1
|
Ren T, Yang MZ, Zhang WM, Qin LJ, Zhou SC, Cheng NN, Huang YJ, Sun J, Xu N, Sun HB, Zhang BB. A novel fluorescent dye selectively images and kills cancer stem cells by targeting mitochondria: Evidence from a cell line‑based zebrafish xenograft model. Oncol Lett 2023; 26:472. [PMID: 37809044 PMCID: PMC10551866 DOI: 10.3892/ol.2023.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Numerous agents such as near-infrared dyes that are characterized by specialized cancer imaging and cytotoxicity effects have key roles in cancer diagnosis and therapy via molecularly targeting special biological tissues, organelles and processes. In the present study, a novel fluorescent compound was demonstrated to inhibit cancer cell proliferation in a zebrafish model with slight in vivo toxicity. Further studies demonstrated selective staining of cancer cells and even putative cancer stem cells via accumulation of the dye in the mitochondria of cancer cells, compared with normal cells. Moreover, this compound was also used to image cancer cells in vivo using a zebrafish model. The compound displayed no apparent toxicity to the host animal. Overall, the data indicated that this compound was worthy of further evaluation due to its low toxicity and selective cancer cell imaging and killing effects. It could be a useful tool in cancer research.
Collapse
Affiliation(s)
- Tao Ren
- Department of Clinical Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Meng-Zhe Yang
- Graduate School, Beijing TongRen Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Wei-Ming Zhang
- Department of Clinical Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi 530199, P.R. China
| | - Liu-Jie Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Shou-Chang Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Nan-Nan Cheng
- Laboratory of Clinical Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yuan-Jiao Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Jing Sun
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Ning Xu
- Department of Clinical Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Hua-Bing Sun
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bei-Bei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
3
|
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. BIOSENSORS 2021; 11:336. [PMID: 34562926 PMCID: PMC8472208 DOI: 10.3390/bios11090336] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Asha Sharma
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Aamir Ahmed
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Hidemitsu Furukawa
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| |
Collapse
|
4
|
Monitoring disease activity noninvasively in the mdx model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2018; 115:7741-7746. [PMID: 29987034 DOI: 10.1073/pnas.1802425115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.
Collapse
|
5
|
Evaluation of drug mechanism and efficacy of a novel anti-angiogenic agent, TTAC-0001, using multi-modality bioimaging in a mouse breast cancer orthotopic model. PLoS One 2018; 13:e0187063. [PMID: 29370209 PMCID: PMC5784895 DOI: 10.1371/journal.pone.0187063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose Targeting of vascular endothelial growth factor receptors (VEGFRs) has potential anti-angiogenic effects because VEGFR-2 is the major signaling regulator of VEGF/VEGFR pathways. We aimed to elucidate the drug mechanism and anti-tumor efficacy of TTAC-0001, a novel, fully human anti-VEGFR-2/KDR monoclonal antibody, in mouse orthotopic breast cancer model using multi-modal bioimaging. Materials and methods We used orthotopic xenograft tumor model in which human breast cancer cells (MDA-MB-231) were injected into the right mammary fat pad of Balb/c nude mice. We investigated its biodistribution using serial fluorescence imaging after injecting fluorescent-labelled-drug and mode of action using Matrigel plug angiogenesis assays. The anti-tumor efficacy of drug was assessed using ultrasonography and bioluminescence imaging. Histopathologic analyses, including hematoxylin and eosin staining and immunohistochemistry with anti-CD31 and anti-Ki-67 antibodies, were performed. Each experiment had four groups: control, bevacizumab 10 mg/kg (BVZ-10 group), TTAC-0001 2 mg/kg (TTAC-2 group), and TTAC-0001 10 mg/kg (TTAC-10 group). Results The TTAC-10 group showed good tumor targeting that lasted for at least 6 days and had a good anti-angiogenic effect with decreased hemoglobin content and fewer CD31-positive cells in the Matrigel plug. Compared with BVZ-10 and TTAC-2 groups, the TTAC-10 group showed the strongest anti-tumor efficacy, inhibiting tumor growth as detected by ultrasonography and bioluminescence imaging. The TTAC-10 group also showed the lowest viable tumor and micro-vessel areas and the lowest Ki-67 index in histopathologic analyses. Conclusion We firstly demonstrated that TTAC-0001 effectively inhibited tumor growth and neovascularization in mouse orthotopic breast cancer model. It may provide a future treatment option for breast cancer.
Collapse
|
6
|
Jung JH, Ahn BC. Current Radiopharmaceuticals for Positron Emission Tomography of Brain Tumors. Brain Tumor Res Treat 2018; 6:47-53. [PMID: 30381916 PMCID: PMC6212689 DOI: 10.14791/btrt.2018.6.e13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is ¹⁸F-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, ¹¹C-methionine and ¹⁸F-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, ¹¹C-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Byeong Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
7
|
Serkova NJ. Nanoparticle-Based Magnetic Resonance Imaging on Tumor-Associated Macrophages and Inflammation. Front Immunol 2017; 8:590. [PMID: 28588582 PMCID: PMC5439008 DOI: 10.3389/fimmu.2017.00590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
The inflammatory response, mediated by tissue-resident or newly recruited macrophages, is an underlying pathophysiological condition for many diseases, including diabetes, obesity, neurodegeneration, atherosclerosis, and cancer. Paradoxically, inflammation is a double-edged sword in oncology. Macrophages are, generally speaking, the major drivers of inflammatory insult. For many solid tumors, high density of cells expressing macrophage-associated markers have generally been found in association with a poor clinical outcome, characterized by inflamed microenvironment, a high level of dissemination and resistance to conventional chemotherapies. On another hand, radiation treatment also triggers an inflammatory response in tumors (often referred to as pseudoprogression), which can be associated with a positive treatment response. As such, non-invasive imaging of cancer inflammation and tumor-associated macrophages (TAMs) provides a revolutionary diagnostic tool and monitoring strategy for anti-inflammatory, immuno- and radiotherapies. Recently, quantitative T2-weighted magnetic resonance imaging (qT2wMRI), using injection of superparamagnetic iron oxide nanoparticles (SPIONs), has been reported for the assessment of TAMs non-invasively in animal models and in human trials. The SPIONs are magnetic resonance imaging (MRI) contrast agents that significantly decrease T2 MR relaxation times in inflamed tissues due to the macrophage-specific uptake and retention. It has been shown that macrophage-populated tumors and metastases will accumulate iron oxide nanoparticles and decrease T2-relaxation time that will result in a negative (dark) contrast in qT2wMRI. Non-invasive imaging of TAMs using SPION holds a great promise for staging the inflammatory microenvironment of primary and metastatic tumors as well monitoring the treatment response of cancer patients treated with radiation and immunotherapy.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiation Oncology, Anschutz Medical Center, Aurora, CO, USA.,Animal Imaging Shared Resources, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
8
|
Serkova NJ, Eckhardt SG. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents. Front Oncol 2016; 6:152. [PMID: 27471678 PMCID: PMC4946377 DOI: 10.3389/fonc.2016.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using (18)F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased (18)FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen.
Collapse
Affiliation(s)
- Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - S. Gail Eckhardt
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
9
|
Mehrotra P. Biosensors and their applications - A review. J Oral Biol Craniofac Res 2016; 6:153-9. [PMID: 27195214 PMCID: PMC4862100 DOI: 10.1016/j.jobcr.2015.12.002] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022] Open
Abstract
The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications.
Collapse
|
10
|
Wang Q, Luan W, Warren L, Kadri H, Kim KW, Goz V, Blank S, Isabel Fiel M, Hiotis SP. Autologous Tumor Cell Lysate-Loaded Dendritic Cell Vaccine Inhibited Tumor Progression in an Orthotopic Murine Model for Hepatocellular Carcinoma. Ann Surg Oncol 2016; 23:574-582. [PMID: 26786094 DOI: 10.1245/s10434-015-5035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/12/2022]
Abstract
The immune status of the tumor microenvironment influences tumor progression, and hepatocellular carcinoma (HCC) with an immunosuppressive signature often is associated with a poor prognosis. This study examined the impact of a bone marrow-derived dendritic cell (DC) vaccine loaded with autologous tumor cell lysate on tumor progression and the tumor microenvironment using an orthotopic murine HCC model. An orthotopic murine HCC was established by implantation of Hepa1-6 cells in the liver. The impact of DC vaccine loaded with Hepa1-6 cell lysate on tumor progression, survival, and tumor-infiltrating lymphocytes and cytokines was examined. Treating mice with DC vaccine loaded with Hepa1-6 cell lysate inhibited the progression of murine HCC generated through orthotopic implantation of Hepa1-6 cells and resulted in a 90 % survival rate by day 60 compared with a survival rate lower than 5 % for untreated mice. This anti-tumor response was associated with inhibition of STAT3 phosphorylation within the tumor. The DC vaccine reduced accumulation of Foxp3+CD4+ regulatory T cells within the tumor microenvironment and prevented TGF-β production from the tumor tissue. Tumor cell lysate-loaded DC vaccine prevented HCC progression in a clinically relevant orthotopic murine HCC model. The effect of DC vaccine on the accumulation of Foxp3+CD4+ regulatory T cells within the tumor microenvironment and on the production of TGF-β suggests that tumor regression by DC vaccination may be associated with an altered immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qin Wang
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Luan
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leslie Warren
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hena Kadri
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Won Kim
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vadim Goz
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sima Blank
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spiros P Hiotis
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Brain tumors differ in histology, biology, prognosis and treatment options. Although structural magnetic resonance is still the gold standard for morphological tumor characterization, molecular imaging has gained an increasing importance in assessment of tumor activity and malignancy. RECENT FINDINGS Amino acid PET is frequently used for surgery and biopsy planning as well as therapy monitoring in suspected primary brain tumors as well as metastatic lesions, whereas 18F-fluorodeoxyglucose (18F-FDG) remains the tracer of choice for evaluation of patients with primary central nervous system lymphoma. Application of somatostatin receptor ligands has improved tumor delineation in skull base meningioma and concurrently opened up new treatment possibilities in recurrent or surgically not assessable tumors.Recent development focuses on the implementation of hybrid PET/MRI as well as on the development of new tracers targeting tumor hypoxia, enzymes involved in neoplastic metabolic pathways and the combination of PET tracers with therapeutic agents. SUMMARY Implementation of molecular imaging in the clinical routine continues to improve management in patients with brain tumors. However, more prospective large sample studies are needed to validate the additional informative value of PET.
Collapse
|
12
|
Li C, Wang J, Hu J, Feng Y, Hasegawa K, Peng X, Duan X, Zhao A, Mikitsh JL, Muzykantov VR, Chacko AM, Pryma DA, Dunn SM, Coukos G. Development, optimization, and validation of novel anti-TEM1/CD248 affinity agent for optical imaging in cancer. Oncotarget 2015; 5:6994-7012. [PMID: 25051365 PMCID: PMC4196179 DOI: 10.18632/oncotarget.2188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.
Collapse
Affiliation(s)
- Chunsheng Li
- Ovarian Cancer Research Center, University of Pennsylvania; These authors contributed equally to this work
| | - Junying Wang
- Ovarian Cancer Research Center, University of Pennsylvania; Department of Immunology, Norman Bethune College of Medicine Jilin University; These authors contributed equally to this work
| | - Jia Hu
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Yi Feng
- Department of Cancer Biology, University of Pennsylvania
| | - Kosei Hasegawa
- Saitama International Medical Center Saitama Medical University
| | - Xiaohui Peng
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Xingmei Duan
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Aizhi Zhao
- Ovarian Cancer Research Center, University of Pennsylvania
| | - John L Mikitsh
- Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | | | - Ann-Marie Chacko
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania; Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | - Daniel A Pryma
- Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | - Steven M Dunn
- Ludwig Cancer Research Center, University of Lausanne
| | - George Coukos
- Ovarian Cancer Research Center, University of Pennsylvania; Ludwig Cancer Research Center, University of Lausanne
| |
Collapse
|
13
|
Iwaki S, Hokamura K, Ogawa M, Takehara Y, Muramatsu Y, Yamane T, Hirabayashi K, Morimoto Y, Hagisawa K, Nakahara K, Mineno T, Terai T, Komatsu T, Ueno T, Tamura K, Adachi Y, Hirata Y, Arita M, Arai H, Umemura K, Nagano T, Hanaoka K. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Org Biomol Chem 2014; 12:8611-8. [DOI: 10.1039/c4ob01270d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21. [PMID: 24876106 DOI: 10.1158/0008-5472.can-13-3472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral oncolysis, the destruction of cancer cells by replicating virus, is an experimental cancer therapy that continues to be explored. The treatment paradigm for this therapy involves successive waves of lytic replication in cancer cells. At present, monitoring viral titer at sites of replication requires biopsy. However, repeat serial biopsies are not practically feasible for temporal monitoring of viral replication and tumor response in patients. Molecular imaging provides a noninvasive method to identify intracellular viral gene expression in real time. We imaged viral oncolysis and tumor response to oncolysis sequentially with bioluminescence and positron emission tomography (PET), revealing the kinetics of both processes in tumor xenografts. We demonstrate that virus replication cycles can be identified as successive waves of reporter expression that occur ∼2 days after the initial viral tumor infection peak. These waves correspond to virions that are released following a replication cycle. The viral and cellular kinetics were imaged with Fluc and Rluc bioluminescence reporters plus two 18F-labeled PET reporters FHBG [9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine] and FLT (18F-3'-deoxy-3-'fluorothymidine), respectively. Correlative immunohistochemistry on tumor xenograft sections confirmed in vivo results. Our findings show how PET can be used to identify virus replication cycles and for real-time measurements of intratumoral replicating virus levels. This noninvasive imaging approach has potential utility for monitoring viral oncolysis therapy in patients.
Collapse
Affiliation(s)
| | | | - Khalid Shah
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
15
|
A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). Anal Bioanal Chem 2014; 406:3431-42. [DOI: 10.1007/s00216-014-7780-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
16
|
Xie L, Yui J, Fujinaga M, Hatori A, Yamasaki T, Kumata K, Wakizaka H, Furutsuka K, Takei M, Jin ZH, Furukawa T, Kawamura K, Zhang MR. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18) F-FITM. Int J Cancer 2014; 135:1852-9. [PMID: 24643962 DOI: 10.1002/ijc.28842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/25/2014] [Indexed: 11/09/2022]
Abstract
Oncoimaging using positron emission tomography (PET) with a specific radioprobe would facilitate individualized cancer management. Evidence indicates that ectopically expressed metabotropic glutamate 1 (mGlu1) receptor independently induces melanocyte carcinogenesis, and it is therefore becoming an important target for personalized diagnosis and treatment strategies for melanomas. Here, we report the development of an oncoprotein-based PET imaging platform in melanomas for noninvasive visualization and quantification of mGlu1 with a novel mGlu1-specific radioprobe, 4-(18)F-fluoro-N-[4-[6-(isopropyl amino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ((18)F-FITM). (18)F-FITM shows excellent pharmacokinetics, namely the dense and specific accumulation in mGlu1-positive melanomas versus mGlu1-negative hepatoma and normal tissues. Furthermore, the accumulation levels of radioactivity corresponded to the extent of tumor and to levels of mGlu1 protein expression in melanomas and melanoma metastasis. The (18)F-FITM PET imaging platform, as a noninvasive personalized diagnostic tool, is expected to open a new avenue for defining individualized therapeutic strategies, clinical trials, patient management and understanding mGlu1-triggered oncologic events in melanomas.
Collapse
Affiliation(s)
- Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Automated tracking of quantitative assessments of tumor burden in clinical trials. Transl Oncol 2014; 7:23-35. [PMID: 24772204 DOI: 10.1593/tlo.13796] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
THERE ARE TWO KEY CHALLENGES HINDERING EFFECTIVE USE OF QUANTITATIVE ASSESSMENT OF IMAGING IN CANCER RESPONSE ASSESSMENT: 1) Radiologists usually describe the cancer lesions in imaging studies subjectively and sometimes ambiguously, and 2) it is difficult to repurpose imaging data, because lesion measurements are not recorded in a format that permits machine interpretation and interoperability. We have developed a freely available software platform on the basis of open standards, the electronic Physician Annotation Device (ePAD), to tackle these challenges in two ways. First, ePAD facilitates the radiologist in carrying out cancer lesion measurements as part of routine clinical trial image interpretation workflow. Second, ePAD records all image measurements and annotations in a data format that permits repurposing image data for analyses of alternative imaging biomarkers of treatment response. To determine the impact of ePAD on radiologist efficiency in quantitative assessment of imaging studies, a radiologist evaluated computed tomography (CT) imaging studies from 20 subjects having one baseline and three consecutive follow-up imaging studies with and without ePAD. The radiologist made measurements of target lesions in each imaging study using Response Evaluation Criteria in Solid Tumors 1.1 criteria, initially with the aid of ePAD, and then after a 30-day washout period, the exams were reread without ePAD. The mean total time required to review the images and summarize measurements of target lesions was 15% (P < .039) shorter using ePAD than without using this tool. In addition, it was possible to rapidly reanalyze the images to explore lesion cross-sectional area as an alternative imaging biomarker to linear measure. We conclude that ePAD appears promising to potentially improve reader efficiency for quantitative assessment of CT examinations, and it may enable discovery of future novel image-based biomarkers of cancer treatment response.
Collapse
|
18
|
Baumann BC, Kao GD, Mahmud A, Harada T, Swift J, Chapman C, Xu X, Discher DE, Dorsey JF. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 2013; 4:64-79. [PMID: 23296073 PMCID: PMC3702208 DOI: 10.18632/oncotarget.777] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by >50% (p<0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.
Collapse
Affiliation(s)
- Brian C Baumann
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Nanotheranostics, the integration of diagnostic and therapeutic function in one system using the benefits of nanotechnology, is extremely attractive for personalized medicine. Because treating cancer is not a one-size-fits-all scenario, it requires therapy to be adapted to the patient's specific biomolecules. Personalized and precision medicine (PM) does just that. It identifies biomarkers to gain an understanding of the diagnosis and in turn treating the specific disorder based on the precise diagnosis. By predominantly utilizing the unique properties of nanoparticles to achieve biomarker identification and drug delivery, nanotheranostics can be applied to noninvasively discover and target image biomarkers and further deliver treatment based on the biomarker distribution. This is a large and hopeful role theranostics must fill. However, as described in this expert opinion, current nanotechnology-based theranostics systems engineered for PM applications are not yet sufficient. PM is an ever-growing field that will be a driving force for future discoveries in biomedicine, especially cancer theranostics. In this article, the authors dissect the requirements for successful nanotheranostics-based PM.
Collapse
Affiliation(s)
- Tae Hyung Kim
- The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Seulki Lee
- The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| |
Collapse
|
20
|
Raut SL, Shumilov D, Chib R, Rich R, Gryczynski Z, Gryczynski I. Two Photon Induced Luminescence of BSA Protected Gold Clusters. Chem Phys Lett 2013; 561-562:74-76. [PMID: 26635417 PMCID: PMC4665100 DOI: 10.1016/j.cplett.2013.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this short letter, we have synthesized the BSA protected Au25 nanoclusters and studied their two photon luminescence behavior. We demonstrate that BSA Au25 nanoclusters can be used as a probe with two photon excitation capability. Our results show a quadratic relation between excitation power and emission intensity whereas with one photon excitation shows a linear dependence. The emission spectrum of BSA Au25 nanoclusters with one photon and two photon excitation shows no appreciable change. Due to its long wavelength emission (650 nm) and two photon excitation, BSA Au25 can be potentially used as a probe for deep tissue imaging.
Collapse
Affiliation(s)
- Sangram L. Raut
- Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
| | - Dmytro Shumilov
- Department of Physics. Texas Christian University, 2800 S. University Dr., Fort Worth, Texas, USA, 76129
| | - Rahul Chib
- Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
| | - Ryan Rich
- Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
| | - Zygmunt Gryczynski
- Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
- Department of Physics. Texas Christian University, 2800 S. University Dr., Fort Worth, Texas, USA, 76129
| | - Ignacy Gryczynski
- Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center. 3500 Camp Bowie Blvd. Fort Worth, Texas, USA, 76107
| |
Collapse
|
21
|
Mudd SR, Holich KD, Voorbach MJ, Cole TB, Reuter DR, Tapang P, Bukofzer G, Chakravartty A, Donawho CK, Palma JP, Fox GB, Day M, Luo Y. Pharmacodynamic evaluation of irinotecan therapy by FDG and FLT PET/CT imaging in a colorectal cancer xenograft model. Mol Imaging Biol 2013; 14:617-24. [PMID: 22167582 DOI: 10.1007/s11307-011-0529-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Longitudinal changes of 3'-[(18) F]fluoro-3'-deoxythymidine (FLT) and 2-deoxy-2-[(18) F]fluoro-D-glucose (FDG) in response to irinotecan therapy in an animal model of colorectal cancer were compared. PROCEDURES SCID/CB-17 mice with HCT116 tumors were treated with 50 mg/kg irinotecan by intraperitoneal injection weekly for 3 weeks. FLT and FDG-positron emission tomography (PET) were performed at baseline, the day after each treatment, and 5 days after the first treatment. Proliferation and apoptosis were evaluated by immunohistochemistry (IHC) after day 15 of imaging. RESULTS Irinotecan treatment resulted in a suppression of tumor growth. Tumor FLT uptake was decreased the day after each treatment but to a lesser extent 5 days after the first treatment. FDG uptake increased the day after each treatment with a continuous increase throughout the experiment. IHC analysis of phospho-H3 and Ki67 confirmed FLT-PET results, indicating a decrease in proliferation the day after the final irinotecan treatment. Increased apoptosis monitored by caspase-3 was observed after day 15 with irinotecan treatment. CONCLUSIONS FLT-PET may be a better method than FDG-PET for assessing treatment response to irinotecan. Changes in imaging occur before changes in tumor volume.
Collapse
Affiliation(s)
- Sarah R Mudd
- Translational Imaging and Biochemical Biomarkers, Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morris MC. Fluorescent biosensors - probing protein kinase function in cancer and drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1387-95. [PMID: 23376184 DOI: 10.1016/j.bbapap.2013.01.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/24/2013] [Indexed: 01/11/2023]
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Fluorescent biosensors constitute a class of imaging agents which have provided major insights into the function and regulation of enzymes in their cellular context. GFP-based reporters and genetically-encoded FRET biosensors, have been successfully applied to study protein kinases in living cells with high spatial and temporal resolution. In parallel, combined efforts in fluorescence chemistry and in chemical biology have enabled the design of non-genetic, polypeptide biosensors coupled to small synthetic fluorescent probes, which have been applied to monitor protein kinase activities in vitro and in more complex biological samples, with an equally successful outcome. From a biomedical perspective, fluorescent biosensor technology is well suited to development of diagnostic approaches, for monitoring disease progression and for evaluating response to therapeutics. Moreover it constitutes an attractive technology for drug discovery programs, for high content, high throughput screening assays, to assess the potency of new hits and optimize lead compounds, whilst also serving to characterize drugs developed through rational design. This review describes the utility and versatility of fluorescence biosensor technology to probe protein kinases with a specific focus on CDK/cyclin biosensors we have developed to probe abundance, activity and conformation. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- May C Morris
- Chemical Biology and Nanotechnology for Therapeutics, CRBM-CNRS-UMR5237,1919 Route de Mende, 34293 Montpellier, IFR122, France.
| |
Collapse
|
23
|
Nhu Ngoc Van T, Morris MC. Fluorescent Sensors of Protein Kinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:217-74. [DOI: 10.1016/b978-0-12-386932-6.00006-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Korotcov AV, Ye Y, Chen Y, Zhang F, Huang S, Lin S, Sridhar R, Achilefu S, Wang PC. Glucosamine-linked near-infrared fluorescent probes for imaging of solid tumor xenografts. Mol Imaging Biol 2012; 14:443-51. [PMID: 21971932 DOI: 10.1007/s11307-011-0520-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Near-infrared fluorescence (NIRF) imaging is an attractive technique for studying diseases at the molecular level in vivo. Glucose transporters are often used as targets for in vivo imaging of tumors. The efficiency of a tumor-seeking fluorescent probe can be enhanced by attaching one or more glucosamine (GlcN) moieties. This study was designed to evaluate the use of previously developed GlcN-linked NIRF probes for in vitro and in vivo optical imaging of cancer. PROCEDURES Cellular uptake of the probes (1 μM) was investigated in monolayer cultures of luciferase-expressing PC3 (PC3-luc) cells. The prostate tumors were established as subcutaneous xenografts using PC3-luc cells in nude mice. The biodistributions and tumor-targeting specificities of cypate (cyp), cypate-D: -(+)-glucosamine (cyp-GlcN), and D: -(+)-gluosamine-cypate-D: -(+)-gluosamine (cyp-2GlcN) were studied. The tumor, muscle, and major organs were collected for ex vivo optical imaging. RESULTS The tumor cell uptake of the probe containing two glucosamine residues, cyp-2GlcN, was significantly higher than the uptake of both the probe with one glucosamine residue, cyp-GlcN, and the probe without glucosamine, cyp only. Similarly, in in vivo experiments, cyp-2GlcN demonstrated higher maximum fluorescence intensity and longer residence lifetime in tumors than cyp-GlcN or cyp. The ex vivo biodistribution analysis revealed that tumor uptake of cyp-2GlcN and cyp-GlcN was four- and twofold higher than that of cyp at 24 h post-injection, respectively. CONCLUSION Both cyp-GlcN and cyp-2GlcN NIRF probes exhibited good tumor-targeting properties in prostate cancer cell cultures and live mice. The cyp-2GlcN probe showed the highest uptake with good retention characteristics in vivo. The uptake of cyp-2GlcN and cyp-GlcN is likely mediated by glucosamine-recognizing transporters. The uptake mechanism is being explored further for developing cypate-glucosamine-based probes for in vivo imaging.
Collapse
Affiliation(s)
- Alexandru V Korotcov
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
How to keep your integrity when performing sponsored (imaging) trials. J Am Coll Radiol 2011; 8:842-7. [PMID: 22137001 DOI: 10.1016/j.jacr.2011.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
The broadening of imaging capabilities and the increasing capacity of imaging to quantitate biologic processes has increased industry interest in using imaging methods in new drug development. Investigators participating in industry-sponsored trials should be aware of how such trials differ from investigator-initiated, grant-funded research. In particular, investigators should be cognizant of possible ethical conflicts in the care of patients, the development and analysis of data, and issues related to the dissemination of results.
Collapse
|
26
|
Minimizing Image Misregistration during PET/CT–guided Percutaneous Interventions with Monitored Breath-hold PET and CT Acquisitions. J Vasc Interv Radiol 2011; 22:1287-92. [DOI: 10.1016/j.jvir.2011.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/22/2022] Open
|
27
|
Wang Q, Luan W, Goz V, Burakoff SJ, Hiotis SP. Non-invasive in vivo imaging for liver tumour progression using an orthotopic hepatocellular carcinoma model in immunocompetent mice. Liver Int 2011; 31:1200-8. [PMID: 21745281 DOI: 10.1111/j.1478-3231.2011.02523.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Maintenance of complex transgenic colonies and labour-intensive techniques pose significant challenges in work involving mouse models for hepatocellular carcinoma (HCC). Other animal models of unusual species are generally impractical for research purposes. AIMS To develop a highly reproducible orthotopic mouse model for HCC based on the murine α-foetoprotein (AFP), producing cell line Hepa1-6 and to monitor liver tumour progression via in vivo imaging, and measurement of plasma AFP. METHODS Intrahepatic tumour was induced following subcapsular implantation of 10(+6) Hepa1-6 cells into C57L/J mice. AFP production was examined in vitro and in vivo using immunoblotting. Three confirmatory non-invasive imaging modalities were applied to follow tumour progression over time including ultrasound biomicroscopy (UBM), micromagnetic resonance imaging (microMRI), and bioluminescence. RESULTS α-foetoprotein expression was confirmed both in vitro and in vivo, with increasing levels in the plasma as tumours progressed. UBM, microMRI and bioluminescence detected intrahepatic tumours to a 2 mm resolution by day 14. Sequential imaging studies demonstrated an intrahepatic pattern of disease progression with an observed median survival of 29 days. Immunosuppression of tumour-bearing mice led to a greater tumour size and decreased survival. CONCLUSIONS Intrahepatic implantation of Hepa1-6 as a mouse model for HCC is a highly reproducible in vivo system with tumour biology analogous to human disease and is regulated by the presence of an intact host immune system. Tumour progression may be monitored in vivo by UBM, microMRI and bioluminescence. Plasma AFP increases over time, allowing redundancy in non-invasive means of following tumour progression.
Collapse
Affiliation(s)
- Qin Wang
- Department of Surgery, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Maia S, Ayachi Hatit N, Paycha F. [Situation of supply and boom of PET imaging: what is the future for technetium-99m in nuclear medicine?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:155-64. [PMID: 21570540 DOI: 10.1016/j.pharma.2011.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 12/26/2022]
Abstract
Molecular imaging has shown its interest in the diagnosis, staging and therapy monitoring of many diseases, especially in the field of cancer. This imaging modality can detect non-invasively early molecular changes specific to these diseases. Its expansion includes two aspects linked firstly with the advanced techniques of imaging modalities and secondly with the development of tracers as radio pharmaceuticals for imaging new molecular targets. Technetium-99m ((99m)Tc), because of its physical characteristics, its widespread availability and low cost, is the most used radionuclide in molecular imaging with the technique of single photon emission computed tomography (SPECT). Nevertheless, the current difficulty concerning the supply and the great interest of Positron Emission Tomography (PET), the "competitor" imaging modality-using molecules labelled with fluorine-18 ((18)F), legitimates the question about the future of (99m)Tc, its supremacy and the emergence of new tracer labelled with (99m)Tc. Focusing on the actual and future supply situation, the place of SPECT imaging in nuclear medicine, as well as the development of new molecules labelled with (99m)Tc is necessary to show that this radionuclide will remain essential for the speciality in the next years.
Collapse
Affiliation(s)
- S Maia
- Service de pharmacie et radiopharmacie, hôpital Bretonneau, CHRU de Tours, France.
| | | | | |
Collapse
|
29
|
MITSUDA M, YAMAGUCHI M, FURUTA T, NABETANI A, HIRAYAMA A, NOZAKI A, NIITSU M, FUJII H. Multiple-animal MR Imaging using a 3T Clinical Scanner and Multi-channel Coil for Volumetric Analysis in a Mouse Tumor Model. Magn Reson Med Sci 2011; 10:229-37. [DOI: 10.2463/mrms.10.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Land WH, Margolis D, Gottlieb R, Krupinski EA, Yang JY. Improving CT prediction of treatment response in patients with metastatic colorectal carcinoma using statistical learning theory. BMC Genomics 2010; 11 Suppl 3:S15. [PMID: 21143782 PMCID: PMC2999345 DOI: 10.1186/1471-2164-11-s3-s15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Significant interest exists in establishing radiologic imaging as a valid biomarker for assessing the response of cancer to a variety of treatments. To address this problem, we have chosen to study patients with metastatic colorectal carcinoma to learn whether statistical learning theory can improve the performance of radiologists using CT in predicting patient treatment response to therapy compared with the more traditional RECIST (Response Evaluation Criteria in Solid Tumors) standard. Results Predictions of survival after 8 months in 38 patients with metastatic colorectal carcinoma using the Support Vector Machine (SVM) technique improved 30% when using additional information compared to WHO (World Health Organization) or RECIST measurements alone. With both Logistic Regression (LR) and SVM, there was no significant difference in performance between WHO and RECIST. The SVM and LR techniques also demonstrated that one radiologist consistently outperformed another. Conclusions This preliminary research study has demonstrated that SLT algorithms, properly used in a clinical setting, have the potential to address questions and criticisms associated with both RECIST and WHO scoring methods. We also propose that tumor heterogeneity, shape, etc. obtained from CT and/or MRI scans be added to the SLT feature vector for processing.
Collapse
Affiliation(s)
- Walker H Land
- Department of Bioengineering, Binghamton University, Binghamton, NY 13903-6000, USA.
| | | | | | | | | |
Collapse
|
31
|
Morris MC. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem Biophys 2010; 56:19-37. [PMID: 19921468 DOI: 10.1007/s12013-009-9070-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the escalation of drug discovery programmes, it has become essential to visualize and monitor biological activities in healthy and pathological cells, with high spatial and temporal resolution. To this aim, the development of probes and sensors, which can report on the levels and activities of specific intracellular targets, has become essential. Together with the discovery of the Green Fluorescent Protein (GFP), and the development of GFP-based reporters, recent advances in the synthesis of small molecule fluorescent probes, and the explosion of fluorescence-based imaging technologies, the biosensor field has witnessed a dramatic expansion of fluorescence-based reporters which can be applied to complex biological samples, living cells and tissues to probe protein/protein interactions, conformational changes and posttranslational modifications. Here, we review recent developments in the field of fluorescent biosensor technology. We describe different varieties and categories of fluorescent biosensors together with an overview of the technologies commonly employed to image biosensors in cellulo and in vivo. We discuss issues and strategies related to the choice of synthetic fluorescent probes, labelling, quenching, caging and intracellular delivery of biosensors. Finally, we provide examples of some well-characterized genetically encoded FRET reporter systems, peptide and protein biosensors and describe biosensor applications in a wide variety of fields.
Collapse
Affiliation(s)
- May C Morris
- Interactions and Molecular Mechanisms regulating Cell Cycle Progression, Université de Montpellier, CRBM-CNRS UMR5237, 1919 Route de Mende, IFR122, 34293, Montpellier, France.
| |
Collapse
|
32
|
O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 2010; 220:317-27. [PMID: 19967724 DOI: 10.1002/path.2656] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique allows a variety of tumour-associated properties to be visualized dynamically in living models. The increasing use of BLI as a small-animal imaging modality has led to advances in the development of xenogeneic, orthotopic, and genetically engineered animal models expressing luciferase genes. This review aims to provide insight into the principles of BLI and its applications in cancer research. Many studies to assess tumour growth and development, as well as efficacy of candidate therapeutics, have been performed using BLI. More recently, advances have also been made using bioluminescent imaging in studies of protein-protein interactions, genetic screening, cell-cycle regulators, and spontaneous cancer development. Such novel studies highlight the versatility and potential of bioluminescent imaging in future oncological research.
Collapse
Affiliation(s)
- Karen O'Neill
- UCD School of Medicine and Medical Science, Health Science Building, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
33
|
Synthesis of a New NIR Fluorescent Nd Complex Labeling Agent. J Fluoresc 2009; 20:225-34. [DOI: 10.1007/s10895-009-0542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/15/2009] [Indexed: 11/26/2022]
|
34
|
Al-Ejeh F, Darby JM, Tsopelas C, Smyth D, Manavis J, Brown MP. APOMAB, a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS One 2009; 4:e4558. [PMID: 19247492 PMCID: PMC2645692 DOI: 10.1371/journal.pone.0004558] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/16/2009] [Indexed: 12/16/2022] Open
Abstract
Background Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB® representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy. Here, we aim to image tumor uptake of APOMAB® (DAB4) and to define its biological correlates. Methodology/Principal Findings Brisk tumor cell apoptosis is induced in the syngeneic EL4 lymphoma model after treatment of tumor-bearing mice with DNA-damaging cyclophosphamide/etoposide chemotherapy. Tumor and normal organ accumulation of Indium 111 (111In)-labeled La-specific DAB4 mAb as whole IgG or IgG fragments was quantified by whole-body static imaging and organ assay in tumor-bearing mice. Immunohistochemical measurements of tumor caspase-3 activation and PARP-1 cleavage, which are indicators of early and late apoptosis, respectively, were correlated with tumor accumulation of DAB4. Increased tumor accumulation of DAB4 was associated directly with both the extent of chemotherapy-induced tumor cell death and DAB4 binding per dead tumor cell. Tumor DAB4 accumulation correlated with cumulative caspase-3 activation and PARP-1 cleavage as tumor biomarkers of apoptosis and was directly related to the extended median survival time of tumor-bearing mice. Conclusions/Significance Radiolabeled La-specific monoclonal antibody, DAB4, detected dead tumor cells after chemotherapy, rather than chemosensitive normal tissues of gut and bone marrow. DAB4 identified late apoptotic tumor cells in vivo. Hence, radiolabeled DAB4 may usefully image responses to human carcinoma therapy because DAB4 would capture the protracted cell death of carcinoma. We believe that the ability of radiolabeled DAB4 to rapidly assess the apoptotic tumor response and, consequently, to potentially predict extended survival justifies its future clinical development as a radioimmunoscintigraphic agent. This article is part I of a two-part series providing proof-of-concept for the the diagnostic and therapeutic use of a La-specific monoclonal antibody, the DAB4 clone of which is represented by the registered trademark, APOMAB®.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Jocelyn M. Darby
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Chris Tsopelas
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Douglas Smyth
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jim Manavis
- Centre for Neurological Disease, Hanson Institute, Adelaide, South Australia, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medical Oncology, Royal Adelaide Hospital Cancer Centre and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
35
|
In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol 2009; 191:1779-84. [PMID: 19020250 DOI: 10.2214/ajr.07.4060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Bioluminescence imaging is a powerful technique that has shown that hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects tumor cells from hypoxia, is up-regulated in tumors after radiation therapy. We tested the hypothesis that bioluminescence imaging would successfully and noninvasively depict an increase in HIF-1 in the novel therapeutic environment of chemotherapy and that, as in radiation therapy, the underlying mechanism involves inducible nitric oxide synthase originating in macrophages. Active HIF-1 consists of alpha and beta subunits that bind to promoter sequences in many genes, including those that protect endothelial cells, promote angiogenesis, and alter metastasis and tumor cell metabolism. MATERIALS AND METHODS We grew 4T1 murine breast carcinoma cells with an HIF-1alpha luciferase reporter construct to 7 mm in the right rear flanks of 18 Balb-C mice. The mice were evenly randomized to receive one of the following single intraperitoneal doses: maximum tolerated dose cyclophosphamide (231.5 mg/kg), maximum tolerated dose paclitaxel (10 mg/kg), or control saline solution. Immunohistochemical analysis of tumor sections from the cyclophosphamide and control groups was performed 10 days after treatment to assess the intensity and distribution of HIF-1alpha expression, hypoxia, macrophage infiltration, and expression of macrophage-derived inducible nitric oxide synthase in tumor tissues treated with maximum tolerated dose cyclophosphamide compared with control tumors. RESULTS Cyclophosphamide, but not paclitaxel, significantly inhibited tumor growth and caused a significant increase in HIF-1alpha protein levels, which peaked at a 10-fold increase from baseline on day 10 after administration. In contrast, paclitaxel did not have an antitumor effect in this model and did not cause a significant increase in HIF-1alpha. Immunohistochemical analysis showed increased and more evenly dispersed levels of HIF-1alpha protein, macrophage infiltration, and expression of inducible nitric oxide synthase originating in macrophages after cyclophosphamide treatment. CONCLUSION We successfully monitored increased expression of a tumor protective protein in a noninvasive manner. Such monitoring may be a means of detection of resistance to therapy, and it may be possible to use the monitoring findings to alter treatment strategies in real time. The tumor microenvironment seen at immunohistochemical analysis supports the hypothesized mechanism that the cytotoxic effects of radiation therapy that attract macrophages, causing the release of macrophage-derived inducible nitric oxide synthase and production of HIF-1alpha under aerobic conditions, also underlie chemotherapy. Such noninvasive imaging may be a means to development of therapeutic strategies that prevent HIF-1 up-regulation after chemotherapy treatments.
Collapse
|
36
|
Abstract
BACKGROUND Drug-eluting polymer implants present a compelling parenteral route of administration for cancer chemotherapy. With potential for minimally invasive, image-guided placement and highly localized drug release, these delivery systems are playing an increasingly important role in cancer management. This is particularly true as the use of labile proteins and other bioactive molecules is likely to increase in the upcoming years. OBJECTIVE In this review, we present the current trends in the application of Pre-formed and in situ-forming systems as drug-eluting implants for cancer chemotherapy. METHODS We outline the clinically available options as well as up-and-coming technologies and their advantages and challenges. We also describe ongoing related innovations with image-guided drug delivery, mathematical modeling of implanted delivery systems and implanted drug delivery in combination with other therapies. RESULTS/CONCLUSION Whether used alone or combined with other minimally invasive procedures, drug-eluting polymeric implants will play a significant role in the future of cancer management.
Collapse
Affiliation(s)
- Agata A Exner
- Case Western Reserve University, Department of Radiology, 11100 Euclid Avenue, Cleveland, OH 44106-5056, USA.
| | | |
Collapse
|
37
|
Kaijzel EL, Snoeks TJA, Buijs JT, van der Pluijm G, Löwik CWGM. Multimodal imaging and treatment of bone metastasis. Clin Exp Metastasis 2008; 26:371-9. [PMID: 18941911 DOI: 10.1007/s10585-008-9217-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 09/29/2008] [Indexed: 02/06/2023]
Abstract
The role of molecular imaging in pre-clinical research is continuously evolving. Particularly in small animal models in biomedical research, optical imaging technologies are frequently used to visualize normal as well as aberrant cellular processes at a molecular-genetic or cellular level of function. Also in cancer metastasis research, whole body bioluminescent and fluorescent imaging techniques have become indispensable tools that allow non-invasive and real-time imaging of gene expression, tumor progression and metastasis, and response to therapeutic intervention. In this paper, we discuss the use of optical imaging strategies--either alone or in combination with CT--to study intrabone tumor growth, tumor progression and to monitor efficacy of therapeutic agents in metastatic bone disease.
Collapse
Affiliation(s)
- Eric L Kaijzel
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Generation of a highly inducible Gal4-->Fluc universal reporter mouse for in vivo bioluminescence imaging. Proc Natl Acad Sci U S A 2008; 105:15932-7. [PMID: 18843112 DOI: 10.1073/pnas.0801075105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Full understanding of the functional complexity of the protein interactome requires mapping of biomolecular complexes within the cellular environment over biologically relevant time scales. New approaches to imaging interacting protein partners in vivo will allow the study of functional proteomics of human biology and disease within the context of living animals. Herein, we describe a universal transgenic reporter mouse strain that expresses firefly luciferase (Fluc) under the regulatory control of a concatenated Gal4 promoter (Tg(G4F(+/-))). Using an adenovirus to deliver a fused binding-domain-activator chimera (Gal4BD-VP16), induction of bioluminescence in Tg(G4F(+/-)) tissues of up to 4 orders of magnitude was observed in fibroblasts, liver, respiratory epithelia, muscle, and brain. The Tg(G4F(+/-)) reporter strain allowed noninvasive detection of viral infectivity, duration of the infection as well as viral clearance in various tissues in vivo. To demonstrate protein-protein interactions in live mice, the well characterized interaction between tumor suppressor p53 (fused to Gal4BD) and large T antigen (TAg) (fused to VP16) was visualized in vivo by using a two-hybrid strategy. Hepatocytes of Tg(G4F(+/-)) mice transfected with p53/TAg demonstrated 48-fold greater induction of Fluc expression in vivo than noninteracting pairs. Furthermore, to demonstrate the feasibility of monitoring experimental therapy with siRNA in vivo, targeted knockdown of p53 resulted in markedly reduced light output, whereas use of a control siRNA had no effect on protein interaction-dependent induction of Fluc. Thus, this highly inducible Gal4-->Fluc conditional reporter strain should facilitate imaging studies of protein interactions, signaling cascades, viral dissemination, and therapy within the physiological context of the whole animal.
Collapse
|
39
|
Xiong Z, Yan Y, Song J, Fang P, Yin Y, Yang Y, Cowan A, Wang H, Yang XF. Expression of TCTP antisense in CD25(high) regulatory T cells aggravates cuff-injured vascular inflammation. Atherosclerosis 2008; 203:401-8. [PMID: 18789801 DOI: 10.1016/j.atherosclerosis.2008.07.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 12/22/2022]
Abstract
This study examines our hypothesis that translationally controlled tumor protein (TCTP) expression in CD4+ CD25(high) regulatory T cells (Tregs) is critical for the interleukin-2 (IL-2) withdrawal-triggered apoptosis pathway in Tregs, and modulation of Treg apoptosis pathway affects development of vascular inflammation. To test this hypothesis, we established a Tregs-specific TCTP antisense transgenic mouse model. Lower TCTP expression in Tregs than in CD4+ CD25- T cells is associated with the higher susceptibility of Tregs to apoptosis induced by IL-2 withdrawal. Overexpression of TCTP antisense in Tregs leads to decreased positive selection of CD25(high) thymic Tregs and reduced survival of peripheral Tregs, which is correlated to our previous report that TCTP antisense knocks-down TCTP protein expression and promotes apoptosis. In addition, TCTP antisense transgene confers higher susceptibility of Tregs to apoptosis induced by IL-2 withdrawal than wild-type Tregs, which can be suppressed by exogenous supply of IL-2, suggesting that IL-2 promotes Treg survival at least partially due to promoting TCTP expression. Finally, decreased expression of TCTP in Tregs aggravates experimental vascular inflammation, presumably due to increased Treg apoptosis and failure of decreased Tregs in suppressing inflammatory cells and immune cells. These results suggest that the modulation of Tregs apoptosis/survival may be used as a new therapeutic approach for inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Zeyu Xiong
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eckelman WC, Reba RC, Kelloff GJ. Targeted imaging: an important biomarker for understanding disease progression in the era of personalized medicine. Drug Discov Today 2008; 13:748-59. [PMID: 18617011 DOI: 10.1016/j.drudis.2008.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/30/2008] [Accepted: 05/22/2008] [Indexed: 11/16/2022]
Abstract
The key to applying targeted imaging to personalized medicine is the choice of the right radiolabeled probe for the right target for the right disease following the lead of pharmaceutical development. The imaging approach differs depending on whether the target is a single disease control point (e.g. a specific receptor or transport protein linked to the mechanistic activity of a drug) or a general disease control point applicable to a number of treatment paradigms (e.g. proliferation, angiogenesis, inflammation). But in either case, the number of control points must be small given the time constraints on molecular imaging procedures in the clinic. Regardless of the choice, the radiotracer must be validated as binding to the target with the appropriate pharmacokinetics and pharmacodynamics for effective external imaging. Such an imaging agent developed in concert with drug development has a built in synergy that will accelerate the drug development process, targeted imaging and personalized medicine as well.
Collapse
|
41
|
Gottlieb RH, Litwin A, Gupta B, Taylor J, Raczyk C, Mashtare T, Wilding G, Fakih M. Qualitative radiology assessment of tumor response: does it measure up? Clin Imaging 2008; 32:136-40. [PMID: 18313578 DOI: 10.1016/j.clinimag.2007.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/20/2007] [Indexed: 11/20/2022]
Abstract
Our purpose was to assess whether a simpler qualitative evaluation of tumor response by computed tomography is as reproducible and predictive of clinical outcome as the Response Evaluation Criteria in Solid Tumors (RECIST) and World Health Organization (WHO) methods. This study was a two-reader retrospective evaluation in which qualitative assessment resulted in agreement in 21 of 23 patients with metastatic colorectal carcinoma (91.3%, kappa=0.78; 95% CI, 0.51-1.00). Hepatic metastases were classified as increased, decreased, or unchanged, compared with agreement in 20 of 23 patients (87.0%) for RECIST (kappa=0.62; 95% CI, 0.23-1.00) and WHO (kappa=0.67; 95% CI, 0.34-1.00) methods. Patients were placed into partial response, stable disease, and disease progression categories. Time to progression of disease was better predicted qualitatively than by RECIST or WHO. Our pilot data suggest that our qualitative scoring system is more reproducible and predictive of patient clinical outcome than the RECIST and WHO methods.
Collapse
|
42
|
Xiong Z, Song J, Yan Y, Huang Y, Cowan A, Wang H, Yang XF. Higher expression of Bax in regulatory T cells increases vascular inflammation. FRONT BIOSCI-LANDMRK 2008; 13:7143-55. [PMID: 18508723 DOI: 10.2741/3217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study is to examine our hypothesis that CD4+CD25(high)Foxp3+ regulatory T cells (Tregs) have an interleukin-2 (IL-2) withdrawal-triggered apoptosis pathway, and modulation of Treg apoptosis pathway affects development of vascular inflammation. We found that pro-apoptotic protein Bax upregulation in Tregs is induced by IL-2 withdrawal. Treg apoptosis induced by IL-2 withdrawal is inhibited by a Bax inhibitor, suggesting that highly expressed Bax is functional. To define the role of upregulated Bax in Treg apoptosis, we established a Tregs-specific Bax transgenic mouse model. Enforced expression of Bax in Tregs promotes Treg apoptosis triggered by IL-2 withdrawal and other apoptosis stimuli, suggesting pro-apoptotic role of highly expressed Bax in wild-type Tregs. Finally, higher expression of Bax in Tregs decreases the striking threshold of vascular inflammation due to the failure of suppression of inflammatory cells resulting from Treg apoptosis. These results have demonstrated the proof of principle that the modulation of Tregs apoptosis/survival could be used as a new therapeutic approach for inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Zeyu Xiong
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19410, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Optical imaging is an emerging field with a wide range of biomedical research and clinical applications, both current and future. It comprises several classes of techniques that are capable of providing information at the molecular, cellular, tissue, and whole-animal levels. These techniques match well with emerging genomic and proteomic technologies that enable development of optical "probes," as well as with nanotechnologies for multifunctional imaging and drug delivery. These advances have enormous potential to accelerate drug discovery/development by providing predictive information on mechanisms of action and biological responses.
Collapse
|
44
|
Nwogu I, Corso JJ. Exploratory identification of image-based biomarkers for solid mass pulmonary tumors. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2008; 11:612-619. [PMID: 18979797 DOI: 10.1007/978-3-540-85988-8_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
If imaging is to serve as a valid biomarker in the assessment of the response of cancer to therapies, a reproducible and predictive radiologic metric is required. A biomarker is an indicator of a biological property that can be used to measure the progress of disease. While current size-based, quantitative techniques provide numerical representations of tumors, they are not necessarily indicative of disease progression for advanced cancers. In this paper, we present an end-to-end process to explore the use of other image-based features especially statistical textural features for cancer change detection. We exploit the earth mover's distance metric for measuring the change in the tumor burden over a period, between the time the baseline scans were taken, and the time the therapy response scans were taken. The time-to-progression (TTP) of the disease is our known patient outcome. We analyze the correlations between TTP and our change measurements and discover that the local texture energy feature is most predictive of disease progression, more so than the tumor burden size on which current quantitative measures are made.
Collapse
Affiliation(s)
- Ifeoma Nwogu
- Department of Computer Science and Engineering, University at Buffalo, SUNY 201 Bell Hall, Buffalo, New York 14260, USA.
| | | |
Collapse
|
45
|
Ye Y, Bloch S, Xu B, Achilefu S. Novel near-infrared fluorescent integrin-targeted DFO analogue. Bioconjug Chem 2007; 19:225-34. [PMID: 18038965 DOI: 10.1021/bc7003022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Desferrioxamine (DFO), a siderophore initially isolated from Streptomyces pilosus, possesses extraordinary metal binding properties with wide biomedical applications that include chelation therapy, nuclear imaging, and antiproliferation. In this work, we prepared a novel multifunctional agent consisting of (i) a near-infrared (NIR) fluorescent probe-cypate; (ii) an integrin alpha vbeta3 receptor (ABIR)-avid cyclic RGD peptide, and (iii) a DFO moiety, DFO-cypate-cyclo[RGDfK(approximately)] (1, with approximately representing the cypate conjugation site at the side chain of lysine; f is d-phenylalanine). Compound 1 and two control compounds, cypate-cyclo[RGDfK(approximately)] ( 2) and cypate-DFO ( 3), were synthesized by modular assembly of the corresponding protected RGD peptide cyclo[R(Pbf)GD(OBut)fK] and DFO on the dicarboxylic acid-containing cypate scaffold in solution. The three compounds exhibited similar UV-vis and emission spectral properties. Metal binding analysis shows that DFO as well as 1 and 3 exhibited relatively high binding affinity with Fe(III), Al(III), and Ga(III). In contrast to Ga(III), the binding of Fe to 1 and 3 quenched the fluorescence emission of cypate significantly, suggesting an efficient metal-mediated approach to perturb the spectral properties of NIR fluorescent carbocyanine probes. In vitro, 1 showed a high ABIR binding affinity (10 (-7) M) comparable to that of 2 and the reference peptide cyclo(RGDfV), indicating that both DFO and cypate motifs did not interfere significantly with the molecular recognition of the cyclic RGD motif with ABIR. Fluorescence microscopy showed that internalization of 1 and 2 in ABIR-positive A549 cells at 1 h postincubation was higher than 3 and cypate alone, demonstrating that incorporating ABIR-targeting RGD motif could improve cellular internalization of DFO analogues. The ensemble of these findings demonstrate the use of multifunctional NIR fluorescent ABIR-targeting DFO analogues to modulate the spectral properties of the NIR fluorescent probe by the chelating properties of DFO and visualize intracellular delivery of DFO by receptor-specific peptides. These features provide a strategy to explore the potential of 1 in tumor imaging and treatment as well as some molecular recognition processes mediated by metal ions.
Collapse
Affiliation(s)
- Yunpeng Ye
- Department of Radiology, Washington University, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
46
|
Henriquez NV, van Overveld PGM, Que I, Buijs JT, Bachelier R, Kaijzel EL, Löwik CWGM, Clezardin P, van der Pluijm G. Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 2007; 24:699-705. [PMID: 17972147 DOI: 10.1007/s10585-007-9115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Research into the genetic and physiological interactions of tumours with their host environment requires in vivo assays to address molecular expression patterns and function. In recent years much of this work has been performed using bioluminescent and fluorescent imaging techniques that allow real-time and non-invasive imaging of gene expression and (tumour) tissue development. Luminescence imaging has until now been more or less the only tool that allows the imaging of intra-osseous breast cancer cells and indeed this technique has been pioneered in our laboratory. Here we summarise some recent innovations and developments using cancer cells and some of the first imaging models of multimodal dual luminescence and luminescence combined with fluorescence of intra-osseous tumours. We further engineered our models to incorporate a specific insertion site in the genome and will discuss some of the possible applications. These include the insertion of signalling pathway-specific reporters and studying the fate of multiple injected populations in a single mouse. We conclude that recent improvements in luminescence- and fluorescence-detection platforms now clearly allow multimodal imaging which will greatly enhance our ability to assess gene function and for the first time to visualise multiple gene- and cellular interactions in real time and in vivo.
Collapse
Affiliation(s)
- Nico V Henriquez
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Biomarkers in drug discovery and development. J Pharmacol Toxicol Methods 2007; 57:85-91. [PMID: 18024093 DOI: 10.1016/j.vascn.2007.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/16/2007] [Indexed: 02/08/2023]
Abstract
Biomarkers have shown promising utilities at various stages of the pharmaceutical R & D. With the recent technological advancements and the introduction of protein and gene arrays, high performance instrumentation (e.g., high-field nuclear magnetic resonance and high-resolution mass spectrometers), and bioinformatics, decisions on safety and efficacy criteria can be made with a higher degree of confidence. However, there is a scarcity of robust and valid biomarkers to accelerate the drug development process from pre-clinical through all stages of clinical studies. In this article, a brief overview of current definitions, biomarker categories, challenges in biological and analytical validation, along with several clinical examples will be presented.
Collapse
|
48
|
Kaijzel EL, van der Pluijm G, Löwik CWGM. Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 2007; 13:3490-7. [PMID: 17575211 DOI: 10.1158/1078-0432.ccr-07-0402] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different optical-based imaging models were used to investigate tumor progression and metastasis with particular emphasis on metastasis to bone and bone marrow. We describe how optical imaging can be used to follow important processes in tumor development and treatment response, including angiogenesis, apoptosis, and proteolysis. Finally, we discuss the translation of one optical imaging modality, near-IR fluorescence, from animal validation studies to applications in the clinic related to cancer management.
Collapse
Affiliation(s)
- Eric L Kaijzel
- Departments of Endocrinology and Metabolic Diseases and Urology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
49
|
Abstract
Until recently most studies of metastasis only measured the end point of the process--macroscopic metastases. Although these studies have provided much useful information, the details of the metastatic process remain somewhat mysterious owing to difficulties in studying cell behaviour with high spatial and temporal resolution in vivo. The use of luminescent and fluorescent proteins and developments in optical imaging technology have enabled the direct observation of cancer cells spreading from their site of origin and arriving at secondary sites. This Review will describe recent advances in our understanding of the different steps of metastasis gained from cellular resolution imaging, and how these techniques can be used in preclinical drug evaluation.
Collapse
Affiliation(s)
- Erik Sahai
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
50
|
Huang Q, Acha V, Yow R, Schneider E, Sardar DK, Hornsby PJ. Bioluminescence measurements in mice using a skin window. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:054012. [PMID: 17994900 DOI: 10.1117/1.2795567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies of bioluminescence in living animals, such as cell-based biosensor applications, require measurement of light at different wavelengths, but accurate light measurement is impeded by absorption by tissues at wavelengths<600 nm. We present a novel approach to this problem--the use of a plastic window in the skin/body wall of mice--that permits measurements of light produced by bioluminescent cells transplanted into the kidney. The cells coexpressed firefly luciferase (FLuc), a vasopressin receptor--Renilla luciferase (RLuc) fusion protein, and a GFP2-beta-arrestin2 fusion protein. Following coadministration of two luciferase substrates, native coelenterazine and luciferin, bioluminescence is measured via the window using fiber optics and a photon counter. Light emission from the two different luciferases, FLuc and RLuc, is readily distinguishable using appropriate optical filters. When coelenterazine 400a is administered, bioluminescence resonance energy transfer (BRET) occurs between the RLuc and GFP2 fusion proteins and is detected by the use of suitable filters. Following intraperitoneal injection of vasopressin, there is a marked increase in BRET. When rapid and accurate measurement of light from internal organs is required, rather than spatial imaging of bioluminescence, the combination of skin/body wall window and fiber optic light measurement will be advantageous.
Collapse
Affiliation(s)
- Qin Huang
- University of Texas Health Science Center, Department of Physiology and Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, Texas 78245, USA
| | | | | | | | | | | |
Collapse
|