1
|
Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, Rao BSS. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech 2024; 14:275. [PMID: 39450422 PMCID: PMC11499494 DOI: 10.1007/s13205-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC50 value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04123-2.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pranoti Palkar
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - Sadhana P. Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayant Sastri Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
- Department of Radiation Oncology, Advanced Centre for Treatment Research Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - B. S. Satish Rao
- Manipal School of Life Sciences & Director-Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Plummer R. Evolution of the Development of PARP Inhibitors. Cancer Treat Res 2023; 186:1-11. [PMID: 37978127 DOI: 10.1007/978-3-031-30065-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PARP inhibitors first entered the clinic in 2003 in combination with DNA damaging agents in an attempt to overcome treatment resistance to established agents. A brief overview of ADP-ribosylator enzyme biology and the early preclinical development of the class is discussed, illustrating the multiple biological activities of these enzymes and potential wider clinical applicability. The chapter then documents those early years of clinical development and the evolution of the field and eventual registration of PARP inhibitors as active anticancer agents in their own right-in genetically vulnerable tumours.
Collapse
Affiliation(s)
- Ruth Plummer
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
5
|
Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm Sin B 2022; 12:2658-2671. [PMID: 35755286 PMCID: PMC9214068 DOI: 10.1016/j.apsb.2022.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is a primary aggressive brain tumor with high recurrence rate. The poor efficiency of chemotherapeutic drugs crossing the blood‒brain barrier (BBB) is well-known as one of the main challenges for anti-glioma therapy. Moreover, massive infiltrated tumor-associated macrophages (TAMs) in glioma further thwart the drug efficacy. Herein, a therapeutic nanosystem (SPP-ARV-825) is constructed by incorporating the BRD4-degrading proteolytic targeting chimera (PROTAC) ARV-825 into the complex micelle (SPP) composed of substance P (SP) peptide-modified poly(ethylene glycol)-poly(d,l-lactic acid)(SP-PEG-PDLLA) and methoxy poly(ethylene glycol)-poly(d,l-lactic acid) (mPEG-PDLLA, PP), which could penetrate BBB and target brain tumor. Subsequently, released drug engenders antitumor effect via attenuating cells proliferation, inducing cells apoptosis and suppressing M2 macrophages polarization through the inhibition of IRF4 promoter transcription and phosphorylation of STAT6, STAT3 and AKT. Taken together, our work demonstrates the versatile role and therapeutic efficacy of SPP-ARV-825 micelle against glioma, which may provide a novel strategy for glioma therapy in future.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junming Miao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiagang Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Corresponding author. Tel.: +86 28 85422136, fax +86 28 85502796.
| |
Collapse
|
6
|
Murawska GM, Vogel C, Jan M, Lu X, Schild M, Slabicki M, Zou C, Zhanybekova S, Manojkumar M, Petzold G, Kaiser P, Thomä N, Ebert B, Gillingham D. Repurposing the Damage Repair Protein Methyl Guanine Methyl Transferase as a Ligand Inducible Fusion Degron. ACS Chem Biol 2022; 17:24-31. [PMID: 34982531 DOI: 10.1021/acschembio.1c00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We successfully repurpose the DNA repair protein methylguanine methyltransferase (MGMT) as an inducible degron for protein fusions. MGMT is a suicide protein that removes alkyl groups from the O6 position of guanine (O6G) and is thereafter quickly degraded by the ubiquitin proteasome pathway (UPP). Starting with MGMT pseudosubstrates (benzylguanine and lomeguatrib), we first demonstrate that these lead to potent MGMT depletion while affecting little else in the proteome. We then show that fusion proteins of MGMT undergo rapid UPP-dependent degradation in response to pseudosubstrates. Mechanistic studies confirm the involvement of the UPP, while revealing that at least two E3 ligase classes can degrade MGMT depending on cell-line and expression type (native or ectopic). We also demonstrate the technique's versatility with two clinically relevant examples: degradation of KRASG12C and a chimeric antigen receptor.
Collapse
Affiliation(s)
- Gosia M. Murawska
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Caspar Vogel
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Max Jan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Xinyan Lu
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Matthias Schild
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Mikolaj Slabicki
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Charles Zou
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Saule Zhanybekova
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Manisha Manojkumar
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697, United States
| | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Benjamin Ebert
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021; 287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.
Collapse
Affiliation(s)
- A M Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - J G Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - L Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
8
|
Varricchio A, Ramesh SA, Yool AJ. Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. Int J Mol Sci 2021; 22:ijms222111909. [PMID: 34769339 PMCID: PMC8584308 DOI: 10.3390/ijms222111909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Comprising more than half of all brain tumors, glioblastoma multiforme (GBM) is a leading cause of brain cancer-related deaths worldwide. A major clinical challenge is presented by the capacity of glioma cells to rapidly infiltrate healthy brain parenchyma, allowing the cancer to escape control by localized surgical resections and radiotherapies, and promoting recurrence in other brain regions. We propose that therapies which target cellular motility pathways could be used to slow tumor dispersal, providing a longer time window for administration of frontline treatments needed to directly eradicate the primary tumors. An array of signal transduction pathways are known to be involved in controlling cellular motility. Aquaporins (AQPs) and voltage-gated ion channels are prime candidates as pharmacological targets to restrain cell migration in glioblastoma. Published work has demonstrated AQPs 1, 4 and 9, as well as voltage-gated potassium, sodium and calcium channels, chloride channels, and acid-sensing ion channels are expressed in GBM and can influence processes of cell volume change, extracellular matrix degradation, cytoskeletal reorganization, lamellipodial and filopodial extension, and turnover of cell-cell adhesions and focal assembly sites. The current gap in knowledge is the identification of optimal combinations of targets, inhibitory agents, and drug delivery systems that will allow effective intervention with minimal side effects in the complex environment of the brain, without disrupting finely tuned activities of neuro-glial networks. Based on published literature, we propose that co-treatments using AQP inhibitors in addition to other therapies could increase effectiveness, overcoming some limitations inherent in current strategies that are focused on single mechanisms. An emerging interest in nanobodies as drug delivery systems could be instrumental for achieving the selective delivery of combinations of agents aimed at multiple key targets, which could enhance success in vivo.
Collapse
Affiliation(s)
- Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
- Correspondence:
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review discusses current and investigative strategies for targeting DNA repair in the management of glioma. RECENT FINDINGS Recent strategies in glioma treatment rely on the production of overwhelming DNA damage and inhibition of repair mechanisms, resulting in lethal cytotoxicity. Many strategies are effective in preclinical glioma models while clinical feasibility remains under investigation. The presence of glioma biomarkers, including IDH mutation and/or MGMT promoter methylation, may confer particular susceptibility to DNA damage and inhibition of repair. These biomarkers have been adopted as eligibility criteria in the design of multiple ongoing clinical trials. Targeting DNA repair mechanisms with novel agents or therapeutic combinations is a promising approach to the treatment of glioma. Further investigations are underway to optimize this approach in the clinical setting.
Collapse
|
10
|
Kavya S, Reghu R. An Overview of High-grade Glioma: Current and Emerging Treatment Approaches. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200721155514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High grade glioma is one of the severe form of tumour that progresses in the glial cells
of the brain and spinal cord. Age, gender, exposure to infections, race, ethnicity, viruses and allergens,
environmental carcinogens, diet, head injury or trauma and ionizing radiation may report
with increased glioma risk. Headache, seizure mainly generalized tonic-clonic seizure, memory
loss and altered sensorium are considered as common symptoms of glioma. Magnetic Resonance
Imaging (MRI), CT scans, neurological examinations and biopsy are considered as the diagnostic
option for glioma. Treatment for glioma mainly depended upon the tumour progression, malignancy,
cell type, age, location of tumour growth and anatomic structure. The standard treatment includes
surgery, radiation therapy and chemotherapy. Temozolomide is usually prescribed at a
dosage of 75 mg/m2 and began in combination with radiation therapy and continued daily. The primary
indicator of hepatotoxicity is the elevation of the liver profiles, i.e. the changes in any of the
liver panels may be considered to be hepatotoxic. Serum glutamic oxaloacetic transaminase (SGOT),
Serum Glutamic Pyruvic Transaminase (SGPT), Alkaline phosphatase (ALP) are rising panels
of the liver, which are elevated during toxicity. In some patients, albumin and globulin levels
may show variations. Treatment for glioma associated symptoms like seizures, depression anxiety
etc. are also mentioned along with supportive care for glioma. New trends in the treatment for glioma
are RINTEGA, an experimental immunotherapeutic agent and bevazizumab, a recombinant
monoclonal, a humanized antibody against the VEGF ligand [VEGF-A (vascular endothelial
growth factor)] in tumor cells.
Collapse
Affiliation(s)
- S.G. Kavya
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - R. Reghu
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| |
Collapse
|
11
|
Rahman MA, Brekke J, Arnesen V, Hannisdal MH, Navarro AG, Waha A, Herfindal L, Rygh CB, Bratland E, Brandal P, Haasz J, Oltedal L, Miletic H, Lundervold A, Lie SA, Goplen D, Chekenya M. Sequential bortezomib and temozolomide treatment promotes immunological responses in glioblastoma patients with positive clinical outcomes: A phase 1B study. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:342-359. [PMID: 32578964 PMCID: PMC7416034 DOI: 10.1002/iid3.315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive malignant brain tumor where median survival is approximately 15 months after best available multimodal treatment. Recurrence is inevitable, largely due to O6 methylguanine DNA methyltransferase (MGMT) that renders the tumors resistant to temozolomide (TMZ). We hypothesized that pretreatment with bortezomib (BTZ) 48 hours prior to TMZ to deplete MGMT levels would be safe and tolerated by patients with recurrent GBM harboring unmethylated MGMT promoter. The secondary objective was to investigate whether 26S proteasome blockade may enhance differentiation of cytotoxic immune subsets to impact treatment responses measured by radiological criteria and clinical outcomes. METHODS Ten patients received intravenous BTZ 1.3 mg/m2 on days 1, 4, and 7 during each 4th weekly TMZ-chemotherapy starting on day 3 and escalated from 150 mg/m2 per oral 5 days/wk via 175 to 200 mg/m2 in cycles 1, 2, and 3, respectively. Adverse events and quality of life were evaluated by CTCAE and EQ-5D-5L questionnaire, and immunological biomarkers evaluated by flow cytometry and Luminex enzyme-linked immunosorbent assay. RESULTS Sequential BTZ + TMZ therapy was safe and well tolerated. Pain and performance of daily activities had greatest impact on patients' self-reported quality of life and were inversely correlated with Karnofsky performance status. Patients segregated a priori into three groups, where group 1 displayed stable clinical symptoms and/or slower magnetic resonance imaging radiological progression, expanded CD4+ effector T-cells that attenuated cytotoxic T-lymphocyte associated protein-4 and PD-1 expression and secreted interferon γ and tumor necrosis factor α in situ and ex vivo upon stimulation with PMA/ionomycin. In contrast, rapidly progressing group 2 patients exhibited tolerised T-cell phenotypes characterized by fourfold to sixfold higher interleukin 4 (IL-4) and IL-10 Th-2 cytokines after BTZ + TMZ treatment, where group 3 patients exhibited intermediate clinical/radiological responses. CONCLUSION Sequential BTZ + TMZ treatment is safe and promotes Th1-driven immunological responses in selected patients with improved clinical outcomes (Clinicaltrial.gov (NCT03643549)).
Collapse
Affiliation(s)
| | - Jorunn Brekke
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | - Andreas Waha
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Lars Herfindal
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Cecilie B Rygh
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Judit Haasz
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Stein A Lie
- Department of Clinical Dentistry, University of Bergen, Norway
| | - Dorota Goplen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Gliomas represent a disparate group of malignancies with varying clinical outcomes despite a tremendous amount of time, effort, and resources dedicated to their management and understanding. The most aggressive entity, glioblastoma, has a dismal prognosis with poor local control despite intense local and systemic treatment, including radiation therapy. RECENT FINDINGS Given the heterogeneity in genotype, phenotype, and patient outcomes, researchers and clinicians have turned their attention toward attacking DNA damage response and repair mechanisms in gliomas in an effort to develop novel chemo and radiosensitizers. However, despite extensive work in both the laboratory and the clinic, no sensitizers have yet to emerge as clear options in the treatment of glioma, often because of meager preclinical data or an inability to penetrate the blood-brain barrier. SUMMARY This review will examine current understanding of molecular DNA repair targets in glioma and their potential exploitation to improve local control and, ultimately, overall survival of patients afflicted with these diseases.
Collapse
Affiliation(s)
- Jason M Beckta
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
13
|
Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. Br J Cancer 2019; 121:545-555. [PMID: 31413318 PMCID: PMC6888814 DOI: 10.1038/s41416-019-0551-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022] Open
Abstract
Background Resistance to temozolomide (TMZ) is due in part to enhanced DNA repair mediated by high expression of O6-methyl guanine DNA methyltransferase (MGMT) that is often characterised by unmethylated promoter. Here, we investigated pre-treatment of glioblastoma (GBM) cells with the 26S-proteasome inhibitor bortezomib (BTZ) as a strategy to interfere with MGMT expression and thus sensitise them to TMZ. Methods Cell lines and patient GBM-derived cells were examined in vitro, and the latter also implanted orthotopically into NOD-SCID C.B.-Igh-1b/lcrTac-Prkdc mice to assess efficacy and tolerability of BTZ and TMZ combination therapy. MGMT promoter methylation was determined using pyrosequencing and PCR, protein signalling utilised western blotting while drug biodistribution was examined by LC-MS/MS. Statistical analysis utilised Analysis of variance and the Kaplan–Meier method. Results Pre-treatment with BTZ prior to temozolomide killed chemoresistant GBM cells with unmethylated MGMT promoter through MGMT mRNA and protein depletion in vitro without affecting methylation. Chymotryptic activity was abolished, processing of NFkB/p65 to activated forms was reduced and corresponded with low MGMT levels. BTZ crossed the blood–brain barrier, diminished proteasome activity and significantly prolonged animal survival. Conclusion BTZ chemosensitized resistant GBM cells, and the schedule may be amenable for temozolomide refractory patients with unmethylated MGMT promoter.
Collapse
|
14
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
15
|
Sun G, Zhao L, Zhong R, Peng Y. The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
16
|
Sharpe MA, Raghavan S, Baskin DS. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget 2018; 9:23923-23943. [PMID: 29844863 PMCID: PMC5963626 DOI: 10.18632/oncotarget.25246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022] Open
Abstract
Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| | - Sudhir Raghavan
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| | - David S Baskin
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| |
Collapse
|
17
|
Liu SJ, Yang TC, Yang ST, Chen YC, Tseng YY. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:515-526. [PMID: 29658349 DOI: 10.1080/21691401.2018.1460374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is ineffective for treating malignant glioma (MG) because of the low therapeutic levels of pharmaceuticals in tumour tissues and the well-known tumour resistance. The resistance to alkylators is modulated by the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). O6-benzylguanine (O6-BG) can irreversibly inactivate AGT by competing with O6-methylguanine and has been confirmed to increase the therapeutic activity of alkylators. We developed hybrid-structured poly[(d,l)-lactide-co-glycolide] nanofibrous membranes (HSNMs) that enable the sequential and sustained release of O6-BG and two alkylators (carmustine and temozolomide [TMZ]). HSNMs were surgically instilled into the cerebral cavity of pathogen-free rats and F98 glioma-bearing rats. The release behaviours of loaded drugs were quantified by using high-performance liquid chromatography. The treatment results were compared with the rats treated with intraperitoneal injection of O6-BG combined with surgical implantation of carmustine wafer and oral TMZ. The HSNMs revealed a sequential drug release behaviour with the elution of high drug concentrations of O6-BG in the early phase, followed by high levels of two alkylators. All drug concentrations remained high for over 14 weeks. Tumour growth was slower and the mean survival time was significantly prolonged in the HSNM-treated group. Biodegradable HSNMs can enhance therapeutic efficacy and prevent toxic systemic effects.
Collapse
Affiliation(s)
- Shih-Jung Liu
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC.,b Department of Orthopedic Surgery , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan, ROC
| | - Tao-Chieh Yang
- c Department of Neurosurgery , Asia University Hospital , Taichung , Taiwan, ROC
| | - Shun-Tai Yang
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| | - Ying-Chun Chen
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC
| | - Yuan-Yun Tseng
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| |
Collapse
|
18
|
Kramer B, Singh R, Wischusen J, Dent R, Rush A, Middlemiss S, Ching YW, Alexander IE, McCowage G. Clinical Trial of MGMT(P140K) Gene Therapy in the Treatment of Pediatric Patients with Brain Tumors. Hum Gene Ther 2018; 29:874-885. [PMID: 29385852 DOI: 10.1089/hum.2017.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gene transfer targeting hematopoietic stem cells (HSC) in children has shown sustained therapeutic benefit in the treatment of genetic diseases affecting the immune system, most notably in severe combined immunodeficiencies affecting T-cell function. The HSC compartment has also been successfully targeted using gene transfer in children with genetic diseases affecting the central nervous system, such as metachromatic leukodystrophy and adrenoleukodystrophy. HSCs are also a target for genetic modification in strategies aiming to confer drug resistance to chemotherapy agents so as to reduce off-target toxicity, and to allow for chemotherapy dose escalation with the possibility of enhanced therapeutic benefit. In a trial of this strategy in adult glioma patients, significant engraftment of gene-modified HSCs expressing a mutant of the DNA repair protein O6-methyl-guanine-methyl-transferase (MGMT(P140K)) showed potential in conferring drug resistance against the combined effect of O6-benzylguanine (O6BG)/temozolomide (TMZ) chemotherapy. The aim was to test the safety and feasibility of this approach in children with poor prognosis brain tumors. In this Phase I trial, seven patients received gene-modified HSC following myelo-suppressive conditioning, but with only transient low-level engraftment of MGMT(P140K) gene-modified cells detectable in four patients. All patients received O6BG/TMZ chemotherapy following infusion of gene-modified cells, with five patients eligible for chemotherapy dose escalation, though in the absence of demonstrable transgene-mediated chemoprotection. Since all gene-modified cell products met the criteria for release and assays for engraftment potential met expected outcome measures, inadequate cell dose, conditioning chemotherapy, and/or underlying bone-marrow function may have contributed to the lack of sustained engraftment of gene-modified cells. We were able to demonstrate safe conduct of a technically complex Phase I study encompassing manufacture of the gene therapy vector, genetically modified cells, and a drug product specifically for the trial in compliance with both local and national regulatory requirements.
Collapse
Affiliation(s)
- Belinda Kramer
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Radhika Singh
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Jessica Wischusen
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Rebecca Dent
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Amanda Rush
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Shiloh Middlemiss
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Yu Wooi Ching
- 1 Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, Australia
| | - Ian E Alexander
- 2 Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia and the Children's Hospital at Westmead, Westmead, Australia.,3 The University of Sydney , Discipline of Paediatrics and Child Health, Westmead, Australia
| | - Geoffrey McCowage
- 4 Children's Cancer Centre, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
19
|
Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017; 2:17040. [PMID: 29263927 PMCID: PMC5661637 DOI: 10.1038/sigtrans.2017.40] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
Collapse
|
20
|
Marsoner T, Schmidt OP, Triemer T, Luedtke NW. DNA-Targeted Inhibition of MGMT. Chembiochem 2017; 18:894-898. [PMID: 28177192 DOI: 10.1002/cbic.201600652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 12/17/2022]
Abstract
The cationic porphyrin 5,10,15,20-tetrakis (diisopropyl-guanidine)-21H,23H-porphine (DIGPor) selectively binds to DNA containing O6 -methylguanine (O6 -MeG) and inhibits the DNA repair enzyme O6 -methylguanine-DNA methyltransferase (MGMT). The O6 -MeG selectivity and MGMT inhibitory activity of DIGPor were improved by incorporating ZnII into the porphyrin. The resulting metal complex (Zn-DIGPor) potentiated the activity of the DNA-alkylating drug temozolomide in an MGMT-expressing cell line. To the best of our knowledge, this is the first example of DNA-targeted MGMT inhibition.
Collapse
Affiliation(s)
- Theodor Marsoner
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Olivia P Schmidt
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
21
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
22
|
Boccard SG, Marand SV, Geraci S, Pycroft L, Berger FR, Pelletier LA. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study. Oncotarget 2016; 6:29456-68. [PMID: 26336131 PMCID: PMC4745739 DOI: 10.18632/oncotarget.4909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition.
Collapse
Affiliation(s)
- Sandra G Boccard
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Oxford Functional Neurosurgery and Experimental Neurology, University of Oxford, UK
| | - Sandie V Marand
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - Sandra Geraci
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | - Laurie Pycroft
- Oxford Functional Neurosurgery and Experimental Neurology, University of Oxford, UK
| | - François R Berger
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,CHU de Grenoble, F-38000 Grenoble, France
| | - Laurent A Pelletier
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,CHU de Grenoble, F-38000 Grenoble, France
| |
Collapse
|
23
|
Sun G, Zhang N, Zhao L, Fan T, Zhang S, Zhong R. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase. Bioorg Med Chem 2016; 24:2097-2107. [PMID: 27041398 DOI: 10.1016/j.bmc.2016.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shufen Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
24
|
Bostian ACL, Maddukuri L, Reed MR, Savenka T, Hartman JH, Davis L, Pouncey DL, Miller GP, Eoff RL. Kynurenine Signaling Increases DNA Polymerase Kappa Expression and Promotes Genomic Instability in Glioblastoma Cells. Chem Res Toxicol 2015; 29:101-8. [PMID: 26651356 DOI: 10.1021/acs.chemrestox.5b00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of the translesion synthesis polymerase hpol κ in glioblastomas has been linked to poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating AhR in glioblastoma, led to a decrease in the endogenous AhR agonist kynurenine and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling, and the resulting overexpression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that upregulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Tatsiana Savenka
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Lauren Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Dakota L Pouncey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
25
|
Grossman R, Burger P, Soudry E, Tyler B, Chaichana KL, Weingart J, Olivi A, Gallia GL, Sidransky D, Quiñones-Hinojosa A, Ye X, Brem H. MGMT inactivation and clinical response in newly diagnosed GBM patients treated with Gliadel. J Clin Neurosci 2015; 22:1938-42. [PMID: 26249244 DOI: 10.1016/j.jocn.2015.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/17/2022]
Abstract
We examined the relationship between the O(6)-methylguanine-methyltransferase (MGMT) methylation status and clinical outcomes in newly diagnosed glioblastoma multiforme (GBM) patients who were treated with Gliadel wafers (Eisai, Tokyo, Japan). MGMT promoter methylation has been associated with increased survival among patients with GBM who are treated with various alkylating agents. MGMT promoter methylation, in DNA from 122 of 160 newly diagnosed GBM patients treated with Gliadel, was determined by a quantitative methylation-specific polymerase chain reaction, and was correlated with overall survival (OS) and recurrence-free survival (RFS). The MGMT promoter was methylated in 40 (32.7%) of 122 patients. The median OS was 13.5 months (95% confidence interval [CI] 11.0-14.5) and RFS was 9.4 months (95% CI 7.8-10.2). After adjusting for age, Karnofsky performance score, extent of resection, temozolomide (TMZ) and radiation therapy (RT), the newly diagnosed GBM patients with MGMT methylation had a 15% reduced mortality risk, compared to patients with unmethylated MGMT (hazard ratio 0.85; 95% CI 0.56-1.31; p=0.46). The patients aged over 70 years with MGMT methylation had a significantly longer median OS of 13.5 months, compared to 7.6 months in patients with unmethylated MGMT (p=0.027). A significant difference was also found in older patients, with a median RFS of 13.1 versus 7.6 months for methylated and unmethylated MGMT groups, respectively (p=0.01). Methylation of the MGMT promoter in newly diagnosed GBM patients treated with Gliadel, RT and TMZ, was associated with significantly improved OS compared to the unmethylated population. In elderly patients, methylation of the MGMT promoter was associated with significantly better OS and RFS.
Collapse
Affiliation(s)
- Rachel Grossman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Peter Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Ethan Soudry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - David Sidransky
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
26
|
Shyam K, Penketh PG, Baumann RP, Finch RA, Zhu R, Zhu YL, Sartorelli AC. Antitumor sulfonylhydrazines: design, structure-activity relationships, resistance mechanisms, and strategies for improving therapeutic utility. J Med Chem 2015; 58:3639-71. [PMID: 25612194 DOI: 10.1021/jm501459c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2-Bis(sulfonyl)-1-alkylhydrazines (BSHs) were conceived as more specific DNA guanine O-6 methylating and chloroethylating agents lacking many of the undesirable toxicophores contained in antitumor nitrosoureas. O(6)-Alkylguanine-DNA alkyltransferase (MGMT) is the sole repair protein for O(6)-alkylguanine lesions in DNA and has been reported to be absent in 5-20% of most tumor types. Many BSHs exhibit highly selective cytotoxicity toward cells deficient in MGMT activity. The development of clinically useful MGMT assays should permit the identification of tumors with this vulnerability and allow for the preselection of patient subpopulations with a high probability of responding. The BSH system is highly versatile, permitting the synthesis of many prodrug types with the ability to incorporate an additional level of tumor-targeting due to preferential activation by tumor cells. Furthermore, it may be possible to expand the spectrum of activity of these agents to include tumors with MGMT activity by combining them with tumor-targeted MGMT inhibitors.
Collapse
Affiliation(s)
- Krishnamurthy Shyam
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Philip G Penketh
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Raymond P Baumann
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Rick A Finch
- ‡Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, 650 Cool Water Drive, Bastrop, Texas 78602, United States
| | - Rui Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Yong-Lian Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Alan C Sartorelli
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
27
|
Yi F, Ma J, Ni W, Chang R, Liu W, Han X, Pan D, Liu X, Qiu J. The top cited articles on glioma stem cells in Web of Science. Neural Regen Res 2014; 8:1431-8. [PMID: 25206439 PMCID: PMC4107765 DOI: 10.3969/j.issn.1673-5374.2013.15.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/19/2013] [Indexed: 12/15/2022] Open
Abstract
Background: Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. Objective: To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. Methods: A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms “glioma stem cell” or “glioma, stem cell” or “brain tumor stem cell”. The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899–2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Results: Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Conclusion: Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.
Collapse
Affiliation(s)
- Fuxin Yi
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Jun Ma
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Weimin Ni
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Rui Chang
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Wenda Liu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Xiubin Han
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Dongxiao Pan
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Xingbo Liu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Jianwu Qiu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
28
|
Plummer R. Poly(ADP-ribose)polymerase (PARP) Inhibitors: From Bench to Bedside. Clin Oncol (R Coll Radiol) 2014; 26:250-6. [DOI: 10.1016/j.clon.2014.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/15/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023]
|
29
|
Abstract
Malignant gliomas are the most prevalent type of primary brain tumor in adults. Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. The median survival of patients with glioblastoma multiforme, the most common grade of malignant glioma, is 10-12 months. Conventional therapy of surgery, radiation and chemotherapy is largely palliative. Essentially, tumor recurrence is inevitable. Salvage treatments upon recurrence are palliative at best and rarely provide significant survival benefit. Therapies targeting the underlying molecular pathogenesis of brain tumors are urgently required. Common genetic abnormalities in malignant glioma specimens are associated with aberrant activation or suppression of cellular signal transduction pathways and resistance to radiation and chemotherapy. Several low molecular weight signal transduction inhibitors have been examined in preclinical and clinical malignant glioma trials. The efficacy of these agents as monotherapies has been modest, at best; however, small subsets of patients who harbor specific genetic changes in their tumors may display favorable clinical responses to defined small molecule inhibitors. Multitargeted kinase inhibitors or combinations of agents targeting different mitogenic pathways may overcome the resistance of tumors to single-agent targeted therapies. Well designed studies of small molecule kinase inhibitors will include assessment of safety, drug delivery, target inhibition and correlative biomarkers to define mechanisms of response or resistance to these agents. Predictive biomarkers will enrich for patients most likely to respond in future clinical trials. Additional clinical studies will combine novel targeted therapies with radiation, chemotherapies and immunotherapies.
Collapse
Affiliation(s)
- Sith Sathornsumetee
- The Preston Robert Tisch Brain Tumor Center Division of Neurosurgery/Neuro-Oncology, Duke University Medical Center, DUMC 3624, Durham, NC 27710, USA.
| | | |
Collapse
|
30
|
Buccoliero AM, Arganini L, Ammannati F, Gallina P, Di Lorenzo N, Mennonna P, Taddei GL. Oligodendrogliomas Lacking O6-Methylguanine-DNA-Methyltransferase Expression. J Chemother 2013; 17:321-6. [PMID: 16038527 DOI: 10.1179/joc.2005.17.3.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
O6-Methylguanine-DNA-Methyltransferase (MGMT) is a DNA repair protein considered to be a chemosensitivity predictor. We evaluated the immunohistochemical MGMT expression in 28 consecutive oligodendroglial tumors (21 oligodendrogliomas, 5 mixed oligoastrocytomas, and 2 glioblastomas with prominent oligodendroglial features; 13 treated with CCNU) and compared it with that of 13 glioblastomas. Twenty-six (93%) oligodendroglial tumors were MGMT-negative, 2 (7%) were MGMT-positive. Twelve (92%) patients treated with CCNU had MGMT-negative lesions and their median survival was 73 months; 1 patient had an MGMT-positive oligodendroglioma and is alive at 28 months. Three (23%) glioblastomas were MGMT-negative and 10 (77%) MGMT-positive. The lower MGMT expression in oligodendroglial tumors compared to glioblastomas (P < 0.05), which have different chemosensitivity, suggests a possible role of MGMT in the determination of chemoresistance. Nevertheless, the heterogeneous outcome of our MGMT-negative oligodendroglial tumors treated with CCNU, indicates that MGMT expression alone is insufficient to predict the response to alkylating drugs, presumably because of the numerous mechanisms involved.
Collapse
Affiliation(s)
- A M Buccoliero
- Department of Human Pathology and Oncology, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Cankovic M, Nikiforova MN, Snuderl M, Adesina AM, Lindeman N, Wen PY, Lee EQ. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn 2013; 15:539-55. [PMID: 23871769 DOI: 10.1016/j.jmoldx.2013.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/11/2013] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
Recent advances in modern molecular technologies allow for the examination and measurement of cancer-related genomic changes. The number of molecular tests for evaluation of diagnostic, prognostic, or predictive markers is expected to increase. In recent years, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been firmly established as a biomarker in patients diagnosed with gliomas, for both clinical trials and routine clinical management. Similarly, molecular markers, such as loss of heterozygosity (LOH) for 1p/19q have already demonstrated clinical utility in treatment of oligodendroglial tumors, and others might soon show clinical utility. Furthermore, nonrandom associations are being discovered among MGMT, 1p/19q LOH, isocitrate dehydrogenase (IDH) mutations, and other tumor-specific modifications that could possibly enhance our ability to predict outcome and response to therapy. While pathologists are facing new and more complicated requests for clinical genomic testing, clinicians are challenged with increasing numbers of molecular data coming from molecular pathology and genomic medicine. Both pathologists and oncologists need to understand the clinical utility of molecular tests and test results, including issues of turnaround time, and their impact on the application of targeted treatment regimens. This review summarizes the existing data that support the rationale for MGMT promoter methylation testing and possibly other molecular testing in clinically defined glioma subtypes. Various molecular testing platforms for evaluation of MGMT methylation status are also discussed.
Collapse
Affiliation(s)
- Milena Cankovic
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, Mulligan E, Curtin N, Wang D, Dewji R, Abbattista A, Gallo J, Calvert H. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 2013; 71:1191-9. [PMID: 23423489 DOI: 10.1007/s00280-013-2113-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/05/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE poly(ADP ribose) polymerase inhibition has been shown to potentiate the cytotoxicity of DNA damaging agents. A phase I study of rucaparib and temozolomide showed that full-dose temozolomide could be given during PARP inhibition. We report the results of a phase II study of intravenous rucaparib 12 mg/m(2) and oral temozolomide 200 mg/m(2) on days 1-5 every 28 days in patients with advanced metastatic melanoma. METHODS Patients with chemotherapy naïve measurable metastatic melanoma, performance status ≤2 and good end-organ function were recruited. Treatment was given until progression. A two stage phase II design was used, with response rate the primary endpoint. Population pharmacokinetics and pharmacodynamics were also explored. RESULTS Forty-six patients were recruited with 37 patients receiving at least 2 cycles and 17 patients at least 6 cycles. Myelosuppression occurred with 25 patients (54 %) requiring a 25 % dose reduction in temozolomide. The response rate was 17.4 %, median time to progression 3.5 months, median overall survival 9.9 months, and 36 % of patients were progression-free at 6 months. CONCLUSIONS This study showed that temozolomide (150-200 mg/m(2)/day) can safely be given with a PARP inhibitory dose of rucaparib, increasing progression-free survival over historical controls in metastatic melanoma patients.
Collapse
Affiliation(s)
- Ruth Plummer
- Institute for Cancer Research, Paul O'Gorman Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhu R, Baumann RP, Penketh PG, Shyam K, Sartorelli AC. Hypoxia-selective O6-alkylguanine-DNA alkyltransferase inhibitors: design, synthesis, and evaluation of 6-(benzyloxy)-2-(aryldiazenyl)-9H-purines as prodrugs of O6-benzylguanine. J Med Chem 2013; 56:1355-9. [PMID: 23311288 PMCID: PMC3722860 DOI: 10.1021/jm301804p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a DNA repair protein which removes alkyl groups from the O-6 position of guanine, thereby providing strong resistance to anticancer agents which alkylate this position. The clinical usefulness of these anticancer agents would be substantially augmented if AGT could be selectively inhibited in tumor tissue, without a corresponding depletion in normal tissue. We report the synthesis of a new AGT inhibitor (5c) which selectively depletes AGT in hypoxic tumor cells.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Raymond P. Baumann
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Philip G. Penketh
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Krishnamurthy Shyam
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Alan C. Sartorelli
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Randomized trial of chemoradiotherapy and adjuvant chemotherapy with nimustine (ACNU) versus nimustine plus procarbazine for newly diagnosed anaplastic astrocytoma and glioblastoma (JCOG0305). Cancer Chemother Pharmacol 2012; 71:511-21. [PMID: 23228988 DOI: 10.1007/s00280-012-2041-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Glioblastoma (GBM) is one of the worst cancers in terms of prognosis. Standard therapy consists of resection with concomitant chemoradiotherapy. Resistance to nimustine hydrochloride (ACNU), an alkylating agent, has been linked to methylguanine DNA methyltransferase (MGMT). Daily administration of procarbazine (PCZ) has been reported to decrease MGMT activity. This study investigated the efficacy of ACNU + PCZ compared to ACNU alone for GBM and anaplastic astrocytoma (AA). METHODS Patients (20-69 years) who had newly diagnosed AA and GBM were randomly assigned to receive radiotherapy with ACNU alone or with ACNU + PCZ. The primary endpoint was overall survival (OS). This was designed as a phase II/III trial with a total sample size of 310 patients and was registered as UMIN-CTR C000000108. RESULTS After 111 patients from 19 centers in Japan were enrolled, this study was terminated early because temozolomide was newly approved in Japan. The median OS and median progression-free survival (PFS) with ACNU alone (n = 55) or ACNU + PCZ (n = 56) in the intention-to-treat population were 27.4 and 22.4 months (p = 0.75), and 8.6 and 6.9 months, respectively. The median OS and median PFS of the GBM subgroup treated with ACNU alone (n = 40) or ACNU + PCZ (n = 41) were 19.0 and 19.5 months, and 6.2 and 6.3 months, respectively. Grade 3/4 hematologic adverse events occurred in more than 40 % of patients in both arms, and 27 % of patients discontinued treatment because of adverse events. CONCLUSIONS The addition of PCZ to ACNU was not beneficial, in comparison with ACNU alone, for patients with newly diagnosed AA and GBM.
Collapse
|
35
|
Apisarnthanarax N, Wood GS, Stevens SR, Carlson S, Chan DV, Liu L, Szabo SK, Fu P, Gilliam AC, Gerson SL, Remick SC, Cooper KD. Phase I clinical trial of O6-benzylguanine and topical carmustine in the treatment of cutaneous T-cell lymphoma, mycosis fungoides type. ACTA ACUST UNITED AC 2012; 148:613-20. [PMID: 22250189 DOI: 10.1001/archdermatol.2011.2797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To evaluate the toxic effects and maximum tolerated dose of topical carmustine [1,3-bis(2-chloroethyl)-1-nitrosourea] following intravenous O6-benzylguanine in the treatment of cutaneous T-cell lymphoma (CTCL), and to determine pharmacodynamics of O6-alkylguanine DNA alkyltransferase activity in treated CTCL lesions. DESIGN Open-label, dose-escalation, phase I trial. SETTING Dermatology outpatient clinic and clinical research unit at a university teaching hospital. PATIENTS A total of 21 adult patients (11 male, 10 female)with early-stage (IA-IIA) refractory CTCL, mycosis fungoides type, treated with topical carmustine following intravenous O6-benzylguanine. INTERVENTION Treatment once every 2 weeks with 120 mg/m(2) intravenous O6-benzylguanine followed 1 hour later by whole-body, low-dose topical carmustine starting at 10 mg, with 10-mg incremental dose-escalation in 3 patient cohorts. Cutaneous T-cell lymphoma lesional skin biopsy specimens were taken at baseline and 6 hours, 24 hours, and 1 week after the first O6-benzylguanine infusion for analysis of O6-alkylguanine-DNA alkyltransferase activity. MAIN OUTCOME MEASURES Clinical response measured by physical examination and severity-weighted assessment tool measurements, safety data acquired by review of adverse events at study visits, and O6-alkylguanine-DNA alkyltransferase activity in treated lesion skin biopsy specimens. RESULTS A minimal toxic effect was observed through the 40-mg carmustine dose level with 76% of adverse events being grade 1 based on the National Cancer Institute Common Terminology Criteria for Adverse Events. Mean baseline O6-alkylguanine-DNA alkyltransferase activity in CTCL lesions was 3 times greater than in normal controls and was diminished by a median of 100% at 6 and 24 hours following O6-benzylguanine with recovery at 1 week. Clinical disease reduction correlated positively with O6-alkylguanine-DNA alkyltransferase activity at 168 hours (P=.02) and inversely with area under the curve of O6-alkylguanine-DNA alkyltransferase over 1 week (P=.01). Twelve partial responses and 4 complete responses were observed (overall response, 76% [95% CI, 0.55-0.89]). Five patients discontinued therapy owing to adverse events with a possible, probable, or definite relationship to the study drug. CONCLUSION O6-benzylguanine significantly depletes O6-alkylguanine-DNA alkyltransferase in CTCL lesions and in combination with topical carmustine is well tolerated and shows meaningful clinical responses in CTCL at markedly reduced total carmustine treatment doses.
Collapse
|
36
|
Johannessen TCA, Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 2012; 12:635-42. [PMID: 22594898 DOI: 10.1586/era.12.37] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM; WHO astrocytoma grade IV) is considered incurable owing to its inherently profound resistance towards current standards of therapy. Considerable effort is being devoted to identifying the molecular basis of temozolomide resistance in GBMs and exploring novel therapeutic regimens that may improve overall survival. Several independent DNA repair mechanisms that normally safeguard genome integrity can facilitate drug resistance and cancer cell survival by removing chemotherapy-induced DNA adducts. Furthermore, subpopulations of cancer stem-like cells have been implicated in the treatment resistance of several malignancies including GBMs. Thus, a growing number of molecular mechanisms contributing to temozolomide resistance are being uncovered in preclinical studies and, consequently, we are being presented with a broad range of potentially novel targets for therapy. A substantial future challenge is to successfully exploit the increasing molecular knowledge contributing to temozolomide resistance in robust clinical trials and to ultimately improve overall survival for GBM patients.
Collapse
|
37
|
Zhu R, Seow HA, Baumann RP, Ishiguro K, Penketh PG, Shyam K, Sartorelli AC. Design of a hypoxia-activated prodrug inhibitor of O6-alkylguanine-DNA alkyltransferase. Bioorg Med Chem Lett 2012; 22:6242-7. [PMID: 22932317 DOI: 10.1016/j.bmcl.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/24/2012] [Accepted: 08/01/2012] [Indexed: 11/15/2022]
Abstract
The efficacy of agents that alkylate the O-6 position of guanine is inhibited by O(6)-alkylguanine-DNA alkyltransferase (AGT) which removes these lesions from the tumor DNA. To increase differential toxicity, inhibitors must selectively deplete AGT in tumors, while sparing normal tissues where this protein serves a protective function. A newly synthesized prodrug of the AGT inhibitor O(6)-benzylguanine (O(6)-BG) with an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety masking the essential 2-amino group has demonstrated the feasibility of targeting hypoxic regions that are unique to solid tumors, for drug delivery. However, these modifications resulted in greatly decreased solubility. Recently, new potent global AGT inhibitors with improved formulatability such as O(6)-[(3-aminomethyl)benzylguanine (1) have been developed. However, acetylamino (N-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)acetamide) (2) exhibits a pronounced decrease in activity. Thus, 1 would be inactivated by N-acetylation and probably N-glucuronidation. To combat potential conjugational inactivation while retaining favorable solubility, we synthesized 6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-amine (3) in which the 3-aminomethyl moiety is protected by methylation; and to impart tumor selectivity we synthesized 2-(4-nitrophenyl)propan-2-yl(6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-yl)carbamate (7), a hypoxia targeted prodrug of 3 utilizing an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety. Consistent with this design, 7 demonstrates both hypoxia selective conversion by EMT6 cells of 7 to 3 and hypoxic sensitization of AGT containing DU145 cells to the cytotoxic actions of laromustine, while exhibiting improved solubility.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The discovery of tumor-initiating cells endowed with stem-like features has added a further level of complexity to the pathobiology of neoplastic diseases. In the attempt of dissecting the functional properties of this uncommon cellular subpopulation, investigators are taking full advantage of a body of knowledge about adult stem cells, as the "cancer stem cell model" implies that tissue-resident stem cells are the target of the oncogenic process. It is emerging that a plethora of molecular mechanisms protect cancer stem cells (CSC) against chemotherapy- and radiotherapy-induced death stimuli. The ability of CSCs to survive stressful conditions is correlated, among others, with a multifaceted protection of genome integrity by a prompt activation of the DNA damage sensor and repair machinery. Nevertheless, many molecular-targeted agents directed against DNA repair effectors are in late preclinical or clinical development while the identification of predictive biomarkers of response coupled with the validation of robust assays for assessing biomarkers is paving the way for biology-driven clinical trials.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | |
Collapse
|
39
|
Sugiyama SI, Saito R, Nakamura T, Yamashita Y, Yokosawa M, Sonoda Y, Kumabe T, Watanabe M, Tominaga T. Safety and feasibility of convection-enhanced delivery of nimustine hydrochloride co-infused with free gadolinium for real-time monitoring in the primate brain. Neurol Res 2012; 34:581-7. [PMID: 22709625 DOI: 10.1179/1743132812y.0000000050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Convection-enhanced delivery (CED) has been developed as an effective drug-delivery strategy for brain tumors. Ideally, direct visualization of the tissue distribution of drugs infused by CED would assure successful delivery of therapeutic agents to the brain tumor while minimizing exposure of the normal brain tissue. We previously showed the anti-tumor efficacy of nimustine hydrochloride (ACNU) delivered via CED against a rodent intracranial xenografted tumor model. Here, we developed a method to monitor the drug distribution using a non-human primate brain. METHODS CED of a mixture of ACNU with gadodiamide was performed using three non-human primates under real-time magnetic resonance imaging monitoring. Animals were clinically observed for any toxicity after infusion. Two months later, their brains were subjected to histological examination for the evaluation of local toxicity. Another one animal was euthanized immediately after CED of a mixture of ACNU, gadodiamide, and Evans blue dye to evaluate the concordance between ACNU and gadodiamide distributions. The harvested brain was cut into blocks and the ACNU content was measured. RESULTS AND DISCUSSION Real-time magnetic resonance imaging monitoring of co-infused gadodiamide confirmed the success of the infusion maneuver. In the monkey that also received Evans blue, the distribution of Evans blue was similar to that of gadodiamide and paralleled the measured ACNU content, suggesting concordance between ACNU and gadodiamide distributions. Histological examination revealed minimum tissue damage with the infusion of ACNU at 1 mg/ml, determined as a safe dose in our previous rodent study. CED of ACNU can be co-administered with gadodiamide to ensure successful infusion and monitor the distribution volume.
Collapse
Affiliation(s)
- Shin-ichiro Sugiyama
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gori JL, Beard BC, Ironside C, Karponi G, Kiem HP. In vivo selection of autologous MGMT gene-modified cells following reduced-intensity conditioning with BCNU and temozolomide in the dog model. Cancer Gene Ther 2012; 19:523-9. [PMID: 22627392 PMCID: PMC3466091 DOI: 10.1038/cgt.2012.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy with 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ) is commonly used for the treatment of glioblastoma multiforme (GBM) and other cancers. In preparation for a clinical gene therapy study in patients with glioblastoma, we wished to study whether these reagents could be used as a reduced-intensity conditioning regimen for autologous transplantation of gene-modified cells. We used an MGMT(P140K)-expressing lentivirus vector to modify dog CD34(+) cells and tested in four dogs whether these autologous cells engraft and provide chemoprotection after transplantation. Treatment with O(6)-benzylguanine (O6BG)/TMZ after transplantation resulted in gene marking levels up to 75%, without significant hematopoietic cytopenia, which is consistent with hematopoietic chemoprotection. Retrovirus integration analysis showed that multiple clones contribute to hematopoiesis. These studies demonstrate the ability to achieve stable engraftment of MGMT(P140K)-modified autologous hematopoietic stem cells (HSCs) after a novel reduced-intensity conditioning protocol using a combination of BCNU and TMZ. Furthermore, we show that MGMT(P140K)-HSC engraftment provides chemoprotection during TMZ dose escalation. Clinically, chemoconditioning with BCNU and TMZ should facilitate engraftment of MGMT(P140K)-modified cells while providing antitumor activity for patients with poor prognosis glioblastoma or alkylating agent-sensitive tumors, thereby supporting dose-intensified chemotherapy regimens.
Collapse
Affiliation(s)
- J L Gori
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
41
|
Penketh PG, Shyam K, Baumann RP, Ishiguro K, Patridge EV, Zhu R, Sartorelli AC. A strategy for selective O(6)-alkylguanine-DNA alkyltransferase depletion under hypoxic conditions. Chem Biol Drug Des 2012; 80:279-90. [PMID: 22553921 DOI: 10.1111/j.1747-0285.2012.01401.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular resistance to chemotherapeutics that alkylate the O-6 position of guanine residues in DNA correlates with their O(6)-alkylguanine-DNA alkyltransferase activity. In normal cells high [O(6)-alkylguanine-DNA alkyltransferase] is beneficial, sparing the host from toxicity, whereas in tumor cells high [O(6)-alkylguanine-DNA alkyltransferase] prevents chemotherapeutic response. Therefore, it is necessary to selectively inactivate O(6)-alkylguanine-DNA alkyltransferase in tumors. The oxygen-deficient compartment unique to solid tumors is conducive to reduction, and could be utilized to provide this selectivity. Therefore, we synthesized 2-nitro-6-benzyloxypurine, an analog of O(6)-benzylguanine in which the essential 2-amino group is replaced by a nitro moiety, and 2-nitro-6-benzyloxypurine is >2000-fold weaker than O(6)-benzylguanine as an O(6)-alkylguanine-DNA alkyltransferase inhibitor. We demonstrate oxygen concentration sensitive net reduction of 2-nitro-6-benzyloxypurine by cytochrome P450 reductase, xanthine oxidase, and EMT6, DU145, and HL-60 cells to yield O(6)-benzylguanine. We show that 2-nitro-6-benzyloxypurine treatment depletes O(6)-alkylguanine-DNA alkyltransferase in intact cells under oxygen-deficient conditions and selectively sensitizes cells to laromustine (an agent that chloroethylates the O-6 position of guanine) under oxygen-deficient but not normoxic conditions. 2-Nitro-6-benzyloxypurine represents a proof of concept lead compound; however, its facile reduction (E(1/2) - 177 mV versus Ag/AgCl) may result in excessive oxidative stress and/or the generation of O(6)-alkylguanine-DNA alkyltransferase inhibitors in normoxic regions in vivo.
Collapse
Affiliation(s)
- Philip G Penketh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Shirai K, Chakravarti A. Towards personalized therapy for patients with glioblastoma. Expert Rev Anticancer Ther 2012; 11:1935-44. [PMID: 22117160 DOI: 10.1586/era.11.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combined therapy with temozolomide and radiotherapy is a standard treatment and improves the survival for patients with newly diagnosed glioblastoma. However, the prognosis remains poor, with a median survival time of 12-15 months. Currently, several clinical trials of dose-dense temozolomide regimen or molecular-targeting therapies have been performed to overcome the resistance of glioblastoma. In these therapies, rational prognostic biomarkers have also been investigated to predict their outcome and response to treatment. This advanced understanding of the biological markers can help to develop personalized therapies for glioblastoma patients. Generally, due to a reduced tolerance, elderly patients do not seem to benefit from intensive treatment. This population needs individual treatments depended on their age or performance status. In this article, we review the recent studies that can provide personalized therapy for glioblastoma, based on molecular tumor profiling or patients' physical status.
Collapse
Affiliation(s)
- Katsuyuki Shirai
- Department of Radiation Oncology, The Ohio State University Medical School, 300 W. 10th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
44
|
Ohka F, Natsume A, Wakabayashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int 2012; 2012:878425. [PMID: 22530127 PMCID: PMC3317017 DOI: 10.1155/2012/878425] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 12/07/2011] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most frequently occurring tumors in the central nervous system and the most malignant tumor among gliomas. Despite aggressive treatment including surgery, adjuvant TMZ-based chemotherapy, and radiotherapy, GBM still has a dismal prognosis: the median survival is 14.6 months from diagnosis. To date, many studies report several determinants of resistance to this aggressive therapy: (1) O(6)-methylguanine-DNA methyltransferase (MGMT), (2) the complexity of several altered signaling pathways in GBM, (3) the existence of glioma stem-like cells (GSCs), and (4) the blood-brain barrier. Many studies aim to overcome these determinants of resistance to conventional therapy by using various approaches to improve the dismal prognosis of GBM such as modifying TMZ administration and combining TMZ with other agents, developing novel molecular-targeting agents, and novel strategies targeting GSCs. In this paper, we review up-to-date clinical trials of GBM treatments in order to overcome these 4 hurdles and to aim at more therapeutical effect than conventional therapies that are ongoing or are about to launch in clinical settings and discuss future perspectives.
Collapse
Affiliation(s)
- Fumiharu Ohka
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
45
|
Sathornsumetee S, Rich JN. Molecularly targeted therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:255-78. [PMID: 22230448 DOI: 10.1016/b978-0-444-52138-5.00018-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Zhu R, Liu MC, Luo MZ, Penketh PG, Baumann RP, Shyam K, Sartorelli AC. 4-nitrobenzyloxycarbonyl derivatives of O(6)-benzylguanine as hypoxia-activated prodrug inhibitors of O(6)-alkylguanine-DNA alkyltransferase (AGT), which produces resistance to agents targeting the O-6 position of DNA guanine. J Med Chem 2011; 54:7720-8. [PMID: 21955333 DOI: 10.1021/jm201115f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 4-nitrobenzyloxycarbonyl prodrug derivatives of O(6)-benzylguanine (O(6)-BG), conceived as prodrugs of O(6)-BG, an inhibitor of the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT), were synthesized and evaluated for their ability to undergo bioreductive activation by reductase enzymes under oxygen deficiency. Three agents of this class, 4-nitrobenzyl (6-(benzyloxy)-9H-purin-2-yl)carbamate (1) and its monomethyl (2) and gem-dimethyl analogues (3), were tested for activation by reductase enzyme systems under oxygen deficient conditions. Compound 3, the most water-soluble of these agents, gave the highest yield of O(6)-BG following reduction of the nitro group trigger. Compound 3 was also evaluated for its ability to sensitize 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine)-resistant DU145 human prostate carcinoma cells, which express high levels of AGT, to the cytotoxic effects of this agent under normoxic and oxygen deficient conditions. While 3 had little or no effect on laromustine cytotoxicity under aerobic conditions, significant enhancement occurred under oxygen deficiency, providing evidence for the preferential release of the AGT inhibitor O(6)-BG under hypoxia.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Warren KE, Gururangan S, Geyer JR, McLendon RE, Poussaint TY, Wallace D, Balis FM, Berg SL, Packer RJ, Goldman S, Minturn JE, Pollack IF, Boyett JM, Kun LE. A phase II study of O6-benzylguanine and temozolomide in pediatric patients with recurrent or progressive high-grade gliomas and brainstem gliomas: a Pediatric Brain Tumor Consortium study. J Neurooncol 2011; 106:643-9. [PMID: 21968943 DOI: 10.1007/s11060-011-0709-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
To estimate the sustained (≥8 weeks) objective response rate in pediatric patients with recurrent or progressive high-grade gliomas (HGG, Stratum A) or brainstem gliomas (BSG, Stratum B) treated with the combination of O6-benzylguanine (O6BG) and temozolomide(®) (TMZ). Patients received O6BG 120 mg/m(2)/d IV followed by TMZ 75 mg/m(2)/d orally daily for 5 consecutive days of each 28-day course. The target objective response rate to consider the combination active was 17%. A two-stage design was employed. Forty-three patients were enrolled; 41 were evaluable for response, including 25 patients with HGG and 16 patients with BSG. The combination of O6BG and TMZ was tolerable, and the primary toxicities were myelosuppression and gastrointestinal symptoms. One sustained (≥8 weeks) partial response was observed in the HGG cohort; no sustained objective responses were observed in the BSG cohort. Long-term (≥6 courses) stable disease (SD) was observed in 4 patients in Stratum A and 1 patient in Stratum B. Of the 5 patients with objective response or long-term SD, 3 underwent central review with 2 reclassified as low-grade gliomas. The combination of O6BG and TMZ did not achieve the target response rate for activity in pediatric patients with recurrent or progressive HGG and BSG.
Collapse
Affiliation(s)
- Katherine E Warren
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tawbi HA, Villaruz L, Tarhini A, Moschos S, Sulecki M, Viverette F, Shipe-Spotloe J, Radkowski R, Kirkwood JM. Inhibition of DNA repair with MGMT pseudosubstrates: phase I study of lomeguatrib in combination with dacarbazine in patients with advanced melanoma and other solid tumours. Br J Cancer 2011; 105:773-7. [PMID: 21811257 PMCID: PMC3171007 DOI: 10.1038/bjc.2011.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) reverses the O6-methylguanine (O6-meG) lesion induced by dacarbazine. Depletion of MGMT can be achieved using O6-meG pseudosubstrates. Herein, we report the first phase I experience of the novel O6-meG pseudosubstrate lomeguatrib, combined with dacarbazine. Methods: This is a phase I dose-escalation study to determine the maximum tolerated dose and recommended phase II dose (RP2D) of lomeguatrib combined with a single dose of dacarbazine on a 21-day schedule. Results: The vast majority of the 41 patients enrolled had metastatic melanoma (36/41) and most had no previous chemotherapy (30/41). The most frequent non-hematological adverse events (AEs) were nausea (52%), and fatigue (42%). The most frequent AEs of grade 3–4 severity were neutropaenia (42%), leukopaenia (17%), and thrombocytopaenia (12%). Only 1 patient had a partial response and 10 patients had stable disease. Conclusion: The RP2D of lomeguatrib was 40 mg orally twice daily for 10 days combined with 400 mg m−2 of dacarbazine IV on day 2. Oral administration of lomeguatrib substantially increases the haematological toxicity of dacarbazine consistent with experience with other O6-meG pseudosubstrates.
Collapse
Affiliation(s)
- H A Tawbi
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Malignant gliomas are the most common primary brain tumors in adults and carry a dismal prognosis. Despite aggressive therapy with maximal safe surgical resection, radiation and chemotherapy, these tumors invariably are refractory to or become resistant to treatment and recur. Gliomas are highly infiltrative cancers and display remarkable genetic heterogeneity making them challenging to treat. Recent progress has been made in understanding the molecular and genetic composition of these tumors and from this, promising new targets for therapy have emerged. In particular, anti-angiogenesis therapies have led to modest success in disease control. In addition, the growing body of research in cancer immunology as well as cancer stem cells has made inroads in our understanding of tumorgenesis. Translational research has been particularly crucial to the development of these therapies as much preclinical and clinical work is needed to develop the rationale for treatments, to develop biomarkers of drug activity and to elucidate mechanisms of resistance. This brief overview will discuss some of the pivotal advances made in the pursuit of improved outcomes and survival for patients with this devastating disease.
Collapse
Affiliation(s)
- Joohee Sul
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
50
|
Cai S, Wang H, Bailey B, Ernstberger A, Juliar BE, Sinn AL, Chan RJ, Jones DR, Mayo LD, Baluyut AR, Goebel WS, Pollok KE. Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity. Clin Cancer Res 2011; 17:2195-2206. [PMID: 21487065 PMCID: PMC3078977 DOI: 10.1158/1078-0432.ccr-10-1959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However, one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example, hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens, but in vivo models to assess potential toxicities have not been developed. In this study, a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity. EXPERIMENTAL DESIGN A proof-of-concept, temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing because it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/Sz (NOD/SCID/γchain(null)), reconstituted with human hematopoietic cells, and the impact of treatment on human hematopoiesis was evaluated. RESULTS The dose-intensive regimen resulted in significant decreases in growth of human glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow, flow cytometric analyses indicated that the human bone marrow cells were significantly more sensitive to treatment than the murine bone marrow cells and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor, lymphoid, and myeloid). CONCLUSIONS The humanized bone marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anticancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.
Collapse
Affiliation(s)
- Shanbao Cai
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
| | - Haiyan Wang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
| | - Barbara Bailey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- In Vivo Therapeutics Core, IUSCC
| | - Aaron Ernstberger
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
| | - Beth E. Juliar
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- Biostatistics and Data Management Core, IUSCC
| | - Anthony L. Sinn
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- In Vivo Therapeutics Core, IUSCC
| | - Rebecca J. Chan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- Department of Medical & Molecular Genetics
| | - David R. Jones
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- Division of Clinical Pharmacology, Department of Medicine, IUSM
| | - Lindsey D. Mayo
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
| | | | - W. Scott Goebel
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
| | - Karen E. Pollok
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, The Riley Hospital for Children, Indianapolis, IN
- Indiana University Simon Cancer Center (IUSCC) and the Indiana University School of Medicine (IUSM)
- In Vivo Therapeutics Core, IUSCC
- Department of Pharmacology and Toxicology, IUSM
| |
Collapse
|