria were not met to proceed with Stage 2 expansion.
Collapse
Affiliation(s)
- Leena Gandhi
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Das U, Kawase M, Sakagami H, Ideo A, Shimada J, Molnár J, Baráth Z, Bata Z, Dimmock JR. 3-(3,4,5-Trimethoxyphenyl)-1-oxo-2-propene: A novel pharmacophore displaying potent multidrug resistance reversal and selective cytotoxicity. Bioorg Med Chem 2007; 15:3373-80. [PMID: 17383883 DOI: 10.1016/j.bmc.2007.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/20/2007] [Accepted: 03/08/2007] [Indexed: 11/19/2022]
Abstract
This study revealed that various alicyclic and acyclic compounds containing the 3-(3,4,5-trimethoxyphenyl)-2-propenoyl group displayed potent MDR reversal properties. In particular, a concentration of 4 microg/ml of 2,5-bis(3,4,5-trimethoxyphenylmethylene)cyclopentanone was 31 times more potent than verapamil as a MDR revertant. In general, they were selectively toxic to malignant rather than normal cells. Two representative compounds induced apoptosis in human HL-60 cells and markedly activated caspase-3.
Collapse
Affiliation(s)
- Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Canada SK S7N 5C9
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Piwnica-Worms D, Kesarwala AH, Pichler A, Prior JL, Sharma V. Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer's disease. Neuroimaging Clin N Am 2007; 16:575-89, viii. [PMID: 17148020 DOI: 10.1016/j.nic.2006.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
Collapse
Affiliation(s)
- David Piwnica-Worms
- Washington University Medical School, 510 South Kingshighway Boulevard, Box 8225, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
45
|
Jin J, Sun H, Wei H, Liu G. The anti-hepatitis drug DDB chemosensitizes multidrug resistant cancer cells in vitro and in vivo by inhibiting P-gp and enhancing apoptosis. Invest New Drugs 2006; 25:95-105. [PMID: 16937080 DOI: 10.1007/s10637-006-9001-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE DDB (dimethyl-4,4'-dimethoxy-5,6,5'6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate) is a synthetic hepatoprotectant which has been widely used to treat chronic viral hepatitis B patients in China for more than 20 years. In this study, we evaluated DDB as a multidrug resistance (MDR) chemosensitizing agent. METHODS A panel of sensitive and resistant cancer cell lines were treated with various concentration of DDB, and the effect on chemosensitivity and accumulation of anticancer drugs; promotion of apoptosis and P-glycoprotein (P-gp) expression were determined by MTT (Dimethyl thiazolyl-2,5-diphenyltetrazolium bromide) assay, fluorospectrometry and flow cytometry respectively. Drug resistance reversal activity of DDB was also examined in BALB/c nude mice bearing both acquired MDR human nasopharyngeal carcinoma KBv200 and parental KB xenografts. The effect of DDB on the pharmacokinetics of Dox and hematological toxicity induced by Dox was measured in ICR and C(57)/BL mice, respectively. RESULTS DDB at nontoxic concentrations of 12.5, 25 and 50 microM partly reversed the resistance to vincristine, doxorubicin, paclitaxel in acquired MDR breast carcinoma MCF-7/Adr cells, KBv200 and intrinsic MDR human hepatocarcinoma Bel(7402) cells, whereas no chemosensitizing effect of DDB was observed in sensitive KB and MCF-7 cells. DDB increased the intracellular accumulation of doxorubicin and inhibited surface P-gp expression in MCF-7/Adr cells. Furthermore, it was found that DDB promoted doxorubicin-induced apoptosis of Bel(7402) cells through enhanced caspase-3 activation. Co-administration of DDB at 300 and 500 mg/kg orally to nude mice increased the antitumor activity of vincristine to KBv200 xenografts without a significant increase in toxicity. In contrast, Co-administration of DDB did not inhibit the growth of KB xenografts. DDB also markedly reduced the decrease of leukocytes in doxorubicin-treated C(57)/BL mice. Co-administration of DDB increased Dox concentration in ICR mice bearing S180 sarcoma, but no pharmacokinetical interaction with Dox was observed. CONCLUSION These results indicate that DDB has MDR reversal activity by inhibiting P-gp and when used in combination with anti-cancer drugs, it could potentially be used as a clinical treatment for P-gp-mediated MDR cancers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- Anemia/chemically induced
- Animals
- Antibiotics, Antineoplastic/antagonists & inhibitors
- Antibiotics, Antineoplastic/blood
- Antibiotics, Antineoplastic/toxicity
- Antineoplastic Agents
- Apoptosis/drug effects
- Biphenyl Compounds/pharmacology
- Cell Line, Tumor
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- DNA/analysis
- DNA/genetics
- Dicarboxylic Acids/pharmacology
- Doxorubicin/antagonists & inhibitors
- Doxorubicin/blood
- Doxorubicin/toxicity
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Electrophoresis
- Female
- Flow Cytometry
- Hepatitis/drug therapy
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Nude
- Phenotype
Collapse
Affiliation(s)
- Jing Jin
- Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China
| | | | | | | |
Collapse
|
46
|
Abstract
The experience of most collaborative study groups is that the outcome for older patients has, unlike in younger patients, failed to improve over the last two decades. In addition there are a substantial number of older patients who do not enter collaborative group trials because they are not considered suitable for an intensive chemotherapy approach. During this era many combinations of chemotherapeutic agents at different dose levels have been tried. It is clear that novel agents and new approaches must be used to improve the situation, and should include options for patients who are not fit for intensive treatment. Fortunately, the increased understanding of the molecular basis and heterogeneity of the disease has fostered the development of novel agents. Chemo-resistance is a key characteristic of acute myeloid leukaemia (AML) in older patients and a number of randomized trials have now been completed to assess this approach. New possibilities of selectively killing leukemic cells and/or modifying toxicity are in prospect with the development of antibody directed chemotherapy in the form of gemtuzumab ozogamicin (Mylotarg; Wyeth, Philadelphia, PA). New drugs such as clofarabine or cloretazine are being evaluated. Molecular mechanisms, whether recognized or not, have been targeted by the use of FLT-3 and farnesyl transferase (FT) inhibitors. With several new agents to evaluate, novel approaches to trial design aimed at detecting options likely to make a useful impact are needed.
Collapse
Affiliation(s)
- Alan K Burnett
- Department of Haematology, University Hospital of Wales, Cardiff, UK.
| | | |
Collapse
|
47
|
Jekerle V, Klinkhammer W, Scollard DA, Breitbach K, Reilly RM, Piquette-Miller M, Wiese M. In vitro andin vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int J Cancer 2006; 119:414-22. [PMID: 16646006 DOI: 10.1002/ijc.21827] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) results in treatment failure of many malignancies including ovarian cancer. Dual inhibition of Pgp and BCRP may restore the sensitivity of resistant cells to anticancer drugs. We report the synthesis and characterization of a novel anthranilic-acid based Pgp and BCRP modulator, WK-X-34. In vitro inhibition of Pgp activity was evaluated using 99mTc-Sestamibi and daunorubicin accumulation in Pgp overexpressing human ovarian cancer cells (A2780/Adr) and its sensitive counterpart (A2780/wt). Interaction with BCRP was examined with a mitoxantrone-efflux assay in BCRP-overexpressing MCF7/mx cells, with flow cytometry. Interactions with the multidrug resistance associated proteins (MRP) were evaluated in transfected MRP1, MRP2 and MRP3 cell lines, using a 5-CFDA efflux assay. In vivo 99mTc-Sestamibi imaging of human ovarian cancer xenografts was used to evaluate the in vivo efficacy of WK-X-34 in mice. Daunorubicin accumulation in A2780/Adr cells was inhibited by WK-X-34 at nanomolar concentrations (IC50: 82.1 +/- 6 nM). WK-X-34 inhibited mitoxantrone accumulation in BCRP-overexpressing cells at micromolar concentrations (IC50 = 26.5 +/- 4.6 microM), whereas WK-X-34 did not significantly alter 5-CFDA accumulation in MRP transfected cells. In vivo, uptake of 99mTc-Sestamibi was significantly increased in A2780/Adr xenograft tumors, brain and intestine (AUCs(0-4h) 136%, 147% and 138%; p < 0.05) in mice dosed with WK-X-34 (20 mg/kg i.p.). WK-X-34 selectively modulates Pgp and BCRP in vitro and in vivo in multidrug resistant ovarian cancer cells, and thus may have potential utility in the treatment of multidrug resistant tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Area Under Curve
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Cell Line, Tumor
- Daunorubicin/metabolism
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Flow Cytometry
- Fluorescence
- Gene Expression Regulation, Neoplastic
- Humans
- Mitoxantrone/metabolism
- Multidrug Resistance-Associated Proteins/drug effects
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Radiopharmaceuticals
- Technetium Tc 99m Sestamibi
- Time Factors
- Tissue Distribution
- Transplantation, Heterologous
- Up-Regulation
Collapse
|
48
|
|
49
|
Bart J, Dijkers ECF, Wegman TD, de Vries EGE, van der Graaf WTA, Groen HJM, Vaalburg W, Willemsen ATM, Hendrikse NH. New positron emission tomography tracer [(11)C]carvedilol reveals P-glycoprotein modulation kinetics. Br J Pharmacol 2005; 145:1045-51. [PMID: 15951832 PMCID: PMC1576233 DOI: 10.1038/sj.bjp.0706283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Imaging of P-glycoprotein (P-gp) function in the blood-brain barrier (BBB) may support development of strategies, which will improve drug delivery to the brain. [(11)C]verapamil has been developed as a positron emission tomography (PET) tracer, to image P-gp function in vivo. Ideally, for the purpose of brain imaging, tracers should have a log P between 0.9 and 2.5. The beta-receptor antagonist carvedilol is a P-gp substrate with a log P=2.0, and can be labeled with [(11)C]. The aim of this study was to determine whether the P-gp substrate [(11)C]carvedilol can be used as a PET tracer for visualisation and quantification of the P-gp function in the BBB. Cellular [(11)C]carvedilol accumulation in GLC(4), GLC(4)/P-gp, and GLC(4)/Adr cells increased three-fold in the GLC(4)/P-gp cells after pretreatment with cyclosporin A (CsA) whereas no effect of MK571 could be determined in the GLC(4)/Adr cells. Ex vivo [(11)C]carvedilol biodistribution studies showed that [(11)C]carvedilol uptake in the brain was increased by CsA. [(11)C]carvedilol uptake in other organs was not affected by CsA. Autoradiography studies of rat brains showed that [(11)C]carvedilol was homogeneously distributed over the brain and that pretreatment with CsA increased [(11)C]carvedilol uptake. In vivo PET experiments were performed with and without P-gp modulation by CsA. P-gp mediated transport was quantified by Logan analysis of the PET data, calculating the distribution volume (DV) of [(11)C]carvedilol in the brain. Logan analysis resulted in excellent fits, revealing that [(11)C]carvedilol is not trapped in the brain. Brain DV of [(11)C]carvedilol showed a dose-dependent increase of maximal three-fold after CsA pretreatment. Above 15 mg kg(-1), no change in DV was found. Compared to [(11)C]verapamil less CsA was needed to reach maximal DV, suggesting that [(11)C]carvedilol kinetics is a more sensitive tool to in vivo measure P-gp function.
Collapse
Affiliation(s)
- Joost Bart
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Eli C F Dijkers
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Theodora D Wegman
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Medical Oncology, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Winette T A van der Graaf
- Medical Oncology, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Willem Vaalburg
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Antoon T M Willemsen
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - N Harry Hendrikse
- PET-Center, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
- Author for correspondence:
| |
Collapse
|
50
|
Aouali N, Eddabra L, Macadré J, Morjani H. Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol 2005; 56:61-70. [PMID: 15978826 DOI: 10.1016/j.critrevonc.2004.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/30/2004] [Accepted: 12/10/2004] [Indexed: 11/25/2022] Open
Abstract
Drug resistance is the major reason for failure of cancer therapy. When one drug elicits a response in tumour cells resulting in resistance to a large variety of chemically unrelated drugs, this is called multidrug-resistance (MDR). ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp) encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and ABC transporters remained a major goal for the past 10 years. Immunosuppressors, cyclosporin A (CSA) in particular, were shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukaemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival and overall survival were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 was then extensively studied. This compound shows 10-fold higher potency in reversal of MDR mediated by Pgp. Results from clinical trials with this modulator are still emerging and the notable finding was the need to reduce the dose of anticancer agent used in combination with it. Other effects of CSA and PSC833 on MDR have been described. These two molecules have been shown to have an action on the metabolism of ceramide which stands as second messenger of anticancer agents-induced apoptosis. PSC833 stimulates de novo ceramide synthesis and enhances cell death induced by anticancer agents, such as camptothecins and anthracyclines. In addition, ceramide glycosylation and storage in some cell lines have been described to play a crucial role in resistance to anticancer drugs. CSA is able to inhibit ceramide glucosylation and modulate MDR phenotype. The emergence of other modulators with several ABC protein targets like VX710 are of clinical interest in malignancies expressing several efflux pumps.
Collapse
Affiliation(s)
- Nassera Aouali
- Roswell Park Cancer Institute, Department of Cancer Genetique, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|