1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
3
|
Sferruzza G, Consoli S, Dono F, Evangelista G, Giugno A, Pronello E, Rollo E, Romozzi M, Rossi L, Pensato U. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci 2024; 45:2561-2578. [PMID: 38308708 DOI: 10.1007/s10072-024-07350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS Ospedale San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Giugno
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Edoardo Pronello
- Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Eleonora Rollo
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucrezia Rossi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
4
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
5
|
Rostampour S, Eslami F, Babaei E, Mostafavi H, Mahdavi M. An Active Compound from the Pyrazine Family Induces Apoptosis by Targeting the Bax/Bcl2 and Survivin Expression in Chronic Myeloid Leukemia K562 Cells. Anticancer Agents Med Chem 2024; 24:203-212. [PMID: 38038011 DOI: 10.2174/0118715206272359231121105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND It has been established that pyrazine derivatives, which have widespread bioactivities, can effectively treat cancer. OBJECTIVES In this study, we investigated the effects of 2-methoxy-5-(oxiran-2-ylmethyl) phenyl pyrazine-2- carboxylate (2-mOPP), a new pyrazine derivative, on proliferation, viability, and apoptosis induction in human leukemia K562 cells. METHODS For this purpose, the K562 cells were treated with various concentrations (20-120 μM) of the 2-mOPP for 24-72 hours. Cell viability was determined by MTT growth inhibition assay. Apoptotic activity of 2-mOPP was investigated morphologically by Hoechst staining, cell surface expression assay of phosphatidylserine by Annexin-V/PI technique, as well as DNA fragmentation assay. The effect of 2-mOPP on the K562 cell cycle was studied by flow cytometry. To determine the impact of 2-mOPP on the expression of intrinsic apoptosis-related genes, Bcl2 (anti-apoptotic), Bax (pro-apoptotic), and Survivin genes expression levels were evaluated before and after treatment with 2-mOPP through Real-Time PCR analysis. RESULTS The results revealed that 2-mOPP inhibited viability with IC50 of 25μM in 72 h. Morphological changes assessment by fluorescence microscopy, Annexin V/PI double staining by flow cytometry, and DNA ladders formation upon cell treatment with the 2-mOPP showed that this compound induces apoptosis at IC50 value. Cell cycle arrest was observed in the G0/G1 phase, and the sub-G1 cell population (the sign of apoptosis) increased in a time-dependent manner. Low expression levels of Bcl2 and Survivin in K562 cells were observed 24-72 h after treatment. Along with the down-regulation of Survivin and Bcl2, the expression of Bax was increased after treatment with 2-mOPP. CONCLUSION These findings demonstrate that the new pyrazine derivative plays a crucial role in blocking the proliferation of the leukemic cells by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Saeedeh Rostampour
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hossein Mostafavi
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
7
|
Kreidieh FY, Tawbi HA, Alexaki A, Borghaei H, Kandalaft LE. Novel Immunotherapeutics: Perspectives on Checkpoints, Bispecifics, and Vaccines in Development. Am Soc Clin Oncol Educ Book 2023; 43:e391278. [PMID: 37364224 DOI: 10.1200/edbk_391278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Over the past decade, the advent of molecular techniques and deeper understanding of the tumor microenvironment (TME) have enabled the development of a multitude of immunotherapy targets and approaches. Despite the revolutionary advancement in immunotherapy, treatment resistance remains a challenge leading to decreased response rate in a significant proportion of patients. As such, there has recently been an evolving focus to enhance efficacy, durability, and toxicity profiles of immunotherapy. Although immune checkpoint inhibitors have revolutionized cancer treatment with many already-approved antibodies and several others in the pipeline, bispecific antibodies build on their success in an attempt to deliver an even more potent immune response against tumor cells. On the other hand, vaccines comprise the oldest and most versatile form of immunotherapy. Peptide and nucleic acid vaccines are relatively simple to manufacture compared with oncolytic virus-based vaccines, whereas the dendritic cell vaccines are the most complex, requiring autologous cell culture. Nevertheless, a crucial question in the development of cancer vaccines is the choice of antigen whereby shared and patient-private antigen approaches are currently being pursued. There is hope that cancer vaccines will join the repertoire of successful novel immunotherapeutics in the market. Better insights into the impact of immunotherapy on effector T cells and other immune cell populations in the TME shall be a major priority across the immune-oncology discipline and can help identify predictive biomarkers to evaluate response to treatment and identify patients who would most likely benefit from immunotherapy.
Collapse
Affiliation(s)
- Firas Y Kreidieh
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Aikaterini Alexaki
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| |
Collapse
|
8
|
Neth BJ, Webb MJ, Parney IF, Sener UT. The Current Status, Challenges, and Future Potential of Therapeutic Vaccination in Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15041134. [PMID: 37111620 PMCID: PMC10141140 DOI: 10.3390/pharmaceutics15041134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor and confers a dismal prognosis. With only two FDA-approved therapeutics showing modest survival gains since 2005, there is a great need for the development of other disease-targeted therapies. Due, in part, to the profound immunosuppressive microenvironment seen in GBMs, there has been a broad interest in immunotherapy. In both GBMs and other cancers, therapeutic vaccines have generally yielded limited efficacy, despite their theoretical basis. However, recent results from the DCVax-L trial provide some promise for vaccine therapy in GBMs. There is also the potential that future combination therapies with vaccines and adjuvant immunomodulating agents may greatly enhance antitumor immune responses. Clinicians must remain open to novel therapeutic strategies, such as vaccinations, and carefully await the results of ongoing and future trials. In this review of GBM management, the promise and challenges of immunotherapy with a focus on therapeutic vaccinations are discussed. Additionally, adjuvant therapies, logistical considerations, and future directions are discussed.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur T Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, Mechtler LL, Peereboom DM, Hutson AD, Withers HG, Liu S, Belal AN, Qiu J, Mogensen KM, Dharma SS, Dhawan A, Birkemeier MT, Casucci DM, Ciesielski MJ, Fenstermaker RA. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol 2023; 41:1453-1465. [PMID: 36521103 PMCID: PMC9995096 DOI: 10.1200/jco.22.00996] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Despite intensive treatment with surgery, radiation therapy, temozolomide (TMZ) chemotherapy, and tumor-treating fields, mortality of newly diagnosed glioblastoma (nGBM) remains very high. SurVaxM is a peptide vaccine conjugate that has been shown to activate the immune system against its target molecule survivin, which is highly expressed by glioblastoma cells. We conducted a phase IIa, open-label, multicenter trial evaluating the safety, immunologic effects, and survival of patients with nGBM receiving SurVaxM plus adjuvant TMZ following surgery and chemoradiation (ClinicalTrials.gov identifier: NCT02455557). METHODS Sixty-four patients with resected nGBM were enrolled including 38 men and 26 women, in the age range of 20-82 years. Following craniotomy and fractionated radiation therapy with concurrent TMZ, patients received four doses of SurVaxM (500 μg once every 2 weeks) in Montanide ISA-51 plus sargramostim (granulocyte macrophage colony-stimulating factor) subcutaneously. Patients subsequently received adjuvant TMZ and maintenance SurVaxM concurrently until progression. Progression-free survival (PFS) and overall survival (OS) were reported. Immunologic responses to SurVaxM were assessed. RESULTS SurVaxM plus TMZ was well tolerated with no serious adverse events attributable to SurVaxM. Of the 63 patients who were evaluable for outcome, 60 (95.2%) remained progression-free 6 months after diagnosis (prespecified primary end point). Median PFS was 11.4 months and median OS was 25.9 months measured from first dose of SurVaxM. SurVaxM produced survivin-specific CD8+ T cells and antibody/immunoglobulin G titers. Apparent clinical benefit of SurVaxM was observed in both methylated and unmethylated patients. CONCLUSION SurVaxM appeared to be safe and well tolerated. The combination represents a promising therapy for nGBM. For patients with nGBM treated in this manner, PFS may be an acceptable surrogate for OS. A large randomized clinical trial of SurVaxM for nGBM is in progress.
Collapse
Affiliation(s)
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ajay P. Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - William T. Curry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Eric T. Wong
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sheila A. Figel
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Laszlo L. Mechtler
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - Alan D. Hutson
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Henry G. Withers
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Song Liu
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ahmed N. Belal
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kathleen M. Mogensen
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sanam S. Dharma
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - Danielle M. Casucci
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Michael J. Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Robert A. Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| |
Collapse
|
10
|
Platten M, Grassl N. Vaccines Targeting Gliomas: Antigens Matter. J Clin Oncol 2023; 41:1466-1469. [PMID: 36623232 DOI: 10.1200/jco.22.02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, German Cancer Research Center, Mainz, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Niklas Grassl
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
11
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
12
|
Franson A, McClellan BL, Varela ML, Comba A, Syed MF, Banerjee K, Zhu Z, Gonzalez N, Candolfi M, Lowenstein P, Castro MG. Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Front Med (Lausanne) 2022; 9:966458. [PMID: 36186781 PMCID: PMC9515652 DOI: 10.3389/fmed.2022.966458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
The preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations. Although several challenges exist for the successful development of immunotherapies for CNS tumors, recent insights into the genetic alterations that define the pathogenesis of HGG and their direct effects on the tumor microenvironment (TME) may allow for a more refined and targeted therapeutic approach. This review will focus on the TME in HGG, the genetic drivers frequently found in these tumors and their effect on the TME, the development of immunotherapy for HGG, and the practical challenges in clinical trials employing immunotherapy for HGG. Herein, we will discuss broadly the TME and immunotherapy development in HGG, with a specific focus on glioblastoma multiforme (GBM) as well as additional discussion in the context of the pediatric HGG diagnoses of diffuse midline glioma (DMG) and diffuse hemispheric glioma (DHG).
Collapse
Affiliation(s)
- Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammad Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
The Comparative Experimental Study of Sodium and Magnesium Dichloroacetate Effects on Pediatric PBT24 and SF8628 Cell Glioblastoma Tumors Using a Chicken Embryo Chorioallantoic Membrane Model and on Cells In Vitro. Int J Mol Sci 2022; 23:ijms231810455. [PMID: 36142368 PMCID: PMC9499689 DOI: 10.3390/ijms231810455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, pyruvate dehydrogenase kinase-1 inhibition with dichloroacetate (DCA) was explored as an alternative cancer therapy. The study’s aim was to compare the effectiveness of NaDCA and MgDCA on pediatric glioblastoma PBT24 and SF8628 tumors and cells. The treatment effects were evaluated on xenografts growth on a chicken embryo chorioallantoic membrane. The PCNA, EZH2, p53, survivin expression in tumor, and the SLC12A2, SLC12A5, SLC5A8, CDH1, and CDH2 expression in cells were studied. The tumor groups were: control, cells treated with 10 mM and 5 mM of NaDCA, and 5 mM and 2.5 mM of MgDCA. The cells were also treated with 3 mM DCA. Both the 10 mM DCA preparations significantly reduced PBT24 and SF8624 tumor invasion rates, while 5 mM NaDCA reduced it only in the SF8628 tumors. The 5 mM MgDCA inhibited tumor-associated neoangiogenesis in PBT24; both doses of NaDCA inhibited tumor-associated neoangiogenesis in SF8628. The 10 mM DCA inhibited the expression of markers tested in PBT24 and SF8628 tumors, but the 5 mM DCA affect on their expression depended on the cation. The DCA treatment did not affect the SLC12A2, SLC12A5, and SLC5A8 expression in cells but increased CDH1 expression in SF8628. The tumor response to DCA at different doses indicated that a contrast between NaDCA and MgDCA effectiveness reflects the differences in the tested cells’ biologies.
Collapse
|
14
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Liu L, Liu H, Luo S, Patz EF, Glass C, Su L, Lin L, Christiani DC, Wei Q. Genetic Variants of CLEC4E and BIRC3 in Damage-Associated Molecular Patterns-Related Pathway Genes Predict Non-Small Cell Lung Cancer Survival. Front Oncol 2021; 11:717109. [PMID: 34692492 PMCID: PMC8527850 DOI: 10.3389/fonc.2021.717109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence supports a role of various damage-associated molecular patterns (DAMPs) in progression of lung cancer, but roles of genetic variants of the DAMPs-related pathway genes in lung cancer survival remain unknown. We investigated associations of 18,588 single-nucleotide polymorphisms (SNPs) in 195 DAMPs-related pathway genes with non-small cell lung cancer (NSCLC) survival in a subset of genotyping data for 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another independent subset of genotyping data for 984 patients from Harvard Lung Cancer Susceptibility Study. We performed multivariate Cox proportional hazards regression analysis, followed by expression quantitative trait loci (eQTL) analysis, Kaplan-Meier survival analysis and bioinformatics functional prediction. We identified that two SNPs (i.e., CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>A) were independently associated with NSCLC overall survival, with adjusted allelic hazards ratios of 0.89 (95% confidence interval=0.82-0.95 and P=0.001) and 0.82 (0.73-0.91 and P=0.0003), respectively; so were their combined predictive alleles from discovery and replication datasets (Ptrend=0.0002 for overall survival). We also found that the CLEC4E rs10841847 A allele was associated with elevated mRNA expression levels in normal lymphoblastoid cells and whole blood cells, while the BIRC3 rs11225211 A allele was associated with increased mRNA expression levels in normal lung tissues. Collectively, these findings indicated that genetic variants of CLEC4E and BIRC3 in the DAMPs-related pathway genes were associated with NSCLC survival, likely by regulating the mRNA expression of the corresponding genes.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Radiology, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - Lijuan Lin
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - David C Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
17
|
A Novel Recombinant Fcγ Receptor-Targeted Survivin Combines with Chemotherapy for Efficient Cancer Treatment. Biomedicines 2021; 9:biomedicines9070806. [PMID: 34356870 PMCID: PMC8301409 DOI: 10.3390/biomedicines9070806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Formyl peptide receptor-like 1 inhibitor (FLIPr), an Fcγ receptor (FcγR) antagonist, can be used as a carrier to guide antigen-FLIPr fusion protein to FcγR then enhances antigen-specific immune responses. Survivin, a tumor-associated antigen, is over-expressed in various types of human cancer. In this study, we demonstrate that recombinant survivin-FLIPr fusion protein (rSur-FLIPr) binds to FcγRs, and efficient uptake by dendritic cells in vivo. In addition, rSur-FLIPr alone stimulates survivin-specific immune responses, which effectively suppresses the tumor growth. The antitumor immunities are through TAP-mediated and CD8-dependent pathways. Furthermore, preexisting anti-FLIPr antibody does not abolish antitumor responses induced by rSur-FLIPr immunization. These results suggest that FLIPr is an effective antigen delivery vector and can be repeatedly used. Combination of chemotherapy with rSur-FLIPr treatment reveals a great benefit to tumor-bearing mice. Altogether, these findings suggest that rSur-FLIPr is a potential candidate for efficient cancer therapy.
Collapse
|
18
|
Fares J, Ahmed AU, Ulasov IV, Sonabend AM, Miska J, Lee-Chang C, Balyasnikova IV, Chandler JP, Portnow J, Tate MC, Kumthekar P, Lukas RV, Grimm SA, Adams AK, Hébert CD, Strong TV, Amidei C, Arrieta VA, Zannikou M, Horbinski C, Zhang H, Burdett KB, Curiel DT, Sachdev S, Aboody KS, Stupp R, Lesniak MS. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol 2021; 22:1103-1114. [PMID: 34214495 DOI: 10.1016/s1470-2045(21)00245-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma. METHODS This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design. Patients with newly diagnosed, histologically confirmed, high-grade gliomas (WHO grade III or IV) were recruited. After neurosurgical resection, NSC-CRAd-S-pk7 was injected into the walls of the resection cavity. The first patient cohort received a dose starting at 6·25 × 1010 viral particles administered by 5·00 × 107 NSCs, the second cohort a dose of 1·25 × 1011 viral particles administered by 1·00 × 108 NSCs, and the third cohort a dose of 1·875 × 1011 viral particles administered by 1·50 × 108 NSCs. No further dose escalation was planned. Within 10-14 days, treatment with temozolomide and radiotherapy was initiated. Primary endpoints were safety and toxicity profile and the maximum tolerated dose for a future phase 2 trial. All analyses were done in all patients who were included in the trial and received the study treatment and were not excluded from the study. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT03072134. FINDINGS Between April 24, 2017, and Nov 13, 2019, 12 patients with newly diagnosed, malignant gliomas were recruited and included in the safety analysis. Histopathological evaluation identified 11 (92%) of 12 patients with glioblastoma and one (8%) of 12 patients with anaplastic astrocytoma. The median follow-up was 18 months (IQR 14-22). One patient receiving 1·50 × 108 NSCs loading 1·875 × 1011 viral particles developed viral meningitis (grade 3) due to the inadvertent injection of NSC-CRAd-S-pk7 into the lateral ventricle. Otherwise, treatment was safe as no formal dose-limiting toxicity was reached, so 1·50 × 108 NSCs loading 1·875 × 1011 viral particles was recommended as a phase 2 trial dose. There were no treatment-related deaths. The median progression-free survival was 9·1 months (95% CI 8·5-not reached) and median overall survival was 18·4 months (15·7-not reached). INTERPRETATION NSC-CRAd-S-pk7 treatment was feasible and safe. Our immunological and histopathological findings support continued investigation of NSC-CRAd-S-pk7 in a phase 2/3 clinical trial. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya V Ulasov
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James P Chandler
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA
| | - Matthew C Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Priya Kumthekar
- Department of Neurology, Division of Neuro-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Department of Neurology, Division of Neuro-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sean A Grimm
- Department of Neurology, Division of Neuro-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ann K Adams
- Office of the Vice-President for Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Christina Amidei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Markella Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pathology, Division of Neuropathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hui Zhang
- Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirsten Bell Burdett
- Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen S Aboody
- Department of Developmental & Stem Cell Biology, Division of Neurosurgery, City of Hope, Duarte, CA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Wei D, Li C, Ye J, Xiang F, Xu Y, Liu J. Codelivery of survivin inhibitor and chemotherapeutics by tumor-derived microparticles to reverse multidrug resistance in osteosarcoma. Cell Biol Int 2020; 45:382-393. [PMID: 33135822 DOI: 10.1002/cbin.11494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
Reportedly, the elevated expression of survivin has been observed in several tumor types, strictly involved in tumor development. In the present study, we detected elevated survivin expression in tumor tissues derived from patients with chemoresistant osteosarcoma when compared with those from chemosensitive patients. Importantly, knockdown of survivin in osteosarcoma cells significantly suppressed cell proliferation and chemoresistance both in vitro and in vivo. Simultaneously, chemotherapy mediates the upregulation of survivin in osteosarcoma cells through a survivin-based selective killing effect, resulting in the development of multidrug resistance. The utilization of tumor-derived microparticles to coencapsulate the survivin inhibitor YM155 and chemotherapeutic agents could effectively reverse multidrug resistance, leading to improved anticancer effects, as well as reduced systemic toxicity. In summary, the expression of survivin contributes to resistance toward osteosarcoma drugs, whereas employing survivin inhibiting combination therapy, based on a microparticle codelivery system, could efficiently reverse resistance and avoid potential systemic toxicity.
Collapse
Affiliation(s)
- Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cui Li
- Department of Nosocomial Infection Control, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feifan Xiang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yangbo Xu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Juncai Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Pustchi SE, Avci NG, Akay YM, Akay M. Astrocytes Decreased the Sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int J Mol Sci 2020; 21:E7154. [PMID: 32998285 PMCID: PMC7583902 DOI: 10.3390/ijms21197154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant type of astrocytic tumors. GBM patients have a poor prognosis with a median survival of approximately 15 months despite the "Stupp" Regimen and high tumor recurrence due to the tumor resistance to chemotherapy. In this study, we co-cultured GBM cells with human astrocytes in three-dimensional (3D) poly(ethylene glycol) dimethyl acrylate (PEGDA) microwells to mimic the tumor microenvironment. We treated 3D co- and mono-cultured cells with Temozolomide (TMZ) and the nuclear factor-κB (NF-κB) inhibitor Bay 11-7082 and investigated the combined effect of the drugs. We assessed the expressions of glial fibrillary acidic protein (GFAP) and vimentin that play a role in the tumor malignancy and activation of the astrocytes as well as Notch-1 and survivin that play a role in GBM malignancy after the drug treatment to understand how astrocytes induced GBM drug response. Our results showed that in the co-culture, astrocytes increased GBM survival and resistance after combined drug treatment compared to mono-cultures. These data restated the importance of 3D cell culture to mimic the tumor microenvironment for drug screening.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Coculture Techniques/methods
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Models, Biological
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/pathology
- Nitriles/pharmacology
- Primary Cell Culture
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Sulfones/pharmacology
- Survivin/genetics
- Survivin/metabolism
- Temozolomide/pharmacology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Vimentin/genetics
- Vimentin/metabolism
Collapse
Affiliation(s)
| | | | | | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (S.E.P.); (N.G.A.); (Y.M.A.)
| |
Collapse
|
21
|
Kozielski KL, Ruiz-Valls A, Tzeng SY, Guerrero-Cázares H, Rui Y, Li Y, Vaughan HJ, Gionet-Gonzales M, Vantucci C, Kim J, Schiapparelli P, Al-Kharboosh R, Quiñones-Hinojosa A, Green JJ. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 2019; 209:79-87. [PMID: 31026613 PMCID: PMC7122460 DOI: 10.1016/j.biomaterials.2019.04.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 01/15/2023]
Abstract
Novel treatments for glioblastoma (GBM) are urgently needed, particularly those which can simultaneously target GBM cells' ability to grow and migrate. Herein, we describe a synthetic, bioreducible, biodegradable polymer that can package and deliver hundreds of siRNA molecules into a single nanoparticle, facilitating combination therapy against multiple GBM-promoting targets. We demonstrate that siRNA delivery with these polymeric nanoparticles is cancer-selective, thereby avoiding potential side effects in healthy cells. We show that we can deliver siRNAs targeting several anti-GBM genes (Robo1, YAP1, NKCC1, EGFR, and survivin) simultaneously and within the same nanoparticles. Robo1 (roundabout homolog 1) siRNA delivery by biodegradable particles was found to trigger GBM cell death, as did non-viral delivery of NKCC1, EGFR, and survivin siRNA. Most importantly, combining several anti-GBM siRNAs into a nanoparticle formulation leads to high GBM cell death, reduces GBM migration in vitro, and reduces tumor burden over time following intratumoral administration. We show that certain genes, like survivin and EGFR, are important for GBM survival, while NKCC1, is more crucial for cancer cell migration. This represents a powerful platform technology with the potential to serve as a multimodal therapeutic for cancer.
Collapse
Affiliation(s)
- Kristen L Kozielski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA; Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Alejandro Ruiz-Valls
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Hugo Guerrero-Cázares
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Yuxin Li
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Marissa Gionet-Gonzales
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Casey Vantucci
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Jayoung Kim
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Paula Schiapparelli
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rawan Al-Kharboosh
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, And Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA; Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Department of Ophthalmology, The Sidney Kimmel Comprehensive Cancer, And the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
22
|
Rajani KR, Carlstrom LP, Parney IF, Johnson AJ, Warrington AE, Burns TC. Harnessing Radiation Biology to Augment Immunotherapy for Glioblastoma. Front Oncol 2019; 8:656. [PMID: 30854331 PMCID: PMC6395389 DOI: 10.3389/fonc.2018.00656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common adult primary brain tumor and carries a dismal prognosis. Radiation is a standard first-line therapy, typically deployed following maximal safe surgical debulking, when possible, in combination with cytotoxic chemotherapy. For other systemic cancers, standard of care is being transformed by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and PD-1/PD-L1, with potential for long-term remission. Ongoing studies are evaluating the role of immunotherapies for GBM. Despite dramatic responses in some cases, randomized trials to date have not met primary outcomes. Challenges have been attributed in part to the immunologically "cold" nature of glioblastoma relative to other malignancies successfully treated with immunotherapy. Radiation may serve as a mechanism to improve tumor immunogenicity. In this review, we critically evaluate current evidence regarding radiation as a synergistic facilitator of immunotherapies through modulation of both the innate and adaptive immune milieu. Although current preclinical data encourage efforts to harness synergistic biology between radiation and immunotherapy, several practical and scientific challenges remain. Moreover, insights from radiation biology may unveil additional novel opportunities to help mobilize immunity against GBM.
Collapse
Affiliation(s)
- Karishma R. Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lucas P. Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian F. Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Terry C. Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
Zhenjiang L, Rao M, Luo X, Valentini D, von Landenberg A, Meng Q, Sinclair G, Hoffmann N, Karbach J, Altmannsberger HM, Jäger E, Peredo IH, Dodoo E, Maeurer M. Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme. EBioMedicine 2018; 33:49-56. [PMID: 30049387 PMCID: PMC6085502 DOI: 10.1016/j.ebiom.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics. RESULTS Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin97-111 peptide (p = .0152) correlated with longer survival among patients with GBM. Multivariate analysis identified survivin97-111-directed IFN-γ production with IL-2/IL-15/IL-21 conditioning (p = .024), and the combined presence of serum IFN-γ/TNF-α/IL-17a (p = .003) as independent predictors of survival. CONCLUSION Serum cytokine patterns and lymphocyte reactivity to survivin97-111, particularly with IL-2, IL-15 and IL-21 conditioning may be instrumental in predicting survival among patients with GBM. This has implications for clinical follow-up of patients with GBM and the targeted development of immunotherapy for patients with CNS tumours.
Collapse
Affiliation(s)
- Liu Zhenjiang
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Anna von Landenberg
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hoffmann
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Karbach
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | | | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Abstract
BACKGROUND The aim of this study was to systematically evaluate the prognostic role of survivin in patients with glioma through performing a meta-analysis. METHODS PubMed, Web of Science, Cochrane Library, and EMBASE were searched for potentially eligible literature. The study characteristics and relevant data were extracted. Hazard ratios (HRs) with 95% confidence intervals (CIs) were pooled to estimate the prognostic role of survivin in patients with glioma. RESULTS Sixteen studies with 1260 patients were included. The pooled HR of higher survivin expression for overall survival was 1.96 (95% CI, 1.57-2.45). The pooled HRs of higher survivin expression for progression- and disease-free survival were 1.62 (95% CI, 0.91-2.90) and 2.41 (95% CI, 0.98-5.90), respectively. Subgroup analyses were also performed. CONCLUSION Our results suggested that higher survivin expression was associated with worse overall survival in patients with glioma. The findings may assist future exploration on pathogenesis, diagnosis, anti-survivin therapy, and prognosis in glioma. However, due to the limited study number, more studies are warranted to verify our results.
Collapse
Affiliation(s)
- Sunfu Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Changwei Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Yanlin Song
- West China Medical School of Sichuan University, Sichuan, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| |
Collapse
|
25
|
Fenstermaker RA, Figel SA, Qiu J, Barone TA, Dharma SS, Winograd EK, Galbo PM, Wiltsie LM, Ciesielski MJ. Survivin Monoclonal Antibodies Detect Survivin Cell Surface Expression and Inhibit Tumor Growth In Vivo. Clin Cancer Res 2018. [PMID: 29540489 DOI: 10.1158/1078-0432.ccr-17-2778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Survivin is an inhibitor of apoptosis protein (IAP) that is highly expressed in many cancers and represents an attractive molecule for targeted cancer therapy. Although primarily regarded as an intracellular protein with diverse actions, survivin has also been identified in association with circulating tumor exosomes.Experimental Design: We have reported that active, specific vaccination with a long peptide survivin immunogen leads to the development of survivin-specific CD8-mediated tumor cell lysis and prolongation of survival in tumor-bearing mice. In addition to cellular antitumor responses, circulating anti-survivin antibodies are detected in the serum of mice and human glioblastoma patients following vaccination with the survivin immunogen.Results: Here we demonstrate that survivin is present on the outer cell membrane of a wide variety of cancer cell types, including both murine and human glioma cells. In addition, antibodies to survivin that are derived from the immunogen display antitumor activity against murine GL261 gliomas in both flank and intracranial tumor models and against B16 melanoma as well.Conclusions: In addition to immunogen-induced, CD8-mediated tumor cell lysis, antibodies to the survivin immunogen have antitumor activity in vivo Cell-surface survivin could provide a specific target for antibody-mediated tumor immunotherapeutic approaches. Clin Cancer Res; 24(11); 2642-52. ©2018 AACR.
Collapse
Affiliation(s)
- Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Sheila A Figel
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tara A Barone
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sanam S Dharma
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Evan K Winograd
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Phillip M Galbo
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Laura M Wiltsie
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
26
|
Faccion RS, Bernardo PS, de Lopes GPF, Bastos LS, Teixeira CL, de Oliveira JA, Fernandes PV, Dubois LG, Chimelli L, Maia RC. p53 expression and subcellular survivin localization improve the diagnosis and prognosis of patients with diffuse astrocytic tumors. Cell Oncol (Dordr) 2018; 41:141-157. [DOI: 10.1007/s13402-017-0361-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
|
27
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
28
|
Conde M, Michen S, Wiedemuth R, Klink B, Schröck E, Schackert G, Temme A. Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity of glioma cells. BMC Cancer 2017; 17:889. [PMID: 29282022 PMCID: PMC5745881 DOI: 10.1186/s12885-017-3932-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023] Open
Abstract
Background Survivin, belonging to the inhibitor of apoptosis (IAP) gene family, is abundantly expressed in tumors. It has been hypothesized that Survivin facilitates carcinogenesis by inhibition of apoptosis resulting in improved survival of tumorigenic progeny. Additionally, Survivin plays an essential role during mitosis. Together with its molecular partners Aurora B, Borealin and inner centromere protein it secures bipolar chromosome segregation. However, whether increased Survivin levels contribute to progression of tumors by inducing chromosomal instability remains unclear. Methods We overexpressed Survivin in U251-MG, SVGp12, U87-MG, HCT116 and p53-deficient U87-MGshp53 and HCT116p53−/− cells. The resulting phenotype was investigated by FACS-assisted cell cycle analysis, Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and in a U251-MG xenograft model using immune-deficient mice. Results Overexpression of Survivin affected cells with knockdown of p53, cells harboring mutant p53 and SV40 large T antigen, respectively, resulting in the increase of cell fractions harboring 4n and >4n DNA contents. Increased γH2AX levels, indicative of DNA damage were monitored in all Survivin-transduced cell lines, but only in p53 wild type cells this was accompanied by an attenuated S-phase entry and activation of p21waf/cip. Overexpression of Survivin caused a DNA damage response characterized by increased appearance pDNA-PKcs foci in cell nuclei and elevated levels of pATM S1981 and pCHK2 T68. Additionally, evolving structural chromosomal aberrations in U251-MG cells transduced with Survivin indicated a DNA-repair by non-homologous end joining recombination. Subcutaneous transplantation of U251-MG cells overexpressing Survivin and mycN instead of mycN oncogene alone generated tumors with shortened latency and decreased apoptosis. Subsequent SKY-analysis of Survivin/mycN-tumors revealed an increase in structural chromosomal aberrations in cells when compared to mycN-tumors. Conclusions Our data suggest that increased Survivin levels promote adaptive evolution of tumors through combining induction of genetic heterogeneity with inhibition of apoptosis. Electronic supplementary material The online version of this article (10.1186/s12885-017-3932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Conde
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany.
| |
Collapse
|
29
|
Tumour-specific triple-regulated oncolytic herpes virus to target glioma. Oncotarget 2017; 7:28658-69. [PMID: 27070093 PMCID: PMC5053753 DOI: 10.18632/oncotarget.8637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/16/2016] [Indexed: 01/04/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (oHSV-1) therapy is an emerging treatment modality that selectively destroys cancer. Here we report use of a glioma specific HSV-1 amplicon virus (SU4-124 HSV-1) to selectively target tumour cells. To achieve transcriptional regulation of the SU4-124 HSV-1 virus, the promoter for the essential HSV-1 gene ICP4 was replaced with a tumour specific survivin promoter. Translational regulation was achieved by incorporating 5 copies of microRNA 124 target sequences into the 3'UTR of the ICP4 gene. Additionally, a 5'UTR of rat fibroblast growth factor -2 was added in front of the viral ICP4 gene open reading frame. Our results confirmed enhanced expression of survivin and eIF4E in different glioma cells and increased micro-RNA124 expression in normal human and mouse brain tissue. SU4-124 HSV-1 had an increased ICP4 expression and virus replication in different glioma cells compared to normal neuronal cells. SU4-124 HSV-1 exerted a strong antitumour effect against a panel of glioma cell lines. Intracranial injection of SU4-124 HSV-1 did not reveal any sign of toxicity on day 15 after the injection. Moreover, a significantly enhanced antitumour effect with the intratumourally injected SU4-124 HSV-1 virus was demonstrated in mice bearing human glioma U87 tumours, whereas viral DNA was almost undetectable in normal organs. Our study indicates that incorporation of multiple cancer-specific regulators in an HSV-1 system significantly enhances both cancer specificity and oncolytic activity.
Collapse
|
30
|
Goethe E, Carter BZ, Rao G, Pemmaraju N. Glioblastoma and acute myeloid leukemia: malignancies with striking similarities. J Neurooncol 2017; 136:223-231. [PMID: 29196926 DOI: 10.1007/s11060-017-2676-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) and glioblastoma (GB) are two malignancies associated with high incidence of treatment refractoriness and generally, uniformly poor survival outcomes. While the former is a hematologic (i.e. a "liquid") malignancy and the latter a solid tumor, the two diseases share both clinical and biochemical characteristics. Both diseases exist predominantly in primary (de novo) forms, with only a small subset of each progressing from precursor disease states like the myelodysplastic syndromes or diffuse glioma. More importantly, the primary and secondary forms of each disease are characterized by common sets of mutations and gene expression abnormalities. The primary versions of AML and GB are characterized by aberrant RAS pathway, matrix metalloproteinase 9, and Bcl-2 expression, and their secondary counterparts share abnormalities in TP53, isocitrate dehydrogenase, ATRX, inhibitor of apoptosis proteins, and survivin that both influence the course of the diseases themselves and their progression from precursor disease. An understanding of these shared features is important, as it can be used to guide both the research about and treatment of each.
Collapse
Affiliation(s)
- Eric Goethe
- Department of Neurosurgery, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Bing Z Carter
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
32
|
Bhunia S, Vangala V, Bhattacharya D, Ravuri HG, Kuncha M, Chakravarty S, Sistla R, Chaudhuri A. Large Amino Acid Transporter 1 Selective Liposomes of l-DOPA Functionalized Amphiphile for Combating Glioblastoma. Mol Pharm 2017; 14:3834-3847. [PMID: 28958145 DOI: 10.1021/acs.molpharmaceut.7b00569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant progress in neurosurgery and radiation therapy during the past decade, overall survivability (OS) of glioblastoma patients continues to be less than 2 years. The scope of systemic chemotherapy is greatly limited by poor drug transport across the blood brain barrier (BBB) and, thereby, suboptimal drug accumulation in glioma tissue. To this end, use of large amino acid transporter-1 (LAT1) overexpressed both on brain capillary endothelial cells (BCECs) and glioma cells has begun. Prior reports on the use of LAT1 mediated delivery of model drugs showed their brain accumulations. However, in depth in vivo glioblastoma regression studies aimed at examining the therapeutic potential of LAT1 mediated delivery of potent chemotherapeutics to brain tumor tissues have not yet been undertaken. Herein, we report on the development of a nanometric (100-135 nm) promising LAT1 selective liposomal drug carrier prepared from a novel l-3,4-dihydroxyphenylalanine (l-DOPA) functionalized amphiphile (Amphi-DOPA). In vitro studies using Rh-PE labeled liposomes of Amphi-DOPA both in untreated glioma (GL261) cells and in GL261cells preincubated with LAT1 antibody revealed LAT1 mediated cellular uptake. Intravenously administered NIR-dye labeled liposomes of Amphi-DOPA in glioblastoma-bearing mice showed preferential accumulation of the dye in brain tissue. Notably iv administration of WP1066-loaded liposomes of Amphi-DOPA enhanced the overall survivability of C57BL/6J mice bearing orthotopically established mouse glioblastoma by ∼60% compared to that for the untreated mouse group. Furthermore, we show that the OS of established glioblastoma-bearing mice can be significantly enhanced (by >300% compared to that for the untreated mouse group) when the presently described LAT1 mediated targeted chemotherapy with WP1066-loaded liposomes of Amphi-DOPA is combined with in vivo DC-targeted DNA vaccination using a survivin (a glioblastoma antigen) encoded DNA vaccine. The present findings open a new door for LAT1 mediated systemic chemotherapy of glioblastoma.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India
| | - Venugopal Vangala
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India
| | - Dwaipayan Bhattacharya
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India
| | - Halley Gora Ravuri
- School of Veterinary Science, University of Queensland , Gatton, Brisbane, Queensland Australia 4343
| | - Madhusudana Kuncha
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India
| | - Ramakrishna Sistla
- Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India.,Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India
| | - Arabinda Chaudhuri
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad 500007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi, India
| |
Collapse
|
33
|
Galbo PM, Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, Minderman H, Fenstermaker RA. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget 2017; 8:114722-114735. [PMID: 29383115 PMCID: PMC5777727 DOI: 10.18632/oncotarget.21773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Glioma cells release exosomes in culture and into the extracellular matrix in vivo. These nanobodies transport an array of biomolecules and are capable of mediating cell-cell communication. Circulating exosomes in cancer patients may be indicative of disease status and response to therapy. The inhibitor of apoptosis protein (IAP) survivin (SVN) promotes cancer cell proliferation, local immune suppression and resistance to chemotherapy and it is a potential cancer biomarker. We used imaging flow cytometry to perform quantitative measurements of circulating SVN+ exosomes in the serum of malignant glioma patients undergoing investigational treatment with an anti-survivin vaccine (SurVaxM). Serum from glioma patients contained abundant CD9+ exosomes with both SVN and glial fibrillary acidic protein (GFAP) on their surface. Survivin and GFAP were evaluated both independently and together as possible tumor markers on CD9+ exosomes. Patients with longer time to tumor progression generally exhibited a decrease in circulating CD9+/SVN+ and CD9+/GFAP+/SVN+ exosomes immediately following survivin vaccination; whereas, those with early tumor progression had an increase in exosomes, despite anti-survivin immunotherapy. Serum from non-cancer healthy control individuals had very few detectable CD9+/GFAP+/SVN+ exosomes, although CD9+/GFAP+ exosomes were detectable in small numbers. This study demonstrates that patients with malignant gliomas have CD9+/GFAP+/SVN+ and CD9+/SVN+ exosomes that are released into the circulation and that early reductions in their numbers following anti-survivin immunotherapy might be associated with longer progression-free survival.
Collapse
Affiliation(s)
- Phillip M Galbo
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Sheila Figel
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Orla Maguire
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Jingxin Qiu
- Pathology, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Laura Wiltsie
- Pediatrics, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Hans Minderman
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| |
Collapse
|
34
|
Gressot LV, Doucette T, Yang Y, Fuller GN, Manyam G, Rao A, Latha K, Rao G. Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 2017; 8:12695-12704. [PMID: 27074575 PMCID: PMC5355046 DOI: 10.18632/oncotarget.8657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Gliomas, the most common primary brain tumor in humans, include a spectrum of disease. High-grade gliomas (HGG), such as glioblastoma, may arise from low-grade gliomas (LGG) that have a more indolent course. The process of malignant transformation (MT) of LGG to HGG is poorly understood but likely involves the activation of signaling programs that suppress apoptosis. We previously showed that Survivin (BIRC5) plays a role in malignant progression of glioma. Here, we investigated the role of the remaining members of the Inhibitors of Apoptosis (IAP) family on promoting MT in glioma. Utilizing expression data from the cancer genome atlas (TCGA), we identified BIRC3 as a key facilitator of MT from LGG to HGG. TCGA HGGs with high expression of BIRC 3 demonstrated a survival disadvantage and expression levels of BIRC3 were also significantly higher in TCGA HGG compared to TCGA LGG cases. We validated our findings from TCGA by using matched human specimens to show that BIRC expression is increased in HGG compared to their precursor LGG lesions. Using a unique murine model of glioma, we show that overexpression of BIRC3 promotes higher grade glioma and significantly reduces tumor-free survival in mice.
Collapse
Affiliation(s)
- Loyola V Gressot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuhui Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Khatri Latha
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Zhang F, Chu J, Wang F. Expression and clinical significance of cyclooxygenase 2 and survivin in human gliomas. Oncol Lett 2017; 14:1303-1308. [PMID: 28789345 PMCID: PMC5529877 DOI: 10.3892/ol.2017.6281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to determine cyclooxygenase 2 (COX-2) and survivin expression levels in glioma tissues, and to investigate their association with clinicopathological factors and patient survival. Immunohistochemistry was performed to evaluate COX-2 and survivin expression levels in paraffin-embedded surgically resected tissues from 70 patients with glioma and 7 individuals with normal brain tissues. The association between COX-2 and survivin expression levels and clinicopathological features was investigated using the χ2 test, and the survival time was analyzed using the Kaplan Meier method with log-rank test. COX-2 and survivin were overexpressed in glioma tissues, and higher expression levels were observed in glioma tissues of histological grades III–IV compared with those in grade I–II tumor tissues (P<0.05); however, the expression levels were not associated with gender, age, tumor size or location (P>0.05). There was a significant positive association between the expression levels of COX-2 and survivin in the glioma tissues. Additionally, COX-2 and survivin expression levels were significantly negatively correlated with the rate of survival. In conclusion, COX-2 and survivin expression is positively associated with the pathological grade of a glioma and may contribute to glioma tumorigenesis. Therefore, COX-2 and survivin may be sensitive predictors of a negative clinical prognosis for patients with glioma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jinjin Chu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
36
|
Saito T, Sugiyama K, Takeshima Y, Amatya VJ, Yamasaki F, Takayasu T, Nosaka R, Muragaki Y, Kawamata T, Kurisu K. Prognostic implications of the subcellular localization of survivin in glioblastomas treated with radiotherapy plus concomitant and adjuvant temozolomide. J Neurosurg 2017; 128:679-684. [PMID: 28430038 DOI: 10.3171/2016.11.jns162326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Currently, the standard treatment protocol for patients with newly diagnosed glioblastoma (GBM) includes surgery, radiotherapy, and concomitant and adjuvant temozolomide (TMZ). Various prognostic biomarkers for GBM have been described, including survivin expression. The aim of this study was to determine whether the subcellular localization of survivin correlates with GBM prognosis in patients who received the standard treatment protocol. METHODS The authors retrospectively examined the subcellular localization of survivin (nuclear, cytoplasmic, or both) using immunohistochemistry in 50 patients with GBM who had received the standard treatment. The relationship between survivin localization and overall survival (OS) was assessed with uni- and multivariate analyses including other clinicopathological factors (age, sex, Karnofsky Performance Scale [KPS] score, extent of resection, the use of second-line bevacizumab, O6-methylguanine-DNA methyltransferase [MGMT] status, and MIB-1 labeling index). RESULTS Log-rank tests revealed that patient age, KPS score, extent of resection, MGMT status, and survivin localization (p < 0.0001) significantly correlated with OS. Multivariate analysis indicated that patient age, MGMT status, and survivin localization significantly correlated with OS. Patients with nuclear localization of survivin had a significantly shorter OS than those in whom survivin expression was exclusively cytoplasmic (median OS 19.5 vs 31.7 months, respectively, HR 5.690, 95% CI 2.068-17.612, p = 0.0006). There was no significant difference in OS between patents whose survivin expression was exclusively nuclear or nuclear/cytoplasmic. CONCLUSIONS Nuclear expression of survivin is a factor for a poor prognosis in GBM patients. Subcellular localization of survivin can help to predict OS in GBM patients treated with the standard protocol.
Collapse
Affiliation(s)
- Taiichi Saito
- Departments of1Neurosurgery and.,4Department of Neurosurgery, Tokyo Women's Medical University, Tokyo,Japan
| | - Kazuhiko Sugiyama
- 2Department of Clinical Oncology and Neuro-oncology Program, Hiroshima University Hospital, Hiroshima; and
| | - Yukio Takeshima
- 3Pathology, Hiroshima University, Graduate School of Biomedical and Health Science
| | - Vishwa Jeet Amatya
- 3Pathology, Hiroshima University, Graduate School of Biomedical and Health Science
| | | | | | | | - Yoshihiro Muragaki
- 4Department of Neurosurgery, Tokyo Women's Medical University, Tokyo,Japan
| | - Takakazu Kawamata
- 4Department of Neurosurgery, Tokyo Women's Medical University, Tokyo,Japan
| | | |
Collapse
|
37
|
Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor Vaccines for Malignant Gliomas. Neurotherapeutics 2017; 14:345-357. [PMID: 28389997 PMCID: PMC5398993 DOI: 10.1007/s13311-017-0522-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.
Collapse
Affiliation(s)
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Bae IS, Kim CH, Kim JM, Cheong JH, Ryu JI, Han MH. Correlation of survivin and B-cell lymphoma 2 expression with pathological malignancy and anti-apoptotic properties of glial cell tumors. Biomed Rep 2017; 6:396-400. [PMID: 28413637 DOI: 10.3892/br.2017.861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/27/2017] [Indexed: 01/17/2023] Open
Abstract
Apoptosis, whose mechanism remains unclear, is regulated by multiple factors. B-cell lymphoma 2 (Bcl-2) is a well-known anti-apoptotic mediator. Survivin is also a recently recognized novel family inhibitor of apoptosis protein, which inhibits apoptosis via a pathway distinct from Bcl-2 family members. Survivin and Bcl-2 are expressed in various types of human cancer. In the present study, survivin and Bcl-2 expression were characterized in glial cell tumors, and the correlation with pathological malignancy and anti-apoptotic properties were investigated. Fifty-eight patients who had undergone surgical resection for glial cell tumors were evaluated. The pathological types of glial cell tumors were categorized according to the World Health Organization classification. Survivin and Bcl-2 expression levels were investigated by western blot analysis, and apoptosis was detected by DNA fragmentation analysis. The anti-apoptotic rate of glial cell tumors was calculated in tumor samples according to the expression of survivin and Bcl-2 or co-expression. Survivin was characterized in 60.3%, and Bcl-2 was expressed in 43.1% of glioma samples. Co-expression of survivin and Bcl-2 was observed in 25.9% of the tumor specimens. Survivin expression in astrocytic tumors was identified to be significantly associated with the pathological grade (P<0.05); however, Bcl-2 was not (P>0.05). Anti-apoptotic rate of glial cell tumors were detected in 91.4, 92.0 and 100% of patients exhibiting survivin, Bcl-2 or co-expression, respectively. However, the difference in anti-apoptotic frequency between the three groups was not identified to be statistically significant (P>0.05). The present study suggests that survivin expression is correlated with pathological grades of gliomas. In addition, the expression of survivin or Bcl-2 exerts potent anti-apoptotic properties in gliomas. Thus, survivin or Bcl-2 may serve as potential targets for inducing the apoptosis of gliomas.
Collapse
Affiliation(s)
- In-Suk Bae
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Choong-Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Jae-Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Jin-Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Je-Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| |
Collapse
|
39
|
PPIC, EMP3 and CHI3L1 Are Novel Prognostic Markers for High Grade Glioma. Int J Mol Sci 2016; 17:ijms17111808. [PMID: 27801851 PMCID: PMC5133809 DOI: 10.3390/ijms17111808] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Current treatment methods for patients diagnosed with gliomas have shown limited success. This is partly due to the lack of prognostic genes available to accurately predict disease outcomes. The aim of this study was to investigate novel prognostic genes based on the molecular profile of tumor samples and their correlation with clinical parameters. In the current study, microarray data (GSE4412 and GSE7696) downloaded from Gene Expression Omnibus were used to identify differentially expressed prognostic genes (DEPGs) by significant analysis of microarray (SAM) between long-term survivors (>2 years) and short-term survivors (≤2 years). DEPGs generated from these two datasets were intersected to obtain a list of common DEPGs. The expression of a subset of common DEPGs was then independently validated by real-time reverse transcription quantitative PCR (qPCR). Survival value of the common DEPGs was validated using known survival data from the GSE4412 and TCGA dataset. After intersecting DEPGs generated from the above two datasets, three genes were identified which may potentially be used to determine glioma patient prognosis. Independent validation with glioma patients tissue (n = 70) and normal brain tissue (n = 19) found PPIC, EMP3 and CHI3L1 were up-regulated in glioma tissue. Survival value validation showed that the three genes correlated with patient survival by Kaplan-Meir analysis, including grades, age and therapy.
Collapse
|
40
|
Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell Death Dis 2016; 7:e2325. [PMID: 27490930 PMCID: PMC5108315 DOI: 10.1038/cddis.2016.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 01/29/2023]
Abstract
Glioblastomas (GBMs) are the most aggressive primary brain tumors in adult and remain a therapeutic challenge. Targeting key apoptosis regulators with the ultimate aim to restore apoptosis in tumor cells could be an interesting therapeutic strategy. The inhibitors of apoptosis proteins (IAPs) are regulators of cell death and represent attractive targets, especially because they can be antagonized by SMAC mimetics. In this study, we first investigated the expression of cIAP1, cIAP2, XIAP and ML-IAP in human GBM samples and in four different cell lines. We showed that all GBM samples and GBM cell lines expressed all these IAPs, although the expression of each IAP varied from one case to another. We then showed that high level of ML-IAP predicted worse progression-free survival and overall survival in both univariate and multivariate analyses in two independent cohorts of 58 and 43 primary human GBMs. We then used GDC-0152, a SMAC mimetic that antagonizes these IAPs and confirmed that GDC-0152 treatment in vitro decreased IAPs in all the cell lines studied. It affected cell line viability and triggered apoptosis, although the effect was higher in U87MG and GL261 than in GBM6 and GBM9 cell lines. In vivo, GDC-0152 effect on U87MG orthotopic xenografts was dose dependent; it postponed tumor formation and slowed down tumor growth, significantly improving survival of GBM-bearing mice. This study revealed for the first time that ML-IAP protein expression correlates with GBM patient survival and that its antagonist GDC-0152 improves outcome in xenografted mouse.
Collapse
|
41
|
Kaur E, Sahu A, Hole AR, Rajendra J, Chaubal R, Gardi N, Dutt A, Moiyadi A, Krishna CM, Dutt S. Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population. Sci Rep 2016; 6:26538. [PMID: 27221528 PMCID: PMC4879554 DOI: 10.1038/srep26538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/04/2016] [Indexed: 02/08/2023] Open
Abstract
An inability to discern resistant cells from bulk tumour cell population contributes to poor prognosis in Glioblastoma. Here, we compared parent and recurrent cells generated from patient derived primary cultures and cell lines to identify their unique molecular hallmarks. Although morphologically similar, parent and recurrent cells from different samples showed variable biological properties like proliferation and radiation resistance. However, total RNA-sequencing revealed transcriptional landscape unique to parent and recurrent populations. These data suggest that global molecular differences but not individual biological phenotype could differentiate parent and recurrent cells. We demonstrate that Raman Spectroscopy a label-free, non-invasive technique, yields global information about biochemical milieu of recurrent and parent cells thus, classifying them into distinct clusters based on Principal-Component-Analysis and Principal-Component-Linear-Discriminant-Analysis. Additionally, higher lipid related spectral peaks were observed in recurrent population. Importantly, Raman spectroscopic analysis could further classify an independent set of naïve primary glioblastoma tumour tissues into non-responder and responder groups. Interestingly, spectral features from the non-responder patient samples show a considerable overlap with the in-vitro generated recurrent cells suggesting their similar biological behaviour. This feasibility study necessitates analysis of a larger cohort of naïve primary glioblastoma samples to fully envisage clinical utility of Raman spectroscopy in predicting therapeutic response.
Collapse
Affiliation(s)
- Ekjot Kaur
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Aditi Sahu
- Chilakapati Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Arti R. Hole
- Chilakapati Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Jacinth Rajendra
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Rohan Chaubal
- Integrated Cancer Genomics Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Nilesh Gardi
- Integrated Cancer Genomics Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - C. Murali Krishna
- Chilakapati Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
42
|
Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mulé JJ, Etame AB. BIRC3 is a novel driver of therapeutic resistance in Glioblastoma. Sci Rep 2016; 6:21710. [PMID: 26888114 PMCID: PMC4757860 DOI: 10.1038/srep21710] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide analysis of glioblastoma (GBM) reveals pervasive aberrations in apoptotic signaling pathways that collectively contribute to therapeutic resistance. Inhibitors of apoptosis proteins (IAP) exert critical control on the terminal segment of apoptosis leading to apoptosis evasion. In this study, we uncover a unique role for BIRC3, as an IAP that is critical in GBM in response to therapy. Using the TCGA dataset of 524 unique samples, we identify BIRC3 is the only IAP whose differential expression is associated with long-term survival in GBM patients. Using patient tissue samples we further show that BIRC3 expression increases with recurrence. When extrapolated to a preclinical model of a human GBM cell line, we find an increase in BIRC3 expression in response to irradiation (RT) and temozolomide (TMZ) treatment. More importantly, we mechanistically implicate STAT3 and PI3K signaling pathways as drivers of RT-induced up-regulation of BIRC3 expression. Lastly, we demonstrate that both in-vivo and in-vitro BIRC3 up-regulation results in apoptosis evasion and therapeutic resistance in GBM. Collectively, our study identifies a novel translational and targetable role for BIRC3 expression as a predictor of aggressiveness and therapeutic resistance to TMZ and RT mediated by STAT3 and PI3K signaling in GBM.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anders Berglund
- Department of Medical Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Arnold B Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
43
|
Dihydroartemisinin suppresses growth of squamous cell carcinoma A431 cells by targeting the Wnt/β-catenin pathway. Anticancer Drugs 2016; 27:99-105. [DOI: 10.1097/cad.0000000000000307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Kim JW, Young JS, Solomaha E, Kanojia D, Lesniak MS, Balyasnikova IV. A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors. Sci Rep 2015; 5:18133. [PMID: 26656559 PMCID: PMC4677343 DOI: 10.1038/srep18133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10−9 M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies.
Collapse
Affiliation(s)
- Julius W Kim
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Solomaha
- Biophysics Core Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
45
|
How to train glioma cells to die: molecular challenges in cell death. J Neurooncol 2015; 126:377-84. [PMID: 26542029 DOI: 10.1007/s11060-015-1980-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/25/2015] [Indexed: 12/19/2022]
Abstract
The five-year survival rate for patients with malignant glioma is less than 10%. Despite aggressive chemo/radiotherapy these tumors have remained resistant to almost every interventional strategy evaluated in patients. Resistance to these agents is attributed to extrinsic mechanisms such as the tumor microenvironment, poor drug penetration, and tumoral heterogeneity. In addition, genetic and molecular examination of these tumors has revealed defective apoptotic regulation, enhanced pro-survival autophagy signaling, and a propensity for necrosis that aids in the adaptation to environmental stress and resistance to treatment. The combination of extrinsic and intrinsic hallmarks in glioma contributes to the multifaceted resistance to traditional anti-tumor agents. Here we describe the biology of the disease relevant to therapeutic resistance, with a specific focus on molecular deregulation of cell death pathways. Emerging studies investigating the targeting of these pathways including BH3 mimetics and autophagy inhibitors that are being evaluated in both the preclinical and clinical settings are discussed. This review highlights the pathways exploited by glioblastoma cells that drive their hallmark pro-survival predisposition and makes therapy development such a challenge.
Collapse
|
46
|
Liu Y, Miao C, Wang Z, He X, Shen W. Survivin small interfering RNA suppresses glioblastoma growth by inducing cellular apoptosis. Neural Regen Res 2015; 7:924-31. [PMID: 25722677 PMCID: PMC4341288 DOI: 10.3969/j.issn.1673-5374.2012.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/20/2012] [Indexed: 01/14/2023] Open
Abstract
A survivin small interfering RNA sequence specific for a human and mouse homogenous sequence was constructed. Survivin small interfering RNA could significantly inhibit glioma cell proliferation and induce apoptosis when it was transfected into either a human glioma cell line U251 or rat glioma C6 cells in vitro. In addition, treatment of rat orthotopic glioma models with survivin small interfering demonstrated the inhibition of glioma growth in vivo. Our experimental findings suggest that the use of RNA interference techniques to target the survivin sequence may be useful in the treatment of glioma.
Collapse
Affiliation(s)
- Yanbo Liu
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Chunming Miao
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Zhenjiang Wang
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Xin He
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Weigao Shen
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| |
Collapse
|
47
|
Analysis of glioblastoma tumor coverage by oncolytic virus-loaded neural stem cells using MRI-based tracking and histological reconstruction. Cancer Gene Ther 2014; 22:55-61. [PMID: 25525033 PMCID: PMC4293243 DOI: 10.1038/cgt.2014.72] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022]
Abstract
In preclinical studies, neural stem cell (NSC)-based delivery of oncolytic virus has shown great promise in the treatment of malignant glioma. Ensuring the success of this therapy will require critical evaluation of the spatial distribution of virus after NSC transplantation. In this study, the patient-derived GBM43 human glioma line was established in the brain of athymic nude mice, followed by the administration of NSCs loaded with conditionally replicating oncolytic adenovirus (NSC-CRAd-S-pk7). We determined the tumor coverage potential of oncolytic adenovirus by examining NSC distribution using magnetic resonance (MR) imaging and by three-dimensional reconstruction from ex vivo tissue specimens. We demonstrate that unmodified NSCs and NSC-CRAd-S-pk7 exhibit a similar distribution pattern with most prominent localization occurring at the tumor margins. We were further able to visualize the accumulation of these cells at tumor sites via T2-weighted MR imaging as well as the spread of viral particles using immunofluorescence. Our analyses reveal that a single administration of oncolytic virus-loaded NSCs allows for up to 31% coverage of intracranial tumors. Such results provide valuable insights into the therapeutic potential of this novel viral delivery platform.
Collapse
|
48
|
Hsieh CH, Lin YJ, Wu CP, Lee HT, Shyu WC, Wang CC. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin Cancer Res 2014; 21:460-70. [PMID: 25370472 DOI: 10.1158/1078-0432.ccr-14-0618] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor hypoxia is one of the crucial microenvironments to promote therapy resistance (TR) in glioblastoma multiforme (GBM). Livin, a member of the family of inhibitor of apoptosis proteins, contributes antiapoptosis. However, the role of tumor hypoxia in Livin regulation and its impact on TR are unclear. EXPERIMENTAL DESIGN Livin expression and apoptosis for tumor hypoxic cells derived from human glioblastoma xenografts or in vitro hypoxic stress-treated glioblastoma cells were determined by Western blotting, immunofluorescence imaging, and annexin V staining assay. The mechanism of hypoxia-induced Livin induction was investigated by chromatin immunoprecipitation assay and reporter assay. Genetic and pharmacologic manipulation of Livin was utilized to investigate the role of Livin on tumor hypoxia-induced TR in vitro or in vivo. RESULTS The upregulation of Livin expression and downregulation of caspase activity were observed under cycling and chronic hypoxia in glioblastoma cells and xenografts, concomitant with increased TR to ionizing radiation and temozolomide. However, knockdown of Livin inhibited these effects. Moreover, hypoxia activated Livin transcription through the binding of hypoxia-inducible factor-1α to the Livin promoter. The targeted inhibition of Livin by the cell-permeable peptide (TAT-Lp15) in intracerebral glioblastoma-bearing mice demonstrated a synergistic suppression of tumor growth and increased the survival rate in standard-of-care treatment with radiation plus temozolomide. CONCLUSIONS These findings indicate a novel pathway that links upregulation of Livin to tumor hypoxia-induced TR in GBM and suggest that targeting Livin using cell-permeable peptide may be an effective therapeutic strategy for tumor microenvironment-induced TR.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. Department of Biomedical Informatics, Asia University, Taichung, Taiwan.
| | - Yu-Jung Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Department of Neurology, Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan. Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| | - Chi-Chung Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| |
Collapse
|
49
|
Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro Oncol 2014; 16:1441-58. [PMID: 25190673 DOI: 10.1093/neuonc/nou212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for patients with glioblastoma, the most common high-grade primary CNS tumor, remains poor despite multiple therapeutic interventions including intensifying cytotoxic therapy, targeting dysregulated cell signaling pathways, and blocking angiogenesis. Exciting, durable clinical benefits have recently been demonstrated for a number of other challenging cancers using a variety of immunotherapeutic approaches. Much modern research confirms that the CNS is immunoactive rather than immunoprivileged. Preliminary results of clinical studies demonstrate that varied vaccine strategies have achieved encouraging evidence of clinical benefit for glioblastoma patients, although multiple variables will likely require systematic investigation before optimal outcomes are realized. Initial preclinical studies have also revealed promising results with other immunotherapies including cell-based approaches and immune checkpoint blockade. Clinical studies to evaluate a wide array of immune therapies for malignant glioma patients are being rapidly developed. Important considerations going forward include optimizing response assessment and identifiying correlative biomarkers for predict therapeutic benefit. Finally, the potential of complementary combinatorial immunotherapeutic regimens is highly exciting and warrants expedited investigation.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Gordon Freeman
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Catherine Wu
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - E Antonio Chiocca
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Kai W Wucherpfennig
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Edward F Fritsch
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - William T Curry
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - John H Sampson
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Glenn Dranoff
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| |
Collapse
|
50
|
Lv S, Dai C, Liu Y, Shi R, Tang Z, Han M, Bian R, Sun B, Wang R. The impact of survivin on prognosis and clinicopathology of glioma patients: a systematic meta-analysis. Mol Neurobiol 2014; 51:1462-7. [PMID: 25063470 DOI: 10.1007/s12035-014-8823-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022]
Abstract
Up to now, survivin has been recommended as a prognostic and diagnostic indicator in glioma patients. However, there are still many controversies. Here, a meta-analysis was conducted to draw a more definitive conclusion on the correlation of survivin with overall survival (OS), age, gender, and WHO grade. Eligible studies were available through careful assessment, and then pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (95% CIs) were estimated. Funnel plots were introduced to evaluate the publication bias. Additionally, heterogeneity and sensitivity were also evaluated. In the present meta-analysis, 15 eligible studies with a total of 1,089 patients were incorporated. Survivin expression in gliomas correlated with 2-year OS (n = 8; HR 0.17, 95% CI 0.11-0.26) and 5-year OS (n = 7; HR 0.12, 95% CI 0.07-0.22) in patients. In addition, a fixed-effect model revealed a significant association between survivin and age (male/+; OR 2.10, 95% CI 1.44-3.05) and survivin and WHO grade (I+II/+; OR 0.27, 95% CI 0.19-0.38). No heterogeneity was observed across all studies. According to Begg's and Egger's test and funnel plot, no publication bias was reported. Taken together, our meta-analysis suggests that survivin expression is associated with poor survival, older age, and higher WHO grade and could be suggested as a useful prognostic and diagnostic biomarker, or an effective therapy target.
Collapse
Affiliation(s)
- Shunzeng Lv
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|