1
|
Tajè R, Ambrogi V, Tacconi F, Gallina FT, Alessandrini G, Forcella D, Buglioni S, Visca P, Patirelis A, Cecere FL, Melis E, Vidiri A, Sperduti I, Cappuzzo F, Novello S, Caterino M, Facciolo F. Kirsten Rat Sarcoma Virus Mutations Effect On Tumor Doubling Time And Prognosis Of Solid Dominant Stage I Lung Adenocarcinoma. Clin Lung Cancer 2025; 26:210-220.e1. [PMID: 39863430 DOI: 10.1016/j.cllc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION To analyze the impact of Kirsten-Rat-Sarcoma Virus (KRAS) mutations on tumor-growth as estimated by tumor-doubling-time (TDT) among solid-dominant clinical-stage I lung adenocarcinoma. Moreover, to evaluate the prognostic role of KRAS mutations, TDT and their combination in completely-resected pathologic-stage I adenocarcinomas. METHODS In this single-center retrospective analysis, completely resected clinical-stage I adenocarcinomas presenting as solid-dominant nodules (consolidation-to-tumor ratio > 0.5) in at least 2 preoperative computed-tomography scans were enrolled. Nodules' growth was scored as fast (TDT < 400 days) or slow (TDT > 400 days). KRAS-mutated adenocarcinomas were identified with next-generation sequencing. Logistic- and Cox-regressions were used to identify predictors of fast-growth and disease-free survival (DFS), respectively. RESULTS Among 151 patients, 83 (55%) had fast-growing nodules and 64 (42.4%) were KRAS-mutated. Fast-growing nodules outnumbered in the KRAS-mutated group (n = 45; 70.3%), median TDT 95-days (interquartile range, IQR 43.5-151.5) compared to the KRAS wild-type group (38, 43.7%), median TDT 138-days (IQR 70.3-278.5). KRAS-mutations predicted faster-growth at multivariable analysis (P = .009). In a subgroup analysis including 108 pathologic-stage I adenocarcinomas, neither KRAS-mutations (P = .081) nor fast-growing pattern (P = .146) affected DFS. Nevertheless, the association of KRAS-mutations and fast-growing pattern identified a subgroup of patients with worse DFS (P = .02). The combination of fast-growing and KRAS-mutations (hazard-ratio 2.97 [95%CI 1.22-7.25]; P = .017) and average nodule diameter at diagnosis (hazard-ratio 1.08 [95%CI 1.03-1.14]; P = .004) were independent predictors of worse DFS. CONCLUSION KRAS mutations are associated to faster growth, in clinical-stage I adenocarcinoma presenting at diagnosis as solid-dominant nodules undergoing complete resection. Moreover, faster-growth identifies a subgroup of pathologic-stage I KRAS-mutated adenocarcinomas with higher recurrences.
Collapse
Affiliation(s)
- Riccardo Tajè
- Doctoral School of Microbiology, Immunology, Infectious Diseases and Transplants, MIMIT, University of Rome "Tor Vergata", Rome, Italy; Thoracic Surgery Unit, IRCCS National Cancer Institute Regina Elena, Rome, Italy.
| | - Vincenzo Ambrogi
- Department of Thoracic Surgery, Tor Vergata University, Rome, Italy
| | - Federico Tacconi
- Department of Thoracic Surgery, Tor Vergata University, Rome, Italy
| | | | | | - Daniele Forcella
- Thoracic Surgery Unit, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Simonetta Buglioni
- Department of pathology, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Paolo Visca
- Department of pathology, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | | | | | - Enrico Melis
- Thoracic Surgery Unit, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Antonello Vidiri
- Department of radiology, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Isabella Sperduti
- Biostatistics, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Federico Cappuzzo
- Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy
| | - Mauro Caterino
- Department of radiology, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, IRCCS National Cancer Institute Regina Elena, Rome, Italy
| |
Collapse
|
2
|
Libby DM, Libby LJ, Ma X, Chua J, Blow T, Razavi P, Saxena A. Association of Oncogene Driver Mutations with Recurrence and Survival in Stage I Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:116-123. [PMID: 39674767 DOI: 10.1016/j.cllc.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Stage I nonsmall cell lung cancer (NSCLC) is primarily treated with surgical resection and has a favorable prognosis with an expected recurrence rate of 30%. New methods to risk stratify patients with stage I NSCLC are needed to help select those that might benefit from more active surveillance or adjuvant therapy. METHODS We analyzed clinical data from 1330 patients (1469 tumors) with NSCLC and correlated it with next-generation sequencing (NGS). To reduce the potential confounding variables of stage and treatment, this analysis only included patients with stage I NSCLC in whom surgical resection was the primary treatment. RESULTS In 570 patients (600 tumors), 75 (12.5%) developed recurrence. Recurrence occurred in 37.5% of patients with KRAS G12V mutation versus 11.1% of patients without this mutation (P < .001). A lower chance of recurrence was associated with "any EGFR" mutation (6.74% vs. 14.9%, P = .006). A history of coronary artery disease (CAD) increased the chance of recurrence: OR 2.7 (1.57-4.89, P < .001). Shorter survival was predicted by KRAS G12V (P = .009) and "other TP53" mutation (P = .025). KRAS G12V, KRAS G13D, MET E168D, PTEN, and "other TP53" were oncogene mutations associated with reduced survival in stage I NSCLC. CAD, type 2 diabetes (DM2), and "other cancer" were medical comorbidities associated with reduced survival in stage I NSCLC. CONCLUSIONS Oncogene mutations such as KRAS G12V and EGFR may have implications for cancer surveillance strategies and inform future treatment trials of stage I NSCLC.
Collapse
Affiliation(s)
- Daniel M Libby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Medical College of Cornell University, New York, NY.
| | - Laura J Libby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Xiaoyue Ma
- Division of Biostatistics and Epidemiology, Weill Medical College of Cornell University, New York, NY
| | - Jason Chua
- Division of Biostatistics and Epidemiology, Weill Medical College of Cornell University, New York, NY
| | - Tahj Blow
- Weill Medical College of Cornell University, New York, NY
| | - Peyman Razavi
- Weill Medical College of Cornell University, New York, NY
| | - Ashish Saxena
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
3
|
Sun L, Zhou Y, Handorf EA, Borghaei H, Bauman J, Aggarwal C. Brief Report: Not Created Equal: Survival Differences by KRAS Mutation Subtype in NSCLC Treated With Immunotherapy. JTO Clin Res Rep 2025; 6:100755. [PMID: 39758602 PMCID: PMC11699306 DOI: 10.1016/j.jtocrr.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction The predictive and prognostic implications of different KRAS mutation (KRASm) subtypes in metastatic NSCLC have not been clearly defined. We used a nationwide observational database to investigate whether KRASm subtypes differ in their association with survival in metastatic NSCLC treated with immune checkpoint inhibitor (ICI)-based therapy, across programmed death-ligand 1 (PD-L1) levels. Methods Patients with advanced nonsquamous NSCLC who initiated first-line ICI-based therapy from 2016 to 2021 and had known PD-L1 expression and comprehensive genomic profiling including KRAS, STK11, KEAP1, and TP53 were included. Within PD-L1 expression subgroups (<1%, 1%-49%, ≥50%), Cox multivariable regression was used to evaluate the association between KRASm subtypes (G12C, G12V, G12D, other KRASm) and overall survival, estimated using Kaplan-Meier methodology. Results Among the 1539 patients, 819 patients were KRAS wild type (KRASwt) and 720 were KRASm (296 KRAS G12C, 143 KRAS G12V, 97 KRAS G12D, 184 other KRASm). In the 50% or higher PD-L1 subgroup, patients with KRAS G12V had worse survival (median overall survival [mOS] = 8.2 mo) compared with KRASwt (mOS = 13.3 mo) and other KRAS subgroups (mOS ranging from 13.4 to 19.9 mo). On adjusted Cox multivariable regression in the 50% or higher PD-L1 subgroup, the hazard ratio for death for KRAS G12V ranged from 1.53 to 1.78 compared with KRASwt and other KRASm subtypes (all p < 0.05). Conclusions Although patients with 50% or higher PD-L1 with KRAS G12C, G12D, and other subtypes exhibited similar survival to KRASwt, KRAS G12V was associated with significantly worse survival than KRASwt and other KRASm subtypes. All KRASm should not be regarded as uniform predictors of ICI responsiveness, even with high PD-L1 expression; KRAS G12V tumors may have worse outcomes with ICI-based therapy and benefit from treatment intensification.
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yunyun Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | | - Charu Aggarwal
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Ghazali N, Feng J, Hueniken K, Khan K, Balaratnam K, Waddell TK, Yasufuku K, Pierre A, Donahoe L, Wakeam E, Cypel M, Yeung J, Keshavjee S, de Perrot M, Leighl NB, Liu G, Bradbury PA, Sacher A, Eng L, Stockley T, Tsao MS, Shepherd FA. Analysis of outcomes in resected early-stage NSCLC with rare targetable driver mutations. Ther Adv Med Oncol 2024; 16:17588359241308466. [PMID: 39734710 PMCID: PMC11672496 DOI: 10.1177/17588359241308466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Background Given advancements in adjuvant treatments for non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)-targeted therapies, it is important to consider postoperative targeted therapies for other early-stage oncogene-addicted NSCLC. Exploring baseline outcomes for early-stage NSCLC with these rare mutations is crucial. Objectives This study aims to assess relapse-free survival (RFS) and overall survival (OS) in patients with resected early-stage NSCLC with rare targetable driver mutations. Methods This retrospective single-center study identified stage I-III NSCLC patients with rare targetable mutations who underwent curative surgery. Tissue-based molecular profiling identified mutations in KRASG12C, EGFR Exon20, Erb-B2 receptor tyrosine kinase 2 (ERBB2), ALK, ROS1, B-Raf proto-oncogene (BRAF) V600E, mesenchymal-epithelial transition factor (MET) exon14 skipping, and rearranged during transfection (RET). Baseline patient and tumor characteristics, mutation subtype, and TP53 co-mutation were correlated with RFS and OS using Cox regression. The KRASG12C cohort was used as the reference for survival comparisons. Results Among 225 patients, mutations included the following: KRASG12C (n = 101, 45%), MET exon 14 skipping (n = 26, 12%), EGFR Exon 20 (n = 25, 11%), ERBB2 (n = 25, 11%), ALK fusion (n = 16, 7%), ROS1 fusion (n = 14, 6%), BRAF V600E mutation (n = 13, 6%), and RET fusion (n = 5, 2%). Five-year survival probabilities were 76% for stage I, 60% for stage II, and 58% for stage III. RFS was shorter across most mutation subgroups compared to KRASG12C, with ROS1 mutations showing significantly poorer RFS (HR 2.70, p = 0.019). By contrast, all mutation subgroups were associated with better OS than KRASG12C. The incidence of brain metastasis was highest in ERBB2 (22% at 5 years). TP53 co-mutation was associated with significantly worse OS (HR 2.35, p = 0.008). Conclusion While RFS was poorer for most mutations compared to KRASG12C, OS generally was better, suggesting a potential role for postoperative targeted therapies. These findings warrant further investigation through prospective studies and clinical trials to optimize adjuvant treatment strategies for patients with early-stage NSCLC harboring rare driver mutations.
Collapse
Affiliation(s)
- Nadia Ghazali
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Jamie Feng
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | | | - Khaleeq Khan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto ON, Canada
| | - Karmugi Balaratnam
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto ON, Canada
| | - Thomas K. Waddell
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Andrew Pierre
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Laura Donahoe
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Elliot Wakeam
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Jonathan Yeung
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Division of Thoracic Surgery, UHN, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Natasha B. Leighl
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Geoffrey Liu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Penelope A. Bradbury
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Adrian Sacher
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Lawson Eng
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Tracy Stockley
- Laboratory Medicine Program, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ming Sound Tsao
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), 700 University Avenue, 7-812, Toronto, ON M5G 2M9, Canada
- University of Toronto, Toronto, ON, Canada
| | - Frances A. Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), 700 University Avenue, 7-812, Toronto, ON M5G 2M9, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol 2024; 17:108. [PMID: 39522047 PMCID: PMC11550559 DOI: 10.1186/s13045-024-01631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Variants in the RAS family (HRAS, NRAS and KRAS) are among the most common mutations found in cancer. About 19% patients with cancer harbor RAS mutations, which are typically associated with poor clinical outcomes. Over the past four decades, KRAS has long been considered an undruggable target due to the absence of suitable small-molecule binding sites within its mutant isoforms. However, recent advancements in drug design have made RAS-targeting therapies viable, particularly with the approval of direct KRASG12C inhibitors, such as sotorasib and adagrasib, for treating non-small cell lung cancer (NSCLC) with KRASG12C mutations. Other KRAS-mutant inhibitors targeting KRASG12D are currently being developed for use in the clinic, particularly for treating highly refractory malignancies like pancreatic cancer. Herein, we provide an overview of RAS signaling, further detailing the roles of the RAS signaling pathway in carcinogenesis. This includes a summary of RAS mutations in human cancers and an emphasis on therapeutic approaches, as well as de novo, acquired, and adaptive resistance in various malignancies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Hong Wu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
6
|
Eser M, Hekimoglu G, Yarar MH, Canbek S, Ozcelik M. KRAS G12C mutation in NSCLC in a small genetic center: insights into sotorasib therapy response potential. Sci Rep 2024; 14:26581. [PMID: 39496639 PMCID: PMC11535051 DOI: 10.1038/s41598-024-75208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Lung cancer remains a significant health challenge, characterized by aberrant tissue growth within the pulmonary system. Early carcinogenic events often involve genomic instability and the emergence of a mutator phenotype. In this study, we aimed to explore the mutator phenotype in 89 patients diagnosed with non-small-cell lung cancer (NSCLC). RNA isolation from formalin-fixed paraffin-embedded (FFPE) tissue samples was performed using the Promega ReliaPrep RNA Miniprep System, facilitating gene amplification relevant to cancer through the Archer® FusionPlexComprehensiveThyroid and Lung (CTL) kit. Next-generation sequencing (NGS) on the Illumina NextSeq platform enabled comprehensive analysis of target areas. Utilizing Archer Analysis software, secondary analyses involving data cleansing, alignment, and variant/fusion identification were executed against the human reference genome hg19 (GRCh37). Expression patterns were visualized using HeatMap graphics. Our findings revealed a notable presence of KRAS gene mutations in approximately 20% of NSCLC patients. Among these mutations, the G12C variant was predominant at 50%, followed by G12V and G12D variants at 11.2% each. Notably, patients harboring the G12C variant responded favorably to sotorasib medication. These results underscore the importance of mutational profiling and targeted therapeutic approaches in managing NSCLC, particularly highlighting the promising efficacy of sotorasib in G12C-mutated cases.
Collapse
Affiliation(s)
- Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, Hamidiye International Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Murat Hakki Yarar
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sezin Canbek
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Melike Ozcelik
- Department of Medical Oncology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
Wang X, Wang W, Zou S, Xu Z, Cao D, Zhang S, Wei M, Zhan Q, Wen C, Li F, Chen H, Fu D, Jiang L, Zhao M, Shen B. Combination therapy of KRAS G12V mRNA vaccine and pembrolizumab: clinical benefit in patients with advanced solid tumors. Cell Res 2024; 34:661-664. [PMID: 38914844 PMCID: PMC11369195 DOI: 10.1038/s41422-024-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Affiliation(s)
- Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Shanghai Xinpu BioTechnology Company Limited, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Cao
- Hongene Biotech Corporation, Shanghai, China
| | - Shuai Zhang
- Shanghai Xinpu BioTechnology Company Limited, Shanghai, China
| | - Minzhi Wei
- Hongene Biotech Corporation, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ming Zhao
- Shanghai Xinpu BioTechnology Company Limited, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Abounar SA, El-Nikhely NA, Turkowski K, Savai R, Saeed H. CRISPR/Cas-Mediated Knockdown of PD-L1 and KRAS in Lung Cancer Cells. Int J Mol Sci 2024; 25:9086. [PMID: 39201772 PMCID: PMC11354560 DOI: 10.3390/ijms25169086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer cells can escape death and surveillance by the host immune system in various ways. Programmed cell death ligand 1 (PD-L1) is a transmembrane protein that is expressed by most cell types, including cancer cells, and can provide an inhibitory signal to its receptor PD-1, which is expressed on the surface of activated T cells, impairing the immune response. PD-L1/PD-1-mediated immune evasion is observed in several KRAS-mutated cancers. In the current study, we used the CRISPR/Cas9 system to knock down PD-L1 and KRAS in adenocarcinoma lung cells (A549 and H1975). Knockdown of PD-L1 was validated by qPCR and coculture with lymphocytes. The cells were functionally analyzed for cell cycle, migration and apoptosis. In addition, the effects of PD-L1 and KRAS downregulation on chemotherapy sensitivity and expression of inflammatory markers were investigated. Suppression of PD-L1 and KRAS led to a slowdown of the cell cycle in the G0/G1 phase and reduced migration, increased sensitivity to chemotherapy and triggered apoptosis of cancer cells. In addition, the conditioned medium of the modulated cells significantly affected the native cancer cells and reduced their viability and drug resistance. Our study suggests that dual silencing of PD-L1 and KRAS by CRISPR/Cas9 may be a promising therapeutic approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Summer A. Abounar
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.A.); (H.S.)
| | - Nefertiti A. El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.A.); (H.S.)
- Program of Molecular Biotechnology, Faculty of Advanced Basic Sciences, Alamein International University, New Alamein City, Marsa Matrouh 5060310, Egypt
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, 35390 Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, 35390 Giessen, Germany
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.A.); (H.S.)
| |
Collapse
|
9
|
Harris E, Thawani R. Current perspectives of KRAS in non-small cell lung cancer. Curr Probl Cancer 2024; 51:101106. [PMID: 38879917 DOI: 10.1016/j.currproblcancer.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
NSCLC has a diverse genomic background with mutations in key proto-oncogenic drivers including Kirsten rat sarcoma (KRAS) and epidermal growth factor receptor (EGFR). Roughly 40% of adenocarcinoma harbor Kras activating mutations regardless of smoking history. Most KRAS mutations are located at G12, which include G12C (roughly 40%), G12V (roughly 20%), and G12D (roughly 15%). KRAS mutated NSCLC have higher tumor mutational burden and some have increased PD-1 expression, which has resulted in better responses to immunotherapy than other oncogenes. While initial treatment for metastatic NSCLC still relies on chemo-immunotherapy, directly targeting KRAS has proven to be efficacious in treating patients with KRAS mutated metastatic NSCLC. To date, two G12C inhibitors have been FDA-approved, namely sotorasib and adagrasib. In this review, we summarize the different drug combinations used to target KRAS G12c, upcoming G12D inhibitors and novel therapies targeting KRAS.
Collapse
Affiliation(s)
- Ethan Harris
- Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA
| | - Rajat Thawani
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA.
| |
Collapse
|
10
|
Ghosh S, Bhuniya T, Dey A, Koley M, Roy P, Bera A, Gol D, Chowdhury A, Chowdhury R, Sen S. An Updated Review on KRAS Mutation in Lung Cancer (NSCLC) and Its Effects on Human Health. Appl Biochem Biotechnol 2024; 196:4661-4678. [PMID: 37897621 DOI: 10.1007/s12010-023-04748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The largest cause of cancer-related fatalities worldwide is lung cancer. In its early stages, lung cancer often exhibits no signs or symptoms. Its signs and symptoms often appear when the condition is advanced. The Kirsten rat sarcoma virus oncogene homolog is one of the most frequently mutated oncogenes found in non-small cell lung cancer. Patients who have these mutations may do worse than those who do not, in terms of survival. To understand the nuances in order to choose the best treatment options for each patient, including combination therapy and potential resistance mechanisms, given the quick development of pharmaceuticals, it is necessary to know the factors that might contribute to this disease. It has been observed that single nucleotide polymorphisms altering let-7 micro-RNA might impact cancer propensity. On the other hand, gefitinib fails to stop the oncogenic protein from directly interacting with phosphoinositide3-kinase, which may explain its resistance towards cancer cells. Additionally, Atorvastatin may be able to overpower gefitinib resistance in these cancer cells that have this mutation regardless of the presence of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. De novo lipogenesis is also regulated by this virus. To overcome these effects, several targeted therapies have been proposed. One such therapy is to use inhibitors of focal adhesion kinases. When this is inhibited, viral oncogene mutant cancers are effectively stopped because it functions downstream of the virus. Mutant oncoproteins like epidermal growth factor receptor may depend on Heat Shock protein90 chaperones more frequently than they do on natural counterparts that make it more attractive therapeutic target for this virus. Inhibition of the phosphoinositide 3-kinase pathway is frequent in lung cancer, and fabrication of inhibitors against this pathway can also be an effective therapeutic strategy. Blocking programmed cell death ligand1 is another therapy that may help T cells to recognize and eliminate cancerous cells. This homolog is a challenging therapeutic target due to its complex structural makeup and myriad biological characteristics. Thanks to the unrelenting efforts of medical research, with the use of some inhibitors, immunotherapy, and other combination methods, this problem is currently expected to be overcome.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, Tamil Nadu, 600036, India.
| | - Tiyasa Bhuniya
- Department of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, 713209, India
| | - Anuvab Dey
- Department of Biological Sciences and Bioengineering, North Guwahati, Assam, IIT Guwahati, Assam-781039, India
| | - Madhurima Koley
- Department of Chemistry and Chemical Biology, IIT(ISM), Dhanbad, 826004, India
| | - Preeti Roy
- Department of Biotechnology, Indian Institute of Technology, Mandi, India
| | - Aishi Bera
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Debarshi Gol
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Ankita Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Shinjini Sen
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| |
Collapse
|
11
|
Tang Y, Pu X, Yuan X, Pang Z, Li F, Wang X. Targeting KRASG12D mutation in non-small cell lung cancer: molecular mechanisms and therapeutic potential. Cancer Gene Ther 2024; 31:961-969. [PMID: 38734764 PMCID: PMC11257988 DOI: 10.1038/s41417-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Lung malignant tumors are a type of cancer with high incidence and mortality rates worldwide. Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung malignant tumors, and most patients are diagnosed at advanced stages, leading to poor prognosis. Over the past decades, various oncogenic driver alterations associated with lung cancer have been identified, each of which can potentially serve as a therapeutic target. Rat sarcoma (RAS) genes are the most commonly mutated oncogenes in human cancers, with Kirsten rat sarcoma (KRAS) being the most common subtype. The role of KRAS oncogene in NSCLC is still not fully understood, and its impact on prognosis remains controversial. Despite the significant advancements in targeted therapy and immune checkpoint inhibitors (ICI) that have transformed the treatment landscape of advanced NSCLC in recent years, targeting KRAS (both directly and indirectly) remains challenging and is still under intensive research. In recent years, significant progress has been made in the development of targeted drugs targeting the NSCLC KRASG12C mutant subtype. However, research progress on target drugs for the more common KRASG12D subtype has been slow, and currently, no specific drugs have been approved for clinical use, and many questions remain to be answered, such as the mechanisms of resistance in this subtype of NSCLC, how to better utilize combination strategies with multiple treatment modalities, and whether KRASG12D inhibitors offer substantial efficacy in the treatment of advanced NSCLC patients.
Collapse
Affiliation(s)
- Yining Tang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhonghao Pang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
12
|
Anttalainen A, Pietarinen P, Tuominen S, Mattila R, Mutka A, Knuuttila A. Real-World Evidence Study of Patients with KRAS-Mutated NSCLC in Finland. Curr Oncol 2024; 31:2700-2712. [PMID: 38785486 PMCID: PMC11120216 DOI: 10.3390/curroncol31050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
While KRAS is the most frequently mutated oncogene in non-small cell lung cancer (NSCLC), KRAS-mutant tumors have long been considered difficult to treat and thus, an unmet need still remains. Partly due to the lack of targeted treatments, comprehensive real-world description of NSCLC patients with KRAS mutation is still largely missing in Finland. In this study, all adult patients diagnosed with locally advanced and unresectable or metastatic NSCLC from 1 January 2018 to 31 August 2020 at the Hospital District of Helsinki and Uusimaa were first identified in this retrospective registry-based real-world study. The final cohort included only patients tested with next generation sequencing (NGS) and was stratified by the KRAS mutation status. A total of 383 patients with locally advanced and unresectable or metastatic NSCLC and with NGS testing performed were identified. Patients with KRAS mutation (KRAS G12C n = 35, other KRAS n = 74) were younger than patients without KRAS mutations, were all previous or current smokers, and had more often metastatic disease at diagnosis. Also, these patients had poorer survival, with higher age, Charlson comorbidity index (CCI) being 5 or above, and KRAS G12C being the most significant risk factors associated with poorer survival. This suggests that the patients with KRAS mutation have a more aggressive disease and/or tumors with KRAS mutation are more difficult to treat, at least without effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Aino Mutka
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine, Heart and Lung Center and Cancer Center, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Cao H, Ma Z, Huang Q, Han H, Li Y, Zhang Y, Chen H. Clinicopathologic features, concurrent genomic alterations, and clinical outcomes of patients with KRAS G12D mutations in resected lung adenocarcinoma. Eur J Cancer 2024; 202:113985. [PMID: 38452722 DOI: 10.1016/j.ejca.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND In light of the ongoing clinical development of KRAS G12D-specific inhibitors, we sought to investigate the clinicopathologic, co-occurring genomic features and outcomes of patients with KRAS G12D-mutant lung adenocarcinoma. METHODS 3828 patients with completely resected primary lung adenocarcinomas were examined for KRAS mutations between 2008 and 2020. The association between KRAS G12D and clinicopathologic features, molecular profiles, and outcomes was investigated. RESULTS 65 patients (1.7%) with KRAS G12D-mutant lung adenocarcinoma were identified. KRAS G12D mutation was more frequent in males, former/current smokers, radiologic solid tumors, and invasive mucinous adenocarcinoma. TP53 and STK11 were the two most frequent concomitant mutations in the KRAS G12D group. KRAS G12D mutation did not appear to be a prognostic factor in resected stage I-III lung adenocarcinomas, while KRAS non-G12D mutation was related to worse survival, especially in stage I tumors. KRAS G12D mutations were associated with positive but low (1-49%) PD-L1 expression compared to negative (<1%), while KRAS non-G12D mutation was associated with high PD-L1 expression (≥50%). TP53 co-mutation indicated higher PD-L1 expression, while STK11 co-mutation had a negligible impact on PD-L1 expression. Furthermore, data mining of MSK datasets from cBioPortal revealed that KRAS G12D and SKT11 co-mutation were associated with a diminished response to immunotherapy. CONCLUSIONS KRAS G12D-mutant lung adenocarcinoma harbored unique clinicopathologic and genomic characteristics. Despite not being prognostic in resected lung adenocarcinoma, KRAS G12D might be a valuable biomarker in combination with certain co-mutations for identifying relevant subgroups of patients that could eventually influence treatment regimens.
Collapse
Affiliation(s)
- Hang Cao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zelin Ma
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qingyuan Huang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Han Han
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Oudart JB, Garinet S, Leger C, Barlesi F, Mazières J, Jeannin G, Audigier-Valette C, Morot-Sibilot D, Langlais A, Amour E, Mathiot N, Birsen G, Blons H, Wislez M. STK11/LKB1 alterations worsen the poor prognosis of KRAS mutated early-stage non-squamous non-small cell lung carcinoma, results based on the phase 2 IFCT TASTE trial. Lung Cancer 2024; 190:107508. [PMID: 38428265 DOI: 10.1016/j.lungcan.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND STK11/LKB1 mutations have been associated with primary resistance to PD-1 axis inhibitors and poor prognosis in advanced KRAS-mutant lung adenocarcinoma. This study aimed to assess the prognostic significance of STK11/LKB1 alterations in localized non-squamous non-small cell lung carcinoma (non-sq NSCLC). PATIENTS AND METHODS Surgical samples from patients undergoing complete resection for stage IIa, IIb, or IIIa (N2 excluded) non-sq NSCLC in the randomized adjuvant phase II trial (NCT00775385 IFCT-1801 TASTE trial) were examined. Patients received either standard chemotherapy (Pemetrexed Cisplatin) or personalized treatment based on EGFR mutation (Erlotinib) and ERCC1 expression. Tumor molecular profiles were analyzed using targeted NGS and correlated with overall survival (OS) and disease-free survival (DFS), adjusting for relevant clinical variables. Additionally, interactions between treatment groups and molecular alterations on OS, PD-L1 expression, and tumor-circulating DNA in post-operative plasma samples were evaluated. RESULTS Among 134 patients (predominantly male smokers with adenocarcinoma), KRAS mutations were associated with shorter DFS (HR: 1.95, 95 % CI: 1.1-3.4, p = 0.02) and OS (HR: 2.32, 95 % CI: 1.2-4.6, p = 0.014). Isolated STK11/LKB1 mutations (n = 18) did not significantly impact DFS or OS. However, within KRAS-mutated samples (n = 53), patients with concurrent STK11/LKB1 mutations (n = 10) exhibited significantly shorter DFS (HR: 3.85, CI: 1.5-10.2, p = 0.006) and a trend towards shorter OS (HR: 1.80, CI: 0.6-5.3, p = 0.28). No associations were found between PD-L1 expression, other gene mutations, progression-free survival (PFS), or OS. CONCLUSION This analysis reinforces KRAS mutations as predictive factors for relapse and poor survival in localized non-sq NSCLC. Furthermore, the presence of concomitant STK11/LKB1 mutations exacerbated the prognosis within the KRAS-mutated subset. These findings emphasize the clinical relevance of these molecular markers and their potential impact on treatment strategies in non-sq NSCLC.
Collapse
Affiliation(s)
- Jean Baptiste Oudart
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France
| | - Simon Garinet
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université Paris Cité, Paris, France
| | - Caroline Leger
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France
| | - Fabrice Barlesi
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Julien Mazières
- Thoracic Oncology Department, CHU Toulouse - Hôpital Larrey, Toulouse, France
| | | | | | | | | | - Elodie Amour
- French Cooperative Thoracic Intergroup (IFCT), Paris, France
| | - Nathalie Mathiot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Team Inflammation, Complement, and Cancer, Université Paris cité, Paris, France
| | - Gary Birsen
- Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Hélène Blons
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marie Wislez
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Team Inflammation, Complement, and Cancer, Université Paris cité, Paris, France; Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, F-75014 Paris, France.
| |
Collapse
|
15
|
Fujimoto K, Ikeda S, Tabata E, Kaneko T, Sagawa S, Yamada C, Kumagai K, Fukushima T, Haga S, Watanabe M, Muraoka T, Sekine A, Baba T, Ogura T. KRASG12C Inhibitor as a Treatment Option for Non-Small-Cell Lung Cancer with Comorbid Interstitial Pneumonia. Cancers (Basel) 2024; 16:1327. [PMID: 38611005 PMCID: PMC11010978 DOI: 10.3390/cancers16071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) with comorbid interstitial pneumonia (IP) is a population with limited treatment options and a poor prognosis. Patients with comorbid IP are at high risk of developing fatal drug-induced pneumonitis, and data on the safety and efficacy of molecularly targeted therapies are lacking. KRAS mutations have been frequently detected in patients with NSCLC with comorbid IP. However, the low detection rate of common driver gene mutations, such as epidermal growth factor receptor and anaplastic lymphoma kinase, in patients with comorbid IP frequently results in inadequate screening for driver mutations, and KRAS mutations may be overlooked. Recently, sotorasib and adagrasib were approved as treatment options for advanced NSCLC with KRASG12C mutations. Although patients with comorbid IP were not excluded from clinical trials of these KRASG12C inhibitors, the incidence of drug-induced pneumonitis was low. Therefore, KRASG12C inhibitors may be a safe and effective treatment option for NSCLC with comorbid IP. This review article discusses the promise and prospects of molecular-targeted therapies, especially KRASG12C inhibitors, for NSCLC with comorbid IP, along with our own clinical experience.
Collapse
Affiliation(s)
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohoma 236-0051, Japan; (K.F.); (E.T.); (T.K.); (S.S.); (C.Y.); (K.K.); (T.F.); (S.H.); (M.W.); (T.M.); (A.S.); (T.B.); (T.O.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gálffy G, Morócz É, Korompay R, Hécz R, Bujdosó R, Puskás R, Lovas T, Gáspár E, Yahya K, Király P, Lohinai Z. Targeted therapeutic options in early and metastatic NSCLC-overview. Pathol Oncol Res 2024; 30:1611715. [PMID: 38605928 PMCID: PMC11006988 DOI: 10.3389/pore.2024.1611715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.
Collapse
|
17
|
Qin K, Wang K, Li S, Hong L, Padmakumar P, Waree R, Hubert SM, Le X, Vokes N, Rai K, Vaporciyan A, Gibbons DL, Heymach JV, Lee JJ, Woodman SE, Chung C, Jaffray DA, Altan M, Lou Y, Zhang J. Clinical Benefit from Docetaxel +/- Ramucirumab Is Not Associated with Mutation Status in Metastatic Non-Small-Cell Lung Cancer Patients Who Progressed on Platinum Doublets and Immunotherapy. Cancers (Basel) 2024; 16:935. [PMID: 38473297 PMCID: PMC10931294 DOI: 10.3390/cancers16050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Docetaxel +/- ramucirumab remains the standard-of-care therapy for patients with metastatic non-small-cell lung cancer (NSCLC) after progression on platinum doublets and immune checkpoint inhibitors (ICIs). The aim of our study was to investigate whether the cancer gene mutation status was associated with clinical benefits from docetaxel +/- ramucirumab. We also investigated whether platinum/taxane-based regimens offered a better clinical benefit in this patient population. A total of 454 patients were analyzed (docetaxel +/- ramucirumab n=381; platinum/taxane-based regimens n=73). Progression-free survival (PFS) and overall survival (OS) were compared among different subpopulations with different cancer gene mutations and between patients who received docetaxel +/- ramucirumab versus platinum/taxane-based regimens. Among patients who received docetaxel +/- ramucirumab, the top mutated cancer genes included TP53 (n=167), KRAS (n=127), EGFR (n=65), STK11 (n=32), ERBB2 (HER2) (n=26), etc. None of these cancer gene mutations or PD-L1 expression was associated with PFS or OS. Platinum/taxane-based regimens were associated with a significantly longer mQS (13.00 m, 95% Cl: 11.20-14.80 m versus 8.40 m, 95% Cl: 7.12-9.68 m, LogRank P=0.019) than docetaxel +/- ramcirumab. Key prognostic factors including age, histology, and performance status were not different between these two groups. In conclusion, in patients with metastatic NSCLC who have progressed on platinum doublets and ICIs, the clinical benefit from docetaxel +/- ramucirumab is not associated with the cancer gene mutation status. Platinum/taxane-based regimens may offer a superior clinical benefit over docetaxel +/- ramucirumab in this patient population.
Collapse
Affiliation(s)
- Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Kaiwen Wang
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shenduo Li
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Priyadharshini Padmakumar
- Department of Enterprise Data Engineering and Analytics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rinsurongkawong Waree
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Shawna M. Hubert
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ara Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - J. Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott E. Woodman
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Caroline Chung
- Department of Radiation Oncology and Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Jaffray
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
18
|
Noronha V, Sarkar L, Patil V, Menon N, Shah M, Pawar A, Chowdhury OR, Shetty O, Chougule A, Chandrani P, Kaushal R, Pai T, Janu A, Chakrabarty N, Prabhash K. Clinical characteristics, outcomes and prognostic factors in KRAS mutant lung cancers: experience from a tertiary care cancer center in India. Ecancermedicalscience 2024; 18:1674. [PMID: 38439805 PMCID: PMC10911678 DOI: 10.3332/ecancer.2024.1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 03/06/2024] Open
Abstract
Objectives Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations in lung cancers, long considered untargetable, have had a recent rise in interest due to promising data of agents targeting KRAS p.G12C. As Indian data are scarce, we sought to identify baseline clinical characteristics, prognostic factors and outcomes of lung cancer patients with KRAS mutations at our hospital. Methods Patients with KRAS mutant lung cancers treated at our institute from 2016 to 2022 were analysed. Results 133 patients with KRAS mutant lung cancers were identified. Median age was 57 (interquartile range 28-78) years, and 58 (43.6%) were smokers. 17 (12.7%) had brain metastases. The commonest variant was p.G12C, seen in 53 (39.8%) patients. Six (4.5%) had programmed death ligand 1 (PDL-1) expression >50% by Ventana SP263 PDL-1 assay, and 13 (9.7%) had epidermal growth factor mutation. Of 92 patients with available treatment details, the majority received intravenous chemotherapy, nine (9.8%) received tyrosine kinase inhibitors and four (4.4%) received immunotherapy (pembrolizumab). Median progression-free survival (PFS) with first-line therapy was 6 (95% confidence interval (CI) 2.8-9.2) months and median overall survival (OS) was 12 (CI 9.2-14.8) months. The incidence of brain metastases was higher in patients with G12C mutations (p = 0.025). Brain metastases (HR: 3.57, p < 0.001), Eastern Cooperative Oncology Group performance status (PS) ≥ 2 (HR: 2.13, p = 0.002) and G12C mutation (HR: 1.84, p = 0.011) were associated with inferior PFS, while brain metastases (HR: 4.6, p < 0.001), PS ≥ 2 (HR: 2.33, p = 0.001) and G12C mutation (HR: 1.93, p = 0.01) were associated with inferior OS. Conclusion This is the largest dataset of KRAS mutant lung cancers from India. Brain metastases were higher in patients with G12C mutations and associated with poorer PFS and OS. G12C mutation and PS ≥ 2 were also associated with inferior PFS and OS. Experience with targeted therapy for KRAS mutations remains an area of future exploration due to the unavailability of these agents in India.
Collapse
Affiliation(s)
| | | | - Vijay Patil
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Nandini Menon
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Minit Shah
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Akash Pawar
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | | | - Omshree Shetty
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Anuradha Chougule
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Pratik Chandrani
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Rajiv Kaushal
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Trupti Pai
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Amit Janu
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Nivedita Chakrabarty
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| | - Kumar Prabhash
- Tata Memorial Hospital, Mumbai 400012, India
- The authors contributed equally to the work
| |
Collapse
|
19
|
Xu M, Zhao X, Wen T, Qu X. Unveiling the role of KRAS in tumor immune microenvironment. Biomed Pharmacother 2024; 171:116058. [PMID: 38171240 DOI: 10.1016/j.biopha.2023.116058] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Kirsten rats sarcoma viral oncogene (KRAS), the first discovered human oncogene, has long been recognized as "undruggable". KRAS mutations frequently occur in multiple human cancers including non-small cell lung cancer(NSCLC), colorectal cancer(CRC) and pancreatic ductal adenocarcinoma(PDAC), functioning as a "molecule switch" determining the activation of various oncogenic signaling pathways. Except for its intrinsic pro-tumorigenic role, KRAS alteration also exhibits an unique immune signature characterized by elevated PD-L1 level and high tumor mutational burden(TMB). KRAS mutation shape an immune suppressive microenvironment by impeding effective T cells infiltration and recruiting suppressive immune cells including myeloid-derived suppressor cells(MDSCs), regulatory T cells(Tregs), cancer associated fibroblasts(CAFs). In immune checkpoint inhibitor(ICI) era, NSCLC patients with mutated KRAS tend to be more responsive to ICI than patients with intact KRAS. The hallmark for KRAS mutation is the existence of multiple kinds of co-mutations. Different types of co-alterations have distinct tumor microenvironment(TME) signatures and responses to ICI. TP53 co-mutation possess a "hot" TME and achieve higher response to immunotherapy while other loss of function mutation correlated with a "colder" TME and a poor outcome to ICI-based therapy. The groundbreaking discovery of KRAS G12C inhibitors significantly improved outcomes for this KRAS subtype even though efficacy was limited to NSCLC patients. KRAS G12C inhibitors also restore the suppressive TME, creating an opportunity for combinations with ICI. However, an inevitable challenge to KRAS inhibitors is drug resistance. Promising combination strategies such as combination with SHP2 is an approach deserve further exploration because of their immune modulatory effect.
Collapse
Affiliation(s)
- Miao Xu
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xing Zhao
- Department of Pediatrics, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Xu L, Ding R, Song S, Liu J, Li J, Ju X, Ju B. Single-cell RNA sequencing reveals the mechanism of PI3K/AKT/mTOR signaling pathway activation in lung adenocarcinoma by KRAS mutation. J Gene Med 2024; 26:e3658. [PMID: 38282149 DOI: 10.1002/jgm.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Aberrant activation of the phosphatidlinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway has been shown to play an important role in lung adenocarcinoma (LUAD). The effect of KRAS mutations, one of the important signatures of LUAD, on the PI3K/AKT/mTOR pathway in LUAD remains unclear. METHODS The Seurat package and principal component analysis were used for cell categorization of single-cell RNA sequencing data of LUAD. The AUCell score was used to assess the activity of the PI3K/AKT/mTOR pathway. Meanwhile, using the gene expression profiles and mutation profiles in the The Cancer Genome Atlas dataset, LUAD patients were categorized into KRAS-mutant (KRAS-MT) and KRAS-wild-types (KRAS-WT), and the corresponding enrichment scores were calculated using gene set enrichment analysis analysis. Finally, the subpopulation of cells with the highest pathway activity was identified, the copy number variation profile of this subpopulation was inscribed using the inferCNV package and the CMap database was utilized to make predictions for drugs targeting this subpopulation. RESULTS There is higher PI3K/AKT/mTOR pathway activity in LUAD epithelial cells with KRAS mutations, and high expression of KRAS, PIK3CA, AKT1 and PDPK1. In particular, we found significantly higher levels of pathway activity and associated gene expression in KRAS-MT than in KRAS-WT. We identified the highest pathway activity on a subpopulation of GRB2+ epithelial cells and the presence of amplified genes within its pathway. Finally, drugs were able to target GRB2+ epithelial cell subpopulations, such as wortmannin, palbociclib and angiogenesis inhibitor. CONCLUSIONS The present study provides a basic theory for the activation of the PI3K/AKT/mTOR signaling pathway as a result of KRAS mutations.
Collapse
Affiliation(s)
- Long Xu
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Renquan Ding
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuxi Song
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Junling Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jingyu Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xing Ju
- TCM Innovation Engineering Technology Center, Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Baozhao Ju
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
21
|
Passiglia F, Lucia Reale M, Lo Russo G, Pasello G, Minuti G, Bulotta A, Galetta D, Pelizzari G, Sini C, Bria E, Roca E, Pilotto S, Genova C, Metro G, Citarella F, Chiari R, Cortinovis D, Delmonte A, Russo A, Tiseo M, Cerea G, Carta A, Scotti V, Vavalà T, Brambilla M, Buffoni L, Buosi R, Catania C, Gori S, Grisanti S, Agustoni F, Garbo E, Malapelle U, Novello S. Sotorasib in KRASp.G12C mutated advanced NSCLC: Real-world data from the Italian expanded access program. Lung Cancer 2024; 187:107444. [PMID: 38157806 DOI: 10.1016/j.lungcan.2023.107444] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Sotorasib showed a significant improvement of progression free survival (PFS), safety and quality of life over docetaxel in patients with KRASp.G12C-mutated advanced non-small-cell lung cancer (NSCLC) within the CodeBreak-200 study. Here we report real-world efficacy and tolerability data from NSCLC patients who received sotorasib within the Italian expanded access program (EAP). METHODS Sotorasib (960 mg, orally, once daily) was available on physician request for KRASp.G12C mutant advanced NSCLC patients. Clinical-pathological and molecular data were collected from the Italian ATLAS real-world registry. Patients underwent CT-scan and responses were evaluated by RECIST criteria. Efficacy and tolerability outcomes have been assessed. RESULTS A total of 196 advanced NSCLC patients were treated across 30 Italian centers. Median age was 69 years old (range 33-86). Most patients were male (61 %), former (49 %) or current smokers (43 %), with ECOG-PS 0/1 (84 %) and adenocarcinoma subtype (90 %). 45 % and 32 % of patients received sotorasib in 2nd and 3rd line, respectively. Overall, response rate was 26 % and the median duration of response was 5.7 months (95 % CI: 4.4-7.0). Median PFS and OS were 5.8 months (95 % CI: 5 - 6.5) and 8.2 months (95 % CI: 6.3 - 9.9). Grade 3-4 TRAEs occurred in 16.5 % of patients, with Grade ≥ 3 liver enzyme increase and TRAEs-related discontinuation reported in 12 % and 4.6 % of cases. CONCLUSION Real-world data from the Italian EAP confirm the tolerability and effectiveness of sotorasib in patients with KRASp.G12C-mutated advanced NSCLC and highlight the value of the national ATLAS network as source of real-world evidence driving the clinical management of NSCLC patients.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | | | - Giuseppe Lo Russo
- Thoracic Unit, Department of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Gabriele Minuti
- Clinical Trial Unit: Phase 1 and Precision Medicine, National Cancer Institute, IRCCS, Regina Elena, Rome, Italy
| | | | - Domenico Galetta
- Medical Thoracic Oncology Unit, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Giacomo Pelizzari
- Dipartimento di Oncologia, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Claudio Sini
- Medical Oncology, Ospedale Giovanni Paolo II - ATS Sardegna - ASSL Olbia, Olbia, Italy
| | - Emilio Bria
- Medical Oncology, Department of Traslational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda (VR), Italy
| | - Sara Pilotto
- Department of Engineering for Innovation Medicine University of Verona, Section of Oncology, Verona, Italy
| | - Carlo Genova
- Lung Cancer Unit, Università degli Studi di Genova e Ospedale Policlinico San Martino IRCCS - DiMI, Genova, Italy
| | - Giulio Metro
- Medical Oncology Department, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Fabrizio Citarella
- Oncology Department, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rita Chiari
- UOC Oncologia, AST Pesaro Urbino, Pesaro, Italy
| | | | - Angelo Delmonte
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Alessandro Russo
- Medical Oncology Unit, Centro Oncologico Ospedale Papardo, Messina, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma and Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Annamaria Carta
- SC Oncologia Medica, Ospedale Businco - ARNAS G. Brotzu, Cagliari, Italy
| | - Vieri Scotti
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Tiziana Vavalà
- Azienda Ospedaliero Universitaria (AOU) Città della Salute e della Scienza, Department of Oncology, SC Oncologia 1, Torino, Italy
| | - Marta Brambilla
- Thoracic Unit, Department of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Lucio Buffoni
- Medical Oncology Department, Humanitas Gradenigo, Turin, Italy
| | - Roberta Buosi
- Department of Medical Oncology, Ospedale Santo Spirito, Casale Monferrato, Alessandria, Italy
| | - Chiara Catania
- Medical Oncology Department, Humanitas Gavazzeni, Bergamo, Italy
| | - Stefania Gori
- Department of Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Salvatore Grisanti
- Medical Oncology Department, Azienda Ospedaliera Spedali Civili, Brescia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapy, University of Pavia, and Department of Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| |
Collapse
|
22
|
Shin S, Han S, Kim J, Shin Y, Song JJ, Hohng S. Fast, sensitive, and specific multiplexed single-molecule detection of circulating tumor DNA. Biosens Bioelectron 2023; 242:115694. [PMID: 37797531 DOI: 10.1016/j.bios.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a highly promising non-invasive assay for detection and monitoring of cancer. However, identification of multiple point-mutant ctDNAs, particularly at extremely low frequencies in early cancer stages, remains a significant challenge. To address this issue, we present a multiplexed ctDNA detection technique, SIMUL (single-molecule detection of multiple low-frequency mutations). SIMUL involves an unbiased preamplification of both wild-type and mutant DNAs, followed by the detection of mutant DNAs through single-molecule multicolor imaging. SIMUL enables highly sensitive and specific detection of multiple single-nucleotide mutations in a short span of time, even in the presence of 10,000-fold excess of wild-type DNA. Importantly, SIMUL can accurately measure mutant fractions due to its linear correlation between the number of single-molecule spots and the variant allele frequency. This breakthrough technique holds immense potential for clinical applications, offering significant improvements for example in early cancer detection and accurate evaluation of anticancer treatment responses.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| | - Sun Han
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Juyoung Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Yumi Shin
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Gromova AS, Boldinova EO, Kim DV, Chuprov-Netochin RN, Leonov SV, Pustovalova MV, Zharkov DO, Makarova AV. Response of PRIMPOL-Knockout Human Lung Adenocarcinoma A549 Cells to Genotoxic Stress. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1933-1943. [PMID: 38105210 DOI: 10.1134/s0006297923110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at the sites of DNA damage, thus contributing to the DNA damage tolerance. The role of PrimPol in response to the different types of DNA damage is poorly understood. We knocked out the PRIMPOL gene in the lung carcinoma A549 cell line and characterized the response of the obtained cells to the DNA damage caused by hydrogen peroxide, methyl methanesulfonate (MMS), cisplatin, bleomycin, and ionizing radiation. The PRIMPOL knockout reduced the number of proliferating cells and cells in the G2 phase after treatment with MMS and caused a more pronounced delay of the S phase in the cisplatin-treated cells. Ionizing radiation at a dose of 10 Gy significantly increased the content of apoptotic cells among the PRIMPOL-deficient cells, while the proportion of cells undergoing necroptosis increased in both parental and knockout cells at any radiation dose. The viability of PRIMPOL-deficient cells upon the hydrogen peroxide-induced oxidative stress increased compared to the control cells, as determined by the methyl tetrazolium (MTT) assay. The obtained data indicate the involvement of PRIMPOL in the modulation of adaptive cell response to various types of genotoxic stress.
Collapse
Affiliation(s)
- Anastasia S Gromova
- Institute of Molecular Genetics, Kurchatov Institute National Research Center, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elizaveta O Boldinova
- Institute of Molecular Genetics, Kurchatov Institute National Research Center, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Daria V Kim
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Sergey V Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Margarita V Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alena V Makarova
- Institute of Molecular Genetics, Kurchatov Institute National Research Center, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
24
|
Wankhede D, Bontoux C, Grover S, Hofman P. Prognostic Role of KRAS G12C Mutation in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3043. [PMID: 37835787 PMCID: PMC10572143 DOI: 10.3390/diagnostics13193043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
KRAS G12C mutation (mKRAS G12C) is the most frequent KRAS point mutation in non-small cell lung cancer (NSCLC) and has been proven to be a predictive biomarker for direct KRAS G12C inhibitors in advanced solid cancers. We sought to determine the prognostic significance of mKRAS G12C in patients with NSCLC using the meta-analytic approach. A protocol is registered at the International Prospective Register for systematic reviews (CRD42022345868). PubMed, EMBASE, The Cochrane Library, and Clinicaltrials.gov.in were searched for prospective or retrospective studies reporting survival data for tumors with mKRAS G12C compared with either other KRAS mutations or wild-type KRAS (KRAS-WT). The hazard ratios (HRs) for overall survival (OS) or Disease-free survival (DFS) of tumors were pooled according to fixed or random-effects models. Sixteen studies enrolling 10,153 participants were included in the final analysis. mKRAS G12C tumors had poor OS [HR, 1.42; 95% CI, 1.10-1.84, p = 0.007] but similar DFS [HR 2.36, 95% CI 0.64-8.16] compared to KRAS-WT tumors. Compared to other KRAS mutations, mKRAS G12C tumors had poor DFS [HR, 1.49; 95% CI, 1.07-2.09, p < 0.0001] but similar OS [HR, 1.03; 95% CI, 0.84-1.26]. Compared to other KRAS mutations, high PD-L1 expression (>50%) [OR 1.37 95% CI 1.11-1.70, p = 0.004] was associated with mKRAS G12C tumors. mKRAS G12C is a promising prognostic factor for patients with NSCLC, negatively impacting survival. Prevailing significant heterogeneity and selection bias might reduce the validity of these findings. Concomitant high PD-L1 expression in these tumors opens doors for exciting therapeutic potential.
Collapse
Affiliation(s)
- Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Centre Hospitalier, Université Côte d’Azur, 06002 Nice, France;
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, 72076 Tübingen, Germany;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Centre Hospitalier, Université Côte d’Azur, 06002 Nice, France;
- Institute for Research on Cancer and Ageing, Nice (IRCAN), INSERM U1081 and UMR CNRS 7284, Team 4, 06107 Nice, France;
- Hospital-Integrated Biobank BB-0033-00025, Pasteur Hospital, 06000 Nice, France
- University Hospital Federation OncoAge, CHU de Nice, University Côte d’Azur, 06000 Nice, France
| |
Collapse
|
25
|
Ashok Kumar P, Karimi M, Basnet A, Seymour L, Kratzke R, Brambilla E, Le-Chevalier T, Soria JC, Olaussen KA, Devarakonda S, Govindan R, Tsao MS, Shepherd FA, Michiels S, Graziano S. Association of Molecular Profiles and Mutational Status With Distinct Histological Lung Adenocarcinoma Subtypes. An Analysis of the LACE-Bio Data. Clin Lung Cancer 2023; 24:528-540. [PMID: 37438216 DOI: 10.1016/j.cllc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Adjuvant chemotherapy (AC) is indicated for stage II and stage III lung adenocarcinomas (ADC). Using the LACE Bio II database, we analyzed the distribution of various mutations across the subtypes of ADCs and studied the prognostic and predictive roles of PD-L1, TMB, and Tumor Infiltrating Lymphocytes (TILs). MATERIALS AND METHODS Clinical and genomic data from the LACE Bio II data were extracted. Patients were divided into ADC subtypes, in which the grouping was done based on their known clinical behavior (Lepidic [LEP], Acinar/Papillary [ACI or PAP], Micropapillary/Solid [MIP or SOL], Mucinous [MUC] and Others). Kaplan-Meier (KM) and log-rank test were used to compare survival based on PD-L1, TMB, TILs and combinations of TMB with PD-L1 and TILs. Adjusted Hazard Ratios (HR) were analyzed with Overall Survival (OS), Disease-Free Survival (DFS) and Lung Cancer-Specific Survival (LCSS) as endpoints. RESULTS A total of 375 ADC patients were identified. MIP/SOL was the subtype most commonly positive for various biomarkers. PD-L1 Negative/high TMB was associated with better outcomes in terms of OS (HR = 0.46 [0.23-0.89], P = .021) and DFS (HR = 0.52 [0.30-0.90], P = .02), relative to PD-L1 Negative/low TMB. High TMB predicted worse outcome with AC use in terms of OS (ratio of hazard ratio rHR = 2.75 [1.07-7.04], P = .035). Marked TILs had better outcome with AC for DFS (rHR = 0.22 [0.06-0.87], P = .031 and LCSS (rHR = 0.08 [0.01-0.66], P = .019) respectively. There was also a beneficial effect of AC among patients with Marked TILs/low TMB in terms of DFS (rHR = 0.06 [0.01-0.53], P = .011). CONCLUSION High TMB has a prognostic role in resectable lung ADC. The high TMB group had a poor outcome with AC, suggesting that this group may be better served with immune checkpoint therapy.
Collapse
Affiliation(s)
| | - Maryam Karimi
- Bureau de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Oncostat U1018, Inserm, Université Paris-Saclay, Equipe labellisée Ligue Contre le Cancer, Villejuif, France
| | - Alina Basnet
- Division of Hematology-Oncology, SUNY Upstate Medical University, Syracuse, NY
| | - Lesley Seymour
- Canadian Cancer Trials Group and Queen's University, Kingston, ON, Canada
| | - Robert Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Elizabeth Brambilla
- Department of Pathology, University Grenoble Alpes, INSERM, Grenoble, France
| | | | - Jean-Charles Soria
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Ken André Olaussen
- Université Paris-Saclay, Faculté de médecine, Gustave Roussy, Inserm U981, Villejuif, France
| | - Siddhartha Devarakonda
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ramaswamy Govindan
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Stefan Michiels
- Bureau de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Oncostat U1018, Inserm, Université Paris-Saclay, Equipe labellisée Ligue Contre le Cancer, Villejuif, France
| | - Stephen Graziano
- Division of Hematology-Oncology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
26
|
Wu X, Song W, Cheng C, Liu Z, Li X, Cui Y, Gao Y, Li D. Small molecular inhibitors for KRAS-mutant cancers. Front Immunol 2023; 14:1223433. [PMID: 37662925 PMCID: PMC10470052 DOI: 10.3389/fimmu.2023.1223433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziyang Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Cui
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yao Gao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Boiarsky D, Lydon CA, Chambers ES, Sholl LM, Nishino M, Skoulidis F, Heymach JV, Luo J, Awad MM, Janne PA, Van Allen EM, Barbie DA, Vokes NI. Molecular markers of metastatic disease in KRAS-mutant lung adenocarcinoma. Ann Oncol 2023; 34:589-604. [PMID: 37121400 PMCID: PMC10425882 DOI: 10.1016/j.annonc.2023.04.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Prior studies characterized the association of molecular alterations with treatment-specific outcomes in KRAS-mutant (KRASMUT) lung adenocarcinoma (LUAD). Less is known about the prognostic role of molecular alterations and their associations with metastatic disease. PATIENTS AND METHODS We analyzed clinicogenomic data from 1817 patients with KRASMUT LUAD sequenced at the Dana-Farber Cancer Institute (DFCI) and Memorial Sloan Kettering Cancer Center (MSKCC). Patients with metastatic (M1) and nonmetastatic (M0) disease were compared. Transcriptomic data from The Cancer Genome Atlas (TCGA) were investigated to characterize the biology of differential associations with clinical outcomes. Organ-specific metastasis was associated with overall survival (OS). RESULTS KEAP1 (DFCI: OR = 2.3, q = 0.04; MSKCC: OR = 2.2, q = 0.00027) and SMARCA4 mutations (DFCI: OR = 2.5, q = 0.06; MSKCC: OR = 2.6, q = 0.0021) were enriched in M1 versus M0 tumors. On integrative modeling, NRF2 activation was the genomic feature most associated with OS. KEAP1 mutations were enriched in M1 versus M0 tumors independent of STK11 status (KEAP1MUT/STK11WT: DFCI OR = 3.0, P = 0.0064; MSKCC OR = 2.0, P = 0.041; KEAP1MUT/STK11MUT: DFCI OR = 2.3, P = 0.0063; MSKCC OR = 2.5, P = 3.6 × 10-05); STK11 mutations without KEAP1 loss were not associated with stage (KEAP1WT/STK11MUT: DFCI OR = 0.97, P = 1.0; MSKCC OR = 1.2, P = 0.33) or outcome. KEAP1/KRAS-mutated tumors with and without STK11 mutations exhibited high functional STK11 loss. The negative effects of KEAP1 were compounded in the presence of bone (HR = 2.3, P = 4.4 × 10-14) and negated in the presence of lymph node metastasis (HR = 1.0, P = 0.91). CONCLUSIONS Mutations in KEAP1 and SMARCA4, but not STK11, were associated with metastatic disease and poor OS. Functional STK11 loss, however, may contribute to poor outcomes in KEAP1MUT tumors. Integrating molecular data with clinical and metastatic-site annotations can more accurately risk stratify patients.
Collapse
Affiliation(s)
- D Boiarsky
- Department of Medicine, Tufts Medical Center, Boston
| | - C A Lydon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston
| | - E S Chambers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - L M Sholl
- Center for Advanced Molecular Diagnostics, Brigham & Women's Hospital & Harvard Medical School, Boston
| | - M Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston
| | - F Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston
| | - J V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston
| | - J Luo
- Department of Medicine, Dana-Farber Cancer Institute, Boston
| | - M M Awad
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston
| | - P A Janne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - E M Van Allen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston; Broad Institute of Harvard & MIT, Cambridge; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston
| | - D A Barbie
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - N I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston; Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, USA.
| |
Collapse
|
28
|
Soeroso NN, Ananda FR, Sitanggang JS, Vinolina NS. The role of oncogenes and tumor suppressor genes in determining survival rates of lung cancer patients in the population of North Sumatra, Indonesia. F1000Res 2023; 11:853. [PMID: 37427014 PMCID: PMC10329197 DOI: 10.12688/f1000research.113303.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Gaining a better understanding of molecular alterations in the pathogenesis of lung cancer reveals a significant change in approach to the management and prognosis of lung cancer. Several oncogenes and tumor suppressor genes have been identified and have different roles related to survival rates in lung cancer patients. This study aims to determine the role of KRAS, EGFR, and TP53 mutations in the survival rate of lung cancer patients in the population of North Sumatra. Methods: This is a retrospective cohort study involving 108 subjects diagnosed with lung cancer from histopathology specimens. DNA extractions were performed using FFPE followed by PCR examinations for assessing the expressions of EGFR, RAS, and TP53 protein. Sequencing analysis was carried out to determine the mutations of EGFR exon 19 and 21, RAS protein exon 2, and TP53 exon 5-6 and 8-9. Data input and analysis were conducted using statistical analysis software for Windows. The survival rate analysis was presented with Kaplan Meier. Results: 52 subjects completed all procedures in this study. Most of the subjects are male (75%), above 60 years old (53.8%), heavy smokers (75%), and suffer from adenocarcinoma type of lung cancer (69.2%). No subjects showed KRAS exon 2 mutations. Overall survival rates increased in patients with EGFR mutations (15 months compared to 8 months; p=0.001) and decreased in patients with TP53 mutations (7 months compared to 9 months; p=0.148). Also, there was increasing Progression-Free Survival in patients with EGFR mutations (6 months compared to 3 months) ( p=0.19) and decreasing PFS in patients with TP53 mutations (3 months compared to 6 months) ( p=0.07). Conclusions: There were no KRAS mutations in this study. EGFR mutations showed a higher survival rate, while TP53 mutations showed a lower survival rate in overall survival and progression-free survival.
Collapse
Affiliation(s)
- Noni Novisari Soeroso
- Thoracic Oncology Division, Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | - Fannie Rizki Ananda
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | | | | |
Collapse
|
29
|
Gallina FT, Marinelli D, Melis E, Forcella D, Taje R, Buglioni S, Visca P, Torchia A, Cecere FL, Botticelli A, Santini D, Ciliberto G, Cappuzzo F, Facciolo F. KRAS G12C mutation and risk of disease recurrence in stage I surgically resected lung adenocarcinoma. Lung Cancer 2023; 181:107254. [PMID: 37253296 DOI: 10.1016/j.lungcan.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
KRAS G12C mutations are found in about 12-13% of LUAD samples and it is unclear whether they are associated with worse survival outcomes in resected, stage I LUAD. We assessed whether KRAS-G12C mutated tumours had worse DFS when compared to KRAS-nonG12C mutated tumours and to KRAS wild-type tumours in a cohort of resected, stage I LUAD (IRE cohort). We then leveraged on publicly available datasets (TCGA-LUAD, MSK-LUAD604) to further test the hypothesis in external cohorts. In the stage I IRE cohort we found a significant association between the KRAS-G12C mutation and worse DFS in multivariable analysis (HR: 2.47). In the TCGA-LUAD stage I cohort we did not find statistically significant associations between the KRAS-G12C mutation and DFS. In the MSK-LUAD604 stage I cohort we found that KRAS-G12C mutated tumours had worse RFS when compared to KRAS-nonG12C mutated tumours in univariable analysis (HR 3.5). In the pooled stage I cohort we found that KRAS-G12C mutated tumours had worse DFS when compared to KRAS-nonG12C mutated tumours (HR 2.6), to KRAS wild-type tumours (HR 1.6) and to any other tumours (HR 1.8); in multivariable analysis, the KRAS-G12C mutation was associated with worse DFS (HR 1.61). Our results suggest that patients with resected, stage I LUAD with a KRAS-G12C mutation may have inferior survival outcomes..
Collapse
Affiliation(s)
- F T Gallina
- Thoracic Surgery Unit, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| | - D Marinelli
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Roma RM, Italy.
| | - E Melis
- Thoracic Surgery Unit, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - D Forcella
- Thoracic Surgery Unit, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - R Taje
- Thoracic Surgery Unit, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - S Buglioni
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - P Visca
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - A Torchia
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University, Viale Regina Elena 324, 00161 Roma RM, Italy
| | - F L Cecere
- Medical Oncology Unit 2, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - A Botticelli
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University, Viale Regina Elena 324, 00161 Roma RM, Italy
| | - D Santini
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - F Cappuzzo
- Medical Oncology Unit 2, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - F Facciolo
- Thoracic Surgery Unit, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
30
|
Rao W, Yang L, Dai N, Zhang L, Liu J, Yang B, Li M, Shan J, Wang Q, Wang D. Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1767-1778. [PMID: 36739576 DOI: 10.1007/s12094-023-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/06/2023]
Abstract
PURPOSE Approximately, 45-65% stage I non-small cell lung cancer (NSCLC) patients with surgical resection relapse within 5 years. Therefore, it is urgent to identify the predictors involved in the relapse of stage I NSCLC. METHODS/PATIENTS Targeted sequencing was used to examine the mutation of tumor tissues and matched adjacent normal tissues from 35 patients with stage I lung adenocarcinoma (LUAD). Then, tissue microarrays containing tumor tissues from 149 stage I LUAD patients were used to assess protein expression of frequently mutated genes by immunohistochemistry. COX regression model was used to evaluate the impacts of frequently mutated genes and their protein expression on relapse-free survival (RFS) in stage I LUAD. RESULTS AND CONCLUSIONS Three hundred and twenty-nine non-synonymous somatic variants were identified in 161 genes among these 35 patients. EGFR, TP53, LRP1B, RBM10, KRAS, NTRK3, RB1, ALK, APC, FAT2, KEAP1, MED12 and MLL3 were described as frequently mutated genes with prevalence more than 10%. Patients harboring KRAS mutation had more relapse in 1 year after surgical resection. For the expression of these frequently mutated genes in 149 stage I patients, multivariate Cox regression analyses showed that the expression of RBM10 was positively associated with RFS in all patients (HR 0.40, 95% CI 0.15-1.0, p = 0.052), and the expression of APC was negative associated with RFS in patients with EGFR mutations (HR 3.10, 95% CI 1.54-6.26, p = 0.002). Stage I LUAD patients with KRAS mutation or low RBM10 expression are inclined to receive more positive intervention rather than just disease surveillance.
Collapse
Affiliation(s)
- Wen Rao
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.,The 75th Group Army Hospital, Dali, Yunnan, People's Republic of China
| | - Lujie Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Liang Zhang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jie Liu
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Bo Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital and Army Medical Center of PLA, Army Medical University, Chongqing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
32
|
Fancelli S, Caliman E, Mazzoni F, Paglialunga L, Gatta Michelet MR, Lavacchi D, Berardi R, Mentrasti G, Metro G, Birocchi I, Delmonte A, Priano I, Comin CE, Castiglione F, Bartoli C, Voltolini L, Pillozzi S, Antonuzzo L. KRAS G12 isoforms exert influence over up-front treatments: A retrospective, multicenter, Italian analysis of the impact of first-line immune checkpoint inhibitors in an NSCLC real-life population. Front Oncol 2022; 12:968064. [PMID: 36452502 PMCID: PMC9702560 DOI: 10.3389/fonc.2022.968064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND KRAS is commonly mutated in non-small cell lung cancer (NSCLC); however, the prognostic and predictive impact of each G12 substitution has not been fully elucidated. The approval of specific G12C inhibitors has modified the idea of KRAS "undruggability", and although the first-line standard consists of immune checkpoint inhibitors (ICIs) with or without chemotherapy, as suggested at ASCO 2022, the outcome in KRAS-mutated population is still controversial. METHODS We retrospectively described the clinical and pathological characteristics of a homogeneous G12 mutated cohort of 219 patients treated in four Italian oncologic units. We evaluated the outcome (PFS at 18 months and OS at 30 months) of those who underwent standard first-line treatment according to PD-L1 status, focusing on differences across single mutations. RESULTS In the study population, 47.9% of patients harbor the KRAS G12C mutation; 20.5%, G12V; 17.4%, G12D; and 8.2%, G12A. Smoking was a common behavior of patients harboring transversions and transition mutations. PD-L1 expression does not show particular distribution in the case series, although we recorded a prevalence of PD-L1 <1% in G12V (51.4%) compared to G12A (26.7%). ICIs alone was the clinician's choice in 32.7% of patients, and the chemo-immune combination in 17.3% of patients. We described the independent prognostic role of young age (p = 0.007), female gender (p = 0.016), and an ICI-based regimen (p = 0.034) regardless of mutations. Overall, our data confirm the worst prognostic value of G12V mutation apart from treatment choice unlike the other major mutations (C, D, and A) that showed a favorable trend in PFS. CONCLUSIONS KRAS G12 mutations are confirmed to have different characteristics, and the outcome is influenced by ICI first-line regimen. This study provides valuable information for further analysis in the future.
Collapse
Affiliation(s)
- Sara Fancelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Caliman
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | | | - Luca Paglialunga
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | | | - Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria (AOU) Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giulia Mentrasti
- Department of Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria (AOU) Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giulio Metro
- Medical Oncology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Ilaria Birocchi
- Medical Oncology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Angelo Delmonte
- Scientific Institute of Romagna for the Study and Treatment of Tumors (IRST) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Ilaria Priano
- Scientific Institute of Romagna for the Study and Treatment of Tumors (IRST) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Surgery, Histopathology and Molecular Pathology Unit, Careggi University Hospital, Florence, Italy
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, Florence, Italy
| | - Caterina Bartoli
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, Florence, Italy
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Thoracic Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
33
|
Brazel D, Arter Z, Nagasaka M. A Long Overdue Targeted Treatment for KRAS Mutations in NSCLC: Spotlight on Adagrasib. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:75-80. [PMID: 36387582 PMCID: PMC9662012 DOI: 10.2147/lctt.s383662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2023]
Abstract
KRASG12C is one of the most common oncogenes in non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Historically, KRAS mutations have been difficult to target due to lack of binding sites and exceptionally high affinity for guanosine triphosphate/guanosine diphosphate (GTP/GDP). Recently, KRASG12C selective inhibitors have shown promising results in Phase I/II studies. Here we discuss the mechanism of action, pharmacokinetic and pharmacodynamic properties, efficacy, and tolerability of adagrasib (MRTX849).
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Zhaohui Arter
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
34
|
Gao L, Shen W. Light at the end of the tunnel: Clinical features and therapeutic prospects of KRAS mutant subtypes in non-small-cell lung cancer. Front Genet 2022; 13:890247. [PMID: 36338994 PMCID: PMC9634530 DOI: 10.3389/fgene.2022.890247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2024] Open
Abstract
Lung cancer is one of the most common causes of cancer-related deaths, and non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. Kirsten rat sarcoma virus (KRAS), one of the three subtypes of the RAS family, is the most common oncogene involved in human cancers and encodes the key signaling proteins in tumors. Oncogenic KRAS mutations are considered the initiating factors in 30% of NSCLC cases, accounting for the largest proportion of NSCLC cases associated with driver mutations. Because effective inhibition of the related functions of KRAS with traditional small-molecule inhibitors is difficult, the KRAS protein is called an "undruggable target." However, in recent years, the discovery of a common mutation in the KRAS gene, glycine 12 mutated to cysteine (G12C), has led to the design and synthesis of covalent inhibitors that offer novel strategies for effective targeting of KRAS. In this review, we have summarized the structure, function, and signal transduction pathways of KRAS and discussed the available treatment strategies and potential treatment prospects of KRAS mutation subtypes (especially G12C, G12V, and G12D) in NSCLC, thus providing a reference for selecting KRAS mutation subtypes for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Weizhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
[Consensus on Postoperative Recurrence Prediction of Non-small Cell Lung Cancer
Based on Molecular Markers]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:701-714. [PMID: 36285390 PMCID: PMC9619343 DOI: 10.3779/j.issn.1009-3419.2022.102.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Significant progress has been made in lung cancer screening, surgery, chemoradiation, targeted therapy, and immunotherapy recently. Surgical resection is the most important treatment for localized non-small cell lung cancer (NSCLC) so far, but there are still many patients who develop local recurrence or distant metastases within 5 years of surgery. Currently, the risk factors of recurrence in patients with NSCLC are mainly based on clinical and pathological features, which hardly identify patients at high risk of recurrence accurately. With the development of new detection technologies, a number of molecular markers that may have a predictive risk of recurrence in NSCLC have been discovered over the years. In order to summarize the molecular markers related to postoperative recurrence in NSCLC patients, we have formulated a consensus on the prediction of postoperative recurrence of NSCLC based on molecular markers. This consensus mainly focuses on the early stage NSCLC patients, discusses and summarizes the risk factors of disease recurrence from the molecular level. It is hoped that more and more valuable information can be provided for the management of patients, so as to provide more guidance for the perioperative management of the patients with early stage NSCLC in the future.
.
Collapse
|
36
|
East P, Kelly GP, Biswas D, Marani M, Hancock DC, Creasy T, Sachsenmeier K, Swanton C, Downward J, de Carné Trécesson S. RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma. Nat Commun 2022; 13:5632. [PMID: 36163168 PMCID: PMC9512813 DOI: 10.1038/s41467-022-33290-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.
Collapse
Affiliation(s)
- Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michela Marani
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David C Hancock
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Todd Creasy
- Oncology Data Science, Oncology Research and Development, AstraZeneca, 200 Orchard Ridge Drive, Gaithersburg, MD, 20878, USA
| | - Kris Sachsenmeier
- Oncology Research and Development, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Lung Cancer Group, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
37
|
Batra U, Nathany S, Sharma M, BP A, Jose JT, Singh H, Mattoo S, Mehta A. KRAS mutated Non-Small Lung Carcinoma: A Real World Context from the Indian subcontinent. Cancer Med 2022; 12:2869-2874. [PMID: 36069080 PMCID: PMC9939094 DOI: 10.1002/cam4.5193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND KRAS, although a common variant of occurrence (~20% of non-small-cell lung carcinoma [NSCLC]) has been untargetable, owing to the molecular structure which inherently prevents drug binding. KRAS mutations in NSCLC are associated with distinct clinical profiles including smokers and mucinous histology. KRAS G12C mutations account for ~40% KRAS altered NSCLC, but NSCLC being a geographically diverse disease, the features may be distinct in this part of the world. This is a single-center experience of KRAS-mutated NSCLC including clinical, imaging, pathologic features, and treatment patterns and outcomes. METHODS This is a single-center retrospective study of KRAS-mutated NSCLC. The clinicopathological features and outcomes were retrieved and collated from the medical record archives of the hospital. RESULTS Fifty (30.6%) patients with advanced-stage NSCLC with alterations in the KRAS gene were enrolled in the 163 patients who were tested for KRAS alterations. The median age was 61 years. Molecular detection revealed three main types of KRAS mutations viz-a-vis: G12C in 17 (34%), G12V in 9 (18%), and G12D in 6 (12%) patients. Comparing G12C versus the non-G12C mutated cases, co-mutations were common in the non-G12C subgroup (p < 0.05). Among the 36, who were treated at our center, all received chemotherapy as the first line with a median progression-free survival (PFS)of 5.4 months. The PFS of G12C was higher than the non-G12C subgroup (6.4 vs 3.8 months). CONCLUSION This is the largest single-center experience from the Indian subcontinent for KRAS-mutated NSCLC with distinct clinical features. It highlights the unmet need for G12C inhibitors in our country, where prevalence is equivalent to the West.
Collapse
Affiliation(s)
- Ullas Batra
- Medical OncologyRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Shrinidhi Nathany
- Molecular DiagnosticsRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Mansi Sharma
- Medical OncologyRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Amrith BP
- Medical OncologyRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Joslia T. Jose
- Medical OncologyRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Harkirat Singh
- Medical OncologyRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Sakshi Mattoo
- Molecular DiagnosticsRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| | - Anurag Mehta
- Laboratory ServicesRajiv Gandhi Cancer Institute and Research CenterNew DelhiIndia
| |
Collapse
|
38
|
Molecular Biology and Therapeutic Perspectives for K-Ras Mutant Non-Small Cell Lung Cancers. Cancers (Basel) 2022; 14:cancers14174103. [PMID: 36077640 PMCID: PMC9454753 DOI: 10.3390/cancers14174103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/28/2022] Open
Abstract
In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.
Collapse
|
39
|
Impact of KRAS Mutation Subtypes and Co-Occurring Mutations on Response and Outcome in Advanced NSCLC Patients following First-Line Treatment. J Clin Med 2022; 11:jcm11144003. [PMID: 35887766 PMCID: PMC9318500 DOI: 10.3390/jcm11144003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: The purpose was to systematically assess the impact of KRAS subtypes and co-mutations on responses of first-line treatment and outcomes by genetic classification in advanced KRAS mutant NSCLC. (2) Methods: Molecular pathology was confirmed with NGS; Kaplan−Meier analysis and Cox multivariate model were used to analyze the efficacy of first-line treatment and prognosis in KRAS subgroups. (3) Results: Advanced KRAS mutant NSCLC was confirmed among 183 patients, who received first-line therapy. The most common KRAS subtype and co-mutation were G12C (29.5%) and TP53 (59.6%). ICIs/CHE group prolonged PFS to 16.9 m, vs. (CHE)4.6 m vs. (CHE/BEV)7.0 m (p < 0.0001); mOS (ICIs/CHE)37.1 m vs. (CHE)19.8 m vs. [CHE/BEV] 20.7 m (p = 0.024). PFS benefited to different degrees after first-line ICI-based treatment in each genetic classification. KRAS G12D even benefited from OS (p = 0.045). CHE/BEV prolonged mPFS of KRAS/STK11 co-mutation (p = 0.043), but decreased mPFS in G12A subtype (p = 0.026). Multivariate analysis indicated that heavy smoking history (≥20 pack-years) (HR = 0.45, p = 0.039) predicts optimistic prognosis; PS score 1 (HR = 3.604, p = 0.002) and KRAS/SMAD4 co-mutation (HR = 4.293, p = 0.027) remained as independent predictors of shorter OS. (4) Conclusions: First-line treatment with ICI benefited KRAS-mutant-NSCLC patients and resulted in non-negative predictive value for any genetic classification. Bevacizumab should be cautiously chosen for patients with KRAS G12A subtype but is recommended for KRAS/STK11 patients. KRAS/SMAD4 is a new co-mutation genotype that displayed independent risk prognostic factors in patients with advanced KRAS-mutant NSCLC.
Collapse
|
40
|
Wu JJ, Lee PH, Zheng ZR, Huang YH, Tseng JS, Hsu KH, Yang TY, Yu SL, Chen KC, Chang GC. Characteristics and immune checkpoint inhibitor effects on non-smoking non-small cell lung cancer with KRAS mutation: A single center cohort (STROBE-compliant). Medicine (Baltimore) 2022; 101:e29381. [PMID: 35713442 PMCID: PMC9276274 DOI: 10.1097/md.0000000000029381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Kirsten rat sarcoma (KRAS) mutation (KRASm) is associated with poor prognosis in non-small cell lung cancer (NSCLC) patients. We have aimed to survey NSCLC patients harboring KRASm in Taiwan, where never-smoking lung adenocarcinoma predominates, and analyze the immune checkpoint inhibitor effect on NSCLC harboring KRASm.NSCLC patients with KRASm were enrolled and tested on programmed death-ligand 1 (PD-L1) expression using available tissue. We analyzed their clinical features, PD-L1 status, responses to ICIs, and overall survival (OS).We studied 93 patients with a median age 66.0 years, 23.7% of whom were women, and 22.6% were never-smokers. The results showed that G12C (36.6%) was the most common KRASm. In 47 patients with available tissue for PD-L1 testing, PD-L1 expression was positive in 66.0% of patients, while PD-L1 ≥50% was higher in ever-smokers (P = .038). Among 23 patients receiving ICI treatment, those with PD-L1 ≥50% experience a 45.5% response rate to ICI. There were benefits from ICI treatment on OS compared with no ICI treatment (median OS 35.6 vs 9.8 months, P = .002) for all of our patients, and for patients with PD-L1 ≥50% (median OS not-reached vs 8.4 months, P = .008). There were no differences in survival across different KRAS subtypes (P = .666).Never-smokers composed more than one-fifth of KRASm in NSCLC in Taiwan. A high PD-L1 expression was related to smoking history and responded well to ICI. ICI treatment improved the OS in NSCLC patients with KRASm, particularly those with PD-L1 ≥50%.
Collapse
Affiliation(s)
- Jia-Jun Wu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hsin Lee
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University
| | - Zhe-Rong Zheng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Hsiang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsuan Hsu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Kumar S U, Balasundaram A, Cathryn R H, Varghese RP, R S, R G, Younes S, Zayed H, Doss C GP. Whole-exome sequencing analysis of NSCLC reveals the pathogenic missense variants from cancer-associated genes. Comput Biol Med 2022; 148:105701. [PMID: 35753820 DOI: 10.1016/j.compbiomed.2022.105701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. NSCLC accounts for 84% of all lung cancer cases. In recent years, advances in pathway understanding, methods for discovering novel genetic biomarkers, and new drugs designed to inhibit the signaling cascades have enabled clinicians to personalize therapy for NSCLC. OBJECTIVES The primary aim of this study is to identify the genes associated with NSCLC that harbor pathogenic variants that could be causative for NSCLC. The second aim is to investigate their roles in different pathways that lead to NSCLC. METHODS We examined exome-sequencing datasets from 54 NSCLC patients to characterize the variants associated with NSCLC. RESULTS Our findings revealed that 17 variants in 14 genes were considered highly pathogenic, including CDKN2A, ERBB2, FOXP1, IDH1, JAK3, KMT2D, K-Ras, MSH3, MSH6, POLE, RNF43, TCF7L2, TP53, and TSC1. Gene set enrichment analysis revealed the involvement of transmembrane receptor protein tyrosine kinase activity, protein binding, ATP binding, phosphatidylinositol-4,5-bisphosphate 3-kinase, and Ras guanyl-nucleotide exchange factor activity. Pathway analysis of these genes yielded different cancer-related pathways, including colorectal, prostate, endometrial, pancreatic, PI3K-Akt signaling pathways, and signaling pathways regulating pluripotency of stem cells. Module 1 from protein-protein interactions (PPIs) identified genes that harbor pathogenic SNPs. Three of the most deleterious SNPs are ERBB2 (rs1196929947), K-Ras (rs121913529), and POLE (rs751425952). Interestingly, one patient has a pathogenic K-Ras variant (rs121913529) co-occurred with the missense variant (rs752054698) inTSC1 gene. CONCLUSION This study maps highly pathogenic variants associated with NSCLC and investigates their contributions to the pathogenesis of NSCLC. This study sheds light on the potential applications of precision medicine in patients with NSCLC.
Collapse
Affiliation(s)
- Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rinku Polachirakkal Varghese
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, 2713, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, 2713, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
42
|
Spagnuolo A, Maione P, Gridelli C. The treatment of advanced non-small cell lung cancer harboring KRAS mutation: a new class of drugs for an old target-a narrative review. Transl Lung Cancer Res 2022; 11:1199-1216. [PMID: 35832439 PMCID: PMC9271439 DOI: 10.21037/tlcr-21-948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective The genetic nature of cancer provides the rationale to support the need for molecular diagnosis and patient selection for individualised antineoplastic treatments that are the best in both tolerability and efficacy for each cancer patient, including non-small cell lung cancer (NSCLC) patients. Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations represent the prevalent oncogenic driver in NSCLC, being detected in roughly one-third of cases and KRAS G12C is the most frequent mutation found in approximately 13% of patients. Methods This paper gives an overview of the numerous scientific efforts in recent decades aimed at KRAS inhibition. Key Content and Findings Sotorasib is the first approved KRAS G12C inhibitor that has been shown to provide a durable clinical benefit in patients with pre-treated NSCLC with KRAS G12C mutation. Together with the development of new targeted drugs, the development of strategies to control resistance mechanisms is one of the major drivers of research that is exploring the use of KRAS inhibitors not only alone, but also in combination with other targeted therapies, chemotherapy and immunotherapy. Conclusions This review will describe the major therapeutic developments in KRAS mutation-dependent NSCLC and will analyse future perspectives to maximise benefits for this group of patients.
Collapse
Affiliation(s)
- Alessia Spagnuolo
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| | - Paolo Maione
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| |
Collapse
|
43
|
Khadse A, Haakensen VD, Silwal-Pandit L, Hamfjord J, Micke P, Botling J, Brustugun OT, Lingjærde OC, Helland Å, Kure EH. Prognostic Significance of the Loss of Heterozygosity of KRAS in Early-Stage Lung Adenocarcinoma. Front Oncol 2022; 12:873532. [PMID: 35574381 PMCID: PMC9098994 DOI: 10.3389/fonc.2022.873532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a common disease with a poor prognosis. Genomic alterations involving the KRAS gene are common in lung carcinomas, although much is unknown about how different mutations, deletions, and expressions influence the disease course. The first approval of a KRAS-directed inhibitor was recently approved by the FDA. Mutations in the KRAS gene have been associated with poor prognosis for lung adenocarcinomas, but implications of the loss of heterozygosity (LOH) of KRAS have not been investigated. In this study, we have assessed the LOH of KRAS in early-stage lung adenocarcinoma by analyzing DNA copy number profiles and have investigated the effect on patient outcome in association with mRNA expression and somatic hotspot mutations. KRAS mutation was present in 36% of cases and was associated with elevated mRNA expression. LOH in KRAS was associated with a favorable prognosis, more prominently in KRAS mutated than in wild-type patients. The presence of both LOH and mutation in KRAS conferred a better prognosis than KRAS mutation alone. For wild-type tumors, no difference in prognosis was observed between patients with and without LOH in KRAS. Our study indicates that LOH in KRAS is an independent prognostic factor that may refine the existing prognostic groups of lung adenocarcinomas.
Collapse
Affiliation(s)
- Anand Khadse
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Vilde D. Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Vilde D. Haakensen,
| | - Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Julian Hamfjord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elin H. Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| |
Collapse
|
44
|
Ricciuti B, Son J, Okoro JJ, Mira A, Patrucco E, Eum Y, Wang X, Paranal R, Wang H, Lin M, Haikala HM, Li J, Xu Y, Alessi JV, Chhoeu C, Redig AJ, Köhler J, Dholakia KH, Chen Y, Richard E, Nokin MJ, Santamaria D, Gokhale PC, Awad MM, Jänne PA, Ambrogio C. Comparative Analysis and Isoform-Specific Therapeutic Vulnerabilities of KRAS Mutations in Non-Small Cell Lung Cancer. Clin Cancer Res 2022; 28:1640-1650. [PMID: 35091439 PMCID: PMC10979418 DOI: 10.1158/1078-0432.ccr-21-2719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. EXPERIMENTAL DESIGN We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations. RESULTS In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. CONCLUSIONS This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Jieun Son
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Jeffrey J. Okoro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Alessia Mira
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Yoonji Eum
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Xinan Wang
- Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Raymond Paranal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mika Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Heidi M. Haikala
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Joao Victor Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Chhayheng Chhoeu
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA
| | - Amanda J. Redig
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Kshiti H. Dholakia
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Yunhan Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Elodie Richard
- Institut Bergonié, INSERM U1218, ACTION Laboratory, Bordeaux, France
| | - Marie-Julie Nokin
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, Pessac, France
| | - David Santamaria
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, Pessac, France
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
45
|
Yang Y, Xu L, Sun L, Zhang P, Farid SS. Machine learning application in personalised lung cancer recurrence and survivability prediction. Comput Struct Biotechnol J 2022; 20:1811-1820. [PMID: 35521553 PMCID: PMC9043969 DOI: 10.1016/j.csbj.2022.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Machine learning is an important artificial intelligence technique that is widely applied in cancer diagnosis and detection. More recently, with the rise of personalised and precision medicine, there is a growing trend towards machine learning applications for prognosis prediction. However, to date, building reliable prediction models of cancer outcomes in everyday clinical practice is still a hurdle. In this work, we integrate genomic, clinical and demographic data of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) patients from The Cancer Genome Atlas (TCGA) and introduce copy number variation (CNV) and mutation information of 15 selected genes to generate predictive models for recurrence and survivability. We compare the accuracy and benefits of three well-established machine learning algorithms: decision tree methods, neural networks and support vector machines. Although the accuracy of predictive models using the decision tree method has no significant advantage, the tree models reveal the most important predictors among genomic information (e.g. KRAS, EGFR, TP53), clinical status (e.g. TNM stage and radiotherapy) and demographics (e.g. age and gender) and how they influence the prediction of recurrence and survivability for both early stage LUAD and LUSC. The machine learning models have the potential to help clinicians to make personalised decisions on aspects such as follow-up timeline and to assist with personalised planning of future social care needs.
Collapse
Key Words
- ANNs, artificial neural networks
- ANOVA, analysis of variance
- AUC, the area under the ROC curve
- CART, classification and regression tree
- CNV, copy number variation
- DTs, decision trees
- Decision tree
- FFNN, Feedforward neural networks
- LS-SVM, least-squares support vector machine
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Lung cancer
- ML, machine learning
- Machine learning
- NSCLC, non-small cell lung cancer
- Personalized diagnosis and prognosis
- ROC, receiver operating characteristic
- SVMs, support vector machines
- TCGA, The Cancer Genome Atlas
- TNM, a common cancer staging system while T, N and M refers to tumour, node and metastasis
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Suzanne S. Farid
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
46
|
Daily Practice Assessment of KRAS Status in NSCLC Patients: A New Challenge for the Thoracic Pathologist Is Right around the Corner. Cancers (Basel) 2022; 14:cancers14071628. [PMID: 35406400 PMCID: PMC8996900 DOI: 10.3390/cancers14071628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary RAS mutation is the most frequent oncogenic alteration in human cancers and KRAS is the most frequently mutated, notably in non-small cell lung carcinomas (NSCLC). Various attempts to inhibit KRAS in the past were unsuccessful in these latter tumors. However, recently, several small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been developed to specifically target KRAS G12C-mutated tumors, which seems promising for patient treatment and should soon be administered in daily practice for non-squamous (NS)-NSCLC. In this context, it will be mandatory to systematically assess the KRAS status in routine clinical practice, at least in advanced NS-NSCLC, leading to new challenges for thoracic oncologists. Abstract KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.
Collapse
|
47
|
Garinet S, Wang P, Mansuet-Lupo A, Fournel L, Wislez M, Blons H. Updated Prognostic Factors in Localized NSCLC. Cancers (Basel) 2022; 14:cancers14061400. [PMID: 35326552 PMCID: PMC8945995 DOI: 10.3390/cancers14061400] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common cause of cancer mortality worldwide, and non-small cell lung cancer (NSCLC) represents 80% of lung cancer subtypes. Patients with localized non-small cell lung cancer may be considered for upfront surgical treatment. However, the overall 5-year survival rate is 59%. To improve survival, adjuvant chemotherapy (ACT) was largely explored and showed an overall benefit of survival at 5 years < 7%. The evaluation of recurrence risk and subsequent need for ACT is only based on tumor stage (TNM classification); however, more than 25% of patients with stage IA/B tumors will relapse. Recently, adjuvant targeted therapy has been approved for EGFR-mutated resected NSCLC and trials are evaluating other targeted therapies and immunotherapies in adjuvant settings. Costs, treatment duration, emergence of resistant clones and side effects stress the need for a better selection of patients. The identification and validation of prognostic and theranostic markers to better stratify patients who could benefit from adjuvant therapies are needed. In this review, we report current validated clinical, pathological and molecular prognosis biomarkers that influence outcome in resected NSCLC, and we also describe molecular biomarkers under evaluation that could be available in daily practice to drive ACT in resected NSCLC.
Collapse
Affiliation(s)
- Simon Garinet
- Pharmacogenomics and Molecular Oncology Unit, Biochemistry Department, Assistance Publique—Hopitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France;
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Pascal Wang
- Oncology Thoracic Unit, Pulmonology Department, Assistance Publique—Hopitaux de Paris, Hôpital Cochin, 75014 Paris, France; (P.W.); (M.W.)
| | - Audrey Mansuet-Lupo
- Pathology Department, Assistance Publique—Hopitaux de Paris, Hôpital Cochin, 75014 Paris, France;
| | - Ludovic Fournel
- Thoracic Surgery Department, Assistance Publique—Hopitaux de Paris, Hôpital Cochin, 75014 Paris, France;
| | - Marie Wislez
- Oncology Thoracic Unit, Pulmonology Department, Assistance Publique—Hopitaux de Paris, Hôpital Cochin, 75014 Paris, France; (P.W.); (M.W.)
| | - Hélène Blons
- Pharmacogenomics and Molecular Oncology Unit, Biochemistry Department, Assistance Publique—Hopitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France;
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université de Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
48
|
Désage AL, Léonce C, Swalduz A, Ortiz-Cuaran S. Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights Into Therapeutic Strategies. Front Oncol 2022; 12:796832. [PMID: 35251972 PMCID: PMC8889932 DOI: 10.3389/fonc.2022.796832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Although KRAS-activating mutations represent the most common oncogenic driver in non-small cell lung cancer (NSCLC), various attempts to inhibit KRAS failed in the past decade. KRAS mutations are associated with a poor prognosis and a poor response to standard therapeutic regimen. The recent development of new therapeutic agents (i.e., adagrasib, sotorasib) that target specifically KRAS G12C in its GDP-bound state has evidenced an unprecedented success in the treatment of this subgroup of patients. Despite providing pre-clinical and clinical efficacy, several mechanisms of acquired resistance to KRAS G12C inhibitors have been reported. In this setting, combined therapeutic strategies including inhibition of either SHP2, SOS1 or downstream effectors of KRAS G12C seem particularly interesting to overcome acquired resistance. In this review, we will discuss the novel therapeutic strategies targeting KRAS G12C and promising approaches of combined therapy to overcome acquired resistance to KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Camille Léonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
49
|
Chi K, Sun W, Yang X, Wu J, Wang H, Liu X, Mao L, Zhou L, Huang X, Lin D. A prognostic classification based on the International Association for the Study of Lung Cancer histologic grading and immunoscore in KRAS-mutant invasive non-mucinous adenocarcinoma. Thorac Cancer 2022; 13:1050-1058. [PMID: 35246953 PMCID: PMC8977154 DOI: 10.1111/1759-7714.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tumor immune cell infiltration is important in the prognosis of patients with lung adenocarcinoma. The aim of this study was to develop a prognostic classification based on the tumor immunoscore. METHODS Patients with KRAS-mutant invasive non-mucinous lung adenocarcinoma who underwent radical surgery were enrolled in the study. Histologic grading was assessed according to the recommendations of the International Association for the Study of Lung Cancer. Programmed death-ligand 1 (PD-L1) and CD8 expression was detected using immunohistochemistry. The number of CD8+ tumor-infiltrating lymphocytes (TILs) per high-power field was assessed. A classification based on histological grade and CD8+ TIL level was established (Grading-Immunoscore type): low-to-medium grade with high or low infiltration (type A); high-grade, high-infiltration (type B); and high-grade, low-infiltration (type C). RESULTS A total of 112 patients participated. In the multivariable analysis, histological grading and level of CD8+ TILs were independent prognostic factors for overall survival (OS) and progression-free survival (PFS) (p < 0.001 and p = 0.007, respectively). Patients with type A tumors had the best OS and PFS, whereas those with type C tumors had the worst OS (89.6%, 65.0%, and 29.5% 5-year OS for types A, B, and C, respectively). PD-L1 positivity and high expression rate was highest in type B tumors (tumor proportion score [TPS] ≥ 1%: 29.4%, 73.1%, and 42.9%; TPS ≥50%: 7.8%, 42.3%, and 17.1%, for types A, B, and C, respectively). CONCLUSIONS The Grading-Immunoscore classification refines the prognostic grouping of histological grading and might aid in the screening of potential candidates for immunotherapy in patients with KRAS-mutant adenocarcinoma.
Collapse
Affiliation(s)
- Kaiwen Chi
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianghua Wu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy; Clinical Research, Tianjin, China
| | - Haiyue Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinying Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Luning Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lixin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaozheng Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dongmei Lin
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
50
|
Rohatgi A, Govindan R. Targeting KRAS G12C mutation in lung adenocarcinoma. Lung Cancer 2022; 165:28-33. [PMID: 35066360 DOI: 10.1016/j.lungcan.2021.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer continues to be a major cause of cancer related death globally. Therapies targeting driver mutations have significantly extended the survival of patients whose lung cancer cells harbor these mutations. Patients with KRAS mutations, however, lacked specific targeted therapy until the recent FDA approval of sotorasib, a specific inhibitor of KRAS G12C mutant protein. We will discuss the efficacy and toxicities of the novel KRAS G12C inhibitors as well as other indirect strategies for targeting oncogenic KRAS mutations. We will review the limited literature on acquired resistance to these inhibitors and the novel combinatorial treatment strategies that are being tested currently in clinical trials.
Collapse
Affiliation(s)
- Anjali Rohatgi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States; Alvin J. Siteman Cancer Center, St Louis, MO, United States
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States; Alvin J. Siteman Cancer Center, St Louis, MO, United States.
| |
Collapse
|