1
|
Hekim S, Bunda S, Dilibaerguli S, Palihati M, Mamatjan Y. HOX gene dysregulation in glioblastoma: a narrative review of current advances. Discov Oncol 2025; 16:828. [PMID: 40392454 PMCID: PMC12092875 DOI: 10.1007/s12672-025-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
HOX (homeobox) genes are virtually absent in healthy adult brains but are detected in malignant brain tumors, particularly gliomas. In 2021, the World Health Organization (WHO) classified adult-type diffuse gliomas into three distinct categories: astrocytomas (isocitrate dehydrogenase [IDH]-mutated), oligodendrogliomas (IDH-mutated and 1p/19q-deleted), and glioblastomas, IDH-wildtype (GBM). GBM is the most common and aggressive primary malignant tumor of the Central Nervous System (CNS), characterized by its high recurrence rate and rapid growth. Dysregulation of HOX genes is a well-established phenomenon in both solid and liquid malignancies, playing crucial roles in various fundamental characteristics of cancer, including GBM. In recent years, HOX genes have gained recognition not only as key regulators of tumor progression but also as potential biomarkers for predicting disease outcomes and as promising therapeutic targets for GBM. This review compiles the latest research on HOX genes in GBM, encompassing studies published before and after the 2021 WHO classification of CNS tumors. Our goal is to provide a comprehensive overview of key findings on the role of HOX gene clusters, which are groups of genes involved in regulating the development of the body plan along the anterior-posterior axis, in GBM initiation, progression, prognosis, and treatment response.
Collapse
Affiliation(s)
- Suleyman Hekim
- Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Severa Bunda
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, ON, Canada
| | | | - Maierdan Palihati
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yasin Mamatjan
- Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
2
|
Mahdi A, Aittaleb M, Tissir F. Targeting Glioma Stem Cells: Therapeutic Opportunities and Challenges. Cells 2025; 14:675. [PMID: 40358199 PMCID: PMC12072158 DOI: 10.3390/cells14090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM), or grade 4 glioma, is the most common and aggressive primary brain tumor in adults with a median survival of 15 months. Increasing evidence suggests that GBM's aggressiveness, invasiveness, and therapy resistance are driven by glioma stem cells (GSCs), a subpopulation of tumor cells that share molecular and functional characteristics with neural stem cells (NSCs). GSCs are heterogeneous and highly plastic. They evade conventional treatments by shifting their state and entering in quiescence, where they become metabolically inactive and resistant to radiotherapy and chemotherapy. GSCs can exit quiescence and be reactivated to divide into highly proliferative tumor cells which contributes to recurrence. Understanding the molecular mechanisms regulating the biology of GSCs, their plasticity, and the switch between quiescence and mitotic activity is essential to shape new therapeutic strategies. This review examines the latest evidence on GSC biology, their role in glioblastoma progression and recurrence, emerging therapeutic approaches aimed at disrupting their proliferation and survival, and the mechanisms underlying their resistance to therapy.
Collapse
Affiliation(s)
| | | | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Doha P.O. Box 5825, Qatar; (A.M.); (M.A.)
| |
Collapse
|
3
|
G-García ME, De la Rosa-Herencia AS, Flores-Martínez Á, Ortega-Bellido M, Sánchez-Sánchez R, Blanco-Acevedo C, Gahete MD, Solivera J, Luque RM, Fuentes-Fayos AC. Assessing the diagnostic, prognostic, and therapeutic potential of the somatostatin/cortistatin system in glioblastoma. Cell Mol Life Sci 2025; 82:173. [PMID: 40268793 PMCID: PMC12018673 DOI: 10.1007/s00018-025-05687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Glioblastoma remains an incurable tumour (median survival: ~ 15 months) and little clinical progress has been made over the past decades. Therefore, identification of novel biomarkers and therapeutic targets is imperative. Targeting the somatostatin/cortistatin-system is considered a successful avenue for treating different tumour pathologies. Thus, we comprehensively characterized (clinically and molecularly) the expression of the somatostatin/cortistatin-system components [ligands and receptors (SSTRs)] using five cohorts of patients and tested the in-vitro therapeutic response of different SSTR-agonists and somatostatin analogs (SSAs) in primary patient-derived glioblastoma cells. A clear downregulation of the whole somatostatin/cortistatin-system (except for SSTR5) in glioblastoma vs. non-tumour brain samples was demonstrated, with high discriminatory capacity. Moreover, poor overall-survival and critical aggressiveness-parameters (i.e., recurrence, IDH1-wildtype and G-CIMP status, classical and mesenchymal GBM-subtypes, EGFR-amplification) were robustly associated with SSTR1/SSTR2 downregulation. Notably, octreotide, pasireotide, and SSTR1/2/5-agonists treatments significantly reduced cell-proliferation in primary patient-derived GBM-cells. Molecularly, antitumour effects of octreotide/pasireotide were exerted through key signalling-factors related to glioblastoma-aggressiveness (i.e., CDKN1A-B/JAK-STAT/NF-κB/TGF-β-pathways). Altogether, this study demonstrated that somatostatin/cortistatin-system is drastically altered in GBM representing a useful prognostic tool, and that SSTR-modulators might represent a potential therapeutic strategy to treat specific subsets of patients with GBM.
Collapse
Affiliation(s)
- Miguel E G-García
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain / Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain / Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
| | - Ana S De la Rosa-Herencia
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
| | - Álvaro Flores-Martínez
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
| | - María Ortega-Bellido
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Manuel D Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| | - Antonio C Fuentes-Fayos
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014, Cordoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
4
|
Lan Z, Xiao Y, Liao Y, Li X, Zhang Y, Wang H, Zhang W. NID2 Affects Prognosis of Glioma via Activating the Akt Signaling Pathway. Int J Mol Sci 2025; 26:3859. [PMID: 40332526 PMCID: PMC12028320 DOI: 10.3390/ijms26083859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Nidogen-2 (NID2) is a critical component of the extracellular matrix (ECM), which plays a regulatory role in cell adhesion, migration, differentiation, and survival. Previous studies have shown that NID2 is deregulated in several types of cancer, but its role in glioma is unknown. The present study investigated the prognostic value of NID2 in glioma and its associated molecular pathways and functional roles in malignant progression. The performed analyses included investigating the NID2 expression profile using the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and tumor tissue microarray. The findings demonstrated that NID2 high expression predicts worse patient survival by both univariable and multivariable analyses. There is a strong correlation between NID2 upregulation and tumor grade. In stably NID2-overexpressed glioma cells, RNA-Seq analysis revealed coactivation of oncogenic functional pathways, including cell proliferation, survival, epithelial-mesenchymal transition, ECM organization, and migration. Overexpression of NID2 in U87MG and T98G cells promoted cell proliferation, migration, and invasion. TUNEL assay showed NID2 overexpression protected cells from apoptosis. Western blotting analysis showed activation of Akt and Bcl-xL in NID2-overexpressed cells. Our results show that NID2 is a promising prognostic marker in glioma.
Collapse
Affiliation(s)
- Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Yanlin Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Youyou Liao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Xuan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Yi Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Huajie Wang
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Tang Q, Ma C, Xie J, Zhang Q, Zhang B, Bian W, Lu Q, Wan Z, Wu W. Unraveling anoikis in glioblastoma: insights from single-cell sequencing and prognostic modeling. Cancer Cell Int 2025; 25:116. [PMID: 40140848 PMCID: PMC11948803 DOI: 10.1186/s12935-025-03752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Despite advances, Glioblastoma (GBM) treatment remains challenging due to its rapid progression and resistance to therapies. OBJECTIVES This study aimed to investigate the role of anoikis-a mechanism by which cells evade programmed cell death upon detachment from the extracellular matrix-in GBM progression and prognosis. METHODS Utilizing single-cell sequencing and bulk-transcriptome sequencing data from TCGA, GEO, and CGGA databases, we performed comprehensive bioinformatics analyses. We identified anoikis-related genes, constructed a prognostic model using 101 machine learning algorithms, and validated its clinical utility across multiple cohorts.Finally, we also verified the expression of model genes and the function of key gene in clinical samples and cell lines. RESULTS Single-cell sequencing revealed heterogeneous expression of anoikis-related genes across distinct cell populations within GBM. MES-like Malignant cells and Myeloids exhibited higher enrichment of these genes, implicating their role in anoikis resistance and tumor aggressiveness. The prognostic model, based on identified genes, effectively stratified patients into high-risk and low-risk groups, demonstrating significant differences in survival outcomes. Mutation and tumor microenvironment analyses highlighted distinct genetic landscapes and immune cell infiltration patterns associated with different risk groups. SLC43A3 emerged as a key gene, showing significant upregulation in tumor tissues and correlating with poor prognosis in GBM. CONCLUSION This study provides insights into the molecular mechanisms of anoikis resistance in GBM, underscoring its critical role in tumor progression and patient prognosis. The developed prognostic model offers a promising tool for personalized treatment strategies and warrants further exploration of targeted therapies to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qixiang Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, People's Republic of China
| | - Weiqi Bian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qingyu Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zeyu Wan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, People's Republic of China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Xu Y, Kang K, Coakley BA, Eisenstein S, Parveen A, Mai S, Wang YS, Zheng J, Boral D, Mai J, Pan W, Zhang L, Aaronson SA, Fang B, Divino C, Zhang B, Song WM, Hung MC, Pan PY, Chen SH. Modulation of tumor inflammatory signaling and drug sensitivity by CMTM4. EMBO J 2025; 44:1866-1883. [PMID: 39948411 PMCID: PMC11914105 DOI: 10.1038/s44318-024-00330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 03/19/2025] Open
Abstract
Although inflammation has been widely associated with cancer development, how it affects the outcomes of immunotherapy and chemotherapy remains incompletely understood. Here, we show that CKLF-like MARVEL transmembrane domain-containing member 4 (CMTM4) is highly expressed in multiple human and murine cancer types including Lewis lung carcinoma, triple-negative mammary cancer and melanoma. In lung carcinoma, loss of CMTM4 significantly reduces tumor growth and impairs NF-κB, mTOR, and PI3K/Akt pathway activation. Furthermore, we demonstrate that CMTM4 can regulate epidermal growth factor (EGF) signaling post-translationally by promoting EGFR recycling and preventing its Rab-dependent degradation. Consequently, CMTM4 knockout sensitizes human lung tumor cells to EGFR inhibitors. In addition, CMTM4 knockout tumors stimulated with EGF show a decreased ability to produce inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF), leading to decreased recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and therefore establishing a less suppressive tumor immune environment in both lung and mammary cancers. We also present evidence indicating that CMTM4-targeting siRNA-loaded liposomes reduce lung tumor growth in vivo and prolong animal survival. Knockout of CMTM4 enhances immune checkpoint blockade or chemotherapy to further reduce lung tumor growth. These data suggest that CMTM4 represents a novel target for the inhibition of tumor inflammation, and improvement of the immune response and tumor drug sensitivity.
Collapse
Affiliation(s)
- Yitian Xu
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kyeongah Kang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Brian A Coakley
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel Eisenstein
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arshiya Parveen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Sunny Mai
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yuan Shuo Wang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Junjun Zheng
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Debasish Boral
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - William Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Licheng Zhang
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Celia Divino
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Ying Pan
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Neal Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York, NY, 10065, USA.
- Graduate and professional school at Texas A&M University, 400 Bizzell St., College Station, TX, 77840, USA.
| |
Collapse
|
7
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, García-Montaño LA, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan MO, Bowers CA, Piccirillo SGM. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. Cell Rep 2025; 44:115149. [PMID: 39752252 DOI: 10.1016/j.celrep.2024.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls. We identify a ZEB1-centered mesenchymal signature in the tumor cells of the SVZ. Moreover, the SVZ microenvironment is characterized by tumor-supportive microglia, which spatially coexist and establish crosstalks with tumor cells. Last, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays reveal that the interleukin (IL)-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways represent potential therapeutic targets in the SVZ. Our data provide insights into the biology of the SVZ in patients with GBM and identify potential targets of this microenvironment.
Collapse
Affiliation(s)
- Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Vanessa Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Suganya Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bryan Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Frank Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Leopoldo A García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Samantha Varela
- University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Drew Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Stefano Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Muhammad O Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Sara G M Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
8
|
Liu Z, Liu J, Chen Z, Zhu X, Ding R, Huang S, Xu H. CLIC4 Is a New Biomarker for Glioma Prognosis. Biomedicines 2024; 12:2579. [PMID: 39595145 PMCID: PMC11591648 DOI: 10.3390/biomedicines12112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Chloride Intracellular Channel 4 (CLIC4) plays a versatile role in cellular functions beyond its role in primary chloride ion transport. Notably, many studies found an association between CLIC4 expression and cancers. However, the correlation between CLIC4 and glioma remains to be uncovered. METHODS A total of 3162 samples from nine public datasets were analyzed to reveal the relationship between CLIC4 expression and glioma malignancy or prognosis. Immunohistochemistry (IHC) staining was performed to examine the results in an in-house cohort. A nomogram model was constructed to predict the prognosis. Functional enrichment analysis was employed to find CLIC4-associated differentially expressed genes in glioma. Immune infiltration analysis, correlation analysis, and IHC staining were employed, aiming to examine the correlation between CLIC4 expression, immune cell infiltration, and ECM (extracellular matrix)-related genes. RESULTS The expression level of CLIC4 was correlated with the malignancy of glioma and the prognosis of patients. More aggressive gliomas and mesenchymal GBM are associated with a high expression of CLIC4. Gliomas with IDH mutation or 1p19q codeletion express a low level of CLIC4, and a high expression of CLIC4 correlates with poor prognosis. The nomogram model shows a good predictive performance. The DEGs (differentially expressed genes) in gliomas with high and low CLIC4 expression are enriched in extracellular matrix and immune functions. On the one hand, gliomas with high CLIC4 expression have a greater presence of macrophages, neutrophils, and eosinophils; on the other hand, a high CLIC4 expression in gliomas is positively associated with ECM-related genes. CONCLUSIONS Compared to glioma cells with low CLIC4 expression, gliomas with high CLIC4 expression exhibit greater malignancy and poorer prognosis. Our findings indicate that a high level of CLIC4 correlates with high expression of ECM-related genes and the infiltration of macrophages, neutrophils, and eosinophils within glioma tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Shulan Huang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (J.L.); (Z.C.); (X.Z.); (R.D.)
| | - Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (J.L.); (Z.C.); (X.Z.); (R.D.)
| |
Collapse
|
9
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Gao L, Zhang R, Zhang W, Lan Y, Li X, Cai Q, Liu J. Integrated bioinformatics analysis and experimental validation on malignant progression and immune cell infiltration of LTBP2 in gliomas. BMC Cancer 2024; 24:1252. [PMID: 39390437 PMCID: PMC11466037 DOI: 10.1186/s12885-024-12976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gliomas are the highly aggressive brain tumor and also the most devastating human tumors. The latent TGF binding proteins (LTBP) had been found to be involved in malignant biological process and could be used as potent biomarkers in several solid tumors. While the role of LTBP family in human glioma remain to be elucidated. METHODS Normalized gene expression and corresponding clinical data of 2407 gliomas samples in public datasets were downloaded from Gliovis. Kaplan-Meier methods and Cox regression analysis was used for survival analyses.Western blot (WB) and Immunohistochemical (IHC) testing were employed to test LTBPs protein level in 154 gliomas samples. Correlation between LTBP2 expression and immune infiltration was evaluated by immunofluorescence (IF) and IHC in glioma tissues. CCK8 and flow cytometric analysis were used to detect the effect of LTBP2 on glioma cells. Orthotopic glioma- mouse models were utilized to evaluate effects in vivo. RESULTS LTBP2 mRNA level was dramatically higher in glioma samples compared with non-tumor brain tissues in XENA-TCGA_GTEx, Gill and Gravendeel datasets (all P < 0.01), and its expression positively correlated with glioma WHO grade, IDH1/2 wildtype and mesenchymal subtypes. These results were confirmed by In-house cohort which was detected by WB and IHC. We found that gliomas patients with high LTBP2 level had shorter OS than those with low LTBP2 level. LTBP2 expression significantly associated with glioma immune score (Spearman r = 0.68, P < 0.01)) and strongly correlated with infiltration degreee of macrophages both in lower grade gliomas (LGG) and GBM. Knocking down LTBP2 obviously reduced proliferation and enhanced sensitivity to temozolomide in U87 and U251 cells. Nude mice with lower expression of LTBP2 had slower tumor growth, and accompanied by less tumor-associated macrophages (TAMs) infiltration detected by IHC staining in vivo. Finally, low LTBP2 expression glioma patients who received chemotherapy survived longer than patients with high LTBP2 expression. CONCLUSION LTBP2 could be used as a prognostic marker, and high LTBP2 expression related to abundant TAMs infiltration and with a worse response to chemotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Metselaar DS, Meel MH, Goulding JR, du Chatinier A, Rigamonti L, Waranecki P, Geisemeyer N, de Gooijer MC, Breur M, Koster J, Veldhuijzen van Zanten SEM, Bugiani M, Franke NE, Reddy A, Wesseling P, Kaspers GJL, Hulleman E. Gemcitabine therapeutically disrupts essential SIRT1-mediated p53 repression in atypical teratoid/rhabdoid tumors. Cell Rep Med 2024; 5:101700. [PMID: 39208799 PMCID: PMC11524974 DOI: 10.1016/j.xcrm.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) are highly malignant embryonal tumors of the central nervous system with a dismal prognosis. Using a newly developed and validated patient-derived ATRT culture and xenograft model, alongside a panel of primary ATRT models, we found that ATRTs are selectively sensitive to the nucleoside analog gemcitabine. Gene expression and protein analyses indicate that gemcitabine treatment causes the degradation of sirtuin 1 (SIRT1), resulting in cell death through activation of nuclear factor κB (NF-κB) and p53. Furthermore, we discovered that gemcitabine-induced loss of SIRT1 results in a nucleus-to-cytoplasm translocation of the sonic hedgehog (SHH) signaling activator GLI2, explaining the observed additional gemcitabine sensitivity in SHH-subtype ATRT. Treatment of ATRT xenograft-bearing mice with gemcitabine resulted in a >30% increase in median survival and yielded long-term survivors in two independent patient-derived xenograft models. These findings demonstrate that ATRTs are highly sensitive to gemcitabine treatment and may form part of a future multimodal treatment strategy for ATRTs.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël H Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Joshua R Goulding
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Leyla Rigamonti
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Neal Geisemeyer
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Niels E Franke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alyssa Reddy
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P, Tanwar M. Role of HOX genes in cancer progression and their therapeutical aspects. Gene 2024; 919:148501. [PMID: 38670395 DOI: 10.1016/j.gene.2024.148501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
HOX genes constitute a family of evolutionarily conserved transcription factors that play pivotal roles in embryonic development, tissue patterning, and cell differentiation. These genes are essential for the precise spatial and temporal control of body axis formation in vertebrates. In addition to their developmental functions, HOX genes have garnered significant attention for their involvement in various diseases, including cancer. Deregulation of HOX gene expression has been observed in numerous malignancies, where they can influence tumorigenesis, progression, and therapeutic responses. This review provides an overview of the diverse roles of HOX genes in development, disease, and potential therapeutic targets, highlighting their significance in understanding biological processes and their potential clinical implications.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Smiti Nanda
- Retd. Senior Professor and Head, Department of Gynaecology and Obstetrics, Pt. B.D. Sharma University of Health Sciences, Rohtak 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
14
|
Wang L, Zheng Z, Zheng J, Zhang G, Wang Z. The Potential Significance of the EMILIN3 Gene in Augmenting the Aggressiveness of Low-Grade Gliomas is Noteworthy. Cancer Manag Res 2024; 16:711-730. [PMID: 38952353 PMCID: PMC11215280 DOI: 10.2147/cmar.s463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.
Collapse
Affiliation(s)
- Li`ao Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300203, People’s Republic of China
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jia Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 252004, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
15
|
Uthanaphun T, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P. PL-hMSC and CH-hMSC derived soluble factors inhibit proliferation but improve hGBM cell migration by activating TGF-β and inhibiting Wnt signaling. Biosci Rep 2024; 44:BSR20231964. [PMID: 38687607 PMCID: PMC11130542 DOI: 10.1042/bsr20231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. GBM resists most chemotherapeutic agents, resulting in a high mortality rate in patients. Human mesenchymal stem cells (hMSCs), which are parts of the cancer stroma, have been shown to be involved in the development and progression of GBM. However, different sources of hMSCs might affect GBM cells differently. In the present study, we established hMSCs from placenta (PL-hMSC) and chorion (CH-hMSC) to study the effects of their released soluble factors on the proliferation, migration, invasion, gene expression, and survival of human GBM cells, U251. We found that the soluble factors derived from CH-hMSCs and PL-hMSCs suppressed the proliferation of U251 cells in a dose-dependent manner. In contrast, soluble factors derived from both hMSC sources increased U251 migration without affecting their invasive property. The soluble factors derived from these hMSCs decreased the expression levels of CyclinD1, E2Fs and MYC genes that promote GBM cell proliferation but increased the expression level of TWIST gene, which promotes EMT and GBM cell migration. The functional study suggests that both hMSCs might exert their effects, at least in part, by activating TGF-β and suppressing Wnt/β-catenin signaling in U251 cells. Our study provides a better understanding of the interaction between GBM cells and gestational tissue-derived hMSCs. This knowledge might be used to develop safer and more effective stem cell therapy that improves the survival and quality of life of patients with GBM by manipulating the interaction between hMSCs and GBM cells.
Collapse
Affiliation(s)
- Tanawat Uthanaphun
- Master of Science Program in Stem Cell and Molecular Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chairat Tantrawatpan
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
16
|
Turkarslan S, He Y, Hothi P, Murie C, Nicolas A, Kannan K, Park JH, Pan M, Awawda A, Cole ZD, Shapiro MA, Stuhlmiller TJ, Lee H, Patel AP, Cobbs C, Baliga NS. An atlas of causal and mechanistic drivers of interpatient heterogeneity in glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305380. [PMID: 38633778 PMCID: PMC11023657 DOI: 10.1101/2024.04.05.24305380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.
Collapse
|
17
|
Kumar S, Sarmah DT, Paul A, Chatterjee S. Exploration of functional relations among differentially co-expressed genes identifies regulators in glioblastoma. Comput Biol Chem 2024; 109:108024. [PMID: 38335855 DOI: 10.1016/j.compbiolchem.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The conventional computational approaches to investigating a disease confront inherent constraints as they often need to improve in delving beyond protein functional associations and grasping their deeper contextual significance within the disease framework. Such context-specificity can be explored using clinical data by evaluating the change in interaction between the biological entities in different conditions by investigating the differential co-expression relationships. We believe that the integration and analysis of differential co-expression and the functional relationships, primarily focusing on the source nodes, will open novel insights about disease progression as the source proteins could trigger signaling cascades, mostly because they are transcription factors, cell surface receptors, or enzymes that respond instantly to a particular stimulus. A thorough contextual investigation of these nodes could lead to a helpful beginning point for identifying potential causal linkages and guiding subsequent scientific investigations to uncover mechanisms underlying observed associations. Our methodology includes functional protein-protein Interaction (PPI) data and co-expression information and filters functional linkages through a series of critical steps, culminating in the identification of a robust set of regulators. Our analysis identified eleven key regulators-AKT1, BRCA1, CAMK2G, CUL1, FGFR3, KIF3A, NUP210, PRKACB, RAB8A, RPS6KA2 and TGFB3-in glioblastoma. These regulators play a pivotal role in disease classification, cell growth control, and patient survivability and exhibit associations with immune infiltrations and disease hallmarks. This underscores the importance of assessing correlation towards causality in unraveling complex biological insights.
Collapse
Affiliation(s)
- Shivam Kumar
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Abhijit Paul
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
18
|
Alimohamadi M, Larijani A, Pour-Rashidi A, Farzin M, Ebrahimi H, Rahmani M, Hendi K, Yarandi KK, Aghajanian S, Shirani M. Comparative Analysis of the Prognostic Significance of IDH,TERT, EGFR and MGMT Status in Patients with Adult Non-H3-Altered Grade 4 Gliomas: A Prospective Cohort Study. World Neurosurg 2024; 181:e628-e639. [PMID: 37914076 DOI: 10.1016/j.wneu.2023.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION Gliomas continue to have a dismal prognosis. A myriad of genetic alterations has been described in this subset of tumors over the last decades. The integrative interpretation of the biomarker constellation for individual patients remains unclear. This study aims to evaluate the impact of some known genetic factors as prognostic biomarkers in grade 4 gliomas. METHODS Adult non-H3-altered grade 4 gliomas who underwent maximal safe resection accompanied by adjuvant therapy were successively enrolled since January 2019 till January 2021. Patient data were documented preoperatively and during the follow-up visits. The genetic profiling of the tumors included Isocitrate Dehydrogenase (IDH)-1 and IDH-2 mutation, MGMT promoter methylation rate, EGFR gene amplification and telomerase reverse transcriptase gene promoter (TERTp) mutation. RESULTS Mean Overall survival (OS) and Progression-free survival (PFS) were 14.45 ± 5.13 months (3-24 months) and 10.66 ± 4.87 months respectively. TERTp-mutant group had a significantly lower OS (10.9 vs. 15.9) and PFS (6.9 vs. 12.3) than TERTp wildtype group. In the TERT-mutant group, those with concomitant IDH wildtype tumor had higher OS and PFS, comparable to those with both TERTp and IDH wildtype tumors. In multivariate analysis, IDH mutation and TERTp wildtype status were predictive of longer OS and PFS. While IDH and absence of TERTp mutation were associated with KPS > 80 across the follow-ups, their predictive values were inferior to preoperative KPS scores. CONCLUSIONS TERTp mutation and IDH-wildtype status were associated with worse OS and PFS and lower follow-up KPS score in surgically resected gliomas, while MGMT and EGFR status did not have considerable prognostic value in this study.
Collapse
Affiliation(s)
- Maysam Alimohamadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Larijani
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Alborz University of Medical Sciences, Tehran, Iran.
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Radio-Oncology Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hannan Ebrahimi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Rahmani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Hendi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Karimi Yarandi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Aghajanian
- Department of Neurosurgery, Alborz University of Medical Sciences, Tehran, Iran
| | - Mohammad Shirani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Carter T, Valenzuela RK, Yerukala Sathipati S, Medina-Flores R. Gene signatures associated with prognosis and chemotherapy resistance in glioblastoma treated with temozolomide. Front Genet 2023; 14:1320789. [PMID: 38259614 PMCID: PMC10802164 DOI: 10.3389/fgene.2023.1320789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Glioblastoma (GBM) prognosis remains extremely poor despite standard treatment that includes temozolomide (TMZ) chemotherapy. To discover new GBM drug targets and biomarkers, genes signatures associated with survival and TMZ resistance in GBM patients treated with TMZ were identified. Methods: GBM cases in The Cancer Genome Atlas who received TMZ (n = 221) were stratified into subgroups that differed by median overall survival (mOS) using network-based stratification to cluster patients whose somatic mutations affected genes in similar modules of a gene interaction network. Gene signatures formed from differentially mutated genes in the subgroup with the longest mOS were used to confirm their association with survival and TMZ resistance in independent datasets. Somatic mutations in these genes also were assessed for an association with OS in an independent group of 37 GBM cases. Results: Among the four subgroups identified, subgroup four (n = 71 subjects) exhibited the longest mOS at 18.3 months (95% confidence interval: 16.2, 34.1; p = 0.0324). Subsets of the 86 genes that were differentially mutated in this subgroup formed 20-gene and 8-gene signatures that predicted OS in two independent datasets (Spearman's rho of 0.64 and 0.58 between actual and predicted OS; p < 0.001). Patients with mutations in five of the 86 genes had longer OS in a small, independent sample of 37 GBM cases, but this association did not reach statistical significance (p = 0.07). Thirty-one of the 86 genes formed signatures that distinguished TMZ-resistant GBM samples from controls in three independent datasets (area under the curve ≥ 0.75). The prognostic and TMZ-resistance signatures had eight genes in common (ANG, BACH1, CDKN2C, HMGA1, IFI16, PADI4, SDF4, and TP53INP1). The latter three genes have not been associated with GBM previously. Conclusion: PADI4, SDF4, and TP53INP1 are novel therapy and biomarker candidates for GBM. Further investigation of their oncologic functions may provide new insight into GBM treatment resistance mechanisms.
Collapse
Affiliation(s)
- Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Robert K. Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | | | - Rafael Medina-Flores
- Department of Pathology (Neuropathology), Marshfield Clinic, Marshfield, WI, United States
| |
Collapse
|
20
|
Postler TS, Wang A, Brundu FG, Wang P, Wu Z, Butler KE, Grinberg-Bleyer Y, Krishnareddy S, Lagana SM, Saqi A, Oeckinghaus A, Rabadan R, Ghosh S. A pan-cancer analysis implicates human NKIRAS1 as a tumor-suppressor gene. Proc Natl Acad Sci U S A 2023; 120:e2312595120. [PMID: 37931099 PMCID: PMC10655574 DOI: 10.1073/pnas.2312595120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
The NF-κB family of transcription factors and the Ras family of small GTPases are important mediators of proproliferative signaling that drives tumorigenesis and carcinogenesis. The κB-Ras proteins were previously shown to inhibit both NF-κB and Ras activation through independent mechanisms, implicating them as tumor suppressors with potentially broad relevance to human cancers. In this study, we have used two mouse models to establish the relevance of the κB-Ras proteins for tumorigenesis. Additionally, we have utilized a pan-cancer bioinformatics analysis to explore the role of the κB-Ras proteins in human cancers. Surprisingly, we find that the genes encoding κB-Ras 1 (NKIRAS1) and κB-Ras 2 (NKIRAS2) are rarely down-regulated in tumor samples with oncogenic Ras mutations. Reduced expression of human NKIRAS1 alone is associated with worse prognosis in at least four cancer types and linked to a network of genes implicated in tumorigenesis. Our findings provide direct evidence that loss of NKIRAS1 in human tumors that do not carry oncogenic RAS mutations is associated with worse clinical outcomes.
Collapse
Affiliation(s)
- Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY10032
- Department of Biomedical Informatics, Columbia University, New York, NY10032
| | - Francesco G. Brundu
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY10032
- Department of Biomedical Informatics, Columbia University, New York, NY10032
| | - Pingzhang Wang
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY10032
- Department of Biomedical Informatics, Columbia University, New York, NY10032
| | - Zikai Wu
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY10032
- Department of Biomedical Informatics, Columbia University, New York, NY10032
| | - Kelly E. Butler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Suneeta Krishnareddy
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Stephen M. Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Andrea Oeckinghaus
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY10032
- Department of Biomedical Informatics, Columbia University, New York, NY10032
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
21
|
Mamatjan Y, Voisin MR, Nassiri F, Moraes FY, Bunda S, So J, Salih M, Shirahata M, Ono T, Shimizu H, Schrimpf D, von Deimling A, Aldape KD, Zadeh G. Integrated molecular analysis reveals hypermethylation and overexpression of HOX genes to be poor prognosticators in isocitrate dehydrogenase mutant glioma. Neuro Oncol 2023; 25:2028-2041. [PMID: 37474126 PMCID: PMC10628942 DOI: 10.1093/neuonc/noad126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Diffuse gliomas represent over 80% of malignant brain tumors ranging from low-grade to aggressive high-grade lesions. Within isocitrate dehydrogenase (IDH)-mutant gliomas, there is a high variability in survival and a need to more accurately predict outcome. METHODS To identify and characterize a predictive signature of outcome in gliomas, we utilized an integrative molecular analysis (using methylation, mRNA, copy number variation (CNV), and mutation data), analyzing a total of 729 IDH-mutant samples including a test set of 99 from University Health Network (UHN) and 2 validation cohorts including the German Cancer Research Center (DKFZ) and The Cancer Genome Atlas (TCGA). RESULTS Cox regression analysis of methylation data from the UHN cohort identified CpG-based signatures that split the glioma cohort into 2 prognostic groups strongly predicting survival that were validated using 2 independent cohorts from TCGA and DKFZ (all P-values < .0001). The methylation signatures that predicted poor outcomes also exhibited high CNV instability and hypermethylation of HOX gene probes. Integrated multi-platform analyses using mRNA and methylation (iRM) showed that parallel HOX gene overexpression and simultaneous hypermethylation were significantly associated with increased mutational load, high aneuploidy, and worse survival (P-value < .0001). A 7-HOX gene signature was developed and validated using the most significantly associated HOX genes with patient outcome in both 1p/19q codeleted and non-codeleted IDHmut gliomas. CONCLUSIONS HOX gene methylation and expression provide important prognostic information in IDH-mutant gliomas that are not captured by current molecular diagnostics. A 7-HOX gene signature of outcome shows significant survival differences in both 1p/19q codeleted and non-codeleted IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yasin Mamatjan
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
- Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Mathew R Voisin
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Fabio Y Moraes
- Department of Oncology, Queens University, Kingston, Ontario, Canada
| | - Severa Bunda
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Jonathan So
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mira Salih
- Mount Sinai Hospital, New York, New York, USA
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Mitsuaki Shirahata
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Takahiro Ono
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroaki Shimizu
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Gelareh Zadeh
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Gallo M. Prognostic value of integrative genomic approaches for IDH-mutant gliomas. Neuro Oncol 2023; 25:2042-2043. [PMID: 37591307 PMCID: PMC10628925 DOI: 10.1093/neuonc/noad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Marco Gallo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
23
|
Liu Y, Jin H, Liu H. Identification of T-cell exhaustion-related gene signature for predicting prognosis in glioblastoma multiforme. J Cell Mol Med 2023; 27:3503-3513. [PMID: 37635346 PMCID: PMC10660619 DOI: 10.1111/jcmm.17927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumour with a poor prognosis in adults. Identifying biomarkers that can aid in the molecular classification and risk stratification of GBM is critical. Here, we conducted a transcriptional profiling analysis of T-cell immunity in the tumour microenvironment of GBM patients and identified two novel T cell exhaustion (TEX)-related GBM subtypes (termed TEX-C1 and TEX-C2) using the consensus clustering. Our multi-omics analysis revealed distinct immunological, molecular and clinical characteristics for these two subtypes. Specifically, the TEX-C1 subtype had higher infiltration levels of immune cells and expressed higher levels of immune checkpoint molecules than the TEX-C2 subtype. Functional analysis revealed that upregulated genes in the TEX-C1 subtype were significantly enriched in immune response and signal transduction pathways, and upregulated genes in the TEX-C2 subtype were predominantly associated with cell fate and nervous system development pathways. Notably, patients with activated T-cell activity status in the TEX-C1 subgroup demonstrated a significantly worse prognosis than those with severe T cell exhaustion status in the TEX-C2 subgroup. Finally, we proposed a machine-learning-derived novel gene signature comprising 12 TEX-related genes (12TexSig) to indicate tumour subtyping. In the TCGA cohort, the 12TexSig demonstrated the ability to accurately predict the prognosis of GBM patients, and this prognostic value was further confirmed in two independent external cohorts. Taken together, our results suggest that the TEX-derived subtyping and gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of GBM patients, pending further prospective validation.
Collapse
Affiliation(s)
- Yue‐hui Liu
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hong‐quan Jin
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hai‐ping Liu
- College of Life Science and Food EngineeringInner Mongolia Minzu UniversityTongliaoChina
| |
Collapse
|
24
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
25
|
Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balvers RK, Li Y, Stubbs AP, Kers TV, Kros JM, Lawler SE, Beerepoot LV, Kremer A, Idbaih A, Verreault M, Byrne AT, O'Farrell AC, Connor K, Biswas A, Salvucci M, Prehn JHM, Lambrechts D, Dilcan G, Lodi F, Arijs I, van den Bent MJ, Dirven CMF, Leenstra S, Lamfers MLM. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br J Cancer 2023; 129:1327-1338. [PMID: 37620410 PMCID: PMC10575865 DOI: 10.1038/s41416-023-02402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Kevin Jimenez-Cowell
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Federica Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Michelle Klein
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Sean E Lawler
- Dept of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Laurens V Beerepoot
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| | - Andreas Kremer
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Maite Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands.
| |
Collapse
|
26
|
Liu E, Li W, Jian LP, Yin S, Yang S, Zhao H, Huang W, Zhang Y, Zhou H. Identification of LOX as a candidate prognostic biomarker in Glioblastoma multiforme. Transl Oncol 2023; 36:101739. [PMID: 37544033 PMCID: PMC10423882 DOI: 10.1016/j.tranon.2023.101739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets. METHOD AND RESULTS In this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cells CONCLUSION: This research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Erheng Liu
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wenjuan Li
- Department of Chemical Biology, Yunnan Technician College, Kunming 650500, Yunnan, China.
| | - Li-Peng Jian
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shi Yin
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shuaifeng Yang
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Heng Zhao
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wei Huang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Yongfa Zhang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Hu Zhou
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| |
Collapse
|
27
|
El-Baba C, Ayache Z, Goli M, Hayar B, Kawtharani Z, Pisano C, Kobeissy F, Mechref Y, Darwiche N. The Antitumor Effect of the DNA Polymerase Alpha Inhibitor ST1926 in Glioblastoma: A Proteomics Approach. Int J Mol Sci 2023; 24:14069. [PMID: 37762371 PMCID: PMC10531065 DOI: 10.3390/ijms241814069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. We have shown that ST1926 is an inhibitor of the catalytic subunit of DNA polymerase alpha (POLA1), which is involved in initiating DNA synthesis in eukaryotic cells. POLA1 levels are elevated in GBM versus normal brain tissues. Therefore, we studied the antitumor effects of ST1926 in several human GBM cell lines. We further explored the global protein expression profiles in GBM cell lines using liquid chromatography coupled with tandem mass spectrometry to identify new targets of ST1926. Low sub-micromolar concentrations of ST1926 potently decreased cell viability, induced cell damage and apoptosis, and reduced POLA1 protein levels in GBM cells. The proteomics profiles revealed 197 proteins significantly differentially altered upon ST1926 treatment of GBM cells involved in various cellular processes. We explored the differential gene and protein expression of significantly altered proteins in GBM compared to normal brain tissues.
Collapse
Affiliation(s)
- Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Zeinab Ayache
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Zeinab Kawtharani
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| |
Collapse
|
28
|
Nguyen TT, Rajakannu P, Pham MDT, Weman L, Jucht A, Buri MC, Van Dommelen K, Hegi ME. Epigenetic silencing of HTATIP2 in glioblastoma contributes to treatment resistance by enhancing nuclear translocation of the DNA repair protein MPG. Mol Oncol 2023; 17:1744-1762. [PMID: 37491696 PMCID: PMC10483604 DOI: 10.1002/1878-0261.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Glioblastoma, the most malignant brain tumor in adults, exhibits characteristic patterns of epigenetic alterations that await elucidation. The DNA methylome of glioblastoma revealed recurrent epigenetic silencing of HTATIP2, which encodes a negative regulator of importin β-mediated cytoplasmic-nuclear protein translocation. Its deregulation may thus alter the functionality of cancer-relevant nuclear proteins, such as the base excision repair (BER) enzyme N-methylpurine DNA glycosylase (MPG), which has been associated with treatment resistance in GBM. We found that induction of HTATIP2 expression in GBM cells leads to a significant shift of predominantly nuclear to cytoplasmic MPG, whereas depletion of endogenous HTATIP2 results in enhanced nuclear MPG localization. Reduced nuclear MPG localization, prompted by HTATIP2 expression or by depletion of MPG, yielded less phosphorylated-H2AX-positive cells upon treatment with an alkylating agent. This suggested reduced MPG-mediated formation of apurinic/apyrimidinic sites, leaving behind unrepaired DNA lesions, reflecting a reduced capacity of BER in response to the alkylating agent. Epigenetic silencing of HTATIP2 may thus increase nuclear localization of MPG, thereby enhancing the capacity of the glioblastoma cells to repair treatment-related lesions and contributing to treatment resistance.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Premnath Rajakannu
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Minh Diêu Thanh Pham
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Leo Weman
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Alexander Jucht
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Michelle C. Buri
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Kristof Van Dommelen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Monika E. Hegi
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
- Lundin Family Brain Tumor CenterLausanne University Hospital (CHUV) and University of LausanneSwitzerland
| |
Collapse
|
29
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
30
|
Ji H, Wang F, Liu Z, Li Y, Sun H, Xiao A, Zhang H, You C, Hu S, Liu Y. COVPRIG robustly predicts the overall survival of IDH wild-type glioblastoma and highlights METTL1 + neural-progenitor-like tumor cell in driving unfavorable outcome. J Transl Med 2023; 21:533. [PMID: 37553713 PMCID: PMC10408096 DOI: 10.1186/s12967-023-04382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Accurately predicting the outcome of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) remains hitherto challenging. This study aims to Construct and Validate a Robust Prognostic Model for IDH wild-type GBM (COVPRIG) for the prediction of overall survival using a novel metric, gene-gene (G × G) interaction, and explore molecular and cellular underpinnings. METHODS Univariate and multivariate Cox regression of four independent trans-ethnic cohorts containing a total of 800 samples. Prediction efficacy was comprehensively evaluated and compared with previous models by a systematic literature review. The molecular underpinnings of COVPRIG were elucidated by integrated analysis of bulk-tumor and single-cell based datasets. RESULTS Using a Cox-ph model-based method, six of the 93,961 G × G interactions were screened to form an optimal combination which, together with age, comprised the COVPRIG model. COVPRIG was designed for RNA-seq and microarray, respectively, and effectively identified patients at high risk of mortality. The predictive performance of COVPRIG was satisfactory, with area under the curve (AUC) ranging from 0.56 (CGGA693, RNA-seq, 6-month survival) to 0.79 (TCGA RNAseq, 18-month survival), which can be further validated by decision curves. Nomograms were constructed for individual risk prediction for RNA-seq and microarray-based cohorts, respectively. Besides, the prognostic significance of COVPRIG was also validated in GBM including the IDH mutant samples. Notably, COVPRIG was comprehensively evaluated and externally validated, and a systemic review disclosed that COVPRIG outperformed current validated models with an integrated discrimination improvement (IDI) of 6-16%. Moreover, integrative bioinformatics analysis predicted an essential role of METTL1+ neural-progenitor-like (NPC-like) malignant cell in driving unfavorable outcome. CONCLUSION This study provided a powerful tool for the outcome prediction for IDH wild-type GBM, and preliminary molecular underpinnings for future research.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Fang Wang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yue Li
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Haogeng Sun
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Huanxin Zhang
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China
| | - Shaoshan Hu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| | - Yi Liu
- Department of Neurosurgery, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani A, Della Puppa A, Braghetta P, Bonaldo P, Persano L. Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci 2023; 80:233. [PMID: 37505240 PMCID: PMC10382393 DOI: 10.1007/s00018-023-04887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Silvia Bresolin
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Francesco Da Ros
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Alice Cani
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Alessandro Della Puppa
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Academic Neurosurgery, Careggi University Hospital and University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustiniani 3, 35127, Padua, Italy.
- Istituto di Ricerca Pediatrica-Città della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy.
| |
Collapse
|
32
|
Zhang J, Du J, Jin Z, Qian J, Xu J. A novel immunogenic cell death signature for the prediction of prognosis and therapies in glioma. PeerJ 2023; 11:e15615. [PMID: 37456890 PMCID: PMC10348309 DOI: 10.7717/peerj.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Glioma is a primary cranial malignancy with high recurrence rate, poor prognosis and high mortality. However, the roles of immunogenic cell death (ICD) in glioma remain unclear. Twenty ICD genes were analyzed to be differentially expressed between glioma tissues and non-tumor tissues in 371 glioma patients from The Cancer Genome Atlas (TCGA). Patients were classified into three subgroups via unsupervised clustering. Interestingly, the features of cell-infiltrating from three clusters were matched with three immune phenotypes. An applied scoring system was built depending on the expression of hub ICD-related genes. Notably, the ICD-related score was linked with immune checkpoints and the prognosis of glioma patients. In addition, the applied risk model could be used for the prediction of the effect of chemotherapy and immunotherapy for glioma patients. Furthermore, MYD88 was identified to play key roles in the risk model for glioma patients. MYD88 was specifically expressed in malignant cells and validated to correlate with cell proliferation and invasion. Ligand-receptor pairs are determined as novel communications indicating between immunocytes and malignant cells. Therefore, our research established an ICD-related score to investigate the potential effect to chemotherapy and immunotherapy for glioma patients and indicated that MYD88 was a key role in this risk model.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jin Du
- Department of Neurosurgery, People’s Hospital of Chizhou, Chizhou, China
| | - Zhihai Jin
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Jiang Qian
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jinfa Xu
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
33
|
Zheng ZQ, Yuan GQ, Zhang GG, Nie QQ, Wang Z. Development and validation of a predictive model in diagnosis and prognosis of primary glioblastoma patients based on Homeobox A family. Discov Oncol 2023; 14:108. [PMID: 37351805 DOI: 10.1007/s12672-023-00726-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Homeobox A (HOXA) family is involved in the development of malignancies as either tumor suppressors or oncogenes. However, their roles in glioblastoma (GBM) and clinical significance have not been fully elucidated. METHODS HOXA mutation and expressions in pan-cancers were investigated using GSCA and Oncomine, which in GBM were validated by cBioPortal, Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas (TCGA) datasets. Kaplan-Meier analyses were conducted to determine prognostic values of HOXAs at genetic and mRNA levels. Diagnostic roles of HOXAs in tumor classification were explored by GlioVis and R software. Independent prognostic HOXAs were identified using Cox survival analyses, the least absolute shrinkage and selection operator (LASSO) regression, quantitative real-time PCR, and immunohistochemical staining. A HOXAs-based nomogram survival prediction model was developed and evaluated using Kaplan-Meier analysis, time-dependent Area Under Curve, calibration plots, and Decision Curve Analysis in training and validation cohorts. RESULTS HOXAs were highly mutated and overexpressed in pan-cancers, especially in CGGA and TCGA GBM datasets. Genetic alteration and mRNA expression of HOXAs were both found to be prognostic. Specific HOXAs could distinguish IDH mutation (HOXA1-7, HOXA9, HOXA13) and molecular GBM subtypes (HOXA1-2, HOXA9-11, HOXA13). HOXA1/2/3/10 were confirmed to be independent prognostic members, with high expressions validated in clinical GBM tissues. The HOXAs-based nomogram model exhibited good prediction performance and net benefits for patients in training and validation cohorts. CONCLUSION HOXA family has diagnostic values, and the HOXAs-based nomogram model is effective in survival prediction, providing a novel approach to support the treatment of GBM patients.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gui-Qiang Yuan
- Beijing Neurosurgical Institute & Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Capital Medical University, Beijing, China
| | - Guo-Guo Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qian-Qian Nie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
34
|
Nikolic A, Maule F, Bobyn A, Ellestad K, Paik S, Marhon SA, Mehdipour P, Lun X, Chen HM, Mallard C, Hay AJ, Johnston MJ, Gafuik CJ, Zemp FJ, Shen Y, Ninkovic N, Osz K, Labit E, Berger ND, Brownsey DK, Kelly JJ, Biernaskie J, Dirks PB, Derksen DJ, Jones SJM, Senger DL, Chan JA, Mahoney DJ, De Carvalho DD, Gallo M. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma. Nat Commun 2023; 14:3062. [PMID: 37244935 PMCID: PMC10224928 DOI: 10.1038/s41467-023-38919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.
Collapse
Affiliation(s)
- Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna Bobyn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Katrina Ellestad
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Claire Mallard
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander J Hay
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Gafuik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicoletta Ninkovic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katalin Osz
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Daniel Berger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Duncan K Brownsey
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter B Dirks
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darren J Derksen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Science, University of Toronto, Toronto, ON, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
Feldheim J, Kessler AF, Feldheim JJ, Schmitt D, Oster C, Lazaridis L, Glas M, Ernestus RI, Monoranu CM, Löhr M, Hagemann C. BRMS1 in Gliomas-An Expression Analysis. Cancers (Basel) 2023; 15:cancers15112907. [PMID: 37296870 DOI: 10.3390/cancers15112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.
Collapse
Affiliation(s)
- Jonas Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Almuth F Kessler
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Julia J Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Neurosurgery, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Dominik Schmitt
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Nuclear Medicine, University of Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Lazaros Lazaridis
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Ralf-Ingo Ernestus
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mario Löhr
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
36
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Havener TM, Quintanilha JCF, Cipriani AB, Reif DM, McLeod HL, Motsinger-Reif AA, Wiltshire T. RYK Gene Expression Associated with Drug Response Variation of Temozolomide and Clinical Outcomes in Glioma Patients. Pharmaceuticals (Basel) 2023; 16:ph16050726. [PMID: 37242509 DOI: 10.3390/ph16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Amber B Cipriani
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Kaushal P, Zhu J, Wan Z, Chen H, Ye J, Luo C. Prognosis and Immune Landscapes in Glioblastoma Based on Gene-Signature Related to Reactive-Oxygen-Species. Neuromolecular Med 2023; 25:102-119. [PMID: 35779207 DOI: 10.1007/s12017-022-08719-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is the most malignant and aggressive primary brain tumor and is highly resistant to current therapeutic strategies. Previous studies have demonstrated that reactive oxygen species (ROS) play an important role in the regulation of signal transduction and immunosuppressive environment in GBM. To further study the role of ROS in prognosis, tumor micro-environment (TME) and immunotherapeutic response in GBM, an ROS-related nine-gene signature was constructed using the Lasso-Cox regression method and validated using three other datasets in our research, based on the hallmark ROS-pathway-related gene sets and the Cancer Genome Atlas GBM dataset. Differences in prognosis, TME scores, immune cell infiltration, immune checkpoint expression levels, and drug sensitivity between high-risk and low-risk subgroups were analyzed using R software. Collectively, our research uncovered a novel ROS-related prognostic model for primary GBM, which could prove to be a potential tool for clinical diagnosis of GBM, and help assess the immune and molecular characteristics of ROS in the tumorigenesis and immunosuppression of GBM. Our research also revealed that the expressions of ROS-related genes-HSPB1, LSP1, and PTX3-were closely related to the cell markers of tumor-associated macrophages (TAMs) and M2 macrophages validated by quantitative RT-PCR, suggesting them could be potential targets of immunotherapy for GBM.
Collapse
Affiliation(s)
- Prashant Kaushal
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
38
|
Shi C, Luo W, Sun C, Yu L, Zhou X, Hua D, Jiang Z, Wang Q, Yu S. The miR-29 family members induce glioblastoma cell apoptosis by targeting cell division cycle 42 in a p53-dependent manner. Eur J Clin Invest 2023; 53:e13964. [PMID: 36727260 DOI: 10.1111/eci.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Emerging evidence has shown that miR-29 is a promising biomarker and therapeutic target for malignancies. The roles of miR-29a/b/c in glioma pathogenesis remain need further investigation. METHODS The expression levels of miR-29a/b/c and CDC42 were systematically analysed, and prognostic significance was evaluated by Kaplan-Meier survival and Cox regression analyses. The roles of miR-29a/b/c in apoptosis and the underlying mechanisms were explored via an alkaline single-cell gel electrophoresis assay, caspase 3/7 activity assays and Western blotting. RESULTS miR-29a/b/c expression decreased progressively with the elevation of the WHO grade in our 147 human glioma specimens, compared with 20 non-tumour control brain tissues, and decreased miR-29a/b/c expression was associated with more aggressive phenotypes. Kaplan-Meier and Cox regression analyses demonstrated that lower miR-29a/b/c expression was correlated with worse prognosis, which was confirmed by analysis of 198 glioma patients from the CGGA cohort. These all indicate that miR-29a/b/c were independent predictors of prognosis in glioma patients. miR-29a/b/c induced apoptosis in GBM cells by silencing CDC42. Further detailed mechanistic investigation revealed that miR-29a/b/c promoted apoptosis in a p53-dependent manner by suppressing the CDC42/PAK/AKT/MDM2 pathway. CONCLUSIONS miR-29a/b/c are independent predictors of prognosis in glioma patients. They induce glioblastoma cell apoptosis via silencing of CDC42 and suppression of downstream PAK/AKT/MDM2 signalling in a p53-dependent manner.
Collapse
Affiliation(s)
- Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
39
|
Al-Holou WN, Wang H, Ravikumar V, Shankar S, Oneka M, Fehmi Z, Verhaak RG, Kim H, Pratt D, Camelo-Piragua S, Speers C, Wahl DR, Hollon T, Sagher O, Heth JA, Muraszko KM, Lawrence TS, de Carvalho AC, Mikkelsen T, Rao A, Rehemtulla A. Subclonal evolution and expansion of spatially distinct THY1-positive cells is associated with recurrence in glioblastoma. Neoplasia 2023; 36:100872. [PMID: 36621024 PMCID: PMC9841165 DOI: 10.1016/j.neo.2022.100872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Glioblastoma(GBM) is a lethal disease characterized by inevitable recurrence. Here we investigate the molecular pathways mediating resistance, with the goal of identifying novel therapeutic opportunities. EXPERIMENTAL DESIGN We developed a longitudinal in vivo recurrence model utilizing patient-derived explants to produce paired specimens(pre- and post-recurrence) following temozolomide(TMZ) and radiation(IR). These specimens were evaluated for treatment response and to identify gene expression pathways driving treatment resistance. Findings were clinically validated using spatial transcriptomics of human GBMs. RESULTS These studies reveal in replicate cohorts, a gene expression profile characterized by upregulation of mesenchymal and stem-like genes at recurrence. Analyses of clinical databases revealed significant association of this transcriptional profile with worse overall survival and upregulation at recurrence. Notably, gene expression analyses identified upregulation of TGFβ signaling, and more than one-hundred-fold increase in THY1 levels at recurrence. Furthermore, THY1-positive cells represented <10% of cells in treatment-naïve tumors, compared to 75-96% in recurrent tumors. We then isolated THY1-positive cells from treatment-naïve patient samples and determined that they were inherently resistant to chemoradiation in orthotopic models. Additionally, using image-guided biopsies from treatment-naïve human GBM, we conducted spatial transcriptomic analyses. This revealed rare THY1+ regions characterized by mesenchymal/stem-like gene expression, analogous to our recurrent mouse model, which co-localized with macrophages within the perivascular niche. We then inhibited TGFBRI activity in vivo which decreased mesenchymal/stem-like protein levels, including THY1, and restored sensitivity to TMZ/IR in recurrent tumors. CONCLUSIONS These findings reveal that GBM recurrence may result from tumor repopulation by pre-existing, therapy-resistant, THY1-positive, mesenchymal cells within the perivascular niche.
Collapse
Affiliation(s)
- Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hanxiao Wang
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; AstraZeneca, United States
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sunita Shankar
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Morgan Oneka
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ziad Fehmi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Hoon Kim
- The Jackson Laboratory, Farmington, CT 06032, United States; Department of Biopharmaceutical Convergence, Sungkyunkwan University, South Korea
| | - Drew Pratt
- Department of Pathology, University of Michigan, United States
| | | | - Corey Speers
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oren Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Karin M Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Ana C de Carvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States.
| |
Collapse
|
40
|
Wang T, Liu M, Jia M. Integrated Bioinformatic Analysis of the Correlation of HOXA10 Expression with Survival and Immune Cell Infiltration in Lower Grade Glioma. Biochem Genet 2023; 61:238-257. [PMID: 35836029 DOI: 10.1007/s10528-022-10258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Homeobox A10 (HOXA10) encodes a transcription factor that regulates developmental processes. Whether HOXA10 mRNA levels in lower grade glioma (LGG) correlate with survival and immune cell infiltration has not been evaluated. The differential expression of HOXA10 in different tumors and their corresponding normal tissues was evaluated by exploring public datasets. The correlations between HOXA10 and survival, tumor immune cell infiltration, diverse gene mutation characteristics, and tumor mutation burden in LGG were also investigated using several independent datasets. Pathway enrichment analysis was conducted to identify HOXA10-associated signaling pathways. We found that HOXA10 expression levels did not significantly differ between LGG tumors and normal tissues. Upon assessing the association between HOXA10 expression and immune cell infiltration in LGG, as expected, HOXA10 gene mRNA levels were positively associated with B-cell and dendritic cell infiltration levels in public online datasets. Different HOXA10 expression groups showed diverse gene mutation characteristics and TMB, and low HOXA10 expression was closely related to improved LGG patient survival. Pathway enrichment analysis of HOXA10-associated genes indicated that the cell cycle signaling pathway may participate in affecting the outcomes of LGG patients. Our findings showed that HOXA10 expression was associated with LGG prognosis and tumor immunity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Mingqian Liu
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| |
Collapse
|
41
|
Qi D, Geng Y, Cardenas J, Gu J, Yi SS, Huang JH, Fonkem E, Wu E. Transcriptomic analyses of patient peripheral blood with hemoglobin depletion reveal glioblastoma biomarkers. NPJ Genom Med 2023; 8:2. [PMID: 36697401 PMCID: PMC9877004 DOI: 10.1038/s41525-022-00348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Peripheral blood is gaining prominence as a noninvasive alternative to tissue biopsy to develop biomarkers for glioblastoma (GBM); however, widely utilized blood-based biomarkers in clinical settings have not yet been identified due to the lack of a robust detection approach. Here, we describe the application of globin reduction in RNA sequencing of whole blood (i.e., WBGR) and perform transcriptomic analysis to identify GBM-associated transcriptomic changes. By using WBGR, we improved the detection sensitivity of informatic reads and identified differential gene expression in GBM blood. By analyzing tumor tissues, we identified transcriptomic traits of GBM blood. Further functional enrichment analyses retained the most changed genes in GBM. Subsequent validation elicited a 10-gene panel covering mRNA, long noncoding RNA, and microRNA (i.e., GBM-Dx panel) that has translational potential to aid in the early detection or clinical management of GBM. Here, we report an integrated approach, WBGR, with comprehensive analytic capacity for blood-based marker identification.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Yiqun Geng
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
- Laboratory of Molecular Pathology, Shantou University Medical College, 515041, Shantou, China
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - S Stephen Yi
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason H Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
- Texas A & M University School of Pharmacy, College Station, TX, 77843, USA.
| |
Collapse
|
42
|
Toledano S, Sabag AD, Ilan N, Liburkin-Dan T, Kessler O, Neufeld G. Plexin-A2 enables the proliferation and the development of tumors from glioblastoma derived cells. Cell Death Dis 2023; 14:41. [PMID: 36658114 PMCID: PMC9852426 DOI: 10.1038/s41419-023-05554-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated β-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.
Collapse
Affiliation(s)
- Shira Toledano
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Adi D Sabag
- Division of Allergy & Clinical Immunology, Bnai-Zion medical Center, Haifa, 33394, Israel
| | - Neta Ilan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Tanya Liburkin-Dan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Ofra Kessler
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Gera Neufeld
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel.
| |
Collapse
|
43
|
Wang JZ, Nassiri F, Aldape K, von Deimling A, Sahm F. The Epigenetic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:175-188. [PMID: 37432627 DOI: 10.1007/978-3-031-29750-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Kenneth Aldape
- Laboratory of Pathology, Center Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andreas von Deimling
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Yang J, Aljitawi O, Van Veldhuizen P. Prostate Cancer Stem Cells: The Role of CD133. Cancers (Basel) 2022; 14:5448. [PMID: 36358865 PMCID: PMC9656005 DOI: 10.3390/cancers14215448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Prostate cancer stem cells (PCSCs), possessing self-renewal properties and resistance to anticancer treatment, are possibly the leading cause of distant metastasis and treatment failure in prostate cancer (PC). CD133 is one of the most well-known and valuable cell surface markers of cancer stem cells (CSCs) in many cancers, including PC. In this article, we focus on reviewing the role of CD133 in PCSC. Any other main stem cell biomarkers in PCSC reported from key publications, as well as about vital research progress of CD133 in CSCs of different cancers, will be selectively reviewed to help us inform the main topic.
Collapse
Affiliation(s)
| | - Omar Aljitawi
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Van Veldhuizen
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
46
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of a few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. Despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on revealing the general picture of GBM heterogeneity. Hence, in this mini-review, we summarized the current state of knowledge on GBM heterogeneity revealed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
47
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of the few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM's tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. However, despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on exposing the general picture of GBM heterogeneity. Hence, in this study, we summarized the current state of knowledge on GBM heterogeneity exposed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
48
|
CCAAT/Enhancer-Binding Protein Delta Regulates Glioblastoma Survival through Catalase-Mediated Hydrogen Peroxide Clearance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4081380. [PMID: 36035213 PMCID: PMC9411925 DOI: 10.1155/2022/4081380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022]
Abstract
It has long been documented that cancer cells show increased and persistent oxidative stress due to increased reactive oxygen species (ROS), which is necessary for their increased proliferative rate. Due to the high levels of ROS, cancer cells also stimulate the antioxidant system, which includes the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), to eliminate ROS. However, overexpressed antioxidant enzymes often lead to drug resistance and therapeutic failure. Glioblastoma (GBM) is the most aggressive brain tumor and has the poorest prognosis. The transcription factor CCAAT/enhancer-binding protein delta (CEBPD) is highly expressed in GBM and correlates with drug resistance, prompting us to elucidate its role in GBM cell survival. In this study, we first demonstrated that loss of CEBPD significantly inhibited GBM cell viability and increased cell apoptosis. Furthermore, the expression of CAT was attenuated through promoter regulation following CEBPD knockdown, accelerating intracellular hydrogen peroxide (H2O2) accumulation. In addition, mitochondrial function was impaired in CEBPD knockdown cells. Together, we revealed the mechanism by which CEBPD-mediated CAT expression regulates H2O2 clearance for GBM cell survival.
Collapse
|
49
|
Zhang Y, Fan H, Zou C, Wei F, Sun J, Shang Y, Chen L, Wang X, Hu B. Screening seven hub genes associated with prognosis and immune infiltration in glioblastoma. Front Genet 2022; 13:924802. [PMID: 36035134 PMCID: PMC9412194 DOI: 10.3389/fgene.2022.924802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Diagnostic and therapeutic challenges have been raised because of poor prognosis. Gene expression profiles of GBM and normal brain tissue samples from GSE68848, GSE16011, GSE7696, and The Cancer Genome Atlas (TCGA) were downloaded. We identified differentially expressed genes (DEGs) by differential expression analysis and obtained 3,800 intersected DEGs from all datasets. Enrichment analysis revealed that the intersected DEGs were involved in the MAPK and cAMP signaling pathways. We identified seven different modules and 2,856 module genes based on the co-expression analysis. Module genes were used to perform Cox and Kaplan-Meier analysis in TCGA to obtain 91 prognosis-related genes. Subsequently, we constructed a random survival forest model and a multivariate Cox model to identify seven hub genes (KDELR2, DLEU1, PTPRN, SRBD1, CRNDE, HPCAL1, and POLR1E). The seven hub genes were subjected to the risk score and survival analyses. Among these, CRNDE may be a key gene in GBM. A network of prognosis-related genes and the top three differentially expressed microRNAs with the largest fold-change was constructed. Moreover, we found a high infiltration of plasmacytoid dendritic cells and T helper 17 cells in GBM. In conclusion, the seven hub genes were speculated to be potential prognostic biomarkers for guiding immunotherapy and may have significant implications for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Yesen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huasheng Fan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Feng Wei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Jiwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuchun Shang
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| |
Collapse
|
50
|
Zheng ZQ, Yuan GQ, Kang NL, Nie QQ, Zhang GG, Wang Z. Chromobox 7/8 serve as independent indicators for glioblastoma via promoting proliferation and invasion of glioma cells. Front Neurol 2022; 13:912039. [PMID: 36034290 PMCID: PMC9403790 DOI: 10.3389/fneur.2022.912039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The chromobox family, a critical component of epigenetic regulators, participates in the tumorigenesis and progression of many malignancies. However, the roles of the CBX family members (CBXs) in glioblastoma (GBM) remain unclear. Methods The mRNA expression of CBXs was analyzed in tissues and cell lines by Oncomine and Cancer Cell Line Encyclopedia (CCLE). The differential expression of CBXs at the mRNA level was explored in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases with the “beeswarm” R package. The protein expression of CBXs in GBM was further examined on Human Protein Atlas (HPA). The correlations between CBXs and IDH mutation and between CBXs and GBM subtypes were investigated in the TCGA portal and CGGA database with the “survminer” R package. The alteration of CBXs and their prognostic value were further determined via the cBioPortal and CGGA database with the “survival” R package. The univariate and multivariate analyses were performed to screen out the independent prognostic roles of CBXs in the CGGA database. Cytoscape was used to visualize the functions and related pathways of CBXs in GBM. U251 and U87 glioma cells with gene intervention were used to validate the role of CBX7/8 in tumor proliferation and invasion. Proliferation/invasion-related markers were conducted by Western blot and immunostaining. Results CBXs presented significantly differential expressions in pan-cancers. CBX2/3/5/8 were upregulated, whereas CBX6/7 were downregulated at mRNA level in GBM of TCGA and CGGA databases. Similarly, high expression of CBX2/3/5 and low expression of CBX6/8 were further confirmed at the protein level in the HPA. CBX2/6/7 were positively correlated with IDH mutation and CBX1/2/4/5/8 were closely related to GBM subtypes. CBX7 and CBX8 presented the independent prognostic factors for GBM patient survival. GO and KEGG analyses indicated that CBXs were closely related to the histone H3-K36, PcG protein complex, ATPase, and Wnt pathway. The overexpression of CBX7 and underexpression of CBX8 significantly inhibited the proliferation and invasion of glioma cells in vivo and in vitro. Conclusion Our results suggested that CBX7 and CBX8 served as independent prognostic indicators that promoted the proliferation and invasion of glioma cells, providing a promising strategy for diagnosing and treating GBM.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gui-Qiang Yuan
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, Changshu Second People's Hospital, Suzhou, China
| | - Na-Ling Kang
- Liver Center, The First Affiliated Hospital, Fujian Medical University, Fujian, China
| | - Qian-Qian Nie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Guo Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhong Wang
| |
Collapse
|