1
|
Escoto A, Hecksel R, Parkinson C, Crane S, Atwell B, King S, Ortiz Chavez D, Jannuzi A, Sands B, Bitler BG, Fehniger TA, Paek AL, Padi M, Schroeder J. Nuclear EGFR in breast cancer suppresses NK cell recruitment and cytotoxicity. Oncogene 2025; 44:288-295. [PMID: 39521886 PMCID: PMC11779631 DOI: 10.1038/s41388-024-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Natural Killer (NK) cells can target and destroy cancer cells, yet tumor microenvironments typically suppress NK cell recruitment and cytotoxicity. The epidermal growth factor receptor (EGFR) is a potent oncogene that can activate survival, migration, and proliferation pathways, and clinical data suggests it may also play an immunomodulating role in cancers. Recent work has demonstrated a novel role for nuclear EGFR (nEGFR) in regulating transcriptional events unique from the kinase domain. Using a novel peptide therapeutic (cSNX1.3) that inhibits retrograde trafficking of EGFR and an EGFR nuclear localization mutant, we discovered that nEGFR suppresses NK cell recruitment and cytotoxicity. RNA-Seq analysis of breast cancer cells treated with cSNX1.3 or modified to lack a nuclear localization sequence (EGFRΔNLS) revealed the EGF-dependent induction of NK activating receptor ligands, while kinase inhibition by erlotinib did not impact these genes. NanoString analysis of tumor-bearing WAP-TGFα transgenic mice treated with cSNX1.3 demonstrated an increase in immune cell populations and activating genes. Additionally, immunohistochemistry confirmed an increase in NK cells upon cSNX1.3 treatment. Finally, cSNX1.3 treatment was found to enhance NK cell recruitment and cytotoxicity in vitro. Together, the data demonstrate a unique immunomodulatory role for nEGFR.
Collapse
Affiliation(s)
- Angelica Escoto
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Ryan Hecksel
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Chance Parkinson
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Sara Crane
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin Atwell
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Shyanne King
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Daniela Ortiz Chavez
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Alison Jannuzi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Barbara Sands
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin G Bitler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Paek
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Megha Padi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
| | - Joyce Schroeder
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Madorsky Rowdo FP, Martini R, Ackermann SE, Tang CP, Tranquille M, Irizarry A, Us I, Alawa O, Moyer JE, Sigouros M, Nguyen J, Assaad MA, Cheng E, Ginter PS, Manohar J, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Hoda S, Newman L, Mosquera JM, Sboner A, Elemento O, Dow LE, Davis MB, Martin ML. Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition. Cancer Res 2025; 85:551-566. [PMID: 39891928 PMCID: PMC11790258 DOI: 10.1158/0008-5472.can-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 02/03/2025]
Abstract
Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407.
Collapse
Affiliation(s)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - Sarah E. Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Colin P. Tang
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adriana Irizarry
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ilkay Us
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Omar Alawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E. Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Badawi WA, Okda TM, Abd El Wahab SM, Ezz-ElDien ES, AboulWafa OM. Developing new anticancer agents: Design, synthesis, biological evaluation and in silico study of several functionalized pyrimidine-5-carbonitriles as small molecules modulators targeting breast cancer. Bioorg Chem 2024; 153:107953. [PMID: 39556931 DOI: 10.1016/j.bioorg.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Committed to our growing effort addressed toward the development of potent anti-breast cancer candidates, new 4-hydrazinylpyrimidine-5-carbonitriles featuring a morpholinyl or piperidinyl moiety at the position-2 and derivatized with various functionalities at the hydrazinyl group were designed through structure optimization, and their antiproliferative potency against two human breast cancer (BC) cell lines, relative to the reference drug 5-FU, was evaluated. Compounds showing remarkable cytotoxic activity versus the hormone dependent MCF-7 cell line (IC50 = 1.62 ± 0.06 µM- 9.88 ± 0.38 µM) and the non-hormone dependent MDA-MB-231 cell line (IC50 = 3.26 ± 0.14 µM-12.93 ± 0.55 µM) were further tested by multiple assays for clarification of their potential activity. Promising derivatives revealing low damage to healthy cells were subject to enzymatic inhibitory assessment against ARO and EGFR and their activities compared to letrozole and erlotinib respectively. Compounds 3c, 6a as well as compounds 4c, 4d proved to be good inhibitors of the ARO and EGFR enzymes respectively. Active compounds were also evaluated for their underlying mode of action by further investigation for CDK, Hsp90, PI3K inhibition and compared to normal MCF-10A cells and assessed for their enhancement of the caspase 9 levels. Additionally, cell cycle analysis and apoptotic induction were performed. They demonstrated remarkable activities in the previous assays and emanated as leads as anti-breast cancer candidates. Eventually, molecular docking analysis revealed that hit compounds 3c, 4c, 4d, and 6a could bind favorably to the proposed in silico models of various protein-ligand interactions. Therefore, our promising top candidates, by demonstrating appreciable anti-breast cancer activities, present valuable prospects for optimization, potency enhancement and future application.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Shrouk M Abd El Wahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Eman S Ezz-ElDien
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
4
|
Shetty SR, Debnath S, Majumdar K, Rajagopalan M, Ramaswamy A, Das A. Virtual screening, molecular dynamics simulations, and in vitro validation of EGFR inhibitors as breast cancer therapeutics. Bioorg Chem 2024; 153:107849. [PMID: 39368144 DOI: 10.1016/j.bioorg.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A high abundance of Epidermal Growth Factor Receptor (EGFR) in malignant cells makes them a prospective therapeutic target for basal breast tumors. Although EGFR inhibitors are in development as anticancer therapeutics, there exists limitations due to the dose-limiting cytotoxicity that limits their clinical utilization, thereby necessitating the advancement of effective inhibitors. In the present study, we have developed common pharmacophore hypotheses using 30 known EGFR inhibitors. The best pharmacophore hypothesis DHRRR_1 was utilized for virtual screening (VS) of the Phase database containing 4.3 × 106 fully prepared compounds. The top 1000 hits were further subjected to ADME filtration followed by structure-based VS and Molecular Dynamics (MD) simulation investigations. Based on pharmacophore hypothesis matching, XP glide score, interactions between ligands and active site residues, ADME properties, and MD simulations, the five best hits (SN-01 through SN-05) were preferred for in-vitro cytotoxicity studies. All the molecules except SN-02 exhibited cytotoxicity in Triple Negative Breast Cancer (TNBC) cells. These potential EGFR inhibitors effectively downregulated the EGF-induced proliferation, migration, in-vitro tumorigenic capability, and EGFR activation (pEGFR) in the TNBCs. Additionally, in combination with doxorubicin, the identified EGFR inhibitors significantly decreased the EGF-induced proliferation. SN-04, and SN-05 in the presence of a lower concentration of doxorubicin markedly increased the apoptotic markers expression in the TNBCs, an effect which was comparable to a higher concentration of doxorubicin treatment, alone. These observations suggest that both SN-04 and/or SN-05 can improve the efficacy of chemotherapeutic drug, doxorubicin at a lower concentration to avert the higher dose of chemotherapeutic-induced side effects during breast cancer treatment.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudhan Debnath
- Maharaja Bir Bikram College, Agartala, Tripura, India; Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, Tripura, India
| | | | - Muthukumaran Rajagopalan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amutha Ramaswamy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Jin LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, Jin HC, Wang CQ. Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 2024; 479:3037-3047. [PMID: 38145448 DOI: 10.1007/s11010-023-04907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.
Collapse
Affiliation(s)
- Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hua-Jun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Ping Lu
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
6
|
Gholizadeh N, Rokni GR, Zaresharifi S, Gheisari M, Tabari MAK, Zoghi G. Revolutionizing non-melanoma skin cancer treatment: Receptor tyrosine kinase inhibitors take the stage. J Cosmet Dermatol 2024; 23:2793-2806. [PMID: 38812406 DOI: 10.1111/jocd.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Innovative treatments for non-melanoma skin cancers (NMSCs) are required to enhance patient outcomes. AIMS This review examines the effectiveness and safety of receptor tyrosine kinase inhibitors (RTKIs). METHODS A comprehensive review was conducted on the treatment potential of several RTKIs, namely cetuximab, erlotinib, gefitinib, panitumumab, and lapatinib. RESULTS The findings indicate that these targeted therapies hold great promise for the treatment of NMSCs. However, it is crucial to consider relapse rates and possible adverse effects. Further research is needed to improve treatment strategies, identify patient groups that would benefit the most, and assess the long-term efficacy and safety, despite the favorable results reported in previous studies. Furthermore, it is crucial to investigate the potential benefits of integrating RTKIs with immunotherapy and other treatment modalities to enhance the overall efficacy of therapy for individuals with NMSC. CONCLUSIONS Targeted therapies for NMSCs may be possible with the use of RTKIs. The majority of studies focused on utilizing epidermal growth factor receptor inhibitors as the primary class of RTKIs for the treatment of NMSC. Other RTKIs were only employed in experimental investigations. Research indicates that RTKIs could potentially serve as a suitable alternative for elderly patients who are unable to undergo chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirin Zaresharifi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghazal Zoghi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Pellecchia S, Franchini M, Viscido G, Arnese R, Gambardella G. Single cell lineage tracing reveals clonal dynamics of anti-EGFR therapy resistance in triple negative breast cancer. Genome Med 2024; 16:55. [PMID: 38605363 PMCID: PMC11008053 DOI: 10.1186/s13073-024-01327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.
Collapse
Affiliation(s)
- Simona Pellecchia
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Scuola Superiore Meridionale, Genomics and Experimental Medicine Program, Naples, Italy
| | - Melania Franchini
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Gaetano Viscido
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Chemical, Materials and Industrial Engineering , University of Naples Federico II, Naples, Italy
| | - Riccardo Arnese
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
8
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Mai N, Abuhadra N, Jhaveri K. Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions. Clin Breast Cancer 2023; 23:784-799. [PMID: 37336650 DOI: 10.1016/j.clbc.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.
Collapse
Affiliation(s)
- Nicholas Mai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nour Abuhadra
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
10
|
Aljuffali IA, Anwer MK, Ahmed MM, Alalaiwe A, Aldawsari MF, Fatima F, Jamil S. Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells. Pharmaceuticals (Basel) 2023; 16:1549. [PMID: 38004415 PMCID: PMC10674849 DOI: 10.3390/ph16111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification-evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid surfactant) and Kolliphore® 188 (water-soluble surfactant). Four formulae were developed by varying the weight of the lipoid™ 90H (100-250 mg), and the GFT-loaded SLN (F4) formulation was optimized in terms of particle size (472 ± 7.5 nm), PDI (0.249), ZP (-15.2 ± 2.3), and EE (83.18 ± 4.7%). The optimized formulation was further subjected for in vitro release, stability studies, and MTT assay against MCF-7 cell lines. GFT from SLNs exhibited sustained release of the drug for 48 h, and release kinetics followed the Korsmeyer-Peppas model, which indicates the mechanism of drug release by swelling and/or erosion from a lipid matrix. When pure GFT and GFT-SLNs were exposed to MCF-7 cells, the activities of p53 (3.4 and 3.7 times), caspase-3 (5.61 and 7.7 times), and caspase-9 (1.48 and 1.69 times) were enhanced, respectively, over those in control cells. The results suggest that GFT-loaded SLNs (F4) may represent a promising therapeutic alternative for breast cancer.
Collapse
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil 44001, Iraq;
| |
Collapse
|
11
|
Ang HX, Sutiman N, Deng XL, Liu A, Cerda-Smith CG, Hutchinson HM, Kim H, Bartelt LC, Chen Q, Barrera A, Lin J, Sheng Z, McDowell IC, Reddy TE, Nicchitta CV, Wood KC. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc Natl Acad Sci U S A 2023; 120:e2221448120. [PMID: 37695916 PMCID: PMC10515179 DOI: 10.1073/pnas.2221448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.
Collapse
Affiliation(s)
- Hazel X. Ang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Natalia Sutiman
- Duke-National University of Singapore Medical School,Singapore169857, Singapore
| | - Xinyue L. Deng
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Annie Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
- Department of Surgery, Duke University School of Medicine, Durham, NC22710
| | - Christian G. Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Holly Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Luke C. Bartelt
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC22710
| | - Alejandro Barrera
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Jiaxing Lin
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Zhecheng Sheng
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Ian C. McDowell
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Timothy E. Reddy
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | | | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| |
Collapse
|
12
|
Badawi WA, Samir M, Fathy HM, Okda TM, Noureldin MH, Atwa GMK, AboulWafa OM. Design, synthesis and molecular docking study of new pyrimidine-based hydrazones with selective anti-proliferative activity against MCF-7 and MDA-MB-231 human breast cancer cell lines. Bioorg Chem 2023; 138:106610. [PMID: 37210828 DOI: 10.1016/j.bioorg.2023.106610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Efforts were directed on the design, synthesis and evaluation of the anticancer activity of some pyrimidine-based hydrazones against two breast cancer cell lines, MCF-7 and MDA-MB-231. Preliminary screening results revealed that some candidates scrutinized for their antiproliferative activities exhibited IC50 values of 0.87 μM-12.91 μM in MCF-7 and 1.75 μM-9.46 μM in MDA-MB-231 cells, indicating almost equal activities on both cell lines and better growth inhibition activities than those of the positive control 5-fluorouracil (5-FU) which displayed IC50 values of 17.02 μM and 11.73 μM respectively. Selectivity of the significantly active compounds was estimated against MCF-10A normal breast cells when compounds 7c, 8b, 9a and 10b exhibited superior activity for cancerous cells than for normal cells when compound 10b presented the best selectivity Index (SI) with respect to both MCF-7 and MDA-MB-231 cancer cells in comparison to the reference drug 5-FU. Mechanisms of their actions were explored by inspecting activation of caspase-9, annexin V staining and cell cycle analysis. It was noticed that compounds 7c, 8b, 8c 9a-c and 10b produced an increase in caspase-9 levels in MCF-7 treated cells with 10b inducing the highest elevation (27.13 ± 0.54 ng/mL) attaining 8.26-fold when compared to control MCF-7 which was higher than that of staurosporine (19.011 ± 0.40 ng/mL). The same compounds boosted caspase-9 levels in MDA-MB-231 treated cells when an increase in caspase-9 concentration reaching 20.40 ± 0.46 ng/mL (4.11-fold increase) was observed for compound 9a. We also investigated the role of these compounds for their increasing apoptosis ability against the 2 cell lines. Compounds 7c, 8b and 10b tested on MCF-7 cells displayed pre-G1 apoptosis and arrested cell cycle in particular at the S and G1 phases. Further clarification of their effects was made by modulating their related activities as inhibitors of ARO and EGFR enzymes when 8c and 9b showed 52.4% and 58.9% inhibition activity relative to letrozole respectively and 9b and 10b showed 36% and 39% inhibition activity of erlotinib. Also, the inhibition activity was verified by docking into the chosen enzymes.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Mohamed Samir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Hazem M Fathy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed H Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P. O. Box 1029, Egypt
| | - Gamal M K Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21215, Egypt
| |
Collapse
|
13
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
14
|
Wu Q, Sharma D. Autophagy and Breast Cancer: Connected in Growth, Progression, and Therapy. Cells 2023; 12:1156. [PMID: 37190065 PMCID: PMC10136604 DOI: 10.3390/cells12081156] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Despite an increase in the incidence of breast cancer worldwide, overall prognosis has been consistently improving owing to the development of multiple targeted therapies and novel combination regimens including endocrine therapies, aromatase inhibitors, Her2-targeted therapies, and cdk4/6 inhibitors. Immunotherapy is also being actively examined for some breast cancer subtypes. This overall positive outlook is marred by the development of resistance or reduced efficacy of the drug combinations, but the underlying mechanisms are somewhat unclear. It is interesting to note that cancer cells quickly adapt and evade most therapies by activating autophagy, a catabolic process designed to recycle damaged cellular components and provide energy. In this review, we discuss the role of autophagy and autophagy-associated proteins in breast cancer growth, drug sensitivity, tumor dormancy, stemness, and recurrence. We further explore how autophagy intersects and reduces the efficacy of endocrine therapies, targeted therapies, radiotherapy, chemotherapies as well as immunotherapy via modulating various intermediate proteins, miRs, and lncRNAs. Lastly, the potential application of autophagy inhibitors and bioactive molecules to improve the anticancer effects of drugs by circumventing the cytoprotective autophagy is discussed.
Collapse
Affiliation(s)
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287-0013, USA
| |
Collapse
|
15
|
Ma J, Dong C, Cao YZ, Ma BL. Dual Target of EGFR and mTOR Suppresses Triple-Negative Breast Cancer Cell Growth by Regulating the Phosphorylation of mTOR Downstream Proteins. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:11-24. [PMID: 36691572 PMCID: PMC9864233 DOI: 10.2147/bctt.s390017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Objective To detect the activation of the EGFR and mTOR signaling pathways in the triple negative breast cancer cell line MDA-MB-468 and investigate the inhibitory effect of gefitinib, an epidermal growth factor receptor inhibitor, and everolimus, a target protein inhibitor of rapamycin, on triple negative breast cancer cells. Methods Triple negative human breast cancer MDA-MB-468 cells were cultured and blank control group, single EGFR inhibitor gefitinib group, single mTOR inhibitor everolimus group, and two drug combination group were set up respectively to detect the effects of single and combined drugs on cell proliferation activity, cell cycle and apoptosis, and the expression of EGFR and mTOR signal pathway proteins in cell lines after single and combined drug intervention was detected again by Western blot. Results The level of EGFR and p-mTOR protein in triple negative breast cancer was higher than in non triple negative breast cancer (P<0.05). The level of mTOR, S6K1, p-EGFR, p-S6K1 was significantly increased when treated with EGF (0ng/mL, 10ng/mL, 100ng/mL) for 1h, compared to without EGF stimulation (P<0.05). The level of p-EGFR, p-mTOR, p-S6K1 protein increased significantly when the cells were exposed to EGF for 2h, respectively (P<0.05). EGFR inhibitor gefitinib alone and the mTOR inhibitor everolimus alone could significantly inhibit the proliferation of human triple negative breast cancer MDA-MB-468 cells in a dose-dependent manner (P<0.05). The level of p-4EBP1 protein in EGFR and mTOR signal pathway was significantly increased after the intervention of gefitinib alone, everolimus alone, and the combination of two drugs (P<0.05). Conclusion EGFR and mTOR signaling pathways can be activated in triple negative breast cancer; Both the EGFR inhibitor gefitinib alone and the mTOR inhibitor everolimus alone can significantly inhibit the proliferation of human triple negative breast cancer MDA-MB-468 cells. The combination of the EGFR inhibitor gefitinib and the mTOR inhibitor everolimus may achieve anti-tumor effect similar to that of single drug by reducing the drug dose.
Collapse
Affiliation(s)
- Jing Ma
- Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Yan-Zhen Cao
- Pathology Center, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China
| | - Bin-Lin Ma
- Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, People’s Republic of China,Correspondence: Bin-Lin Ma, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, Suzhou East Street, Xinshi District, Urumqi, 830000, People’s Republic of China, Tel/Fax +86 991 7819082, Email
| |
Collapse
|
16
|
Taurin S, Rosengren RJ. Raloxifene potentiates the effect of gefitinib in triple-negative breast cancer cell lines. Med Oncol 2022; 40:45. [PMID: 36494506 DOI: 10.1007/s12032-022-01909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Triple-negative breast cancers (TNBCs) are characterized by a lack of approved targeted therapies and remain a challenge in the clinic. Several overexpressed proteins, including epidermal growth factor receptor (EGFR), have been associated with TNBCs and are considered potential therapeutic targets. However, EGFR inhibitors alone failed to demonstrate a cutting-edge advantage for treating TNBCs over conventional chemotherapies. Studies have shown that selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene also affect TNBC cell viability. The combination of gefitinib and raloxifene was assessed against TNBC cell lines in vitro. Two TNBC cell lines, MDA-MB-231 and MDA-MB-468, were used to investigate the combination of gefitinib and raloxifene on cell viability, DNA synthesis, and apoptosis. The combination was assessed on intracellular signaling pathways, colony formation, migration, and angiogenesis. In the present study, raloxifene, in combination with gefitinib, decreased cell viability. The combination potentiates apoptosis and affects the expression and phosphorylation pattern of proteins involved in cell proliferation, such as NFκB, β-catenin, and EGFR. Furthermore, evidence of apoptosis activation was also observed, along with a decreased cell migration and tumorigenicity of TNBC cells. Moreover, the combined treatment decreased the ability of neovascularization as assessed by tube formation of endothelial cells. These results suggested the potential of the combination of raloxifene and gefitinib for the prevention of TNBC growth and the appearance of metastatic events. Our findings provide the basis for future studies on the mechanism involved in raloxifene-gefitinib inhibition of ER-negative tumor growth.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Building 293, Road 2904 Block 329, Manama, 007, Kingdom of Bahrain.
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
18
|
Fatima M, Abourehab MAS, Aggarwal G, Jain GK, Sahebkar A, Kesharwani P. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today 2022; 27:103353. [PMID: 36099963 DOI: 10.1016/j.drudis.2022.103353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Extensive research efforts have been made and are still ongoing in the search for an ideal anti-cancer therapy. Almost all chemotherapeutics require a carrier or vehicle, a drug delivery system that can transport the drug specifically to the targeted cancer cells, sparing normal cells. Cell-penetrating peptides (CPPs) provide an effective and efficient pathway for the intra-cellular transportation of various bioactive molecules in several biomedical therapies. They are now well-recognized as facilitators of intracellular cargo delivery and have excellent potential for targeted anti-cancer therapy. In this review, we explain CPPs, recent progress in the development of new CPPs, and their utilization to transport cargoes such as imaging agents, chemotherapeutics, and short-interfering RNAs (siRNA) into tumor cells, contributing to the advancement of novel tumor-specific delivery systems.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
19
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Radovich M, Solzak JP, Wang CJ, Hancock BA, Badve S, Althouse SK, Bray SM, Storniolo AMV, Ballinger TJ, Schneider BP, Miller KD. Initial Phase I Safety Study of Gedatolisib plus Cofetuzumab Pelidotin for Patients with Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:3235-3241. [PMID: 35551360 PMCID: PMC9357180 DOI: 10.1158/1078-0432.ccr-21-3078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/18/2021] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The PI3K pathway is dysregulated in the majority of triple-negative breast cancers (TNBC), yet single-agent inhibition of PI3K has been ineffective in TNBC. PI3K inhibition leads to an immediate compensatory upregulation of the Wnt pathway. Dual targeting of both pathways is highly synergistic against TNBC models in vitro and in vivo. We initiated a phase I clinical trial combining gedatolisib, a pan-class I isoform PI3K/mTOR inhibitor, and cofetuzumab pelidotin, an antibody-drug conjugate against the cell-surface PTK7 protein (Wnt pathway coreceptor) with an auristatin payload. PATIENTS AND METHODS Participants (pt) had metastatic TNBC or estrogen receptor (ER) low (ER and PgR < 5%, HER2-negative) breast cancer, and had received at least one prior chemotherapy for advanced disease. The primary objective was safety. Secondary endpoints included overall response rate (ORR), clinical benefit at 18 weeks (CB18), progression-free survival (PFS), and correlative analyses. RESULTS A total of 18 pts were enrolled in three dose cohorts: gedatolisib 110 mg weekly + cofetuzumab pelidotin 1.4 mg/kg every 3 weeks (n = 4), 180 mg + 1.4 mg/kg (n = 3), and 180 mg + 2.8 mg/kg (n = 11). Nausea, anorexia, fatigue, and mucositis were common but rarely reached ≥grade 3 severity. Myelosuppression was uncommon. ORR was 16.7% (3/18). An additional 3 pts had stable disease (of these 2 had stable disease for >18 weeks); CB18 was 27.8%. Median PFS was 2.0 months (95% confidence interval for PFS: 1.2-6.2). Pts with clinical benefit were enriched with genomic alterations in the PI3K and PTK7 pathways. CONCLUSIONS The combination of gedatolisib + cofetuzumab pelidotin was well tolerated and demonstrated promising clinical activity. Further investigation of this drug combination in metastatic TNBC is warranted.
Collapse
Affiliation(s)
- Milan Radovich
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Jeffrey P. Solzak
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Chao J. Wang
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Bradley A. Hancock
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Sunil Badve
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Pathology, Indiana University School of Medicine
| | - Sandra K. Althouse
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Biostatistics and Data Health Science, Indiana University School of Medicine
| | | | - Anna Maria V. Storniolo
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Tarah J. Ballinger
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Bryan P. Schneider
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| |
Collapse
|
22
|
SH003 and Docetaxel Show Synergistic Anticancer Effects by Inhibiting EGFR Activation in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3647900. [PMID: 35572726 PMCID: PMC9098291 DOI: 10.1155/2022/3647900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Although many anticancer drugs have been developed for triple-negative breast cancer (TNBC) treatment, there are no obvious therapies. Moreover, the combination of epidermal growth factor receptor- (EGFR-) targeted therapeutics and classical chemotherapeutic drugs has been assessed in clinical trials for TNBC treatment, but those are not yet approved. Our serial studies for newly developed herbal medicine named SH003 provide evidence of its broad effectiveness in various cancers, especially on TNBC. The current study demonstrates a synergic effect of combinatorial treatment of SH003 and docetaxel (DTX) by targeting EGFR activation. The combinatorial treatment reduced the viability of both BT-20 and MDA-MB-231 TNBC cells, displaying the synergism. The combination of SH003 and DTX also caused the synergistic effect on apoptosis. Mechanistically, the cotreatment of SH003 and DTX inhibited phosphorylation of EGFR and AKT in both BT-20 and MDA-MB-231 cells. Moreover, our xenograft mouse tumor growth assays showed the inhibitory effect of the combinatorial treatment with no effect on body weight. Our immunohistochemistry confirmed its inhibition of EGFR phosphorylation in vivo. Collectively, combinatorial treatment of SH003 and DTX has a synergistic anticancer effect at a relatively low concentration by targeting EGFR in TNBC, indicating safety and efficacy of SH003 as adjuvant combination therapy with docetaxel. Thus, it is worth testing the combinatorial effect in clinics for treating TNBC.
Collapse
|
23
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
24
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
25
|
Iancu G, Serban D, Badiu CD, Tanasescu C, Tudosie MS, Tudor C, Costea DO, Zgura A, Iancu R, Vasile D. Tyrosine kinase inhibitors in breast cancer (Review). Exp Ther Med 2022; 23:114. [PMID: 34970337 PMCID: PMC8713180 DOI: 10.3892/etm.2021.11037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR)-targeted therapy has been intensely researched in the last years, motivated by the favorable results obtained with monoclonal antibodies in HER2-enriched breast cancer (BC) patients. Most researched alternatives of anti-EGFR agents were tyrosine kinase inhibitors (TKIs) and monoclonal antibodies. However, excluding monoclonal antibodies trastuzumab and pertuzumab, the remaining anti-EGFR molecules have exhibited disappointing results, due to the lack of specificity and frequent adverse side effects. TKIs have several advantages, including reduced cardiotoxicity, oral administration and favorable penetration of blood-brain barrier for brain metastatic BC. Lapatinib and neratinib and recently pyrotinib (approved only in China) are the only TKIs from dozens of molecules researched over the years that were approved to be used in clinical practice with limited indications, in a subset of BC patients, single or in combination with other chemotherapy or hormonal therapeutic agents. Improved identification of BC subtypes and improved characterization of aggressive forms (triple negative BC or inflammatory BC) should lead to advancements in shaping of targeted agents to improve the outcome of patients.
Collapse
Affiliation(s)
- George Iancu
- Department of Obstetrics and Gynecology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gynecology, ‘Filantropia’ Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fourth Department of General Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| | - Cristinel Dumitru Badiu
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of General Surgery, ‘Prof. Dr. Bagdasar Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Ciprian Tanasescu
- Third Clinico-Surgical Department, Faculty of Medicine, ‘Lucian Blaga’ University, 550169 Sibiu, Romania
| | - Mihai Silviu Tudosie
- Department of Orthopedia and Intensive care, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Corneliu Tudor
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Department of General Surgery, Faculty of Medicine, ‘Ovidius’ University, 900470 Constanta, Romania
- First Surgery Department, Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Zgura
- Department of Oncology Radiotherapy, Institute of Oncology ‘Prof. Dr. Trestioreanu’, 022328 Bucharest, Romania
| | - Raluca Iancu
- Department of ENT-Opthalmology, Faculty of Medicine, Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania
| | - Danut Vasile
- Department of General Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- First Department of General Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
26
|
Jiang Y, Liu X, Lv DL, Zhao XL. Kirsten rat sarcoma viral oncogene homolog G12C mutant advanced non-small-cell lung cancer treated with MEK1/2 inhibitor trametinib: a case report. Anticancer Drugs 2022; 33:e752-e755. [PMID: 34387588 DOI: 10.1097/cad.0000000000001176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
No targeted therapies are approved for non-small-cell lung cancer (NSCLC) with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation to date. Trametinib, a selective allosteric inhibitor of the MEK1/2, demonstrated debatable clinical activity in KRAS-mutant NSCLC. In this case, we present a recurrent advanced NSCLC with KRAS G12C mutation successfully treated with single-agent trametinib therapy. An 87-year-old man who underwent radiotherapy for the right lung adenocarcinoma was admitted to clinical oncology center for recurrent lesions in bilateral lungs. He was unwilling to perform second-line chemotherapy, but underwent molecular profiling and revealed the KRAS G12C mutation. The single-agent target therapy of trametinib showed clinical benefit without obvious toxicity. Furthermore, this report reviewed the previous date of the preclinical and clinical and summarized that KRAS G12C mutation may be more sensitive to the inhibition of mitogen-activated protein kinase kinase. This case advocates for routine screening of KRAS point mutations in the utility of precision medicine and suggests that treatment with trametinib in advanced NSCLC cases with KRAS G12C mutation is well tolerated and effective, especially for those very elderly or unsuitable for more aggressive chemotherapy.
Collapse
Affiliation(s)
- Ya Jiang
- Department of Pathology, Qujing Medical Districts, 920th Hospital of the Joint Logistics Support Force of PLA, Qujing
- Department of Pathology, Fifth Affiliated Hospital of Kunming Medical University, Gejiu
| | - Xin Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Dong-Lai Lv
- Department of Clinical Oncology, 901th Hospital of Joint Logistic Support Force of PLA, Hefei, Anhui, China
| | - Xi-Long Zhao
- Department of Pathology, Qujing Medical Districts, 920th Hospital of the Joint Logistics Support Force of PLA, Qujing
| |
Collapse
|
27
|
Integration of Genomic Profiling and Organoid Development in Precision Oncology. Int J Mol Sci 2021; 23:ijms23010216. [PMID: 35008642 PMCID: PMC8745679 DOI: 10.3390/ijms23010216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Precision oncology involves an innovative personalized treatment strategy for each cancer patient that provides strategies and options for cancer treatment. Currently, personalized cancer medicine is primarily based on molecular matching. Next-generation sequencing and related technologies, such as single-cell whole-transcriptome sequencing, enable the accurate elucidation of the genetic landscape in individual cancer patients and consequently provide clinical benefits. Furthermore, advances in cancer organoid models that represent genetic variations and mutations in individual cancer patients have direct and important clinical implications in precision oncology. This review aimed to discuss recent advances, clinical potential, and limitations of genomic profiling and the use of organoids in breast and ovarian cancer. We also discuss the integration of genomic profiling and organoid models for applications in cancer precision medicine.
Collapse
|
28
|
Voutilainen S, Heikkilä P, Sampo M, Nevanlinna H, Blomqvist C, Mattson J. Expression of markers of stem cell characteristics, epithelial-mesenchymal transition, basal-like phenotype, proliferation, and androgen receptor in metaplastic breast cancer and their prognostic impact. Acta Oncol 2021; 60:1233-1239. [PMID: 34282709 DOI: 10.1080/0284186x.2021.1950927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Metaplastic breast cancer (MpBC) is a heterogeneous subtype of invasive mammary carcinoma associated with epithelial-mesenchymal transition (EMT) and cancer stem cell characteristics. Data regarding prognostic markers and potentially actionable targets for therapy are still limited. The present study aimed to characterize the immunohistochemical landscape of this rare malignancy and to identify potential prognostic factors and targets for therapy. MATERIAL AND METHODS A total of 75 patients diagnosed with MpBC over a 15-year period were included in the study. We performed immunohistochemical analyses for Ki-67 (MIB-1), epidermal growth factor receptor (EGFR), cytokeratin 5/6, vimentin, CD44, and androgen receptor (AR) and correlated their expression with clinicopathologic features and clinical outcomes. The p-values for survival analyses were corrected for multiple testing (threshold 0.01). RESULTS Most tumors expressed CK5/6 (73%), EGFR (59%), CD44 (81%), and vimentin (87%). Eighty-nine percent had a high Ki-67 index. Eighty-four percent were classified as basal-like (CK 5/6 or EGFR positive). AR was expressed in 21% of the tumors. The basal-like phenotype was significantly (p = 0.009) associated with inferior disease-free (DFS) and breast-cancer-specific overall survival (BCOS) with borderline significance (p = 0.01). In addition, a low Ki-67 index was associated with improved DFS (p = 0.033) and BCOS (p = 0.03). CONCLUSION Most MpBCs express basal markers (CK5/6, EGFR), epithelial-mesenchymal transition marker vimentin, and the stem cell marker CD44. Expression of basal-like markers was significantly related to inferior DFS. All the 11 patients with a lack of expression of basal markers survived without relapse.
Collapse
Affiliation(s)
- Sari Voutilainen
- Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mika Sampo
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynaecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Mattson
- Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
29
|
Karami K, Anbari K. Breast Cancer: A Review of Risk Factors and New Insights into Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717999210120195208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, despite significant advances in cancer treatment have been made, breast cancer
remains one of the main health problems and considered a top biomedical investigation urgency.
The present study reviewed the common conventional chemotherapy agents and also some alternative
and complementary approaches such as oncolytic virotherapy, bacteriotherapy, nanotherapy,
immunotherapy, and natural products, which are recommended for breast cancer treatment. In addition
to current surgery approaches such as mastectomy, in recent years, a number of novel techniques
such as robotic mastectomies, nipple-sparing mastectomy, skin-sparing mastectomy, daycase
mastectomy were used in breast cancer surgery. In this review, we summarize new insights
into risk factors, surgical and non-surgical treatments for breast cancer.
Collapse
Affiliation(s)
- Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
30
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
31
|
Bansod AA, Ramasamy G, Nathan B, Kandhasamy R, Palaniappan M, Vichangal Pridiuldi S. Exploring the endogenous potential of Hemidesmus indicus against breast cancer using in silico studies and quantification of 2-hydroxy-4-methoxy benzaldehyde through RP-HPLC. 3 Biotech 2021; 11:235. [PMID: 33968579 DOI: 10.1007/s13205-021-02768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Being a woman and getting older are the main risk factors for breast cancer. While admitting the increasing prevalence of breast cancer among females globally, there is an increasing urge for widening the range of chemical compounds that can act as potential inhibitors for certain cancer target receptors. Current investigation involves virtually screening of 19 protein receptors having major role in signal transduction pathway of breast cancer development against 47 compounds present in Hemidesmus indicus. Virtual screening and supplementary analysis were performed using freely available softwares, tools and online servers. To obtain meaningful results, a comparative scenario was created by screening FDA-approved drugs/drug analogues against the same 19 receptors by keeping all the parameters same as to that of ligands. Two ligands namely Taraxasteryl acetate and Rutin were found to be the best ligands with high binding affinity towards six protein receptors establishing strong receptor ligand interactions. Furthermore, the major volatile compound, a high demand flavouring agent and an isomer of vanillin, namely 2-hydroxy-4-methoxy benzaldehyde (MBALD) specifically found in the roots of Hemidesmus, was quantified by RP-HPLC using a reverse phase C-18 column. The methanolic extract of fresh roots was found to contain 0.221 mg of MBALD/gram of tissue. From the current investigation, it could be surmised that Hemidesmus indicus had demonstrated its potential in both pharmaceuticals and the food industry.
Collapse
|
32
|
Liu X, Adorno-Cruz V, Chang YF, Jia Y, Kawaguchi M, Dashzeveg NK, Taftaf R, Ramos EK, Schuster EJ, El-Shennawy L, Patel D, Zhang Y, Cristofanilli M, Liu H. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics 2021; 11:6632-6643. [PMID: 33995681 PMCID: PMC8120216 DOI: 10.7150/thno.57706] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive and metastatic breast cancer subtypes lacking targeted therapy. Our recent work demonstrated that circulating tumor cell (CTC) clusters and polyclonal metastasis of TNBC are driven by aggregation of CD44+ cancer stem cells (CSC) and associated with an unfavorable prognosis, such as low overall survival. However, there is no existing therapeutic that can specifically block CTC or CSC cluster formation. Methods: Using patient-derived xenograft (PDX) models, we established an ex vivo tumor cell clustering assay for a pilot screening of blockade antibodies. After identifying EGFR as a target candidate, we modulated the gene expression and inhibited its kinase activity to determine its functional importance in tumor cell clustering and therapeutic inhibition of lung metastasis. We also examined the molecular regulation network of EGFR and a potential connection to CSC marker CD44 and microRNAs, which regulate CTC clustering. Results: We report here that EGFR inhibition successfully blocks circulating CSC (cCSC) clustering and lung metastasis of TNBC. EGFR enhances CD44-mediated tumor cell aggregation and CD44 stabilizes EGFR. Importantly, blocking EGFR by a novel anti-EGFR monoclonal antibody (clone LA1) effectively blocked cell aggregation in vitro and reduced lung metastasis in vivo. Furthermore, our data demonstrated that the tumor suppressor microRNA-30c serves as another negative regulator of cCSC clustering and lung metastasis by targeting CD44 as well as its downstream effector EGFR. Conclusion: Our studies identify a novel anti-EGFR therapeutic strategy to inhibit cCSC aggregation and therefore abolish cCSC cluster-mediated metastasis of TNBC.
Collapse
|
33
|
Mezi S, Botticelli A, Pomati G, Cerbelli B, Scagnoli S, Amirhassankhani S, d’Amati G, Marchetti P. Standard of Care and Promising New Agents for the Treatment of Mesenchymal Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:1080. [PMID: 33802438 PMCID: PMC7959307 DOI: 10.3390/cancers13051080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
The pathologic definition of triple negative breast cancer (TNBC) relies on the absence of expression of estrogen, progesterone and HER2 receptors. However, this BC subgroup is distinguished by a wide biological, molecular and clinical heterogeneity. Among the intrinsic TNBC subtypes, the mesenchymal type is defined by the expression of genes involved in the epithelial to mesenchymal transition, stromal interaction and cell motility. Moreover, it shows a high expression of genes involved in proliferation and an immune-suppressive microenvironment. Several molecular alterations along different pathways activated during carcinogenesis and tumor progression have been outlined and could be involved in immune evasion mechanisms. Furthermore, reverting epithelial to mesenchymal transition process could lead to the overcoming of immune-resistance. This paper reviews the current knowledge regarding the mesenchymal TNBC subtype and its response to conventional therapeutic strategies, as well as to some promising molecular target agents and immunotherapy. The final goal is a tailored combination of cytotoxic drugs, target agents and immunotherapy in order to restore immunocompetence in mesenchymal breast cancer patients.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, University of Rome “Sapienza”, 00185 Rome, Italy; (S.M.); (B.C.); (G.d.)
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, 00185 Rome, Italy; (A.B.); (P.M.)
| | - Giulia Pomati
- Department of Molecular Medicine, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Science, University of Rome “Sapienza”, 00185 Rome, Italy; (S.M.); (B.C.); (G.d.)
| | - Simone Scagnoli
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome “Sapienza”, 00185 Rome, Italy;
| | - Sasan Amirhassankhani
- Department of Plastic Surgery, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Giulia d’Amati
- Department of Radiological, Oncological and Pathological Science, University of Rome “Sapienza”, 00185 Rome, Italy; (S.M.); (B.C.); (G.d.)
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, 00185 Rome, Italy; (A.B.); (P.M.)
| |
Collapse
|
34
|
Gutsch D, Jenke R, Büch T, Aigner A. Inhibition of HER Receptors Reveals Distinct Mechanisms of Compensatory Upregulation of Other HER Family Members: Basis for Acquired Resistance and for Combination Therapy. Cells 2021; 10:272. [PMID: 33572976 PMCID: PMC7911202 DOI: 10.3390/cells10020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
Overexpression of members of the HER/erbB transmembrane tyrosine kinase family like HER2/erbB2/neu is associated with various cancers. Some heterodimers, especially HER2/HER3 heterodimers, are particularly potent inducers of oncogenic signaling. Still, from a clinical viewpoint their inhibition has yielded only moderate success so far, despite promising data from cell cultures. This suggests acquired resistance upon inhibitor therapy as one putative issue, requiring further studies in cell culture also aiming at rational combination therapies. In this paper, we demonstrate in ovarian carcinoma cells that the RNAi-mediated single knockdown of HER2 or HER3 leads to the rapid counter-upregulation of the respective other HER family member, thus providing a rational basis for combinatorial inhibition. Concomitantly, combined knockdown of HER2/HER3 exerts stronger anti-tumor effects as compared to single inhibition. In a tumor cell line xenograft mouse model, therapeutic intervention with nanoscale complexes based on polyethylenimine (PEI) for siRNA delivery, again reveals HER3 upregulation upon HER2 single knockdown and a therapeutic benefit from combination therapy. On the mechanistic side, we demonstrate that HER2 knockdown or inhibition reduces miR-143 levels with subsequent de-repression of HER3 expression, and validates HER3 as a direct target of miR-143. HER3 knockdown or inhibition, in turn, increases HER2 expression through the upregulation of the transcriptional regulator SATB1. These counter-upregulation processes of HER family members are thus based on distinct molecular mechanisms and may provide the basis for the rational combination of inhibitors.
Collapse
Affiliation(s)
- Daniela Gutsch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| | - Robert Jenke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Thomas Büch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| |
Collapse
|
35
|
Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. Biomolecules 2021; 11:129. [PMID: 33498235 PMCID: PMC7909239 DOI: 10.3390/biom11020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
While Next-Generation Sequencing (NGS) and technological advances have been useful in identifying genetic profiles of tumorigenesis, novel target proteins and various clinical biomarkers, cancer continues to be a major global health threat. DNA replication, DNA damage response (DDR) and repair, and cell cycle regulation continue to be essential systems in targeted cancer therapies. Although many genes involved in DDR are known to be tumor suppressor genes, cancer cells are often dependent and addicted to these genes, making them excellent therapeutic targets. In this review, genes implicated in DNA replication, DDR, DNA repair, cell cycle regulation are discussed with reference to peptide or small molecule inhibitors which may prove therapeutic in cancer patients. Additionally, the potential of utilizing novel synthetic lethal genes in these pathways is examined, providing possible new targets for future therapeutics. Specifically, we evaluate the potential of TONSL as a novel gene for targeted therapy. Although it is a scaffold protein with no known enzymatic activity, the strategy used for developing PCNA inhibitors can also be utilized to target TONSL. This review summarizes current knowledge on non-oncogene addiction, and the utilization of synthetic lethality for developing novel inhibitors targeting non-oncogenic addiction for cancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Eunyoung Jung
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Soobin Cho
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| |
Collapse
|
36
|
Sinevici N, Ataeinia B, Zehnder V, Lin K, Grove L, Heidari P, Mahmood U. HER3 Differentiates Basal From Claudin Type Triple Negative Breast Cancer and Contributes to Drug and Microenvironmental Induced Resistance. Front Oncol 2020; 10:554704. [PMID: 33330026 PMCID: PMC7715030 DOI: 10.3389/fonc.2020.554704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is an aggressive form of Breast Cancer (BC). Numerous kinase inhibitors (KI) targeting different pathway nodes have shown limited benefit in the clinical setting. In this study, we aim to characterize the extent of HER3 reliance and to define the effect of Neuregulin (NRG) isoforms in TNBCs. Basal and Claudin type TNBC cell lines were treated with a range of small molecule inhibitors, in the presence or absence of the HER3 ligand NRG. Single agent and combination therapy was also evaluated in human cancer cell lines through viability and biochemical assessment of the AKT/MAPK signaling pathway. We show that Basal (BT20, HCC-70, and MDA-MB-468) and Claudin type (MDA-MB-231, BT-549) TNBC cell lines displayed differential reliance on the HER family of receptors. Expression and dynamic HER3 upregulation was predominant in the Basal TNBC subtype. Furthermore, the presence of the natural ligand NRG showed potent signaling through the HER3-AKT pathway, significantly diminishing the efficacy of the AKT and PI3K inhibitors tested. We report that NRG augments the HER3 feedback mechanism for continued cell survival in TNBC. We demonstrate that combination strategies to effectively block the EGFR-HER3-AKT pathway are necessary to overcome compensatory mechanisms to NRG dependent and independent resistance mechanisms. Our findings suggests that the EGFR-HER3 heterodimer forms a major signaling hub and is a key player in tumorigenesis in Basal but not Claudin type TNBC tested. Thus, HER3 could potentially serve as a biomarker for identifying patients in which targeted therapy against the EGFR-HER3-AKT axis would be most valuable.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Veronica Zehnder
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kevin Lin
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren Grove
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Basket trials: From tumour gnostic to tumour agnostic drug development. Cancer Treat Rev 2020; 90:102082. [DOI: 10.1016/j.ctrv.2020.102082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
|
38
|
Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, Huang N, Xiao F, Lai B, Lv W, Zhang N. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer 2020; 19:142. [PMID: 32917240 PMCID: PMC7488427 DOI: 10.1186/s12943-020-01259-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) remains the most challenging breast cancer subtype so far. Specific therapeutic approaches have rarely achieved clinical improvements in treatment of TNBC patients and effective molecular biomarkers are largely unknown. Methods We used paired TNBC samples and high throughput RNA sequencing to identify differentially expressed circRNAs. Sucrose gradient polysome fractionation assay, antibody and Mass spectra were used to validate active circRNA translation. The novel protein function was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses and kinase activity assay. Results Circular HER2 RNA (circ-HER2) encoded a novel protein, HER2–103. Unexpectedly, while HER2 mRNA and protein were barely detected, circ-HER2/HER2–103 was expressed in ~ 30% TNBC clinical samples. Circ-HER2/HER2–103 positive TNBC patients harbored worse overall prognosis than circ-HER2/HER2–103 negative patients. Knockdown circ-HER2 inhibited TNBC cells proliferation, invasion and tumorigenesis in vitro and in vivo, suggesting the critical role of circ-HER2/HER2–103 in TNBC tumorigenicity. Mechanistically, HER2–103 promoted homo/hetero dimerization of epidermal growth factor receptor (EGFR)/HER3, sustained AKT phosphorylation and downstream malignant phenotypes. Furthermore, HER2–103 shared most of the same amino acid sequences as HER2 CR1 domain which could be antagonized by Pertuzumab, a clinical used HER2 antibody. Pertuzumab markedly attenuated in vivo tumorigenicity of circ-HER2/HER2–103 expressing TNBC cells but showed no effects in circ-HER2/HER2–103 negative TNBC cells. Conclusion Our results not only demonstrated that certain TNBCs were not truly ‘HER2 negative’ but also highlighted the clinical implications of Pertuzumab in circ-HER2/HER2–103 expressing TNBC patients.
Collapse
Affiliation(s)
- Jie Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Maoguang Ma
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xuesong Yang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Maolei Zhang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Neurosurgery, Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital of Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Jingyan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - Huangkai Zhou
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Neurosurgery, Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital of Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Nunu Huang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Neurosurgery, Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital of Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Bingquan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Nu Zhang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Department of Neurosurgery, Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital of Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
39
|
Singh GK, Bajpai J, Joshi S, Prabhash K, Choughule A, Patil A, Gupta S, Badwe RA. Excellent response to erlotinib in breast carcinoma with rare EGFR mutation-a case report. Ecancermedicalscience 2020; 14:1092. [PMID: 33014134 PMCID: PMC7498275 DOI: 10.3332/ecancer.2020.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast carcinoma is a problematic subtype with poor outcomes. Many clinical trials are underway to find possible target to increase treatment options. Epidermal growth factor receptor (EGFR) has emerged as one such molecule which is over expressed in some of these patients and can be targeted by tyrosine kinase inhibitors. We describe a diagnostically challenging case of metastatic breast carcinoma, with extensive lung disease and poor Eastern Cooperative Oncology Group (ECOG) performance status, which expressed an uncommon EGFR mutation (Exon 21L861Q) and which benefitted from erlotinib following failure of all primary treatment modalities. The case uncovers the presence of these unusual mutations in breast carcinoma and highlights the importance of performing molecular analysis and the appropriate targeted therapy. This approach can be an important problem-solving tool, especially in cases where the patient is not fit for the other standard treatment options.
Collapse
Affiliation(s)
- Gunjesh Kumar Singh
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Anuradha Choughule
- Department of Molecular Biology, Tata Memorial Hospital, Mumbai 400012, India
| | - Asawari Patil
- Department of Pathology, Tata Memorial Hospital, Mumbai 400012, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | | |
Collapse
|
40
|
Herrera Juarez M, Tolosa Ortega P, Sanchez de Torre A, Ciruelos Gil E. Biology of the Triple-Negative Breast Cancer: Immunohistochemical, RNA, and DNA Features. Breast Care (Basel) 2020; 15:208-216. [PMID: 32774214 DOI: 10.1159/000508758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background The triple-negative breast cancer (TNBC) constitutes a heterogeneous disease with an aggressive behavior and a poor prognosis. A better understanding of its biology is required to identify new biomarkers and improve clinical outcomes. Summary To date, the definition and classification of TNBC depends on a multiomic approach including immunohistochemistry (IHC), genomic, and transcriptomic features, and the tumor immune landscape. The development of new technologies has allowed us to sequence the whole cancer genome. The Cancer Genome Atlas (TCGA) and next-generation sequencing have led to a greater knowledge of DNA alterations such as TP53 or BRCA mutations, copy number variations, and DNA methylations. In addition, gene expression profiling has allowed to define a molecular intrinsic classification of TNBC based on mRNA. IHC and genomic profiling are also necessary to identify new immune biomarkers such as the presence of tumor-infiltrating lymphocytes and the expression of immune checkpoint molecules. Key Messages This review aimed to provide recent knowledge of TNBC biology and classification focused on IHC, transcriptomics, genomic features, and the new immune biomarkers.
Collapse
Affiliation(s)
- Mercedes Herrera Juarez
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Pablo Tolosa Ortega
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Ana Sanchez de Torre
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Eva Ciruelos Gil
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
41
|
Roberts MS, Anstine LJ, Finke VS, Bryson BL, Webb BM, Weber-Bonk KL, Seachrist DD, Majmudar PR, Keri RA. KLF4 defines the efficacy of the epidermal growth factor receptor inhibitor, erlotinib, in triple-negative breast cancer cells by repressing the EGFR gene. Breast Cancer Res 2020; 22:66. [PMID: 32552913 PMCID: PMC7301986 DOI: 10.1186/s13058-020-01305-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is characterized by high rates of recurrence and poor overall survival. This is due, in part, to a deficiency of targeted therapies, making it essential to identify therapeutically targetable driver pathways of this disease. While epidermal growth factor receptor (EGFR) is expressed in 60% of TNBCs and drives disease progression, attempts to inhibit EGFR in unselected TNBC patients have had a marginal impact on outcomes. Hence, we sought to identify the mechanisms that dictate EGFR expression and inhibitor response to provide a path for improving the utility of these drugs. In this regard, the majority of TNBCs express low levels of the transcription factor, Krüppel-like factor 4 (KLF4), while a small subset is associated with high expression. KLF4 and EGFR have also been reported to have opposing actions in TNBC. Thus, we tested whether KLF4 controls the expression of EGFR and cellular response to its pharmacological inhibition. Methods KLF4 was transiently overexpressed in MDA-MB-231 and MDA-MB-468 cells or silenced in MCF10A cells. Migration and invasion were assessed using modified Boyden chamber assays, and proliferation was measured by EdU incorporation. Candidate downstream targets of KLF4, including EGFR, were identified using reverse phase protein arrays of MDA-MB-231 cells following enforced KLF4 expression. The ability of KLF4 to suppress EGFR gene and protein expression and downstream signaling was assessed by RT-PCR and western blot, respectively. ChIP-PCR confirmed KLF4 binding to the EGFR promoter. Response to erlotinib in the context of KLF4 overexpression or silencing was assessed using cell number and dose-response curves. Results We report that KLF4 is a major determinant of EGFR expression and activity in TNBC cells. KLF4 represses transcription of the EGFR gene, leading to reduced levels of total EGFR, its activated/phosphorylated form (pEGFR), and its downstream signaling intermediates. Moreover, KLF4 suppression of EGFR is a necessary intermediary step for KLF4 to inhibit aggressive TNBC phenotypes. Most importantly, KLF4 dictates the sensitivity of TNBC cells to erlotinib, an FDA-approved inhibitor of EGFR. Conclusions KLF4 is a major regulator of the efficacy of EGFR inhibitors in TNBC cells that may underlie the variable effectiveness of such drugs in patients.
Collapse
Affiliation(s)
- Melyssa S Roberts
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lindsey J Anstine
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Viviane S Finke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Benjamin L Bryson
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bryan M Webb
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kristen L Weber-Bonk
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Darcie D Seachrist
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Parth R Majmudar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Genetics and Genome Sciences and Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Tafreshi NK, Morse DL, Lee MC. Narrowing the focus: Therapeutic cell surface targets for refractory triple-negative breast cancer. World J Clin Oncol 2020; 11:169-179. [PMID: 32355639 PMCID: PMC7186233 DOI: 10.5306/wjco.v11.i4.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is defined as a type of breast cancer with lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor 2 protein. In comparison to other types of breast cancer, TNBC characterizes for its aggressive behavior, more prone to early recurrence and a disease with poor response to molecular target therapy. Although TNBC is identified in only 25%-30% of American breast cancer cases annually, these tumors continue to be a therapeutic challenge for clinicians for several reasons: Tumor heterogeneity, limited and toxic systemic therapy options, and often resistance to current standard therapy, characterized by progressive disease on treatment, residual tumor after cytotoxic chemotherapy, and early recurrence after complete surgical excision. Cell-surface targeted therapies have been successful for breast cancer in general, however there are currently no approved cell-surface targeted therapies specifically indicated for TNBC. Recently, several cell-surface targets have been identified as candidates for treatment of TNBC and associated targeted therapies are in development. The purpose of this work is to review the current clinical challenges posed by TNBC, the therapeutic approaches currently in use, and provide an overview of developing cell surface targeting approaches to improve outcomes for treatment resistant TNBC.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States
- Department of Physics, University of South Florida, Tampa, FL 33612, United States
- Division of Oncologic Sciences, University of South Florida, Tampa, FL 33612 FL, United States
| | - David L Morse
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States
- Department of Physics, University of South Florida, Tampa, FL 33612, United States
- Division of Oncologic Sciences, University of South Florida, Tampa, FL 33612 FL, United States
| | - Marie Catherine Lee
- Division of Oncologic Sciences, University of South Florida, Tampa, FL 33612 FL, United States
- Comprehensive Breast Program, Moffitt Cancer Center, Tampa, FL 33612, United States
| |
Collapse
|
43
|
Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci Rep 2020; 10:6367. [PMID: 32286420 PMCID: PMC7156377 DOI: 10.1038/s41598-020-63310-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancers (TNBC) are unlikely to respond to hormonal therapies and anti-HER2-targeted therapies. TNBCs overexpress EGFR and exhibit constitutive activation of the PI3K/AKT/mTOR signalling pathway. We hypothesized that simultaneously blocking EGFR and mTOR could be a potential therapeutic strategy for the treatment of TNBC. We examined the antitumour activity of the mTOR inhibitor everolimus combined with the EGFR tyrosine kinase inhibitor gefitinib in TNBC cell with or without activating mutations in the PI3K/AKT/mTOR signalling pathway. We demonstrated that everolimus and gefitinib induced synergistic growth inhibition in the PI3K and PTEN-mutant CAL-51 cell line but not in the PTEN-null HCC-1937 cell line. The antiproliferative effect was associated with synergistic inhibition of mTOR and P70S6K phosphorylation, as well as a significant reduction in 4E-BP1 activation in the CAL-51 cell line. We also showed that combination therapy significantly inhibited cell cycle progression and increased apoptosis in this cell line. Gene and protein expression analysis revealed significant downregulation of cell cycle regulators after exposure to combined treatment. Collectively, these results suggested that dual inhibition of mTOR and EGFR may be an effective treatment for TNBC with activating mutations of PI3K.
Collapse
|
44
|
Lubet RA, Heckman-Stoddard BM, Fox JT, Moeinpour F, Juliana MM, Shoemaker RH, Grubbs CJ. Use of Biomarker Modulation in Normal Mammary Epithelium as a Correlate for Efficacy of Chemopreventive Agents Against Chemically Induced Cancers. Cancer Prev Res (Phila) 2020; 13:283-290. [PMID: 31871222 PMCID: PMC7060128 DOI: 10.1158/1940-6207.capr-19-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
In both estrogen receptor/progesterone receptor-positive (ER+/PR+) human breast cancer and in ER+/PR+ cancers in the methylnitrosourea (MNU)-induced rat model, short-term modulation of proliferation in early cancers predicts preventive/therapeutic efficacy. We determined the effects of known effective/ineffective chemopreventive agents on proliferative index (PI) in both rat mammary epithelium and small cancers. Female Sprague-Dawley rats were treated with MNU at 50 days of age. Five days later, the rats were treated with the individual compounds for a period of 14 days. At that time, normal mammary tissue from the inguinal gland area was surgically removed. After removal, the rats remained on the agents for an additional 5 months. This cancer prevention study confirmed our prior results of striking efficacy with tamoxifen, vorozole, Targretin, and gefitinib, and no efficacy with metformin, naproxen, and Lipitor. Employing a separate group of rats, the effects of short-term (7 days) drug exposure on small palpable cancers were examined. The PI in both small mammary cancers and in normal epithelium from control rats was >12%. In agreement with the cancer multiplicity data, tamoxifen, vorozole, gefitinib, and Targretin all strongly inhibited proliferation (>65%; P < 0.025) in the normal mammary epithelium. The ineffective agents metformin, naproxen, and Lipitor minimally affected PI. In the small cancers, tamoxifen, vorozole, and Targretin all reduced the PI, while metformin and Lipitor failed to do so. Thus, short-term changes in the PI in either normal mammary epithelium or small cancers correlated with long-term preventive efficacy in the MNU-induced rat model.
Collapse
Affiliation(s)
- Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland.
| | - Brandy M Heckman-Stoddard
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Jennifer T Fox
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Fariba Moeinpour
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - M Margaret Juliana
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
García-Aranda M, Redondo M. Immunotherapy: A Challenge of Breast Cancer Treatment. Cancers (Basel) 2019; 11:E1822. [PMID: 31756919 PMCID: PMC6966503 DOI: 10.3390/cancers11121822] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the significant benefit of the use of conventional chemotherapy and monoclonal antibodies in the prognosis of breast cancer patients and although the recent approval of the anti-PD-L1 antibody atezolizumab in combination with chemotherapy has been a milestone for the treatment of patients with metastatic triple-negative breast cancer, immunologic treatment of breast tumors remains a great challenge. In this review, we summarize current breast cancer classification and standard of care, the main obstacles that hinder the success of immunotherapies in breast cancer patients, as well as different approaches that could be useful to enhance the response of breast tumors to immunotherapies.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| |
Collapse
|
46
|
Liu H, Ertay A, Peng P, Li J, Liu D, Xiong H, Zou Y, Qiu H, Hancock D, Yuan X, Huang W, Ewing RM, Downward J, Wang Y. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol 2019; 13:1874-1886. [PMID: 31199048 PMCID: PMC6717760 DOI: 10.1002/1878-0261.12530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Sodium/glucose cotransporter 1 (SGLT1), an essential active glucose transport protein that helps maintain high intracellular glucose levels, was previously shown to interact with epidermal growth factor receptor (EGFR); the SGLT1-EGFR interaction maintains intracellular glucose levels to promote survival of cancer cells. Here, we explore the role of SGLT1 in triple-negative breast cancer (TNBC), which is the most aggressive type of breast cancer. We performed TCGA analysis coupled to in vitro experiments in TNBC cell lines as well as in vivo xenografts established in the mammary fat pad of female nude mice. Tissue microarrays of TNBC patients with information of clinical-pathological parameters were also used to investigate the expression and function of SGLT1 in TNBC. We show that high levels of SGLT1 are associated with greater tumour size in TNBC. Knockdown of SGLT1 compromises cell growth in vitro and in vivo. We further demonstrate that SGLT1 depletion results in decreased levels of phospho-EGFR, and as a result, the activity of downstream signalling pathways (such as AKT and ERK) is inhibited. Hence, targeting SGLT1 itself or the EGFR-SGLT1 interaction may provide novel therapeutics against TNBC.
Collapse
Affiliation(s)
- Huiquan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐Chien Huang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Center for Molecular MedicineChina Medical University and HospitalTaichungTaiwan
- Department of Biotechnology, College of Health ScienceAsia UniversityTaichungTaiwan
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonUK
| | | | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonUK
| |
Collapse
|
47
|
Fenn K, Maurer M, Lee SM, Crew KD, Trivedi MS, Accordino MK, Hershman DL, Kalinsky K. Phase 1 Study of Erlotinib and Metformin in Metastatic Triple-Negative Breast Cancer. Clin Breast Cancer 2019; 20:80-86. [PMID: 31570268 DOI: 10.1016/j.clbc.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is frequently overexpressed in metastatic triple-negative breast cancer (mTNBC). One strategy for overcoming resistance to EGFR inhibition is concomitant inhibition of downstream signaling. The antidiabetic drug metformin inhibits both MAPK and PI3K/mTOR pathway signaling. We evaluated the combination of erlotinib and metformin in a phase 1 study of patients with mTNBC. PATIENTS AND METHODS Patients with mTNBC who had received at least one prior line of therapy for metastatic disease were eligible. Erlotinib dose was fixed at 150 mg daily. Metformin dose escalation was planned according to a 3 + 3 design. Dose-limiting toxicities (DLT) were assessed during the first 5 weeks of therapy. The primary objective was to determine the maximum tolerated dose of metformin with fixed-dose erlotinib. Secondary endpoints were response rate, stable disease rate, and progression-free survival. RESULTS Eight patients were enrolled. The median number of prior therapies for metastatic disease was 2.5 (range, 1-6). No DLT events were reported during the DLT assessment period. Most adverse events were grade 1/2. Grade 3 diarrhea despite maximum supportive care required dose reduction of metformin in one patient. Grade 3 rash led to study withdrawal in one patient. No grade 4 adverse events were reported. The best observed response was stable disease in 2 patients (25%). Median progression-free survival was 60 days (range, 36-61 days). CONCLUSION Erlotinib and metformin were well tolerated in a population of pretreated mTNBC patients but did not demonstrate efficacy in this population.
Collapse
Affiliation(s)
- Kathleen Fenn
- Department of Medicine, Columbia University Irving Medical Center, New York NY
| | | | - Shing M Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Katherine D Crew
- Department of Medicine, Columbia University Irving Medical Center, New York NY
| | - Meghna S Trivedi
- Department of Medicine, Columbia University Irving Medical Center, New York NY
| | - Melissa K Accordino
- Department of Medicine, Columbia University Irving Medical Center, New York NY
| | - Dawn L Hershman
- Department of Medicine, Columbia University Irving Medical Center, New York NY
| | - Kevin Kalinsky
- Department of Medicine, Columbia University Irving Medical Center, New York NY.
| |
Collapse
|
48
|
McLaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, Smid M, Zhang Y, van de Water B. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res 2019; 21:77. [PMID: 31262335 PMCID: PMC6604188 DOI: 10.1186/s13058-019-1161-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. METHODS Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence on such pathways, respectively. A kinase inhibitor combination screen was used to identify compounds that synergised with EGFR-TKIs in TNBC, utilising sulphorhodamine B (SRB) assay as read-out for proliferation. The impact of drug combinations on cell cycle arrest, apoptosis and signal transduction was assessed using flow cytometry, automated live-cell imaging and western blotting, respectively. RNA sequencing was employed to unravel transcriptomic changes elicited by this synergistic combination and to permit identification of the signalling networks most sensitive to co-inhibition. RESULTS We demonstrate that a dual cdc7/CDK9 inhibitor, PHA-767491, synergises with multiple EGFR-TKIs (lapatinib, erlotinib and gefitinib) to overcome resistance to EGFR-targeted therapy in various TNBC cell lines. Combined inhibition of EGFR and cdc7/CDK9 resulted in reduced cell proliferation, accompanied by induction of apoptosis, G2-M cell cycle arrest, inhibition of DNA replication and abrogation of CDK9-mediated transcriptional elongation, in contrast to mono-inhibition. Moreover, high expression of cdc7 and RNA polymerase II Subunit A (POLR2A), the direct target of CDK9, is significantly correlated with poor metastasis-free survival in a cohort of breast cancer patients. RNA sequencing revealed marked downregulation of pathways governing proliferation, transcription and cell survival in TNBC cells treated with the combination of an EGFR-TKI and a dual cdc7/CDK9 inhibitor. A number of genes enriched in these downregulated pathways are associated with poor metastasis-free survival in TNBC. CONCLUSIONS Our results highlight that dual inhibition of cdc7 and CDK9 by PHA-767491 is a potential strategy for targeting TNBC resistant to EGFR-TKIs.
Collapse
Affiliation(s)
- Ronan P. McLaughlin
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jichao He
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vera E. van der Noord
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jevin Redel
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yinghui Zhang
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Bob van de Water
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
49
|
Yuan Y, Wen W, Yost SE, Xing Q, Yan J, Han ES, Mortimer J, Yim JH. Combination therapy with BYL719 and LEE011 is synergistic and causes a greater suppression of p-S6 in triple negative breast cancer. Sci Rep 2019; 9:7509. [PMID: 31101835 PMCID: PMC6525251 DOI: 10.1038/s41598-019-43429-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
A third of patients with triple negative breast cancer (TNBC) have relapsed disease within 2-5 years from initial diagnosis, leaving an unmet need for therapeutic targets. TNBC frequently harbors alterations of the PI3K/AKT/mTOR pathway, but single agent PI3K/AKT/mTOR inhibitors have not shown marked efficacy. In this study, we investigated a strategy to improve efficacy of PI3K-α inhibitor BYL719 (alpelisib) in TNBC. While BYL719 is effective at inhibiting cell proliferation in T47D, a triple positive cell line, it had limited activity in TNBC. This may be partially due to persistent phosphorylation of RB, and incomplete inhibition of p-S6 in TNBC, since the inhibitory effect of BYL719 on p-RB and p-S6 was significantly reduced in TNBC compared to T47D cells. Addition of the CDK4/6 inhibitor LEE011 to BYL719 caused a simultaneous reduction of p-RB and p-S6, and a more complete inhibition of p-S6, leading to decreased expression of the pro-survival protein MCL-1, an induction of apoptosis, and an enhanced reduction of tumor growth in a PDX model of TNBC. These findings suggest that inhibition of p-RB and p-S6 is important for an effective response to the treatment of TNBC, and provides a strong rationale for clinical development of combination therapy with BYL719 and LEE011 for treatment of metastatic TNBC with intact RB.Presentation: This study was presented in part as an abstract at the 2016 San Antonio Breast Cancer Symposium (P3-03-15) and the 2018 Cancer Research and Targeted Therapy in London.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| | - Wei Wen
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan E Yost
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Quanhua Xing
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Jin Yan
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - John H Yim
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
50
|
Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ. J Mammary Gland Biol Neoplasia 2019; 24:1-15. [PMID: 30056557 PMCID: PMC6641861 DOI: 10.1007/s10911-018-9405-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.
Collapse
MESH Headings
- Breast/pathology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Primary Cell Culture/methods
Collapse
Affiliation(s)
- Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bonnie F Sloane
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|