1
|
Lv KJ, Yu SZ, Wang Y, Zhang SR, Li WY, Hou J, Tan DL, Guo H, Hou YZ. Cancer-associated fibroblasts promote the progression and chemoresistance of HCC by inducing IGF-1. Cell Signal 2024; 124:111378. [PMID: 39241901 DOI: 10.1016/j.cellsig.2024.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Crosstalk between cancer-associated fibroblasts (CAFs) and tumour cells plays a critical role in multiple cancers, including hepatocellular carcinoma (HCC). CAFs contribute to tumorigenesis by secreting growth factors, modifying the extracellular matrix, supporting angiogenesis, and suppressing antitumor immune responses. However, effect and mechanism of CAF-mediated promotion of hepatocellular carcinoma cells are still unclear. In study, we demonstrated CAFs promoted the proliferation and inhibited the apoptosis of HCC cells by secreting interleukin-6 (IL-6), which induced autocrine insulin-like growth factor-1 (IGF-1) in HCC. IGF-1 promoted the progression and chemoresistance of HCC. IGF-1 receptor (IGF-1R) inhibitor NT157 abrogated the effect of CAF-derived IL-6 and autocrine IGF-1 on HCC. Mechanistic studies revealed that NT157 decreased IL-6-induced IGF-1 expression by inhibiting STAT3 phosphorylation and led to IRS-1 degradation, which mediated the proliferation of tumour by activating AKT signalling in ERK-dependent manner. Inhibition of IGF-1R also enhanced the therapeutic effect of sorafenib on HCC, especially chemoresistant tumours. STATEMENT OF SIGNIFICANCE: Our study showed IL-6-IGF-1 axis played crucial roles in the crosstalk between HCC and CAFs, providing NT157 inhibited of STAT3 and IGF-1R as a new targeted therapy in combination with sorafenib.
Collapse
Affiliation(s)
- Ke-Jia Lv
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Si-Zhe Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, PR China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xian Jiaotong University, China
| | - Shi-Rong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wen-Yuan Li
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jia Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - De-Li Tan
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hui Guo
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu-Zhu Hou
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China.
| |
Collapse
|
2
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
3
|
Danila DC. Liquid biopsy as a cancer biomarker-potential, and challenges. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
5
|
Verma R, Choi D, Chen AJ, Harrington CA, Wilson DJ, Grossniklaus HE, Dailey RA, Ng J, Steele EA, Planck SR, Korn BS, Kikkawa D, Czyz CN, Foster JA, Kazim M, Harris GJ, Edward DP, Al-Hussain H, Maktabi AMY, Alabiad C, Garcia A, Rosenbaum JT. Enrichment of IGF-1R and PPARγ signalling pathways in orbital inflammatory diseases: steps toward understanding pathogenesis. Br J Ophthalmol 2021; 106:1012-1017. [PMID: 33637620 DOI: 10.1136/bjophthalmol-2020-318330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Orbital inflammatory disease (OID) encompasses a wide range of pathology including thyroid-associated orbitopathy (TAO), granulomatosis with polyangiitis (GPA), sarcoidosis and non-specific orbital inflammation (NSOI), accounting for up to 6% of orbital diseases. Understanding the underlying pathophysiology of OID can improve diagnosis and help target therapy. AIMS To test the hypothesis that shared signalling pathways are activated in different forms of OID. METHODS In this secondary analysis, pathway analysis was performed on the previously reported differentially expressed genes from orbital adipose tissue using patients with OID and healthy controls who were characterised by microarray. For the original publications, tissue specimens were collected from oculoplastic surgeons at 10 international centres representing four countries (USA, Canada, Australia and Saudi Arabia). Diagnoses were independently confirmed by two masked ocular pathologists (DJW, HEG). Gene expression profiling analysis was performed at the Oregon Health & Science University. Eighty-three participants were included: 25 with TAO, 6 with orbital GPA, 7 with orbital sarcoidosis, 25 with NSOI and 20 healthy controls. RESULTS Among the 83 subjects (mean (SD) age, 52.8 (18.3) years; 70% (n=58) female), those with OID demonstrated perturbation of the downstream gene expressions of the IGF-1R (MAPK/RAS/RAF/MEK/ERK and PI3K/Akt/mTOR pathways), peroxisome proliferator-activated receptor-γ (PPARγ), adipocytokine and AMPK signalling pathways compared with healthy controls. Specifically, GPA samples differed from controls in gene expression within the insulin-like growth factor-1 receptor (IGF-1R, PI3K-Akt (p=0.001), RAS (p=0.005)), PPARγ (p=0.002), adipocytokine (p=0.004) or AMPK (p=<0.001) pathways. TAO, sarcoidosis and NSOI samples were also found to have statistically significant differential gene expression in these pathways. CONCLUSIONS Although OID includes a heterogenous group of pathologies, TAO, GPA, sarcoidosis and NSOI share enrichment of common gene signalling pathways, namely IGF-1R, PPARγ, adipocytokine and AMPK. Pathway analyses of gene expression suggest that other forms of orbital inflammation in addition to TAO may benefit from blockade of IGF-1R signalling pathways.
Collapse
Affiliation(s)
- Rohan Verma
- Oculofacial Plastic and Reconstructive Surgery, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA
| | - Dongseok Choi
- Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA.,Graduate School of Dentistry, Kyung Hee University, Seoul, South Korea.,Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Allison J Chen
- Oculofacial Plastic and Reconstructive Surgery, University of California San Diego- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, La Jolla, California, USA
| | - Christina A Harrington
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Wilson
- Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA
| | | | - Roger A Dailey
- Oculofacial Plastic and Reconstructive Surgery, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA
| | - John Ng
- Oculofacial Plastic and Reconstructive Surgery, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA
| | - Eric A Steele
- Oculofacial Plastic and Reconstructive Surgery, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA
| | - Stephen R Planck
- Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA.,Devers Eye Institute, Legacy Health System, Portland, Oregon, USA
| | - Bobby S Korn
- Oculofacial Plastic and Reconstructive Surgery, University of California San Diego- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, La Jolla, California, USA
| | - Don Kikkawa
- Oculofacial Plastic and Reconstructive Surgery, University of California San Diego- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, La Jolla, California, USA
| | - Craig N Czyz
- Oculofacial Plastic and Reconstructive Surgery, Ohio Health, Columbus, Ohio, USA
| | - Jill A Foster
- Oculofacial Plastic and Reconstructive Surgery, The Ohio State University, Nationwide Children's Hospital, Ophthalmic Surgeons and Consultants of Ohio, Columbus, Ohio, USA
| | - Michael Kazim
- Edward S Harkness Eye Institute, Columbia University, New York, New York, USA
| | - Gerald J Harris
- Oculofacial Plastic and Reconstructive Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Deepak P Edward
- Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, USA.,Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Haila Al-Hussain
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza M Y Maktabi
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Chris Alabiad
- Oculofacial Plastic and Reconstructive Surgery, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Armando Garcia
- Oculofacial Plastic and Reconstructive Surgery, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | - James T Rosenbaum
- Casey Eye Institute, Oregon Health & Science University Casey Eye Institute, Portland, Oregon, USA .,Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Devers Eye Institute, Legacy Health System, Portland, Oregon, USA
| |
Collapse
|
6
|
Jin KT, Chen B, Liu YY, Lan HUR, Yan JP. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int 2021; 21:83. [PMID: 33522929 PMCID: PMC7851946 DOI: 10.1186/s12935-021-01763-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Bo Chen
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - H Uan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Jie-Ping Yan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Arora A, Nain P, Kumari R, Kaur J. Major Causes Associated with Clinical Trials Failure and Selective Strategies to Reduce these Consequences: A Review. ARCHIVES OF PHARMACY PRACTICE 2021. [DOI: 10.51847/yjqdk2wtgx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Peos J, Brown AW, Vorland CJ, Allison DB, Sainsbury A. Contrary to the Conclusions Stated in the Paper, Only Dry Fat-Free Mass Was Different between Groups upon Reanalysis. Comment on: "Intermittent Energy Restriction Attenuates the Loss of Fat-Free Mass in Resistance Trained Individuals. A Randomized Controlled Trial". J Funct Morphol Kinesiol 2020; 5:E85. [PMID: 33467300 PMCID: PMC7739336 DOI: 10.3390/jfmk5040085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023] Open
Abstract
Campbell and colleagues recently published a randomised controlled trial investigating the effects of diets involving intermittent energy restriction versus continuous energy restriction on changes in body composition and resting metabolic rate (RMR) in resistance-trained adults[...].
Collapse
Affiliation(s)
- Jackson Peos
- Faculty of Science, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrew W. Brown
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA; (A.W.B.); (C.J.V.)
| | - Colby J. Vorland
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA; (A.W.B.); (C.J.V.)
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA;
| | - Amanda Sainsbury
- Faculty of Science, School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
10
|
Shukla SD, Swaroop Vanka K, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, Pabreja K, Mahmood MQ, O’Toole RF. Chronic respiratory diseases: An introduction and need for novel drug delivery approaches. TARGETING CHRONIC INFLAMMATORY LUNG DISEASES USING ADVANCED DRUG DELIVERY SYSTEMS 2020. [PMCID: PMC7499075 DOI: 10.1016/b978-0-12-820658-4.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, chronic respiratory diseases (CRDs), both communicable and noncommunicable, are among the leading causes of mortality, morbidity, economic and societal burden, and disability-adjusted life years (DALYs). CRDs affect multiple components of respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although noncommunicable respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), cystic fibrosis (CF), and lung cancer (LC), account for enormous disease burden, the currently available therapies only focus on alleviating the symptoms of diseases rather than providing optimal treatment and/or prevention. Similarly a major respiratory communicable disease, that is, tuberculosis (TB), is associated with the challenge of increasingly developing antibiotic resistance in the bacterial pathogen Mycobacterium tuberculosis. In light of these challenges, we aim to summarize the underlying molecular and cellular mechanisms that lead to hallmark pathophysiology of CRDs. Moreover, we will also highlight the limitations of current therapeutic strategies and explore novel drug delivery options that may be potentially more effective in the management of CRDs.
Collapse
|
11
|
Vella V, Malaguarnera R, Nicolosi ML, Morrione A, Belfiore A. Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118522. [PMID: 31394114 DOI: 10.1016/j.bbamcr.2019.118522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
The insulin/insulin-like growth factor system (IIGFs) plays a fundamental role in the regulation of prenatal and postnatal growth, metabolism and homeostasis. As a consequence, dysregulation of this axis is associated with growth disturbance, type 2 diabetes, chronic inflammation and tumor progression. A functional crosstalk between IIGFs and discoidin domain receptors (DDRs) has been recently discovered. DDRs are non-integrin collagen receptors that canonically undergo slow and long-lasting autophosphorylation after binding to fibrillar collagen. While both DDR1 and DDR2 functionally interact with IIGFs, the crosstalk with DDR1 is so far better characterized. Notably, the IIGFs-DDR1 crosstalk presents a feed-forward mechanism, which does not require collagen binding, thus identifying novel non-canonical action of DDR1. Further studies are needed to fully explore the role of this IIGFs-DDRs functional loop as potential target in the treatment of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | | | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.
| |
Collapse
|
12
|
Liu R, Tang W, Han X, Geng R, Wang C, Zhang Z. Hepatocyte growth factor-induced mesenchymal-epithelial transition factor activation leads to insulin-like growth factor 1 receptor inhibitor unresponsiveness in gastric cancer cells. Oncol Lett 2018; 16:5983-5991. [PMID: 30333869 PMCID: PMC6176415 DOI: 10.3892/ol.2018.9414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/31/2018] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) inhibitors have been developed as potential therapeutics for cancer treatment; however, the phase III trials have not produced promising overall survival rates. Therefore, understanding the mechanism underlying intrinsic resistance to IGF-1R-targeted agents is urgently required. A number of studies have revealed that activation of alternative receptor tyrosine kinases can mediate resistance to IGF-1R-targeted therapy. The present study investigated whether activated mesenchymal-epithelial transition factor (MET; also known as c-Met and hepatocyte growth factor receptor) confers resistance to an IGF-1R inhibitor (NVP-AEW541) of gastric cancer (GC) cells. NCI-N87 and MGC-803 cells were treated with varying concentrations and combinations of NVP-AEW541, hepatocyte growth factor (HGF) and MET small interfering (si)-RNA or crizotinib (a MET inhibitor). The effects of these agents on cell proliferation and pro-apoptotic events were assessed by Cell Counting Kit-8 assays and flow cytometry. Receptor activation and the downstream signaling pathway were examined using western blot analysis. Expression and/or activation of MET and IGF-1R in 156 GC specimens were evaluated by immunohistochemistry. The results demonstrated that NVP-AEW541 inhibited cell growth, with dephosphorylation of IGF-1R and protein kinase B (AKT), in NCI-N87 and MGC-803 cells. Application of HGF activated MET and the downstream AKT signaling pathways, decreased apoptotic events and restored cell proliferation, which were reversed by MET inhibition via crizotinib or siRNA knockdown. Furthermore, combination therapy of NVP-AEW541 and crizotinib exhibited an enhanced effectiveness in vitro. In addition, >40% of IGF-1R overexpressed GC specimens showed MET expression and activation. In conclusion, HGF-induced MET activation may represent a novel mechanism conferring unresponsiveness to IGF-1R-targeted agents in GC, and inhibition of MET may improve the efficacy of IGF-1R inhibitors.
Collapse
Affiliation(s)
- Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wenbo Tang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaotian Han
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ruixuan Geng
- International Medical Services, Peking Union Medical College Hospital, Beijing 100000, P.R. China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Ding W, Shehadeh LA. New incriminating evidence against IGF2. Transl Cancer Res 2017; 6:S949-S952. [PMID: 30613484 DOI: 10.21037/tcr.2017.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep 2017; 7:4537. [PMID: 28674429 PMCID: PMC5495754 DOI: 10.1038/s41598-017-04626-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
In this study we have tested the efficacy of citrate therapy in various cancer models. We found that citrate administration inhibited A549 lung cancer growth and additional benefit accrued in combination with cisplatin. Interestingly, citrate regressed Ras-driven lung tumors. Further studies indicated that citrate induced tumor cell differentiation. Additionally, citrate treated tumor samples showed significantly higher infiltrating T-cells and increased blood levels of numerous cytokines. Moreover, we found that citrate inhibited IGF-1R phosphorylation. In vitro studies suggested that citrate treatment inhibited AKT phosphorylation, activated PTEN and increased expression of p-eIF2a. We also found that p-eIF2a was decreased when PTEN was depleted. These data suggest that citrate acts on the IGF-1R-AKT-PTEN-eIF2a pathway. Additionally, metabolic profiling suggested that both glycolysis and the tricarboxylic acid cycle were suppressed in a similar manner in vitro in tumor cells and in vivo but only in tumor tissue. We reproduced many of these observations in an inducible Her2/Neu-driven breast cancer model and in syngeneic pancreatic tumor (Pan02) xenografts. Our data suggests that citrate can inhibit tumor growth in diverse tumor types and via multiple mechanisms. Dietary supplementation with citrate may be beneficial as a cancer therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Guo
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.,Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Ichi Hanai
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Zaheed Husain
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas P Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Remon J, Abedallaa N, Taranchon-Clermont E, Bluthgen V, Lindsay CR, Besse B, Thomas de Montpréville V. CD52, CD22, CD26, EG5 and IGF-1R expression in thymic malignancies. Lung Cancer 2017. [PMID: 28625631 DOI: 10.1016/j.lungcan.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Thymic epithelial tumours are rare cancers for which new treatment options are required. Identification of putative predictive markers is important for developing clinical trials. We studied the expression of five putative predictive biomarkers, potentially actionable by approved experimental drugs. METHODS CD52, CD22, CD26, EG5, and IGF-1R expression were investigated by immunohistochemistry in formalin-fixed surgical samples of thymic epithelial tumour patients. All samples containing 10% positive epithelial tumour cells, independent of tumour cell intensity, were considered as positive. Correlation with histological subtype was performed. RESULTS 106 surgical samples (89 thymomas, 12 thymic carcinoma, and 5 thymic neuroendocrine tumours) were evaluated. Overall, CD52, CD22, CD26, EG5 and IGF-1R expression was observed in 7%, 42%, 25%, 42% and 77% of samples, respectively. CD52 expression was more frequent in B2 and B3 thymoma. All TET subtypes stained for CD22, mainly AB thymoma (68%). CD26 expression also correlated with AB thymoma (68%), and A thymoma (50%) subtype, while IGFR1 was the most common marker expressed by thymic carcinoma samples (92%), followed by EG5 (60%). Only EG5 expression was significantly higher in thymic carcinomas than in thymomas (75% vs. 38%, p=0.026). CONCLUSIONS Our data were consistent with a previous study of IGF-1R expression. Based on their expression, activity of agents targeting CD52, CD 22, CD26 and EG5 could be further explored in TET patients.
Collapse
Affiliation(s)
- J Remon
- Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - N Abedallaa
- Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - E Taranchon-Clermont
- Departement d'Anatomie Pathologiques Recherche, Institut Universitaire du Cancer Toulouse - Oncopole, 1 Avenue Irène Joint-Curie, 31509 Toulouse Cedex 9, France.
| | - V Bluthgen
- Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - C R Lindsay
- Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - B Besse
- Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94805 Villejuif, France; University Paris-Sud, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - V Thomas de Montpréville
- Pathology Department, Hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France.
| |
Collapse
|
16
|
Leighl NB, Rizvi NA, de Lima LG, Arpornwirat W, Rudin CM, Chiappori AA, Ahn MJ, Chow LQM, Bazhenova L, Dechaphunkul A, Sunpaweravong P, Eaton K, Chen J, Medley S, Poondru S, Singh M, Steinberg J, Juergens RA, Gadgeel SM. Phase 2 Study of Erlotinib in Combination With Linsitinib (OSI-906) or Placebo in Chemotherapy-Naive Patients With Non-Small-Cell Lung Cancer and Activating Epidermal Growth Factor Receptor Mutations. Clin Lung Cancer 2017; 18:34-42.e2. [PMID: 27686971 PMCID: PMC5474312 DOI: 10.1016/j.cllc.2016.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION First-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment of advanced non-small-cell lung cancer with EGFR-activating mutations improves outcomes compared with chemotherapy, but resistance develops in most patients. Compensatory signaling through type 1 insulin-like growth factor 1 receptor (IGF-1R) may contribute to resistance; dual blockade of IGF-1R and EGFR may improve outcomes. PATIENTS AND METHODS We performed a randomized, double-blind, placebo-controlled phase II study of linsitinib, a dual IGF-1R and insulin receptor tyrosine kinase inhibitor, plus erlotinib versus placebo plus erlotinib in chemotherapy-naive patients with EGFR-mutation positive, advanced non-small-cell lung cancer. Patients received linsitinib 150 mg twice daily or placebo plus erlotinib 150 mg once daily on continuous 21-day cycles. The primary end point was progression-free survival. RESULTS After randomization of 88 patients (44 each arm), the trial was unblinded early owing to inferiority in the linsitinib arm. The median progression-free survival for the linsitinib versus the placebo group was 8.4 months versus 12.4 months (hazard ratio, 1.37; P = .29). Overall response rate (47.7% vs. 75.0%; P = .02) and disease control rate (77.3% vs. 95.5%; P = .03) were also inferior. Whereas most adverse events were ≤ grade 2, linsitinib plus erlotinib was associated with increased adverse events that led to decreased erlotinib exposure (median days, 228 vs. 305). No drug-drug interaction was suggested by pharmacokinetic and pharmacodynamic results. CONCLUSION Adding linsitinib to erlotinib resulted in inferior outcomes compared with erlotinib alone. Further understanding of the signaling pathways and a biomarker that can predict efficacy is needed prior to further clinical development of IGF-1R inhibitors in lung cancer.
Collapse
Affiliation(s)
- Natasha B Leighl
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Naiyer A Rizvi
- Department of Hematology and Oncology, Columbia University Medical Center, New York, NY
| | - Lopes Gilberto de Lima
- Oncoclinicas Group, Hcor Onco, Sao Paulo, SP, Brazil; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | | | | | | | - Myung-Ju Ahn
- Department of Hematology and Oncology, Sungkyunkwan University, Seoul, South Korea
| | | | - Lyudmila Bazhenova
- Department of Clinical Oncology, School of Medicine, UC San Diego Moores Cancer Center, San Diego, CA
| | - Arunee Dechaphunkul
- Departments of Pathology, Hematology, and Surgery, Prince of Songkla University, Songkhla, Thailand
| | | | - Keith Eaton
- Prince of Songkla University, Songkhla, Thailand; Medical Oncology at University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle, WA
| | | | | | | | | | | | - Rosalyn A Juergens
- Juravinski Cancer Centre, Department of Oncology, McMaster University, Hamilton, ON, Canada.
| | - Shirish M Gadgeel
- Karmanos Cancer Institute, Wayne State University, Detroit, MI; Hematology-Oncology, Wayne State University, Detroit, MI
| |
Collapse
|
17
|
Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treat Rev 2016; 52:12-21. [PMID: 27883925 DOI: 10.1016/j.ctrv.2016.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND We aimed to describe the reasons for failure of experimental anticancer drugs in late-stage clinical development. MATERIAL AND METHODS We searched the PharmaProjects database (https://citeline.com/products/pharmaprojects/) for anticancer drugs discontinued between 01/01/2009 and 06/30/2014. Drug programs that reached phase III trials, but never gained Food and Drug Administration (FDA) approval were compared to 37 anti-cancer drugs achieving FDA approval in this time period. RESULTS Forty-two drugs fit our criteria for development failures. These failed drugs (49% targeted, 23% cytotoxics, and 28% other) were tested in 43 cancer indications (drug programs). Only 16% (7/43) of failed drug programs adopted a biomarker-driven rationale for patient selection versus 57% (21/37) of successful drug programs (P<0.001). Phase II trial information was available in 32 of 43 failed drug programs and in 32 of 37 successful programs. Nine of the 32 trials (28%) of failed drugs versus 28 of 32 trials (87%) of successful drugs (P<0.001) achieved proof of concept (single agent response rate (RR) ⩾20% or combination therapy showing a ⩾20% RR increase above the median historical RR without the experimental agent (with a minimal absolute increase of 5%) or a randomized phase II trial showing significance (P⩽0.05) for its primary outcome). No pattern of study sites, trial design or funding characteristics emerged from the failed drug analysis. CONCLUSION For drugs that reached Phase III, lack of a biomarker-driven strategy and failure to attain proof of concept in phase II are potential risk factors for later discontinuation, especially for targeted agents.
Collapse
|
18
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
19
|
Iams WT, Lovly CM. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin Cancer Res 2016; 21:4270-7. [PMID: 26429980 DOI: 10.1158/1078-0432.ccr-14-2518] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The IGF1R signaling pathway is a complex and tightly regulated network that is critical for cell proliferation, growth, and survival. IGF1R is a potential therapeutic target for patients with many different malignancies. This brief review summarizes the results of clinical trials targeting the IGF1R pathway in patients with breast cancer, sarcoma, and non-small cell lung cancer (NSCLC). Therapeutic agents discussed include both monoclonal antibodies to IGF1R (dalotuzumab, figitumumab, cixutumumab, ganitumab, R1507, AVE1642) and newer IGF1R pathway targeting strategies, including monoclonal antibodies to IGF1 and IGF2 (MEDI-573 and BI 836845) and a small-molecule tyrosine kinase inhibitor of IGF1R (linsitinib). The pullback of trials in patients with breast cancer and NSCLC based on several large negative trials is noted and contrasted with the sustained success of IGF1R inhibitor monotherapy in a subset of patients with sarcoma. Several different biomarkers have been examined in these trials with varying levels of success, including tumor expression of IGF1R and its pathway components, serum IGF ligand levels, alternate pathway activation, and specific molecular signatures of IGF1R pathway dependence. However, there remains a critical need to define predictive biomarkers in order to identify patients who may benefit from IGF1R-directed therapies. Ongoing research focuses on uncovering such biomarkers and elucidating mechanisms of resistance, as this therapeutic target is currently being analyzed from the bedside to bench.
Collapse
Affiliation(s)
- Wade T Iams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
| |
Collapse
|
20
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer. Oncotarget 2016; 6:16746-56. [PMID: 25944691 PMCID: PMC4599304 DOI: 10.18632/oncotarget.3796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/20/2015] [Indexed: 11/25/2022] Open
Abstract
According to previous reports demonstrating the implication of insulin-like growth factor receptor (IGF-1R) signaling in non-small cell lung cancer (NSCLC), in this study, the potential prognostic values of IGF-1R expression/activation were analyzed. The expression and activation of IGF-1R were evaluated in two tissue microarray (TMA) sets from NSCLC patients (N = 352 for TMA I, and N = 353 for TMA II). Alterations in IGF-1R protein or mRNA expression in NSCLC patients were evaluated using publicly available data from The Cancer Genome Atlas (TCGA). We found that membranous and cytoplasmic IGF-1R expressions were significantly associated with squamous cell carcinoma (SCC) in both of the TMAs. Analysis of the TCGA data revealed increased mRNA levels in NSCLC patients, which was significantly associated with reductions in overall survival (OS) (median survival 26.51 vs. 47.77 months, P = 0.017) and disease-free survival (median survival 17.44 vs. 37.65 months, P = 0.045) only in NSCLC patients with adenocarcinoma (ADC). These data suggest that IGF-1R is activated in patients with NSCLC, particularly those with SCC. IGF-1R mRNA expression is a potential prognostic factor in patients with NSCLC, especially those with ADC. Further studies are warranted to investigate the prognostic value of IGF-1R in NSCLC patients.
Collapse
|
22
|
Mendes R, Carreira B, Baptista PV, Fernandes AR. Non-small cell lung cancer biomarkers and targeted therapy - two faces of the same coin fostered by nanotechnology. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1159914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Schanzer JM, Wartha K, Moessner E, Hosse RJ, Moser S, Croasdale R, Trochanowska H, Shao C, Wang P, Shi L, Weinzierl T, Rieder N, Bacac M, Ries CH, Kettenberger H, Schlothauer T, Friess T, Umana P, Klein C. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs 2016; 8:811-27. [PMID: 26984378 PMCID: PMC4966845 DOI: 10.1080/19420862.2016.1160989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juergen M Schanzer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Katharina Wartha
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Ekkehard Moessner
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Ralf J Hosse
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Samuel Moser
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Rebecca Croasdale
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Halina Trochanowska
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Cuiying Shao
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Peng Wang
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Lei Shi
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Tina Weinzierl
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Natascha Rieder
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Marina Bacac
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Carola H Ries
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Hubert Kettenberger
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Tilman Schlothauer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Thomas Friess
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Pablo Umana
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Christian Klein
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| |
Collapse
|
24
|
Wei YH, Tang HX, Liao YD, Fu SL, Xu LQ, Chen G, Zhang C, Ju S, Liu ZG, You LK, Yu L, Zhou S. Effects of insulin-like growth factor 1 receptor and its inhibitor AG1024 on the progress of lung cancer. ACTA ACUST UNITED AC 2015; 35:834-841. [PMID: 26670433 DOI: 10.1007/s11596-015-1515-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/02/2015] [Indexed: 01/05/2023]
Abstract
The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling components have been increasingly recognized to drive the development of malignancies, including non-small cell lung cancer (NSCLC). This study aimed to investigate the effects of IGF-1R and its inhibitor, AG1024, on the progression of lung cancer. Tissue microarray and immunohistochemistry were employed to detect the expressions of IGF-1 and IGF-1R in NSCLC tissues (n=198). Western blotting was used to determine the expressions of IGF-1 and phosphorylated IGF-1R (p-IGF-1R) in A549 human lung carcinoma cells, and MTT assay to measure cell proliferation. Additionally, the expressions of IGF-1, p-IGF-1R and IGF-1R in a mouse model of lung cancer were detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (FQ-PCR), respectively. The results showed that IGF-1 and IGF-1R were overexpressed in NSCLC tissues. The expression levels of IGF-1 and p-IGF-1R were significantly increased in A549 cells treated with IGF-1 as compared to those treated with IGF-1+AG1024 or untreated cells. In the presence of IGF-1, the proliferation of A549 cells was significantly increased. The progression of lung cancer in mice treated with IGF-1 was significantly increased as compared to the group treated with IGF-1+AG1024 or the control group, with the same trend mirrored in IGF-1/p-IGF-1R/IGF-1R at the protein and/or mRNA levels. It was concluded that IGF-1 and IGF inhibitor AG1024 promotes lung cancer progression.
Collapse
Affiliation(s)
- Yan-Hong Wei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He-Xiao Tang
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Intensive Care Unit, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yong-de Liao
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Sheng-Ling Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Qiang Xu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Thoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Guang Chen
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Zhang
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Respiratory Medicine, the Central Hospital of Yichang, Yichang, 443000, China
| | - Sheng Ju
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, 310000, China
| | - Zhao-Guo Liu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang-Kun You
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Yu
- Department of Intensive Care Unit, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
25
|
Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1856:189-210. [PMID: 26297204 PMCID: PMC4663145 DOI: 10.1016/j.bbcan.2015.08.002] [Citation(s) in RCA: 506] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/30/2015] [Accepted: 08/16/2015] [Indexed: 12/25/2022]
Abstract
Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Division, University of CA, San Francisco 94143, USA
| | - Omer Ui Hassan
- Department of Surgery, Thoracic Oncology Division, University of CA, San Francisco 94143, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Division, University of CA, San Francisco 94143, USA
| | - Petra Buchanan
- Department of Surgery, Thoracic Oncology Division, University of CA, San Francisco 94143, USA
| |
Collapse
|
26
|
Beaumont H, Souchet S, Labatte JM, Iannessi A, Tolcher AW. Changes of lung tumour volume on CT - prediction of the reliability of assessments. Cancer Imaging 2015; 15:17. [PMID: 26521238 PMCID: PMC4628325 DOI: 10.1186/s40644-015-0052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/02/2015] [Indexed: 11/12/2022] Open
Abstract
Background For oncological evaluations, quantitative radiology gives clinicians significant insight into patients’ response to therapy. In regard to the Response Evaluation Criteria in Solid Tumours (RECIST), the classification of disease evolution partly consists in applying thresholds to the measurement of the relative change of tumour. In the case of tumour volumetry, response thresholds have not yet been established. This study proposes and validates a model for calculating thresholds for the detection of minimal tumour change when using the volume of pulmonary lesions on CT as imaging biomarker. Methods Our work is based on the reliability analysis of tumour volume measurements documented by the Quantitative Imaging Biomarker Alliance. Statistics of measurements were entered into a multi-parametric mathematical model of the relative changes derived from the Geary-Hinkley transformation. The consistency of the model was tested by comparing modelled thresholds against Monte Carlo simulations of tumour volume measurements with additive random error. The model has been validated by repeating measurements on real patient follow ups. Results For unchanged tumour volume, relying on a normal distribution of error, the agreement between model and simulations featured a type I error of 5.25 %. Thus, we established that a threshold of 35 % of volume reduction corresponds to a partial response (PR) and a 55 % volume increase corresponds to progressive disease (PD). Changes between −35 and +55 % are categorized as stable disease (SD). Tested on real clinical data, 97.1 % [95.7; 98.0] of assessments fall into the range of variability predicted by our model of confidence interval. Conclusions Our study indicates that the Geary Hinkley model, using published statistics, is appropriate to predict response thresholds for the volume of pulmonary lesions on CT.
Collapse
Affiliation(s)
- Hubert Beaumont
- MEDIAN Technologies - Sciences, 1800 route des crêtes Les Deux Arcs Bat B, Valbonne, 06560, France.
| | - Simon Souchet
- Université d'Angers - Mathematics, Angers, 49000, France.
| | | | - Antoine Iannessi
- Centre Anticancer Antoine Lacassagne - Radiology, Nice, 06100, France.
| | - Anthony William Tolcher
- START - South Texas Accelerated Research Therapeutics, LLC - Clinical Research, San Antonio, TX, USA.
| |
Collapse
|
27
|
Retraction: molecular analysis of non-small cell lung cancer identifies subsets with different sensitivity to insulin-like growth factor i receptor inhibition. Clin Cancer Res 2015; 20:3358. [PMID: 24928947 DOI: 10.1158/1078-0432.ccr-14-1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abstract
Preclinical studies in the 1980s defined a role for IGF signaling in the development and sustainability of the malignant process. Subsequently, antibody, tyrosine kinase, and ligand inhibitors of the IGF receptor were manufactured. In the past decade, numerous clinical trials have tested the efficacy of IGF receptor inhibitors in the treatment of advanced tumors. Early-phase trials in heavily pretreated populations showed promise with complete or partial responses in a few patients and stable disease in many more. Unfortunately, the results of the early-phase trials did not pan out to later-phase trials. The lack of use of biomarkers to define subsets of patients that may benefit from IGF receptor blockade and compensatory signaling via other growth factor receptors such as the insulin, GH, and epidermal growth factor receptors may have played a role in the lack of efficacy of IGF receptor inhibition in phase III trials. Although these trials failed to show benefit, the trials have revealed previously unknown knowledge regarding the complex nature of IGF signaling. The knowledge obtained from these trials will be useful in designing future trials studying inhibitors of growth factor signaling.
Collapse
Affiliation(s)
- Heather Beckwith
- Departments of Medicine (H.B., D.Y.) and Pharmacology (D.Y.) and Masonic Cancer Center (D.Y.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Douglas Yee
- Departments of Medicine (H.B., D.Y.) and Pharmacology (D.Y.) and Masonic Cancer Center (D.Y.), University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
29
|
Ekman S, Harmenberg J, Frödin JE, Bergström S, Wassberg C, Eksborg S, Larsson O, Axelson M, Jerling M, Abrahmsen L, Hedlund Å, Alvfors C, Ståhl B, Bergqvist M. A novel oral insulin-like growth factor-1 receptor pathway modulator and its implications for patients with non-small cell lung carcinoma: A phase I clinical trial. Acta Oncol 2015; 55:140-8. [PMID: 26161618 DOI: 10.3109/0284186x.2015.1049290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A phase Ia/b dose-escalation study was performed to characterize the safety, efficacy and pharmacokinetic properties of the oral small molecule insulin-like growth factor-1-receptor pathway modulator AXL1717 in patients with advanced solid tumors. MATERIAL AND METHODS This was a prospective, single-armed, open label, dose-finding phase Ia/b study with the aim of single day dosing (phase Ia) to define the starting dose for multi-day dosing (phase Ib), and phase Ib to define and confirm recommended phase II dose (RP2D) and if possible maximum tolerated dose (MTD) for repeated dosing. RESULTS AND CONCLUSION Phase Ia enrolled 16 patients and dose escalations up to 2900 mg BID were successfully performed without any dose limiting toxicity (DLT). A total of 39 patients were treated in phase Ib. AXL1717 was well tolerated with neutropenia as the only dose-related, reversible, DLT. RP2D dose was found to be 390 mg BID for four weeks. Some patients, mainly with NSCLC, demonstrated signs of clinical benefit, including four partial tumor responses (one according to RECIST and three according to PET). The 15 patients with NSCLC with treatment duration longer than two weeks with single agent AXL1717 in third or fourth line of therapy showed a median progression-free survival of 31 weeks and overall survival of 60 weeks. Down-regulation of IGF-1R on granulocytes and increases of free serum levels of IGF-1 were seen in patients treated with AXL1717. AXL1717 had an acceptable safety profile and demonstrated promising efficacy in this heavily pretreated patient cohort, especially in patients with NSCLC. RP2D was concluded to be 390 mg BID for four weeks. Trial number is NCT01062620.
Collapse
Affiliation(s)
- Simon Ekman
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | - Jan-Erik Frödin
- c Department of Oncology , Karolinska University Hospital , Stockholm , Sweden
| | | | - Cecilia Wassberg
- e Section of Radiology, Department of Radiology , Oncology and Radiation Sciences, Uppsala University , Uppsala , Sweden
| | - Staffan Eksborg
- f Childhood Cancer Research Unit, Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden
| | - Olle Larsson
- g Cellular and Molecular Tumor Pathology, Department of Oncology and Pathology , Cancer Centre Karolinska, Karolinska University Hospital , Stockholm , Sweden
| | - Magnus Axelson
- h Department of Clinical Chemistry , Karolinska University Hospital , Stockholm , Sweden
| | - Markus Jerling
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Lars Abrahmsen
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Åsa Hedlund
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | - Birgitta Ståhl
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Michael Bergqvist
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
30
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
31
|
Hanna NH, Dahlberg SE, Kolesar JM, Aggarwal C, Hirsch FR, Ramalingam SS, Schiller JH. Three-arm, randomized, phase 2 study of carboplatin and paclitaxel in combination with cetuximab, cixutumumab, or both for advanced non-small cell lung cancer (NSCLC) patients who will not receive bevacizumab-based therapy: An Eastern Cooperative Oncology Group (ECOG) study (E4508). Cancer 2015; 121:2253-61. [PMID: 25740387 PMCID: PMC4560671 DOI: 10.1002/cncr.29308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Preclinical evidence supports the clinical investigation of inhibitors to the insulin-like growth factor receptor (IGFR) and the epidermal growth factor receptor (EGFR) either alone or in combination as treatment for patients with non-small cell lung cancer (NSCLC). METHODS Patients with chemotherapy-naïve, advanced NSCLC who had an Eastern Cooperative Oncology Group performance status of 0 or 1 were eligible. Patients were randomized to receive carboplatin intravenously at an area under the plasma drug concentration-time curve of 6.0 plus paclitaxel 200 mg/m(2) intravenously on day 1 every 3 weeks combined with either intravenous cetuximab weekly (arm A), intravenous cixutumumab every 2 weeks (arm B), or both (arm C). Patients who had nonprogessing disease after 12 weeks of therapy were permitted to continue on maintenance antibody therapy until they developed progressive disease. The primary endpoint was progression-free survival (PFS). The study design required 180 eligible patients and had 88% power to detect a 60% increase in median PFS for either comparison (arm A vs arm C or arm B vs arm C) using the log-rank test. RESULTS From September 2009 to December 2010, 140 patients were accrued. The study was closed to accrual early because of an excessive number of grade 5 events reported on arms A and C. Thirteen patients died during treatment (6 patients on arm A, 2 patients on arm B, and 5 patients on arm C), including 9 within approximately 1 month of starting therapy. The estimated median PFS for arms A, B, and C were similar at 3.4 months, 4.2 months, and 4 months, respectively. CONCLUSIONS On the basis of the apparent lack of efficacy and excessive premature deaths, the current results do not support the continued investigation of carboplatin, paclitaxel, and cixutumumab either alone or in combination with cetuximab for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Nasser H Hanna
- Indiana University Health Simon Cancer Center, Indianapolis, Indiana
| | - Suzanne E Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jill M Kolesar
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Charu Aggarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fred R Hirsch
- School of Medicine, Division of Medical Oncology, University of Colorado, Denver, Colorado
| | | | - Joan H Schiller
- Hematology/Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Inhibition of the insulin-like growth factor 1 receptor by CHM-1 blocks proliferation of glioblastoma multiforme cells. Chem Biol Interact 2015; 231:119-26. [DOI: 10.1016/j.cbi.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/16/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022]
|
33
|
Suzuki H, Roa JC, Kawamoto T, Ishige K, Wistuba II, Li D, Thomas MB, Shoda J. Expression of insulin-like growth factor I receptor as a biomarker for predicting prognosis in biliary tract cancer patients. Mol Clin Oncol 2015; 3:464-470. [PMID: 26137252 DOI: 10.3892/mco.2015.515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/09/2015] [Indexed: 11/06/2022] Open
Abstract
Carcinomas of the gallbladder (GBCa) and bile ducts are aggressive tumors with poor survival and it is, therefore, essential to elucidate the molecular mechanisms of the various signaling pathways in order to develop effective therapies. In this study, tumor specimens from 40 GBCa patients, 12 extrahepatic bile duct carcinoma patients and 26 intrahepatic bile duct carcinoma patients from the USA and Japan were investigated for insulin-like growth factor I receptor (IGF-IR), mammalian target of rapamycin (mTOR) and rapidly accelerated fibrosarcoma-1 (Raf-1) expression by immunohistochemistry; in addition, the correlations with histological type, pathological stage and patient outcome were analyzed. Positive expression of IGF-IR, mTOR and Raf-1 were identified in 68, 73 and 85% of the specimens, respectively. There was no association with histological type and pathological stage, although the positive expression rate of Raf-1 was higher in advanced-stage GBCa. Moreover, patients with positive expression of IGF-IR exhibited significantly reduced survival compared to those with negative IGF-IR expression. In conclusion, IGF-IR, mTOR and Raf-1 were highly expressed in biliary tract cancer and targeted therapy against IGF-IR may be an effective strategy. Among these molecules, IGF-IR expression was found to be a useful biomarker for identifying patients who may benefit from additional treatment.
Collapse
Affiliation(s)
- Hideo Suzuki
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Juan C Roa
- Molecular Pathology Laboratory, Department of Pathology, Pontifical Catholic University of Chile, Santiago 8320000, Chile
| | | | - Kazunori Ishige
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ignacio I Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melanie B Thomas
- Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29425, USA
| | - Junichi Shoda
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
34
|
Bowers LW, Rossi EL, O’Flanagan CH, deGraffenried LA, Hursting SD. The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front Endocrinol (Lausanne) 2015; 6:77. [PMID: 26029167 PMCID: PMC4432799 DOI: 10.3389/fendo.2015.00077] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
Numerous epidemiological and pre-clinical studies have demonstrated that the insulin/insulin-like growth factor (IGF) system plays a key role in the development and progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic low-grade inflammation, is also an important contributor to the cancer-promoting effects of obesity. However, clinical trials for drugs targeting different components of this system have produced largely disappointing results, possibly due to the lack of predictive biomarker use and problems with the design of combination therapy regimens. With careful attention to the identification of likely patient responders and optimal drug combinations, the outcome of future trials may be improved. Given that insulin/IGF signaling is known to contribute to obesity-associated cancer, further investigation regarding the efficacy of drugs targeting this system and its downstream effectors in the obese patient population is warranted.
Collapse
Affiliation(s)
- Laura W. Bowers
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily L. Rossi
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ciara H. O’Flanagan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- *Correspondence: Stephen D. Hursting, Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA,
| |
Collapse
|
35
|
Wang Z, Lu P, Liang Z, Zhang Z, Shi W, Cai X, Chen C. Increased insulin-like growth factor 1 receptor (IGF1R) expression in small cell lung cancer and the effect of inhibition of IGF1R expression by RNAi on growth of human small cell lung cancer NCI-H446 cell. Growth Factors 2015; 33:337-46. [PMID: 26430715 DOI: 10.3109/08977194.2015.1088533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase receptor implicated in tumourigenesis that may be an attractive target for anti-cancer treatment. In this study, the expression and clinical significance of IGF1R were investigated in serum and lung cancer tissues from small cell lung cancinoma (SCLC). We also compared the effect of IGF1R up-regulation and IGF1R inhibition on viability and apoptosis of NCI-H446 cells. We found the concentration of IGF1R in blood serum was significantly increased and positive IGF1R protein in cancer tissue was more prevalent in SCLC. A statistically significant correlation among IGF1R-positve tumors, lymph node metastasis and local invasion was discussed. Furthermore, IGF1R overexpression lead to an increase of cell survival and suppressed cell apoptosis, IGF1R silencing mediated by RNAi abrogate this response of NCI-H446 cells. Our results further demonstrated that the effects of these treatments may be assigned to the effective inhibition of lung cancer cells from Akt/P27(Kip1) pathway in IGF-1R signaling. These features may have important implications for future anti-IGF1R therapeutic approaches.
Collapse
Affiliation(s)
- Zhigang Wang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Pingfang Lu
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhu Liang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhanfei Zhang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Weicheng Shi
- b Guangdong General Hospital of Armed Police Forces , Guangzhou , Guangdong , China
| | - Xiaobi Cai
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Chunyuan Chen
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| |
Collapse
|
36
|
Foy KC, Miller MJ, Overholser J, Donnelly SM, Nahta R, Kaumaya PT. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides. Oncoimmunology 2014; 3:e956005. [PMID: 25941587 DOI: 10.4161/21624011.2014.956005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022] Open
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.
Collapse
Affiliation(s)
- Kevin Chu Foy
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | - Megan J Miller
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA
| | - Jay Overholser
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | | | - Rita Nahta
- Department of Pharmacology; Emory University ; Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA ; James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center; The Ohio State University ; Columbus, OH USA
| |
Collapse
|
37
|
Scagliotti GV, Bondarenko I, Blackhall F, Barlesi F, Hsia TC, Jassem J, Milanowski J, Popat S, Sanchez-Torres JM, Novello S, Benner RJ, Green S, Molpus K, Soria JC, Shepherd FA. Randomized, phase III trial of figitumumab in combination with erlotinib versus erlotinib alone in patients with nonadenocarcinoma nonsmall-cell lung cancer. Ann Oncol 2014; 26:497-504. [PMID: 25395283 DOI: 10.1093/annonc/mdu517] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Figitumumab (CP-751,871) is a fully human IgG2 monoclonal antibody that inhibits the insulin-like growth factor 1 receptor. This multicenter, randomized, phase III study investigated the efficacy of figitumumab plus erlotinib compared with erlotinib alone in patients with pretreated, nonsmall-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients (stage IIIB/IV or recurrent disease with nonadenocarcinoma histology) who had previously received at least one platinum-based regimen were randomized to receive open-label figitumumab (20 mg/kg) plus erlotinib 150 mg/day or erlotinib alone every 3 weeks. The primary end point was overall survival (OS). RESULTS Of 583 patients randomized, 579 received treatment. The study was closed early by an independent data safety monitoring committee due to results crossing the prespecified futility boundary. At the final analysis, median OS was 5.7 months for figitumumab plus erlotinib and 6.2 months for erlotinib alone [hazard ratio (HR) 1.09; 95% confidence interval (CI) 0.91-1.31; P = 0.35]. Median progression-free survival was 2.1 months for figitumumab plus erlotinib and 2.6 months for erlotinib alone (HR 1.08; 95% CI 0.90-1.29; P = 0.43). Treatment-related nonfatal serious adverse events occurred in 18% and 5% of patients in the figitumumab arm or erlotinib alone arm, respectively. There were nine treatment-related deaths (three related to both drugs, four related to erlotinib alone and two related to figitumumab). CONCLUSIONS The addition of figitumumab to erlotinib did not improve OS in patients with advanced, pretreated, nonadenocarcinoma NSCLC. Clinical development of figitumumab has been discontinued. CLINICAL TRIAL ID NCT00673049.
Collapse
Affiliation(s)
- G V Scagliotti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - I Bondarenko
- Department of Oncology, Dnepropetrovsk Medical Academy, City Multiple-Discipline Clinical Hospital #4, Dnepropetrovsk, Ukraine
| | - F Blackhall
- Manchester Cancer Research Centre Lung Group, Manchester University and Christie Hospital NHS Foundation Trust, Manchester, UK
| | - F Barlesi
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University-Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - T-C Hsia
- Department of Internal Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - J Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk
| | - J Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - S Popat
- Lung Unit, Royal Marsden Hospital, London, UK
| | | | - S Novello
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - R J Benner
- Department of Pfizer Oncology, Pfizer, Inc., Groton, USA
| | - S Green
- Department of Pfizer Oncology, Pfizer, Inc., Groton, USA
| | - K Molpus
- Department of Pfizer Oncology, Pfizer, Inc., Groton, USA
| | - J-C Soria
- Department of Clinical and Biological Sciences, Institut de Cancérologie Gustave Roussy and INSERM Unit 981, Villejuif, France
| | - F A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
38
|
Moran T, Felip E, Keedy V, Borghaei H, Shepherd FA, Insa A, Brown H, Fitzgerald T, Sathyanarayanan S, Reilly JF, Mauro D, Hsu K, Yan L, Johnson DH. Activity of dalotuzumab, a selective anti-IGF1R antibody, in combination with erlotinib in unselected patients with Non-small-cell lung cancer: a phase I/II randomized trial. Exp Hematol Oncol 2014; 3:26. [PMID: 25414803 PMCID: PMC4237770 DOI: 10.1186/2162-3619-3-26] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Background We investigated the safety and antitumor activity of dalotuzumab, a selective anti-insulin growth factor 1 receptor monoclonal antibody (IGF1R MoAb), plus erlotinib in a sequential phase I/II trial in unselected patients with refractory advanced non-small-cell lung cancer (NSCLC).The phase I trial determined the recommended dose and safety of erlotinib plus dalotuzumab at 5 mg/kg or 10 mg/kg weekly in 20 patients. The phase II trial compared outcomes to erlotinib alone and erlotinib plus dalotuzumab at the mg/kg established in the phase I trial. Results Erlotinib at 150 mg plus dalotuzumab at 10 mg/kg was safe. The phase II trial included 37 patients in the erlotinib arm and 38 patients in the erlotinib plus dalotuzumab arm. Progression-free survival was 1.6 versus 2.5 months, overall survival was 10.2 and 6.6 months, and the objective response rate was 7.9% and 2.7%, respectively, with no significant differences between the two arms. Grade 3-5 adverse events occurred in 11 (28.9%) versus 13 (35.1%) patients, respectively. The most frequent adverse events were asthenia (36.8% vs. 37.8%), dehydration (5.3% vs. 2.7%), diarrhea (71% vs. 81.1%), hyperglycemia (13.1% vs.18.9%), and skin-related toxicities (92.1% vs. 86.4%). Conclusion The addition of dalotuzumab to erlotinib did not improve efficacy outcome in patients with refractory advanced NSCLC.
Collapse
Affiliation(s)
- Teresa Moran
- Catalan Institut of Oncology-Badalona, Hospital Universitari Germans Trias i Pujol and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Vicki Keedy
- Vanderbilt University Medical Center, Nashville, TN USA
| | | | - Frances A Shepherd
- University Health Network Princess Margaret Cancer Centre, University of Toronto, Ontario, Canada
| | - Amelia Insa
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Holly Brown
- Merck & Co., Inc., Whitehouse Station, NJ USA
| | | | | | | | - David Mauro
- Merck & Co., Inc., Whitehouse Station, NJ USA
| | - Karl Hsu
- Sanofi Aventis, Bridgewater, NJ USA
| | - Li Yan
- Merck & Co., Inc., Whitehouse Station, NJ USA
| | | |
Collapse
|
39
|
Beckwith H, Yee D. Insulin-like growth factors, insulin, and growth hormone signaling in breast cancer: implications for targeted therapy. Endocr Pract 2014; 20:1214-21. [PMID: 25297664 DOI: 10.4158/ep14208.ra] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In recent decades, multiple therapeutics targeting the estrogen and human epidermal growth factor-2 (HER2) receptors have been approved for the treatment of breast cancer. METHODS This review discusses a number of growth factor pathways that have been implicated in resistance to both anti-estrogen and HER2-targeted therapies. The association between growth factors and breast cancer is well established. Over decades, numerous laboratories have studied the link between insulin-like growth factor (IGF), insulin, and growth hormone (GH) to the development and progression of breast cancer. RESULTS Although preclinical data demonstrates that blockade of these receptors inhibits breast cancer growth, progression, and drug resistance, therapies targeting the IGF, insulin, and GH receptors (GHRs) have not been successful in producing significant increases in progression-free, disease-free, or overall survival for patients with breast cancer. The failure to demonstrate a benefit of growth factor blockade in clinical trials can be attributed to redundancy in IGF, insulin, and GHR signaling pathways. All 3 receptors are able to activate oncogenic phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. CONCLUSION Consequently, multitargeted blockade of growth factor receptors and their common downstream kinases will be necessary for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Heather Beckwith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Rolfo C, Giovannetti E, Hong DS, Bivona T, Raez LE, Bronte G, Buffoni L, Reguart N, Santos ES, Germonpre P, Taron M, Passiglia F, Van Meerbeeck JP, Russo A, Peeters M, Gil-Bazo I, Pauwels P, Rosell R. Novel therapeutic strategies for patients with NSCLC that do not respond to treatment with EGFR inhibitors. Cancer Treat Rev 2014; 40:990-1004. [PMID: 24953979 DOI: 10.1016/j.ctrv.2014.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/23/2014] [Accepted: 05/26/2014] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) yields tumour responses in non-small cell lung cancer (NSCLC) patients harbouring activating EGFR mutations. However, even in long-lasting responses, resistance to EGFR TKIs invariably occurs. AREAS COVERED This review examines resistance mechanisms to EGFR TKI treatment, which mainly arise from secondary EGFR mutations. Other resistance-inducing processes include mesenchymal-epithelial transition factor (MET) amplification, epithelial-mesenchymal transformation, phenotypic change from NSCLC to small-cell lung carcinoma, and modifications in parallel signalling pathways. Current therapeutic strategies to overcome these EGFR TKI resistance mechanisms focus on the inhibition or blocking of multiple members of the ErbB family. Several molecules which target multiple ErbB receptors are being investigated in NSCLC and other indications including afatinib, an ErbB Family Blocker, as well as dacomitinib and lapatinib. Novel, non-quinazoline, EGFR inhibitors, that also target EGFR activating and resistance (T790M) mutations, are currently under clinical development. Other therapeutic strategies include inhibition of parallel and downstream pathways, using agents which target heat shock protein (HSP)90 or poly (ADP-ribose) polymerase in addition to mammalian target of rapamycin (mTOR), monoclonal antibodies against the insulin-like growth factor-1 receptor, and fulvestrant-mediated oestrogen receptor regulation. CONCLUSION Improved understanding of mechanisms underlying resistance to EGFR TKIs emphasises the importance of a genotype-guided approach to therapy. Elucidation of resistance mechanisms is indeed crucial to target innovative therapeutic approaches and to improve the efficacy of anticancer regimes in NSCLC.
Collapse
Affiliation(s)
- Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium.
| | - Elisa Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Bivona
- Hematology and Oncology Department, Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Luis E Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, FL, USA
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lucio Buffoni
- San Giovanni Battista Molinette Hospital, Department of Medical Oncology, Turin, Italy
| | - Noemí Reguart
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain
| | | | - Paul Germonpre
- Department of Respiratory Medicine, AZ Maria Middelares, Kortrijksesteenweg 1026, 9000 Ghent, Belgium
| | - Mìquel Taron
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Francesco Passiglia
- Phase I - Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Jan P Van Meerbeeck
- Thoracic Oncology, Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marc Peeters
- Department of Medical Oncology, University Hospital Antwerpen, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ignacio Gil-Bazo
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department and Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
41
|
李 亚, 周 云, 王 洪. [Research status on molecular targeted therapy for squamous-cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:618-24. [PMID: 25130969 PMCID: PMC6000367 DOI: 10.3779/j.issn.1009-3419.2014.08.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/25/2014] [Indexed: 11/25/2022]
Abstract
Lung cancer is one of the world's highest morbidity and mortality disease in malignant tumors currently. Squamous-cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, after surgery, radiotherapy, chemotherapy and other comprehensive treatment, its 5-year survival rate is still below 15%. The current molecular targeted therapy plays an important role in the treatment of SQCLC, an urgent need to be more in-depth study. SQCLC molecular targeted therapy mainly epidermal growth factor receptor (EGFR), phosphoin-3-kinase catalytic alpha polypeptide (PIK3CA), fibroblast growth factor receptor 1 (FGFR1), discoidin domain receptor 2 (DDR2), phosphatase and tensin homolog deleted on chromosome ten (PTEN), BRAF, MET, insulin-like growth factor 1 receptor (IGF-1R) and other as the target of the drug, some targeted drugs are being developed, and some targeted drugs have entered clinical trials. In recent years, with studies molecular targeted therapy in SQCLC, analysis of the development and trgeted therapy achieved substantial progress in improving the survival rate of SQCLC, and other research to improve the quality of life, make is possible to individualized targeted therapy of SQCLC.
Collapse
Affiliation(s)
- 亚楠 李
- />100028 北京,北京煤炭总医院肿瘤内科Department of Medical Oncology, China Meitan General Hospital, Beijing 100028, China
| | - 云芝 周
- />100028 北京,北京煤炭总医院肿瘤内科Department of Medical Oncology, China Meitan General Hospital, Beijing 100028, China
| | - 洪武 王
- />100028 北京,北京煤炭总医院肿瘤内科Department of Medical Oncology, China Meitan General Hospital, Beijing 100028, China
| |
Collapse
|
42
|
Tran TN, Selinger CI, Yu B, Ng CC, Kohonen-Corish MRJ, McCaughan B, Kennedy C, O'Toole SA, Cooper WA. Alterations of insulin-like growth factor-1 receptor gene copy number and protein expression are common in non-small cell lung cancer. J Clin Pathol 2014; 67:985-91. [DOI: 10.1136/jclinpath-2014-202347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AimsInsulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase membrane receptor involved in tumourigenesis that may be a potential therapeutic target. We aimed to investigate the incidence and prognostic significance of alterations in IGF1R copy number, and IGF1R protein expression in resected primary non-small cell lung cancer (NSCLC), and lymph node metastases.MethodsIGF1R gene copy number status was evaluated by chromogenic silver in situ hybridisation and IGF1R protein expression was evaluated by immunohistochemistry in tissue microarray sections from a retrospective cohort of 309 surgically resected NSCLCs and results were compared with clinicopathological features, including EGFR and KRAS mutational status and patient survival.ResultsIGF1R gene copy number status was positive (high polysomy or amplification) in 29.2% of NSCLC, and 12.1% exhibited IGF1R gene amplification. High IGF1R expression was found in 28.3%. There was a modest correlation between IGF1R gene copy number and protein expression (r=0.2, p<0.05). Alterations of IGF1R gene copy number and protein expression in primary tumours were significantly associated with alterations in lymph node metastases (p<0.01). High IGF1R gene copy number and protein expression was significantly higher in squamous cell carcinomas (SCC) compared with other subtypes of NSCLC (p<0.05). There were no other associations between IGF1R status and other clinicopathological features including patient age, gender, smoking status, tumour size, stage, grade, EGFR or KRAS mutational status or overall survival.ConclusionsHigh IGF1R gene copy number and protein overexpression are frequent in NSCLC, particularly in SCCs, but they are not prognostically relevant.
Collapse
|
43
|
Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:203-15. [PMID: 25206307 PMCID: PMC4157397 DOI: 10.2147/pgpm.s52762] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancers expressing estrogen receptor α, progesterone receptor, or the human epidermal growth factor receptor 2 (HER2) proto-oncogene account for approximately 90% of cases, and treatment with antiestrogens and HER2-targeted agents has resulted in drastically improved survival in many of these patients. However, de novo or acquired resistance to antiestrogen and HER2-targeted therapies is common, and many tumors will recur or progress despite these treatments. Additionally, the remaining 10% of breast tumors are negative for estrogen receptor α, progesterone receptor, and HER2 (“triple-negative”), and a clinically proven tumor-specific drug target for this group has not yet been identified. Therefore, the identification of new therapeutic targets in breast cancer is of vital clinical importance. Preclinical studies elucidating the mechanisms driving resistance to standard therapies have identified promising targets including cyclin-dependent kinase 4/6, phosphoinositide 3-kinase, poly adenosine diphosphate–ribose polymerase, Src, and histone deacetylase. Herein, we discuss the clinical potential and status of new therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Sarah R Hosford
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA ; Comprehensive Breast Cancer Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
44
|
King H, Aleksic T, Haluska P, Macaulay VM. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat Rev 2014; 40:1096-105. [PMID: 25123819 DOI: 10.1016/j.ctrv.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation of several Pharma programs. Here, we review completed and on-going trials of IGF-1R antibodies, kinase inhibitors and ligand antibodies. We assess candidate biomarkers for patient selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The last few years were a tough time for IGF-1R therapeutics, but also brought progress in understanding IGF biology. Even failed studies include patients who derived benefit; they should be investigated to identify features distinguishing the tumors and host environment of responders from non-responders. We emphasize the importance of incorporating biospecimen collection into trial design, and wording patient consents to allow post hoc analysis of trial material as new data become available. Such information represents the key to unlocking the potential of this approach, to inform the next generation of trials of IGF signalling inhibitors.
Collapse
Affiliation(s)
- Helen King
- St Catherine's College, University of Oxford, Manor Road, Oxford OX1 3UJ, UK.
| | - Tamara Aleksic
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA.
| | - Valentine M Macaulay
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK; Oxford Cancer Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
45
|
Dilli UD, Yildırim M, Suren D, Alikanoglu A, Kaya V, Goktas S, Yildiz M, Sezer C, Gunduz S. Lack of any Prognostic Role of Insulin-Like Growth Factor-1 Receptor in Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2014; 15:5753-7. [DOI: 10.7314/apjcp.2014.15.14.5753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Lin EH, Lenz HJ, Saleh MN, Mackenzie MJ, Knost JA, Pathiraja K, Langdon RB, Yao SL, Lu BD. A randomized, phase II study of the anti-insulin-like growth factor receptor type 1 (IGF-1R) monoclonal antibody robatumumab (SCH 717454) in patients with advanced colorectal cancer. Cancer Med 2014; 3:988-97. [PMID: 24905030 PMCID: PMC4303167 DOI: 10.1002/cam4.263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 04/08/2014] [Indexed: 01/01/2023] Open
Abstract
Overexpression of insulin-like growth factor receptor type 1 (IGF-1R) may promote tumor development and progression in some cancer patients. Our objective was to assess tumor uptake of fluorodeoxyglucose by positron-emission tomography in patients with chemotherapy-refractory colorectal cancer treated with an anti-insulin-like growth factor receptor type 1 (anti-IGF-1R) monoclonal antibody, robatumumab. This was a randomized, open-label study with two periods (P1 and P2). Patients were randomized 3:1 into treatment arms R/R and C/R that received, respectively, one cycle of 0.3 mg/kg robatumumab or one or more cycles of second-line chemotherapy in P1, followed in either case by 10 mg/kg robatumumab biweekly in P2. The primary measure of fluorodeoxyglucose uptake was maximum standardized uptake value (SUVmax). The primary endpoint was the proportion of patients in the R/R arm having a mean percent decrease from baseline in SUVmax (DiSUV) greater than 20% 12–14 days postdose in P2. Secondary endpoints included Response Evaluation Criteria in Solid Tumors (RECIST)-defined tumor response and pharmacodynamic measures of target engagement. Among 41 patients who were evaluable for the primary endpoint, seven (17%, 95% CI 7%–32%) had DiSUV greater than 20%. Fifty robatumumab-treated patients were evaluable for RECIST-defined tumor response and six (12%) had stable disease lasting greater than or equal to 7 weeks in P2. Pharmacodynamic endpoints indicated target engagement after dosing with 10 mg/kg robatumumab, but not 0.3 mg/kg. The most frequently reported adverse events were fatigue/asthenia, nausea, anorexia, and gastrointestinal disturbances. In this study, few patients with chemotherapy-refractory colorectal cancer appeared to benefit from treatment with the IGF-1R antagonist robatumumab.
Collapse
Affiliation(s)
- Edward H Lin
- Seattle Cancer Care Alliance, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol 2014; 77:917-28. [PMID: 24033707 PMCID: PMC4093917 DOI: 10.1111/bcp.12228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
AIM(S) Insulin-like growth factor-1 receptor (IGF-1R) targeted therapies have become one of the intriguing areas in anticancer drug development during the last decade. As one of these therapies, anti-IGF-1R monoclonal antibodies (mAbs) are also advancing further in development. Our purpose was to conduct a systematic review of the adverse events (AEs) caused by anti-IGF-1R monoclonal antibodies in cancer therapy. METHODS We searched the term'IGF-1R monoclonal antibody' in the Pubmed database and found 389 related articles. After elaborate selection, 15 clinical studies that satisfied our criteria were then adopted for further analysis. We extracted all the useful information about the AEs of mAbs from the enrolled studies. Every kind of reported AE as well as corresponding incidences were summed up and calculated. We compared AE incidence differences in two age groups, and analyzed toxicities of mAbs used as a single agent or combined with chemotherapies. Finally, the differences of AE profiles between individual mAbs were also valued. RESULTS AEs were more severe in the lower age group and 13 of 19 AE incidences in the single-agent group were significantly lower than in the combination group (P < 0.05). R1507 seemed to show a worse AE profile than cixutumumab and figitumumab. CONCLUSIONS When anti-IGF-1R mAbs are used for cancer therapy, it is essential to choose the proper drug and combined chemotherapies to reduce AE occurrences. Also, administration of these mAbs to younger patients should be more carefully supervised. Furthermore, some more frequently observed AEs for specific mAb should be paid adequate attention.
Collapse
Affiliation(s)
- Honghai Ma
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Tiehong Zhang
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongchang Shen
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongxin Cao
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Jiajun Du
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| |
Collapse
|
48
|
Tabernero J, Chawla SP, Kindler H, Reckamp K, Chiorean EG, Azad NS, Lockhart AC, Hsu CP, Baker NF, Galimi F, Beltran P, Baselga J. Anticancer activity of the type I insulin-like growth factor receptor antagonist, ganitumab, in combination with the death receptor 5 agonist, conatumumab. Target Oncol 2014; 10:65-76. [PMID: 24816908 DOI: 10.1007/s11523-014-0315-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/03/2014] [Indexed: 01/20/2023]
Abstract
Agents targeting the insulin-like growth factor receptor type 1 (IGF1R) have shown antitumor activity. Based on the evidence for interaction between the IGF-1 and TRAIL pathways, we hypothesized that the combination of ganitumab (monoclonal antibody to IGF1R) with the pro-apoptotic death receptor 5 agonist, conatumumab, might increase antitumor response. Ganitumab and conatumumab were tested in combination in a Colo-205 xenograft model. Part 1 of the clinical study was a phase Ib program of three doses of conatumumab (1, 3, 15 mg/kg) in combination with 18 mg/kg ganitumab to determine the maximum tolerated dose (MTD) in patients with advanced solid tumors. Part 2 was conducted in six cohorts with advanced non-small cell lung cancer (squamous or non-squamous histology), colorectal cancer, sarcoma, pancreatic cancer, or ovarian cancer, treated at the recommended doses of the combination. The combination was significantly more active in the Colo-205 xenograft model than either single agent alone (p < 0.0015). In part 1 of the clinical study, no dose-limiting toxicities were observed and the MTD of conatumumab was 15 mg/kg in combination with 18 mg/kg ganitumab. In part 2, 78 patients were treated and there were no objective responses but 28 patients (36 %) had stable disease (median 46 days, range 0-261). The combination was well-tolerated with no new toxicities. In conclusion, the combination of ganitumab and conatumumab was well-tolerated but had no objective responses in the population tested. The successful future application of this combination of antitumor mechanisms may rely on the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang D, Du L, Liu Q, Liu X, Wang Z. Receptor tyrosine kinase alterations and therapeutic opportunities in squamous cell carcinoma of the lung. Cancer Chemother Pharmacol 2014; 72:725-31. [PMID: 23959461 DOI: 10.1007/s00280-013-2252-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/26/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Targeted therapy has greatly improved the treatment for adenocarcinoma of the lung, but not squamous cell carcinoma (SCC) of the lung. The current paper describes the abnormalities of receptor tyrosine kinases (RTK) in lung SCC in a hope to stimulate the development of therapeutics that can have clinical impact. METHODS We reviewed both clinical and preclinical studies published in English regarding RTK abnormalities and/ or RTK-targeting treatment for SCC of the lung. RESULTS RTK alterations have been demonstrated as biological signature for SCC of the lung. A number of clinical trials of RTK-targeting therapy have been carried out or are ongoing, with encouraging results. CONCLUSIONS SCC of the lung should be treated as an independent disease with unique treatment options based on molecular changes, particularly RTK.
Collapse
|
50
|
Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget 2014; 5:1392-433. [PMID: 24722523 PMCID: PMC4039220 DOI: 10.18632/oncotarget.1891] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review.
Collapse
|