1
|
Krystal J, Hanson D, Donnelly D, Atlas M. A phase 1 study of mebendazole with bevacizumab and irinotecan in high-grade gliomas. Pediatr Blood Cancer 2024; 71:e30874. [PMID: 38234020 DOI: 10.1002/pbc.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND High-grade gliomas (HGG) have a dismal prognosis despite multimodal therapy. Mebendazole is an anti-helminthic benzimidazole that has demonstrated efficacy in numerous in vitro cancer models, and is able to cross the blood-brain barrier. We conducted a phase 1 trial (NCT01837862) to evaluate the safety of mebendazole in combination with bevacizumab and irinotecan in children and young adults with HGG. OBJECTIVE To determine the maximally tolerated dose of mebendazole when given in combination with bevacizumab and irinotecan in children with HGG; to describe the progression-free survival (PFS) and overall survival (OS) for this group. DESIGN/METHOD Patients between 1 and 21 years of age with HGG were enrolled in a 3 + 3 design to escalating doses of mebendazole in combination with bevacizumab (10 mg/kg/dose) and irinotecan (150 mg/m2 /dose). Subjects were eligible upfront after completion of radiation or at the time of progression. Mebendazole was taken orally twice per day continuously, and bevacizumab and irinotecan were given intravenously on Days 1 and 15 of 28-day cycles. RESULTS Between 2015 and 2020, 10 subjects were enrolled at mebendazole doses of 50 mg/kg/day (n = 3), 100 mg/kg/day (n = 4), and 200 mg/kg/day (n = 3). One subject assigned to 100 mg/kg/day was not evaluable. Seven subjects had a diagnosis of diffuse midline glioma, one subject had anaplastic astrocytoma, and one subject had a spinal HGG. All subjects received radiation. There were no dose-limiting toxicities. The most frequent G3/4 adverse events were neutropenia (n = 3) and lymphopenia (n = 4). The overall response rate was 33%, with two subjects achieving a partial response and one subject achieving a complete response sustained for 10 months. The mean PFS and OS from the start of study treatment were 4.7 and 11.4 months, respectively. CONCLUSION Mebendazole was safe and well tolerated when administered with bevacizumab and irinotecan at doses up to 200 mg/kg/day. Further studies are needed to determine the efficacy of this treatment.
Collapse
Affiliation(s)
- Julie Krystal
- Division of Pediatric Hematology-Oncology and Stem Cell Transplant, Cohen Children's Medical Center, New Hyde Park, New York, USA
- Department of Pediatrics, Zucker School of Medicine, Hempstead, New York, USA
| | - Derek Hanson
- Department of Pediatrics, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Danielle Donnelly
- Division of Pediatric Hematology-Oncology and Stem Cell Transplant, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Mark Atlas
- Division of Pediatric Hematology-Oncology and Stem Cell Transplant, Cohen Children's Medical Center, New Hyde Park, New York, USA
- Department of Pediatrics, Zucker School of Medicine, Hempstead, New York, USA
| |
Collapse
|
2
|
H3K27M-Altered Diffuse Midline Gliomas Among Adult Patients: A Systematic Review of Clinical Features and Survival Analysis. World Neurosurg 2022; 165:e251-e264. [PMID: 35697228 DOI: 10.1016/j.wneu.2022.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of the study was to summarize the clinical characteristics, histo-genomic profiles, management strategies, and survival outcomes of H3K27M-altered adult diffuse midline gliomas (aDMGs). METHODS PubMed, Scopus, and Cochrane databases were used to identify relevant articles. Papers including H3K27M-altered aDMGs with sufficient clinical outcome data were included. Descriptive clinical characteristics and survival analysis were also conducted. RESULTS Twenty studies describing 135 patients were included. The median age at diagnosis was 42 years, and there was a slight male predominance (N = 60, 54%). In our cohort, 15 (11%) patients experienced headache, 10 had nausea and vomiting (7%), and 10 had ataxia (7%). Within this cohort, histopathologic diagnoses included glioblastoma (N = 22, 40%) and anaplastic astrocytoma (N = 21, 38%), while genetic alterations included ATRX mutation (N = 22, 16%), PTPN11 mutation (N = 9, 7%), and MGMT promoter methylation (N = 9, 7%). Among histo-genetic alterations, only ATRX mutation was associated with survival and correlated with worse prognosis (log-rank test, P = 0.04). Neither surgical resection versus biopsy nor greater extent of resection demonstrated survival benefit in our cohort. Chemotherapy was administered in 98 (73%) cases with radiotherapy administered in 71 (53%) cases. Unlike chemotherapy, radiotherapy demonstrated a significant survival benefit (log-rank test, P = 0.019). The median overall survival and progression-free survival within our patient cohort were 10 and 7 months, respectively. CONCLUSIONS H3K27M-altered aDMGs were associated with relatively poor survival. ATRX gene mutation was significantly associated with survival disadvantage, while radiotherapy was associated with survival benefit. Large, prospective studies are needed to establish a standard management strategy and provide reliable prognostic conclusions.
Collapse
|
3
|
Epidemiologic profile and outcome of primary pediatric brain tumors in Iran: retrospective study and literature review. Childs Nerv Syst 2022; 38:353-360. [PMID: 34559302 DOI: 10.1007/s00381-021-05363-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Primary pediatric tumors are the most common solid tumors in children. There are limited reports on the management and outcome of these tumors in the developing countries. In recent years, advances have been done in the diagnosis, treatment, and outcome of these tumors. The aim of this study was to evaluate the histopathology, characteristics, and outcome of primary pediatric tumors in Iran. METHODS This retrospective study examines primary brain tumors in children below 14 years of age who have undergone surgery. Histopathological characteristics according to WHO 2017 classification, age, sex, tumor resection rate, and patient outcome were extracted and studied. The results of the study were compared with the results of similar reports from neighboring countries and other parts of the world. RESULTS In this study, 199 primary pediatric tumors were examined. Out of 199 cases, 114 cases were males, and 85 cases were females, and the male/female ratio was 1.34. The most common tumor group in this study was astrocytic tumors (68.3%) and the most common tumor was pilocytic astrocytoma (22.1%). In terms of malignancy, 50.7% of tumors were benign, and 49.3% were malignant. Total resection was done in 46% and subtotal resection in 35%. The mortality rate was found 19.2%. َAmong the remaining cases during follow-up, 76.6% had a good outcome without neurological deficits or mild disability and 23.4% had moderate to severe disability. CONCLUSIONS The results of the study in terms of pathology and demographic characteristics were mainly similar to other reports. The mean age of patients was lower, and the patients' outcome was better than the other countries in the region.
Collapse
|
4
|
Ni S, Chen R, Hu K. Experimental murine models of brainstem gliomas. Drug Discov Today 2021; 27:1218-1235. [PMID: 34954326 DOI: 10.1016/j.drudis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
As an intractable central nervous system (CNS) tumor, brainstem gliomas (BGs) are one of the leading causes of pediatric death by brain tumors. Owing to the risk of surgical resection and the little improvement in survival time after radiotherapy and chemotherapy, there is an urgent need to find reliable model systems to better understand the regional pathogenesis of the brainstem and improve treatment strategies. In this review, we outline the evolution of BG murine models, and discuss both their advantages and limitations in drug discovery.
Collapse
Affiliation(s)
- Shuting Ni
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Ozerov SS, Ryzhova MV, Kumirova EV. [Diffuse brainstem tumors in children. Tumor biology and hope for a better outcome. Current state of the problem]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:77-86. [PMID: 34463454 DOI: 10.17116/neiro20218504177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diffuse brainstem tumor is a fatal disease and the main cause of child mortality from neoplasms of central nervous system. So far, no effective therapy has been found for this disease. The authors discuss the modern aspects of clinical data, biology, diagnosis and treatment of patients with diffuse brainstem tumors.
Collapse
Affiliation(s)
- S S Ozerov
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E V Kumirova
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
6
|
Su JM, Kilburn LB, Mansur DB, Krailo M, Buxton A, Adekunle A, Gajjar A, Adamson PC, Weigel B, Fox E, Blaney SM, Fouladi M. Phase 1/2 Trial of Vorinostat and Radiation and Maintenance Vorinostat in Children with Diffuse Intrinsic Pontine Glioma: A Children's Oncology Group Report. Neuro Oncol 2021; 24:655-664. [PMID: 34347089 DOI: 10.1093/neuonc/noab188] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A phase 1/2 trial of vorinostat (suberoylanilide hydroxamic acid), an oral histone deacetylase (HDAC) inhibitor, was conducted in children with newly-diagnosed diffuse intrinsic pontine glioma (DIPG) through the Children's Oncology Group (COG) to: 1) determine the recommended phase 2 dose (RP2D) of vorinostat given concurrently with radiation therapy; 2) document the toxicities of continuing vorinostat as maintenance therapy after radiation; and 3) to determine the efficacy of this regimen by comparing the risk of progression or death with an historical model from past COG trials. METHODS Vorinostat was given once daily, Monday through Friday, during radiation therapy (54 Gy in 30 fractions), and then continued at 230 mg/m 2 daily for a maximum of twelve 28-day cycles. RESULTS Twelve patients enrolled on the phase 1 study; the RP2D of vorinostat given concurrently with radiation was 230 mg/m 2/day, Monday through Friday weekly. The six patients enrolled at the RP2D and an additional 64 patients enrolled onto the phase 2 study contributed to the efficacy assessment. Although vorinostat was well-tolerated, did not interrupt radiation therapy, and was permanently discontinued in only 8.6% of patients due to toxicities, risk for EFS-event was not significantly reduced compared with the target risk derived from historical COG data (p = 0.32; 1-sided). The 1-year EFS was 5.85% (95% CI 1.89 - 13.1%) and 1-year OS was 39.2% (27.8 - 50.5%). CONCLUSIONS Vorinostat given concurrently with radiation followed by vorinostat monotherapy was well tolerated in children with newly-diagnosed DIPG but failed to improve outcome.
Collapse
Affiliation(s)
- Jack M Su
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay B Kilburn
- Children's National Medical Center, Center for Cancer & Blood Disorders, Washington, DC, USA
| | - David B Mansur
- Rainbow Babies and Children's Hospital, Radiation Oncology, Cleveland, OH, USA
| | - Mark Krailo
- Children's Oncology Group, Statistics, Monrovia, CA, USA
| | - Allen Buxton
- Children's Oncology Group, Statistics, Monrovia, CA, USA
| | - Adesina Adekunle
- Texas Children's Hospital, Department of Pathology, Houston, TX, USA
| | - Amar Gajjar
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Peter C Adamson
- Children's Oncology Group, Global Head, Oncology Department, Cambridge, MA, USA
| | - Brenda Weigel
- University of Minnesota/Masonic Cancer Center, Department of Pediatrics, Hem/Onc/BMT, Minneapolis, MN, USA
| | - Elizabeth Fox
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Susan M Blaney
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Maryam Fouladi
- Nationwide Children's Hospital, Neuro-Oncology Program, Columbus, OH, USA
| |
Collapse
|
7
|
Lian X, Kats D, Rasmussen S, Martin LR, Karki A, Keller C, Berlow NE. Design considerations of an IL13Rα2 antibody-drug conjugate for diffuse intrinsic pontine glioma. Acta Neuropathol Commun 2021; 9:88. [PMID: 34001278 PMCID: PMC8127302 DOI: 10.1186/s40478-021-01184-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a rare pediatric brain tumor, afflicts approximately 350 new patients each year in the United States. DIPG is noted for its lethality, as fewer than 1% of patients survive to five years. Multiple clinical trials involving chemotherapy, radiotherapy, and/or targeted therapy have all failed to improve clinical outcomes. Recently, high-throughput sequencing of a cohort of DIPG samples identified potential therapeutic targets, including interleukin 13 receptor subunit alpha 2 (IL13Rα2) which was expressed in multiple tumor samples and comparably absent in normal brain tissue, identifying IL13Rα2 as a potential therapeutic target in DIPG. In this work, we investigated the role of IL13Rα2 signaling in progression and invasion of DIPG and viability of IL13Rα2 as a therapeutic target through the use of immunoconjugate agents. We discovered that IL13Rα2 stimulation via canonical ligands demonstrates minimal impact on both the cellular proliferation and cellular invasion of DIPG cells, suggesting IL13Rα2 signaling is non-essential for DIPG progression in vitro. However, exposure to an anti-IL13Rα2 antibody-drug conjugate demonstrated potent pharmacological response in DIPG cell models both in vitro and ex ovo in a manner strongly associated with IL13Rα2 expression, supporting the potential use of targeting IL13Rα2 as a DIPG therapy. However, the tested ADC was effective in most but not all cell models, thus selection of the optimal payload will be essential for clinical translation of an anti-IL13Rα2 ADC for DIPG.
Collapse
Affiliation(s)
- Xiaolei Lian
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Dina Kats
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Samuel Rasmussen
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Leah R Martin
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Anju Karki
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA.
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA.
| |
Collapse
|
8
|
Aridgides P, Janssens GO, Braunstein S, Campbell S, Poppe M, Murphy E, MacDonald S, Ladra M, Alapetite C, Haas-Kogan D. Gliomas, germ cell tumors, and craniopharyngioma. Pediatr Blood Cancer 2021; 68 Suppl 2:e28401. [PMID: 32960496 DOI: 10.1002/pbc.28401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 04/23/2000] [Indexed: 11/07/2022]
Abstract
This report summarizes the current multimodality treatment approaches for children with low- and high-grade gliomas, germinoma, and nongerminomatous germ cell tumors, and craniopharyngiomas used in the Children's Oncology Group (COG) and the International Society of Pediatric Oncology (SIOP). Treatment recommendations are provided in the context of historical approaches regarding the roles of surgery, radiation, and chemotherapy. Future research strategies for these tumors in both COG and SIOP are also discussed.
Collapse
Affiliation(s)
- Paul Aridgides
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, 13210
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht and Princess Máxima Center for Pediatric Oncology, Utrecht, GA, 3508, The Netherlands
| | - Steve Braunstein
- Department of Radiation Oncology, University of California, Ron Conway Family Gateway Medical Building, 1825 Fourth St. 1st floor M1215, San Francisco, CA, 94115
| | - Shauna Campbell
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Avenue / CA-50, Cleveland, OH, 44195
| | - Matthew Poppe
- Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, 1950 Circle of Hope, Radiation Oncology, 1570, Salt Lake City, UT, 84112
| | - Erin Murphy
- Department of Radiation Oncology, Cleveland Clinic, Mail Code CA5, 9500 Euclid Avenue, Cleveland, OH, 44195
| | - Shannon MacDonald
- Francis H Burr Proton Therapy Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114
| | - Matthew Ladra
- Department of Radiation Oncology, Johns Hopkins Kimmel Cancer Center, 401 N. Broadway, Weinberg Suite 1440, Baltimore, MD, 21231
| | | | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, D1622, 450 Brookline Ave, Brookline, MA, 02215
| |
Collapse
|
9
|
Yoon HI, Wee CW, Kim YZ, Seo Y, Im JH, Dho YS, Kim KH, Hong JB, Park JS, Choi SH, Kim MS, Moon J, Hwang K, Park JE, Cho JM, Yoon WS, Kim SH, Kim YI, Kim HS, Sung KS, Song JH, Lee MH, Han MH, Lee SH, Chang JH, Lim DH, Park CK, Lee YS, Gwak HS. The Korean Society for Neuro-Oncology (KSNO) Guideline for Adult Diffuse Midline Glioma: Version 2021.1. Brain Tumor Res Treat 2021; 9:1-8. [PMID: 33913265 PMCID: PMC8082289 DOI: 10.14791/btrt.2021.9.e8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There have been no guidelines for the management of adult patients with diffuse midline glioma (DMG), H3K27M-mutant in Korea since the 2016 revised WHO classification newly defined this disease entity. Thus, the Korean Society for Neuro-Oncology (KSNO), a multidisciplinary academic society, had begun preparing guidelines for DMG since 2019. METHODS The Working Group was composed of 27 multidisciplinary medical experts in Korea. References were identified through searches of PubMed, MEDLINE, EMBASE, and Cochrane CENTRAL using specific and sensitive keywords as well as combinations of keywords. As 'diffuse midline glioma' was recently defined, and there was no international guideline, trials and guidelines of 'diffuse intrinsic pontine glioma' or 'brain stem glioma' were thoroughly reviewed first. RESULTS The core contents are as follows. The DMG can be diagnosed when all of the following three criteria are satisfied: the presence of the H3K27M mutation, midline location, and infiltrating feature. Without identification of H3K27M mutation by diagnostic biopsy, DMG cannot be diagnosed. For the primary treatment, maximal safe resection should be considered for tumors when feasible. Radiotherapy is the primary option for tumors in case the total resection is not possible. A total dose of 54 Gy to 60 Gy with conventional fractionation prescribed at 1-2 cm plus gross tumor volume is recommended. Although no chemotherapy has proven to be effective in DMG, concurrent chemoradiotherapy (± maintenance chemotherapy) with temozolomide following WHO grade IV glioblastoma's protocol is recommended. CONCLUSION The detection of H3K27M mutation is the most important diagnostic criteria for DMG. Combination of surgery (if amenable to surgery), radiotherapy, and chemotherapy based on comprehensive multidisciplinary discussion can be considered as the treatment options for DMG.
Collapse
Affiliation(s)
- Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Youngbeom Seo
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yun Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyung Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Min Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Mo Cho
- Department of Neurosurgery, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Wan Soo Yoon
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Il Kim
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Ho Lee
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Myung Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Se Hoon Lee
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Ho Shin Gwak
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
10
|
Perrone MG, Ruggiero A, Centonze A, Carrieri A, Ferorelli S, Scilimati A. Diffuse Intrinsic Pontine Glioma (DIPG): Breakthrough and Clinical Perspective. Curr Med Chem 2021; 28:3287-3317. [PMID: 32767913 DOI: 10.2174/0929867327666200806110206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) mainly affects children with a median age of 6-7 years old. It accounts for 10% of all pediatric tumors. Unfortunately, DIPG has a poor prognosis, and the median survival is generally less than 16-24 months independently from the treatment received. Up to now, children with DIPG are treated with focal radiotherapy alone or in combination with antitumor agents. In the last decade, ONC201 known as dopamine receptor antagonist was uncovered, by a high throughput screening of public libraries of compounds, to be endowed with cytotoxic activity against several cancer cell lines. Efforts were made to identify the real ONC201 target, responsible for its antiproliferative effect. The hypothesized targets were the Tumor necrosis factor-Related Apoptosis-Inducing Ligand stimulation (TRAIL), two oncogenic kinases (ERK/AKT system) that target the same tumor-suppressor gene (FOXO3a), dopamine receptors (DRD2 and DRD3 subtypes) and finally the mitochondrial Caseynolitic Protease P (ClpP). ONC201 structure-activity relationship is extensively discussed in this review, together with other two classes of compounds, namely ADEPs and D9, already known for their antibiotic activity but noteworthy to be discussed and studied as potential "leads" for the development of new drugs to be used in the treatment of DIPG. In this review, a detailed and critical description of ONC201, ADEPs, and D9 pro-apoptotic activity is made, with particular attention to the specific interactions established with its targets that also are intimately described. Pubmed published patents and clinical trial reports of the last ten years were used as the bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonella Centonze
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Su JMF, Murray JC, McNall-Knapp RY, Bowers DC, Shah S, Adesina AM, Paulino AC, Jo E, Mo Q, Baxter PA, Blaney SM. A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr Blood Cancer 2020; 67:e28283. [PMID: 32285998 DOI: 10.1002/pbc.28283] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE To study the efficacy and tolerability of valproic acid (VPA) and radiation, followed by VPA and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG). METHODS Children 3 to 21 years of age received radiation therapy and VPA at 15 mg/kg/day and dose adjusted to maintain a trough range of 85 to 115 μg/mL. VPA was continued post-radiation, and bevacizumab was started at 10 mg/kg intravenously biweekly, four weeks after completing radiation therapy. RESULTS From September 2009 through August 2015, 20 DIPG and 18 HGG patients were enrolled (NCT00879437). During radiation and VPA, grade 3 or higher toxicities requiring discontinuation or modification of VPA dosing included grade 3 thrombocytopenia (1), grade 3 weight gain (1), and grade 3 pancreatitis (1). During VPA and bevacizumab, the most common grade 3 or higher toxicities were grade 3 neutropenia (3), grade 3 thrombocytopenia (3), grade 3 fatigue (3), and grade 3 hypertension (4). Two patients discontinued protocol therapy prior to disease progression (one grade 4 thrombosis and one grade 1 intratumoral hemorrhage). Median event-free survival (EFS) and overall survival (OS) for DIPG were 7.8 (95% CI 5.6-8.2) and 10.3 (7.4-13.4) months, and estimated one-year EFS was 12% (2%-31%). Median EFS and OS for HGG were 9.1 (6.4-11) and 12.1 (10-22.1) months, and estimated one-year EFS was 24% (7%-45%). Four patients with glioblastoma and mismatch-repair deficiency syndrome had EFS of 28.5, 16.7, 10.4, and 9 months. CONCLUSION Addition of VPA and bevacizumab to radiation was well tolerated but did not appear to improve EFS or OS in children with DIPG or HGG.
Collapse
Affiliation(s)
- Jack Meng-Fen Su
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Rene Y McNall-Knapp
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daniel C Bowers
- Children's Medical Center/The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shafqat Shah
- The University of Texas Health Science Center, Department of Pediatric Hematology-Oncology, San Antonio, Texas
| | | | - Arnold C Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunji Jo
- Dan L Duncan Cancer Center, Department of Medicine, Biostatistics and Bioinformatics, Houston, Texas
| | - Qianxing Mo
- Dan L Duncan Cancer Center, Department of Medicine, Biostatistics and Bioinformatics, Houston, Texas
| | - Patricia A Baxter
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Susan M Blaney
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Muroi A, Mizumoto M, Ishikawa E, Ihara S, Fukushima H, Tsurubuchi T, Sakurai H, Matsumura A. Proton therapy for newly diagnosed pediatric diffuse intrinsic pontine glioma. Childs Nerv Syst 2020; 36:507-512. [PMID: 31728705 DOI: 10.1007/s00381-019-04420-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is a type of brain malignancy with a very poor prognosis. Although various radiation and chemotherapy protocols have been attempted, only conventional radiotherapy has yielded improvements in survival. In this study, we aimed to compare proton therapy versus conventional photon radiotherapy in terms of the outcomes of pediatric patients with DIPG. METHODS This retrospective review included 12 pediatric patients with newly diagnosed DIPG who received a total proton therapy dose of 54 Gy (relative biological effectiveness) in 30 fractions at the University of Tsukuba Hospital between 2011 and 2017 (proton group). We additionally reviewed the medical records of 10 patients with DIPG who previously underwent conventional photon radiotherapy at our institute (historical cohort). RESULTS The median progression-free survival (PFS) duration was 5 months (range 1-11 months), and the 6-, 12-, and 18-month PFS rates were 50%, 33%, and 25%, respectively. The median overall survival (OS) duration was 9 months (range 4-48 months), and the 6-, 12-, 18-, and 24-month OS rates were 66.8%, 50%, 41%, and 20%, respectively. There were no significant differences in survival between the proton and historical groups (PFS, p = 0.169 and OS, p = 0.16). CONCLUSIONS Proton therapy was well tolerated by the majority of patients. No severe adverse events, including radiation necrosis, were recorded. Proton therapy did not yield superior survival outcomes vs. conventional photon radiotherapy in patients with DIPG at our institution. Further research is needed to identify the factors associated with better survival in this population.
Collapse
Affiliation(s)
- Ai Muroi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Masashi Mizumoto
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Ihara
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
13
|
Rashed WM, Maher E, Adel M, Saber O, Zaghloul MS. Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev 2020; 38:759-770. [PMID: 31802357 DOI: 10.1007/s10555-019-09824-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG) represents approximately 20% of all pediatric CNS tumors. However, disease outcomes are dismal with a median survival of less than 1 year and a 2-year overall survival rate of less than 10%. Despite extensive efforts to improve survival outcomes, progress towards clinical improvement has been largely stagnant throughout the last 4 decades. Focal radiotherapy remains the standard of care with no promising single-agent alternatives and no evidence for improvement with the addition of a long list of systemic therapies. A better understanding of the biology of DIPG, though not easy due to obstacles in obtaining pathological material to study, is promising for the development of specific individualized treatment for this fatal disease. Recent studies have found epigenetic mutations to be successful predictors and prognostic factors for developing future management policies. The aim of this review is to give a global overview about the epidemiology, diagnosis, and treatment of DIPG. We further examine the controversial biopsy and autopsy issue that is unique to DIPG and assess the subsequent impact this issue has on the research efforts and clinical management of DIPG.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
| | - Eslam Maher
- Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Mohamed Adel
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ossama Saber
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mohamed Saad Zaghloul
- Radiotherapy Department, National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, 57357, Egypt.
| |
Collapse
|
14
|
Nikolaev A, Fiveash JB, Yang ES. Combined Targeting of Mutant p53 and Jumonji Family Histone Demethylase Augments Therapeutic Efficacy of Radiation in H3K27M DIPG. Int J Mol Sci 2020; 21:ijms21020490. [PMID: 31940975 PMCID: PMC7014308 DOI: 10.3390/ijms21020490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor with a 5-year survival of <1%. Up to 80% of the DIPG tumors contain a specific K27M mutation in one of the two genes encoding histone H3 (H3K27M). Furthermore, p53 mutations found in >70–80% of H3K27M DIPG, and mutant p53 status is associated with a decreased response to radiation treatment and worse overall prognosis. Recent evidence indicates that H3K27M mutation disrupts tri-methylation at H3K27 leading to aberrant gene expression. Jumonji family histone demethylases collaborates with H3K27 mutation in DIPG by erasing H3K27 trimethylation and thus contributing to derepression of genes involved in tumorigenesis. Since the first line of treatment for pediatric DIPG is fractionated radiation, we investigated the effects of Jumonji demethylase inhibition with GSK-J4, and mutant p53 targeting/oxidative stress induction with APR-246, on radio-sensitization of human H3K27M DIPG cells. Both APR-246 and GSK-J4 displayed growth inhibitory effects as single agents in H3K27M DIPG cells. Furthermore, both of these agents elicited mild radiosensitizing effects in human DIPG cells (sensitizer enhancement ratios (SERs) of 1.12 and 1.35, respectively; p < 0.05). Strikingly, a combination of APR-246 and GSK-J4 displayed a significant enhancement of radiosensitization, with SER of 1.50 (p < 0.05) at sub-micro-molar concentrations of the drugs (0.5 μM). The molecular mechanism of the observed radiosensitization appears to involve DNA damage repair deficiency triggered by APR-246/GSK-J4, leading to the induction of apoptotic cell death. Thus, a therapeutic approach of combined targeting of mutant p53, oxidative stress induction, and Jumonji demethylase inhibition with radiation in DIPG warrants further investigation.
Collapse
|
15
|
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumors in children and comprise 15% to 20% of all malignancies in children. Presentation, symptoms, and signs depend on tumor location and age of the patient at the time of diagnosis. This article summarizes the common childhood CNS tumors, presentations, classification, and recent updates in treatment approaches due to the increased understanding of the molecular pathogenesis of pediatric brain tumors.
Collapse
Affiliation(s)
- Yoko T Udaka
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Oncology, Center for Cancer and Blood Disorders, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Roger J Packer
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; The Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| |
Collapse
|
16
|
Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 2019; 23:261-273. [PMID: 30835699 PMCID: PMC6823600 DOI: 10.3171/2018.10.peds18377] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Brain tumors are the most common solid tumors in children, and, unfortunately, many subtypes continue to have a suboptimal long-term outcome. During the last several years, however, remarkable advances in our understanding of the molecular underpinnings of these tumors have occurred as a result of high-resolution genomic, epigenetic, and transcriptomic profiling, which have provided insights for improved tumor categorization and molecularly directed therapies. While tumors such as medulloblastomas have been historically grouped into standard- and high-risk categories, it is now recognized that these tumors encompass four or more molecular subsets with distinct clinical and molecular characteristics. Likewise, high-grade glioma, which for decades was considered a single high-risk entity, is now known to comprise multiple subsets of tumors that differ in terms of patient age, tumor location, and prognosis. The situation is even more complex for ependymoma, for which at least nine subsets of tumors have been described. Conversely, the majority of pilocytic astrocytomas appear to result from genetic changes that alter a single, therapeutically targetable molecular pathway. Accordingly, the present era is one in which treatment is evolving from the historical standard of radiation and conventional chemotherapy to a more nuanced approach in which these modalities are applied in a risk-adapted framework and molecularly targeted therapies are implemented to augment or, in some cases, replace conventional therapy. Herein, the authors review advances in the categorization and treatment of several of the more common pediatric brain tumors and discuss current and future directions in tumor management that hold significant promise for patients with these challenging tumors.
Collapse
|
17
|
Pre-irradiation intensive induction and marrow-ablative consolidation chemotherapy in young children with newly diagnosed high-grade brainstem gliomas: report of the "head-start" I and II clinical trials. J Neurooncol 2018; 140:717-725. [PMID: 30392092 DOI: 10.1007/s11060-018-03003-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/22/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The dismal outcome in children with high-grade brainstem gliomas (BSG) accentuates the need for effective therapeutic strategies. We investigated the role of intensive, including marrow-ablative, chemotherapy regimens in the treatment of young children with newly-diagnosed high-grade BSG. METHODS Between 1991-and-2002, 15 eligible children less than 10 years of age with a diagnosis of high-grade BSG were treated on "Head-Start" I and II protocols (HSI and HSII). Treatment included Induction with 4-5 cycles of one of three intensive chemotherapy regimens followed by Consolidation with one cycle of marrow-ablative chemotherapy (thiotepa, carboplatin and etoposide) with autologous hematopoietic cell rescue (AHCR). Irradiation was required for children over 6 years of age or for those with residual tumor at the end of Consolidation. RESULTS We had two long-term survivors who were found retrospectively to harbor low-grade glial tumors and thus were not included in the survival analysis. Of the remaining 13 patients, the 1-year event-free (EFS) and overall (OS) survival for these children were 31% (95% CI 9-55%) and 38% (95% CI 14-63%), respectively. Median EFS and OS were 6.6 (95% CI 2.7, 12.7) and 8.7 months (95% CI 6.9, 20.9), respectively. Eight patients developed progressive disease during study treatment (seven during Induction and one at the end of Consolidation). Ten children received focal irradiation, five for residual tumor (three following Induction and two following Consolidation) and five due to disease progression. CONCLUSIONS Children with high-grade BSG did not benefit from this intensive chemotherapy strategy administered prior to irradiation.
Collapse
|
18
|
Berlow NE, Svalina MN, Quist MJ, Settelmeyer TP, Zherebitskiy V, Kogiso M, Qi L, Du Y, Hawkins CE, Hulleman E, Li XN, Gultekin SH, Keller C. IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma. PLoS One 2018; 13:e0193565. [PMID: 29621254 PMCID: PMC5886401 DOI: 10.1371/journal.pone.0193565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal childhood cancer of the brain. Despite the introduction of conventional chemotherapy and radiotherapy, improvements in survival have been marginal and long-term survivorship is uncommon. Thus, new targets for therapeutics are critically needed. Early phase clinical trials exploring molecularly-targeted therapies against the epidermal growth factor receptor (EGFR) and novel immunotherapies targeting interleukin receptor-13α2 (IL-13Rα2) have demonstrated activity in this disease. To identify additional therapeutic markers for cell surface receptors, we performed exome sequencing (16 new samples, 22 previously published samples, total 38 with 26 matched normal DNA samples), RNA deep sequencing (17 new samples, 11 previously published samples, total 28 with 18 matched normal RNA samples), and immunohistochemistry (17 DIPG tissue samples) to examine the expression of the interleukin-4 (IL-4) signaling axis components (IL-4, interleukin 13 (IL-13), and their respective receptors IL-4Rα, IL-13Rα1, and IL-13Rα2). In addition, we correlated cytokine and receptor expression with expression of the oncogenes EGFR and c-MET. In DIPG tissues, transcript-level analysis found significant expression of IL-4, IL-13, and IL-13Rα1/2, with strong differential expression of IL-13Rα1/2 in tumor versus normal brain. At the protein level, immunohistochemical studies revealed high content of IL-4 and IL-13Rα1/2 but notably low expression of IL-13. Additionally, a strong positive correlation was observed between c-Met and IL-4Rα. The genomic and transcriptional landscape across all samples was also summarized. These data create a foundation for the design of potential new immunotherapies targeting IL-13 cell surface receptors in DIPG.
Collapse
Affiliation(s)
- Noah E. Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Matthew N. Svalina
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Michael J. Quist
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Teagan P. Settelmeyer
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
| | - Viktor Zherebitskiy
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States of America
| | - Mari Kogiso
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Lin Qi
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Yuchen Du
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Cynthia E. Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, CANADA
| | - Esther Hulleman
- Neuro-Oncology Research Group, Cancer Center Amsterdam, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - Xiao-Nan Li
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States of America
| | - Sakir H. Gultekin
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States of America
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|
19
|
Liang F, Zhang S, Xue H, Chen Q. Risk of second primary cancers in cancer patients treated with cisplatin: a systematic review and meta-analysis of randomized studies. BMC Cancer 2017; 17:871. [PMID: 29258467 PMCID: PMC5738212 DOI: 10.1186/s12885-017-3902-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 12/08/2017] [Indexed: 01/30/2023] Open
Abstract
Background Case reports, retrospective analyses, and observational studies have linked the use of cisplatin to increased risk of second cancers, especially life-threatening secondary leukemia. We therefore performed a systematic review and meta-analysis to evaluate the risk of second cancers associated with receipt of cisplatin-based chemotherapy in randomized controlled trials (RCTs). Methods We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, trial registers, conference proceedings, review articles, and reference lists of trial publications for all relevant RCTs comparing cisplatin- versus non-cisplatin-containing chemotherapy with data on second cancers. We extracted data about study characteristics and second cancers, especially leukemia/ myelodysplasia. The primary and secondary outcomes were the odds ratios (ORs) for all second cancers and for secondary leukemia/ myelodysplasia, respectively. Results We identified 28 eligible trials with 7403 patients. Second cancers were reported in 143 patients, including 75 patients in the cisplatin arm and 68 in the non-cisplatin arm (raw event rates of 1.91 and 1.96%, respectively). The pooled OR for risk of all second cancers associated with cisplatin-based chemotherapy was 0.95 (95% confidence interval (CI): 0.67–1.33, P = 0.76). Secondary leukemia/ myelodysplasia was reported in 14 patients on cisplatin arms and in 6 patients on non-cisplatin arms of 11 eligible RCTs with 2629 patients (raw event rates of 1.09 and 0.45%, respectively; pooled OR = 2.34, 95%CI 0.97–5.65, P = 0.06). Conclusion Cisplatin was not associated with a significantly increased risk of second cancers compared with non-cisplatin-based chemotherapy. There is a non-significant trend to increased risk of leukemia/ myelodysplasia and the absolute risk was low. The concern about risk of second cancers should not influence decisions to use an efficacious regimen containing cisplatin. Electronic supplementary material The online version of this article (10.1186/s12885-017-3902-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Liang
- Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Zhang
- Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai, China. .,Medical Oncology, Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai, 200032, China.
| | - Hongxi Xue
- Rizhao City Hospital of Traditional Chinese Medicine, 35 Wanghai Road, Rizhao, China
| | - Qiang Chen
- Department of clinical biochemistry, School of public health Taishan medical university, Taishan, China
| |
Collapse
|
20
|
Macy ME, Kieran MW, Chi SN, Cohen KJ, MacDonald TJ, Smith AA, Etzl MM, Kuei MC, Donson AM, Gore L, DiRenzo J, Trippett TM, Ostrovnaya I, Narendran A, Foreman NK, Dunkel IJ. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: A Pediatric Oncology Experimental Therapeutics Investigators' Consortium study. Pediatr Blood Cancer 2017; 64:10.1002/pbc.26621. [PMID: 28544128 PMCID: PMC5605460 DOI: 10.1002/pbc.26621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) and high-grade astrocytomas (HGA) continue to have dismal prognoses. The combination of cetuximab and irinotecan was demonstrated to be safe and tolerable in a previous pediatric phase 1 combination study. We developed this phase 2 trial to investigate the safety and efficacy of cetuximab given with radiation therapy followed by adjuvant cetuximab and irinotecan. METHODS Eligible patients of age 3-21 years had newly diagnosed DIPG or HGA. Patients received radiation therapy (5,940 cGy) with concurrent cetuximab. Following radiation, patients received cetuximab weekly and irinotecan daily for 5 days per week for 2 weeks every 21 days for 30 weeks. Correlative studies were performed. The regimen was considered to be promising if the number of patients with 1-year progression-free survival (PFS) for DIPG and HGA was at least six of 25 and 14 of 26, respectively. RESULTS Forty-five evaluable patients were enrolled (25 DIPG and 20 HGA). Six patients with DIPG and five with HGA were progression free at 1 year from the start of therapy with 1-year PFS of 29.6% and 18%, respectively. Fatigue, gastrointestinal complaints, electrolyte abnormalities, and rash were the most common adverse events and generally of grade 1 and 2. Increased epidermal growth factor receptor copy number but no K-ras mutations were identified in available samples. CONCLUSIONS The trial did not meet the predetermined endpoint to deem this regimen successful for HGA. While the trial met the predetermined endpoint for DIPG, overall survival was not markedly improved from historical controls, therefore does not merit further study in this population.
Collapse
Affiliation(s)
- Margaret E. Macy
- University of Colorado School of Medicine/Children’s Hospital Colorado
| | - Mark W. Kieran
- Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School
| | - Susan N. Chi
- Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School
| | | | | | | | | | | | | | - Lia Gore
- University of Colorado School of Medicine/Children’s Hospital Colorado
| | | | | | | | | | | | | |
Collapse
|
21
|
Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol Hematol 2017; 120:111-119. [PMID: 29198324 DOI: 10.1016/j.critrevonc.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Prognosis of diffuse intrinsic pontine glioma (DIPG) is poor, with a median survival of 10 months after radiation. At present, chemotherapy has failed to show benefits over radiation. Advances in biotechnology have enabled the use of autopsy specimens for genomic analyses and molecular profiling of DIPG, which are quite different from those of supratentorial high grade glioma. Recently, combined treatments of cytotoxic agents with target inhibitors, based on biopsied tissue, are being examined in on-going trials. Spontaneous DIPG mice models have been recently developed that is useful for preclinical studies. Finally, the convection-enhanced delivery could be used to infuse drugs directly into the brainstem parenchyma, to which conventional systemic administration fails to achieve effective concentration. The WHO glioma classification defines a diffuse midline glioma with a H3-K27M-mutation, and we expect increase of tissue confirmation of DIPG, which will give us the biological information helping the development of a targeted therapy.
Collapse
|
22
|
Lapin DH, Tsoli M, Ziegler DS. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol 2017; 7:57. [PMID: 28401062 PMCID: PMC5368268 DOI: 10.3389/fonc.2017.00057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor with a peak incidence in middle childhood and a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of over 250 clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care. The traditional practice to not biopsy DIPG led to a scarcity in available tissue samples for laboratory analysis that till recently hindered therapeutic advances. Over the past few years, the acquisition of patient derived tumor samples through biopsy and autopsy protocols has led to distinct breakthroughs in the identification of key oncogenic drivers implicated in DIPG development. Aberrations have been discovered in critical genetic drivers including histone H3, ACVR1, TP53, PDGFRA, and Myc. Mutations, previously not identified in other malignancies, highlight DIPG as a distinct biological entity. Identification of novel markers has already greatly influenced the direction of preclinical investigations and offers the exciting possibility of establishing biologically targeted therapies. This review will outline the current knowledge of the genomic landscape related to DIPG, overview preclinical investigations, and reflect how biological advances have influenced the focus of clinical trials toward targeted therapies.
Collapse
Affiliation(s)
- Danielle H Lapin
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
23
|
Johung TB, Monje M. Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Curr Neuropharmacol 2017; 15:88-97. [PMID: 27157264 PMCID: PMC5327455 DOI: 10.2174/1570159x14666160509123229] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/27/2015] [Accepted: 02/08/2016] [Indexed: 01/04/2023] Open
Abstract
Abstract: Background Diffuse Intrinsic Pontine Glioma (DIPG) is the leading cause of brain tumor-related death in children, with median survival of less than one year. Despite decades of clinical trials, there has been no improvement in prognosis since the introduction of radiotherapy over thirty years ago. Objective To review the clinical features and current treatment challenges of DIPG, and discuss emerging insights into the unique genomic and epigenomic mechanisms driving DIPG pathogenesis that present new opportunities for the identification of therapeutic targets. Conclusion In recent years, an increased availability of biopsy and rapid autopsy tissue samples for preclinical investigation has combined with the advent of new genomic and epigenomic profiling tools to yield remarkable advancements in our understanding of DIPG disease mechanisms. As well, a deeper understanding of the developmental context of DIPG is shedding light on therapeutic targets in the microenvironment of the childhood brain.
Collapse
Affiliation(s)
| | - Michelle Monje
- Departments of Neurology, Pediatrics, Pathology, and Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Room G3077, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Hankinson TC, Patibandla MR, Green A, Hemenway M, Foreman N, Handler M, Liu AK. Hypofractionated Radiotherapy for Children With Diffuse Intrinsic Pontine Gliomas. Pediatr Blood Cancer 2016; 63:716-8. [PMID: 26544789 DOI: 10.1002/pbc.25836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022]
Abstract
Children with diffuse intrinsic pontine gliomas have very poor outcomes, with nearly all children dying from disease. Standard therapy includes 6 weeks of radiation. There have been descriptions of using a shortened course of radiation. We describe our experience with a hypofractionated radiotherapy approach delivered over five treatments. In seven children, hypofractionated radiotherapy was well tolerated, but symptomatic radiation necrosis was seen in three of the children. Overall survival was slightly shorter than previously described in the literature. We are developing a prospective dose-finding protocol with the goal of tolerable short-course radiation treatment with outcomes comparable to conventional radiation.
Collapse
Affiliation(s)
- Todd C Hankinson
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Mohana Rao Patibandla
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Adam Green
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Molly Hemenway
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicholas Foreman
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Handler
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Arthur K Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
25
|
Goodwin CR, Xu R, Iyer R, Sankey EW, Liu A, Abu-Bonsrah N, Sarabia-Estrada R, Frazier JL, Sciubba DM, Jallo GI. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas. Clin Neurol Neurosurg 2016; 142:120-127. [PMID: 26849840 DOI: 10.1016/j.clineuro.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas.
Collapse
Affiliation(s)
- C Rory Goodwin
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Risheng Xu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rajiv Iyer
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Eric W Sankey
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Ann Liu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Nancy Abu-Bonsrah
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rachel Sarabia-Estrada
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - James L Frazier
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Daniel M Sciubba
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - George I Jallo
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA.
| |
Collapse
|
26
|
Vanan MI, Eisenstat DD. DIPG in Children - What Can We Learn from the Past? Front Oncol 2015; 5:237. [PMID: 26557503 PMCID: PMC4617108 DOI: 10.3389/fonc.2015.00237] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Brainstem tumors represent 10–15% of pediatric central nervous system tumors and diffuse intrinsic pontine glioma (DIPG) is the most common brainstem tumor of childhood. DIPG is almost uniformly fatal and is the leading cause of brain tumor-related death in children. To date, radiation therapy (RT) is the only form of treatment that offers a transient benefit in DIPG. Chemotherapeutic strategies including multi-agent neoadjuvant chemotherapy, concurrent chemotherapy with RT, and adjuvant chemotherapy have not provided any survival advantage. To overcome the restrictive ability of the intact blood–brain barrier (BBB) in DIPG, several alternative drug delivery strategies have been proposed but have met with minimal success. Targeted therapies either alone or in combination with RT have also not improved survival. Five decades of unsuccessful therapies coupled with recent advances in the genetics and biology of DIPG have taught us several important lessons (1). DIPG is a heterogeneous group of tumors that are biologically distinct from other pediatric and adult high grade gliomas (HGG). Adapting chemotherapy and targeted therapies that are used in pediatric or adult HGG for the treatment of DIPG should be abandoned (2). Biopsy of DIPG is relatively safe and informative and should be considered in the context of multicenter clinical trials (3). DIPG probably represents a whole brain disease so regular neuraxis imaging is important at diagnosis and during therapy (4). BBB permeability is of major concern in DIPG and overcoming this barrier may ensure that drugs reach the tumor (5). Recent development of DIPG tumor models should help us accurately identify and validate therapeutic targets and small molecule inhibitors in the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Department of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB , Canada ; Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, MB , Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Department of Medical Genetics, University of Alberta , Edmonton, AB , Canada ; Department of Oncology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
27
|
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive tumor that is universally fatal, and to-date we are at a virtual standstill in improving its grim prognosis. Dearth of tissue due to rarity of biopsy has precluded understanding the elusive biology and frustration continues in reproducing faithful animal models for translational research. Furthermore the intricate anatomy of the pons has forestalled locoregional therapy and drug penetration. Over the last few years, biopsy-driven targeted therapy, development of vitro and xenograft animal models for therapeutic testing, profiling immunotherapeutic strategies and locoregional infusion of drugs in brain stem tumors, now provide a sense of hope in the years ahead. This review aims to discuss current status and advances in the management of these tumors.
Collapse
Affiliation(s)
- Soumen Khatua
- Pediatric Neuro-Oncology, Department of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 87, Houston, TX 77030, USA
| | | |
Collapse
|
28
|
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are a fairly common pediatric brain tumor, and children with these tumors have a dismal prognosis. They generally are diagnosed within the first decade of life, and due to their location within the pons, these tumors are not surgically resectable. The median survival for children with DIPGs is less than 1 year, in spite of decades of clinical trial development of unique approaches to radiation therapy and chemotherapy. Novel therapies are under investigation for these deadly tumors. As clinicians and researchers make a concerted effort to obtain tumor tissue, the molecular signals of these tumors are being investigated in an attempt to uncover targetable therapies for DIPGs. In addition, direct application of chemotherapies into the tumor (convection-enhanced delivery) is being investigated as a novel delivery system for treatment of DIPGs. Overall, DIPGs require creative thinking and a disciplined approach for development of a therapy that can improve the prognosis for these unfortunate children.
Collapse
Affiliation(s)
- Amy Lee Bredlau
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - David N Korones
- Department of Pediatrics, University of Rochester, Rochester, New York, USA; Department of Palliative Care, University of Rochester, Rochester, New York, USA
| |
Collapse
|
29
|
Can conventional magnetic resonance imaging predict survival in pediatric diffuse intrinsic pontine glioma? A single institution experience. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2013. [DOI: 10.1016/j.ejrnm.2013.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Bailey S, Howman A, Wheatley K, Wherton D, Boota N, Pizer B, Fisher D, Kearns P, Picton S, Saran F, Gibson M, Glaser A, Connolly D, Hargrave D. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer 2013; 49:3856-62. [PMID: 24011536 PMCID: PMC3853623 DOI: 10.1016/j.ejca.2013.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/30/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis with no chemotherapy regimen so far resulting in any significant improvement over standard radiotherapy. In this trial, a prolonged regimen (21/28d) of temozolomide was studied with the aim of overcoming O(6)-methylguanine methyltransferase (MGMT) mediated resistance. Forty-three patients with a defined clinico-radiological diagnosis of DIPG received radiotherapy and concomitant temozolomide (75 mg/m(2)) after which up to 12 courses of 21d of adjuvant temozolomide (75-100mg/m(2)) were given 4 weekly. The trial used a 2-stage design and passed interim analysis. At diagnosis median age was 8 years (2-20 years), 81% had cranial nerve abnormalities, 76% ataxia and 57% long tract signs. Median Karnofsky/Lansky score was 80 (10-100). Patients received a median of three courses of adjuvant temozolomide, five received all 12 courses and seven did not start adjuvant treatment. Three patients were withdrawn from study treatment due to haematological toxicity and 10 had a dose reduction. No other significant toxicity related to temozolomide was noted. Overall survival (OS) (95% confidence interval (CI)) was 56% (40%, 69%) at 9 months, 35% (21%, 49%) at 1 year and 17% (7%, 30%) at 2 years. Median survival was 9.5 months (range 7.5-11.4 months). There were five 2-year survivors with a median age of 13.6 years at diagnosis. This trial demonstrated no survival benefit of the addition of dose dense temozolomide, to standard radiotherapy in children with classical DIPG. However, a subgroup of adolescent DIPG patients did have a prolonged survival, which needs further exploration.
Collapse
Affiliation(s)
- S. Bailey
- Great North Childrens Hospital, Newcastle upon Tyne, United Kingdom
| | - A. Howman
- CRCTU, University of Birmingham, Birmingham, United Kingdom
| | - K. Wheatley
- CRCTU, University of Birmingham, Birmingham, United Kingdom
| | - D. Wherton
- CRCTU, University of Birmingham, Birmingham, United Kingdom
| | - N. Boota
- Nottingham Clinical Trials Unit, Nottingham, United Kingdom
| | - B. Pizer
- Alder Hey Childrens Hospital, Liverpool, United Kingdom
| | - D. Fisher
- Addenbroookes Hopsital, Cambridge, United Kingdom
| | - P. Kearns
- CRCTU, University of Birmingham, Birmingham, United Kingdom
| | - S. Picton
- Leeds General Infirmary, Leeds, United Kingdom
| | - F. Saran
- Royal Marsden Hospital, Surrey, London, United Kingdom
| | - M. Gibson
- CRCTU, University of Birmingham, Birmingham, United Kingdom
| | - A. Glaser
- Leeds General Infirmary, Leeds, United Kingdom
| | | | - D. Hargrave
- Great Ormond Street Hospital For Sick Children, London, United Kingdom
| |
Collapse
|
31
|
Abstract
The prognosis for children with diffuse intrinsic pontine gliomas (DIPGs) is dismal. Although DIPGs constitute only 10-15 % of all pediatric brain tumors, they are the main cause of death in this group with a median survival of less than 12 months. Standard therapy involves radiotherapy, which produces transient neurologic improvement. Despite several clinical trials having been conducted, including trials on targeted agents to assess their efficacy, there is no clear improvement in prognosis. However, knowledge of DIPG biology is increasing, mainly as a result of research using biopsy and autopsy samples. In this review, we discuss recent studies in which systemic therapy was administered prior to, concomitantly with, or after radiotherapy. The discussion also includes novel therapeutic options in DIPG. Continuing multimodal and multitargeted therapies might lead to an improvement in the dismal prognosis of the disease.
Collapse
Affiliation(s)
- Rejin Kebudi
- Istanbul University Cerrahpasa Medical Faculty Pediatric Hematology-Oncology, P.C: 34090, Millet Street, Capa, Istanbul, Turkey,
| | | |
Collapse
|
32
|
Abstract
Brainstem gliomas (BGs) are a heterogenous group of gliomas that occur predominately in children. They can be separated into groups on the basis of anatomy and clinical behavior: diffuse intrinsic pontine glioma (DIPG), exophytic medullary glioma, and tectal glioma. DIPG is the commonest BG. Median age at onset is 6.5 years and median survival is less than 1 year. Adults with DIPG survive longer, suggesting a less aggressive and biologically different tumor from that in children. Patients present with cranial nerve dysfunction, long tract signs, or ataxia, either in isolation or in combination. Magnetic resonance imaging shows an infiltrative lesion occupying most of the pons and contrast enhancement is usually not prominent. Standard treatment is fractionated radiotherapy. Platelet-derived growth factor receptor alpha and epidermal growth factor receptor mutations have been identified. Inhibitors of these growth factor receptors are being evaluated in clinical trials. Exophytic medullary and tectal gliomas are relatively indolent tumors that can often be followed closely without treatment.
Collapse
Affiliation(s)
- Sean A Grimm
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
33
|
Wu L, Li X, Janagam DR, Lowe TL. Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm Res 2013; 31:531-40. [PMID: 23996470 DOI: 10.1007/s11095-013-1196-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022]
Abstract
Pediatric brain tumors are most common cancers in childhood and among the leading causes of death in children. Chemotherapy has been used as adjuvant (i.e. after) or neoadjuvant (i.e. before) therapy to surgery and radiotherapy for the management of pediatric brain tumors for more than four decades and gained more attention in the recent two decades. Although chemotherapy has demonstrated its effectiveness in the management of some pediatric brain tumors, failure or inactiveness of chemotherapy is commonly met in the clinics and clinical trials. Some of these failures might be attributed to the blood-brain barrier (BBB), limiting the penetration of systemically administered chemotherapeutics into pediatric brain tumors. Therefore, various strategies have been developed and used to address this issue. Herein, we review different methods reported in the literature to circumvent the BBB for enhancing the present of chemotherapeutics in the brain to treat pediatric brain tumors.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | | | | | | |
Collapse
|
34
|
Kebudi R, Cakir FB, Agaoglu FY, Gorgun O, Ayan I, Darendeliler E. Pediatric diffuse intrinsic pontine glioma patients from a single center. Childs Nerv Syst 2013; 29:583-8. [PMID: 23224361 DOI: 10.1007/s00381-012-1986-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/21/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND The prognosis of children with diffuse intrinsic pontine gliomas (DIPG) is dismal. This study aims to evaluate the characteristics and treatment outcome of children with DIPG in a single center. METHODS We reviewed the outcome of children with DIPG treated at the Oncology Institute of Istanbul University from February 1999 to May 2012. RESULTS Fifty children (26 female, 24 male) with the median age of 7 years were analyzed. The median duration of symptoms was 30 days. All patients received radiotherapy (RT). Before the year 2000, 12 patients received only RT. Thirty-eight had concomitant and/or adjuvant chemotherapy with RT. Between 2000 and 2004, 17 patients received cis-platinum or vincristine as sensitizers during RT and CCNU + vincristine combination after RT. Since 2004, 21 patients received temozolomide (TMZ) concomitantly during RT and as adjuvant chemotherapy after RT. The median survival time of all patients was 13 months (1-160 months). Patients receiving RT + TMZ had a significantly higher overall survival than patients with only RT (p = 0.018). Patients receiving RT + chemotherapy other than TMZ also had a significantly higher overall survival than patients receiving only RT (p = 0.013). Patients receiving RT + TMZ + and chemotherapy other than TMZ had a significantly higher survival than patients receiving only RT (p = 0.005). CONCLUSION In our series, patients receiving RT + TMZ and also patients receiving RT + chemotherapy other than TMZ had a significantly higher overall survival than patients treated with only RT. Hence, administering chemotherapy during and after RT seems to prolong survival in some DIPG patients.
Collapse
Affiliation(s)
- Rejin Kebudi
- Pediatric Hematology-Oncology, Cerrahpasa Medical Faculty and Oncology Institute, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Brower JV, Indelicato DJ, Aldana PR, Sandler E, Rotondo R, Mendenhall NP, Marcus RB, Su Z. A treatment planning comparison of highly conformal radiation therapy for pediatric low-grade brainstem gliomas. Acta Oncol 2013; 52:594-9. [PMID: 23421953 PMCID: PMC3665211 DOI: 10.3109/0284186x.2013.767474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey V. Brower
- University of Florida Proton Therapy Institute,
Jacksonville, Florida, USA
| | | | - Philipp R. Aldana
- University of Florida Pediatric Neurosurgery Center,
Jacksonville, Florida, USA
| | - Eric Sandler
- Nemours Children’s Clinic,
Jacksonville, Florida, USA
| | - Ronny Rotondo
- University of Florida Proton Therapy Institute,
Jacksonville, Florida, USA
| | | | - Robert B. Marcus
- University of Florida Proton Therapy Institute,
Jacksonville, Florida, USA
| | - Zhong Su
- University of Florida Proton Therapy Institute,
Jacksonville, Florida, USA
| |
Collapse
|
36
|
Abstract
Primary glial brain tumors account for the majority of primary brain tumors in children. They are classified as low-grade gliomas (LGG) or high-grade gliomas (HGG), based on specific pathologic characteristics of the tumor, resulting in disparate clinical prognoses. Surgery is a mainstay of treatment for HGG, although it is not curative, and adjuvant therapy is required. Temozolomide, an oral imidazotetrazine prodrug, while considered standard of care for adult HGG, has not shown the same degree of benefit in the treatment of pediatric HGG. There are significant biologic differences that exist between adult and pediatric HGG, and targets specifically aimed at the biology in the pediatric population are required. Novel and specific therapies currently being investigated for pediatric HGG include small molecule inhibitors of epidermal growth factor receptor, platelet-derived growth factor receptor, histone deacetylase, the RAS/AKT pathway, telomerase, integrin, insulin-like growth factor receptor, and γ-secretase. Surgery is also the mainstay for LGG. There are defined front-line, multiagent chemotherapy regimens, but there are few proven second-line chemotherapy options for refractory patients. Approaches such as the inhibition of the mammalian target of rapamycin pathway, inhibition of MEK1 and 2, as well as BRAF, are discussed. Further research is required to understand the biology of pediatric gliomas as well as the use of molecularly targeted agents, especially in patients with surgically unresectable tumors.
Collapse
|
37
|
Goda JS, Dutta D, Raut N, Juvekar SL, Purandare N, Rangarajan V, Arora B, Gupta T, Kurkure P, Jalali R. Can multiparametric MRI and FDG-PET predict outcome in diffuse brainstem glioma? A report from a prospective phase-II study. Pediatr Neurosurg 2013; 49:274-81. [PMID: 25277867 DOI: 10.1159/000366167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE To study the impact of multiparametric MRI and (18)F-FDG-PET on the outcome of children with diffuse intrinsic pontine gliomas (DIPG). MATERIALS AND METHODS Imaging data from a phase-II prospective therapeutic study in children with newly diagnosed DIPG were considered for evaluation. They included baseline MRI with contrast enhancement before treatment. Functional imaging included MR spectroscopy, MR perfusion and FDG-PET studies. All patients (n = 20) had baseline MRI and 11 patients had FDG-PET. Response was assessed by MRI and PET 4 weeks after therapy. Baseline imaging findings were correlated with survival. Presence or absence of adverse parameters on MRI (heterogeneous contrast enhancement, hyperperfusion or increased choline:NAA ratio) was used to develop a cumulative radiological prognostic index (RPI). Sensitivity and specificity of each imaging modality in tumour grading was estimated. RESULTS The cumulative RPI was able to classify the patients into different grades and was predictive of overall survival (p = 0.02). MR perfusion also predicted survival (p = 0.039). Sensitivity and specificity of MRI and FDG-PET to detect low-grade gliomas were low to moderate (33-66%), but moderate to high in detecting high-grade gliomas (50-100%). Baseline FDG uptake on PET scan did not correlate with survival (p = 0.7). CONCLUSIONS Cumulative RPI was able to classify tumours into different grades and predicted clinical outcome. At baseline, MR hyperperfusion indicated a shorter survival for DIPG patients. Sensitivity and specificity of imaging modalities to detect low-grade gliomas were poor.
Collapse
Affiliation(s)
- Jayant S Goda
- Department of Radiation Oncology, Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bradley KA, Zhou T, McNall-Knapp RY, Jakacki RI, Levy AS, Vezina G, Pollack IF. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children's oncology group phase 2 study. Int J Radiat Oncol Biol Phys 2012; 85:e55-60. [PMID: 23092726 DOI: 10.1016/j.ijrobp.2012.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. METHODS AND MATERIALS Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. RESULTS Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18%±5%, and the estimated 1-year OS was 53%±6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. CONCLUSIONS Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.
Collapse
Affiliation(s)
- Kristin A Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pollack IF. Ataxia resulting from posterior fossa tumors of childhood and other mass lesions. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:161-173. [PMID: 21827887 DOI: 10.1016/b978-0-444-51892-7.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ataxia is a common presenting symptom and sequela of treatment in children with posterior fossa tumors, and is the most common focal neurological deficit in the majority of tumor types. Owing to the diversity of histologies among pediatric posterior fossa tumors and the concomitant diversity in tumor biology and prognosis, distinctive management strategies are required for each tumor type. In addition, age-related factors influence the ease of diagnosis and difficulty of management for patients with these tumors. In most modern centers, children with such tumors are treated in cooperative group studies, which are designed to increase the percentage of children who achieve long-term survival as well as their functional outcome.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh and University of Pittsburgh Cancer Institute Brain Tumor Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
|
41
|
Felix FHC, Trompieri NM, de Araujo OL, da Trindade KM, Fontenele JB. Potential role for valproate in the treatment of high--risk brain tumors of childhood-results from a retrospective observational cohort study. Pediatr Hematol Oncol 2011; 28:556-70. [PMID: 21699466 DOI: 10.3109/08880018.2011.563774] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although substantial progress has been made in pediatric brain tumor management, patients with brainstem tumors and high-grade gliomas, as well as patients less than 3 years of age with high-risk malignant tumors, have a poorer prognosis. The authors have been treating these patients with radiotherapy and standard carboplatin and vincristine chemotherapy. Since January 2007 the authors have been using valproate as anticonvulsant for prophylaxis. The authors performed a retrospective cohort analysis of pediatric patients with high-risk brain tumors treated with chemotherapy, radiotherapy, and valproate prophylaxis, comparing this group with a historical control. The 2007-2008 group was comprised of 22 patients, 15 with brainstem tumors (7 diffuse intrinsic pontine glioma [DIPG], 3 focal, the remaining infiltrating with a solid portion), 4 with diencephalic tumors (2 thalamic), and 3 with supratentorial high-grade tumors (1 glioblastoma, 1 recurrent grade III ependymoma, 1 with gliomatosis). There were 15 patients alive (68%) after a mean follow-up time of 19 months. Survival function comparison by log rank test was highly significant (P = .004) with a hazard ratio of 0.31 (0.14-0.70). Radiological response showed 3 complete responses (14%), 8 partial responses (36%), 5 stable diseases (23%), and 5 progresssive diseases (23%). The authors hypothesize that valproate may have potentiated the antiangiogenic effect of vincristine, diminished expression of resistance to carboplatin, and sensitized tumor cells to radiotherapy. The authors suggest that clinical trials of carboplatin and vincristine associated with oral continuous low-dose valproate are indicated for pediatric patients with high-risk brain tumor.
Collapse
|
42
|
Pollack IF. Multidisciplinary management of childhood brain tumors: a review of outcomes, recent advances, and challenges. J Neurosurg Pediatr 2011; 8:135-48. [PMID: 21806354 DOI: 10.3171/2011.5.peds1178] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECT Brain tumors are the most common category of childhood solid tumors. In the 1970s and 1980s, treatment protocols for benign tumors focused almost exclusively on surgery, with radiation treatment as a salvage modality, whereas the management of malignant tumors employed a combination of surgery, radiation therapy, and chemotherapy, with therapeutic approaches such as "8-in-1" chemotherapy often applied across histological tumor subsets that are now recognized to be prognostically distinct. During the ensuing years, treatment has become increasingly refined, based on clinical and, more recently, molecular factors, which have supported risk-adapted treatment stratification. The goal of this report is to provide an overview of recent progress in the field. METHODS A review of the literature was undertaken to examine recent advances in the management of the most common childhood brain tumor subsets, and in particular to identify instances in which molecular categorization and treatment stratification offer evidence or promise for improving outcome. RESULTS For both medulloblastomas and infant tumors, refinements in clinical and molecular stratification have already facilitated efforts to achieve risk-adapted treatment planning. Current treatment strategies for children with these tumors focus on improving outcome for tumor subsets that have historically been relatively resistant to therapy and reducing treatment-related sequelae for children with therapy-responsive tumors. Recent advances in molecular categorization offer the promise of further refinements in future studies. For children with ependymomas and low-grade gliomas, clinical risk stratification has facilitated tailored approaches to therapy, with improvement of disease control and concomitant reduction in treatment sequelae, and recent discoveries have identified promising therapeutic targets for molecularly based therapy. In contrast, the prognosis remains poor for children with diffuse intrinsic pontine gliomas and other high-grade gliomas, despite recent identification of biological correlates of tumor prognosis and elucidation of molecular substrates of tumor development. CONCLUSIONS Advances in the clinical and molecular stratification for many types of childhood brain tumors have provided a foundation for risk-adapted treatment planning and improvements in outcome. In some instances, molecular characterization approaches have also yielded insights into new therapeutic targets. For other tumor types, outcome remains discouraging, although new information regarding the biological features critical to tumorigenesis are being translated into novel therapeutic approaches that hold promise for future improvements.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
43
|
|
44
|
Cohen KJ, Heideman RL, Zhou T, Holmes EJ, Lavey RS, Bouffet E, Pollack IF. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro Oncol 2011; 13:410-6. [PMID: 21345842 DOI: 10.1093/neuonc/noq205] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An open-label phase II study (ACNS0126) testing the efficacy of chemoradiotherapy with temozolomide (TMZ) followed by adjuvant TMZ was conducted by the Children's Oncology Group. During the period from July 6, 2004 through September 6, 2005, 63 children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) were enrolled in the study. All patients received TMZ at a dosage of 90 mg/m(2)/day for 42 days to a dose of 59.4 Gy. Four weeks following irradiation, TMZ was given at a dosage of 200 mg/m(2)/day for 5 days every 28 days, for a total of 10 cycles. The primary objective of the statistical analysis was to determine whether the current treatment produced a 1-year event-free survival (EFS) rate higher than the historical baseline of 21.9% observed in CCG-9941. The mean 1-year EFS (± standard deviation) was 14% ± 4.5%, compared with 21.9% ± 5% for CCG-9941. The P value of the test of comparison of 1-year EFS, based on a 1-sided, 1-sample test of proportions, was .96. There was no evidence that temozolomide produced a 1-year EFS rate higher than 21.9%. The mean 1-year OS (± standard deviation) was 40% ± 6.5%, compared with 32% ± 6% for CCG-9941. The median time to death was 9.6 months. Chemoradiotherapy with TMZ followed by adjuvant TMZ is not more effective than previously reported regimens for the treatment of children with DIPG.
Collapse
Affiliation(s)
- Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pollack IF, Stewart CF, Kocak M, Poussaint TY, Broniscer A, Banerjee A, Douglas JG, Kun LE, Boyett JM, Geyer JR. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol 2011; 13:290-7. [PMID: 21292687 DOI: 10.1093/neuonc/noq199] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This phase II study was designed to assess the safety and efficacy of gefitinib given with and following radiation therapy in children newly diagnosed with a poor prognosis brainstem glioma. Eligible patients were those with a previously untreated nondisseminated diffuse intrinsic brainstem glioma. Histological confirmation was not required, provided patients had a characteristic clinical history and MRI findings. Treatment consisted of gefitinib, administered orally, 250 mg/m(2)/day, during standard external beam radiotherapy, continuing for up to 13 monthly courses in the absence of disease progression or unacceptable toxicity. Toxicities, particularly intratumoral hemorrhage, were monitored. Pharmacokinetics and investigational imaging studies were performed in consenting patients. Forty-three eligible patients were included in the study. Therapy was well tolerated; only 4 patients were withdrawn from the study for dose-limiting toxicity after receiving therapy for 6, 9, 17, and 24 weeks. The 12- and 24-month progression-free survival rates were 20.9 ±5.6 % and 9.3 ±4%, respectively. Overall survival rates were 56.4 ±7.6% and 19.6 ±5.9%, respectively, which appear nominally superior to other contemporaneous Pediatric Brain Tumor Consortium trials. Three patients remain progression-free survivors with ≥36 months follow-up. The observation that a subset of children with this generally fatal tumor experienced long-term progression-free survival, coupled with recent observations regarding the molecular features of brainstem gliomas, raises the possibility that prospective molecular characterization may allow enrichment of treatment responders and improvement in outcome results in future studies of biologically targeted agents.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sethi R, Allen J, Donahue B, Karajannis M, Gardner S, Wisoff J, Kunnakkat S, Mathew J, Zagzag D, Newman K, Narayana A. Prospective neuraxis MRI surveillance reveals a high risk of leptomeningeal dissemination in diffuse intrinsic pontine glioma. J Neurooncol 2010; 102:121-7. [PMID: 20623246 DOI: 10.1007/s11060-010-0301-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/28/2010] [Indexed: 01/28/2023]
Abstract
Prognosis of diffuse intrinsic pontine gliomas (DIPGs) remains poor. Failure has been predominantly local, with leptomeningeal dissemination (LD) occurring in 4-33% of patients in pre-MRI era series. Routine craniospinal imaging after initial treatment may reveal other relapse patterns relapse. Sixteen consecutive pediatric patients with DIPG treated between 2006 and 2009 were retrospectively reviewed. Treatment regimens, recurrence patterns, survival, and pathologic diagnosis were recorded. Fourteen patients received involved-field radiotherapy to 54 Gy, and two patients received craniospinal irradiation for LD at presentation. Neuraxis MRI was performed at diagnosis and at 4 month intervals following radiotherapy. Fifteen patients have had progression of disease (median progression-free survival 5.0 ± 1.2 months), and 13 patients have died (median survival 9.0 ± 1.4 months). Local failure occurred in 12 patients (75%). LD occurred in nine patients (56%). LD was present at diagnosis in three patients, after initial staging and treatment in six patients, and during autopsy in two patients. Median overall survival was 12.0 ± 3.3 months without LD and 8.0 ± 2.1 months with LD (P = 0.059, log rank test). Median progression-free survival was 9.5 ± 3.9 months without LD and 3.0 ± 2.1 months with LD (P = 0.012, log rank test). The high incidence of LD probably reflects liberal use of spine MRI surveillance. All patients should undergo routine craniospinal imaging at diagnosis and follow-up. Central nervous system prophylaxis should be considered in future clinical trials.
Collapse
Affiliation(s)
- Rajni Sethi
- Department of Radiation Oncology, New York University Langone Medical Center, 566 First Avenue, New York, NY 10014, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim CY, Kim SK, Phi JH, Lee MM, Kim IA, Kim IH, Wang KC, Jung HL, Lee MJ, Cho BK. A prospective study of temozolomide plus thalidomide during and after radiation therapy for pediatric diffuse pontine gliomas: preliminary results of the Korean Society for Pediatric Neuro-Oncology study. J Neurooncol 2010; 100:193-8. [PMID: 20309719 DOI: 10.1007/s11060-010-0157-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
This prospective study was performed to determine the efficacy and safety of temozolomide (TMZ) plus thalidomide during and after radiation therapy (RT) in pediatric patients with newly diagnosed diffuse pontine glioma (DPG). Seventeen patients with pediatric DPG were enrolled between November 2004 and March 2008. The median age was eight years (range, 3-16 years); seven patients were male and ten were female. With the exception of one glioblastoma case, which was diagnosed via open biopsy, all diagnoses were established using neuroradiological studies. The authors used the Korean Society for Pediatric Neuro-Oncology (KSPNO)-A053 protocol. The mean follow-up period was 12 months (range, 8.5-25 months). Five patients were withdrawn from the study. The rates of response to treatment and survival were analyzed in 12 patients. Ten out of the 12 patients showed a partial response (PR), whereas one patient exhibited stable disease (SD) and another patient had progressive disease (PD). The tumor control rate was 92% (11/12) and the response rate was 83% (10/12). The median progression-free survival (PFS) of the 12 patients was 7.2 months (95% confidence interval (CI), 3.6-10.7). Six-month and twelve-month PFS were 58.3 and 16.7%, respectively. Overall survival (OS) was 12.7 months (95% CI, 10.4-15.1). One and two-year survival were 58.3 and 25%, respectively. The main adverse effect was hematological toxicity, with four patients exhibiting grade 3 or 4 toxicity. All patients tolerated the regimen well enough to continue the adjuvant chemotherapy. No Pneumocystis jiroveci pneumonia was noted. The TMZ plus thalidomide regimen was safe and tolerated well enough to be administered on an outpatient basis. Larger studies are required to demonstrate the efficacy of this regimen.
Collapse
Affiliation(s)
- Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 2009; 6:570-86. [PMID: 19560746 PMCID: PMC5084192 DOI: 10.1016/j.nurt.2009.04.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/11/2009] [Accepted: 04/13/2009] [Indexed: 01/19/2023] Open
Abstract
Pediatric CNS tumors are the most common solid tumors of childhood and the second most common cancer after hematological malignancies accounting for approximate 20 to 25% of all primary pediatric tumors. With over 3,000 new cases per year in the United States, childhood CNS tumors are the leading cause of death related to cancer in this population. The prognosis for these patients has improved over the last few decades, but current therapies continue to carry a high risk of significant side effects, especially for the very young. Currently a combination of surgery, radiation, and chemotherapy is often used in children greater than 3 years of age. This article will outline current and future therapeutic strategies for the most common pediatric CNS tumors, including primitive neuroectodermal tumors such as medulloblastoma, as well as astrocytomas and ependymomas.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Division of Child Neurology, University of San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
49
|
Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 2009; 3:259-69. [PMID: 19338403 DOI: 10.3171/2008.11.peds08281] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse intrinsic pontine gliomas constitute ~ 60-75% of tumors found within the pediatric brainstem. These malignant lesions present with rapidly progressive symptoms such as cranial nerve, long tract, or cerebellar dysfunctions. Magnetic resonance imaging is usually sufficient to establish the diagnosis and obviates the need for surgical biopsy in most cases. The prognosis of the disease is dismal, and the median survival is < 12 months. Resection is not a viable option. Standard therapy involves radiotherapy, which produces transient neurological improvement with a progression-free survival benefit, but provides no improvement in overall survival. Clinical trials have been conducted to assess the efficacy of chemotherapeutic and biological agents in the treatment of diffuse pontine gliomas. In this review, the authors discuss recent studies in which systemic therapy was administered prior to, concomitantly with, or after radiotherapy. For future perspective, the discussion includes a rationale for stereotactic biopsies as well as possible therapeutic options of local chemotherapy in these lesions.
Collapse
Affiliation(s)
- James L Frazier
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
50
|
Pollack IF. Diagnostic and therapeutic stratification of childhood brain tumors: implications for translational research. J Child Neurol 2008; 23:1179-85. [PMID: 18952584 PMCID: PMC3674757 DOI: 10.1177/0883073808321770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent advances in the categorization of childhood brain tumors have improved risk-based treatment planning. In several instances, new therapeutic strategies that incorporate these advances have resulted in meaningful improvements in progression-free and overall survival. Current studies are directed at further refining therapy based on clinical, biological, and molecular data; testing the effectiveness of a number of novel therapeutic strategies for high-risk tumors; and examining approaches to reduce sequelae of treatment among more favorable-risk tumor subsets. Because multiple tumor subtypes are individually relatively uncommon, most such studies are being conducted by large co-operative groups, such as the Children's Oncology Group, or by smaller brain tumor-focused consortia, such as the Pediatric Brain Tumor Consortium.
Collapse
Affiliation(s)
- Ian F. Pollack
- Department of Neurosurgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|