1
|
Ahmed MM, Carceller F, Bridges LR, Mallucci C, Singh N, Vaidya S. Exploring Maintenance Therapy in Pediatric Embryonal Tumor With Multilayered Rosettes. J Pediatr Hematol Oncol 2025:00043426-990000000-00563. [PMID: 40193690 DOI: 10.1097/mph.0000000000003033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025]
Abstract
Embryonal tumors with multilayered rosettes (ETMR) represent a distinct entity characterized by aggressive behavior. Historical retrospective analyses have documented dire overall survival rates ranging from 0% to 14% at 1 year. However, a contemporary report by Khan and colleagues shows overall survival rates reaching 29% at 2 years and 27% at 4 years. We present the case of an 18-month-old girl diagnosed with ETMR, confirmed by chromosome 19 microRNA cluster amplification following initial presentation with focal seizures. The patient underwent a combination of surgical interventions, high-dose chemotherapy with stem cell rescue, and proton therapy, achieving a disease-free status after completing standard treatment. Subsequently, a 12-month maintenance regimen comprising intrathecal topotecan, oral sodium valproate, and oral cis-retinoic acid was administered. The maintenance therapy was well tolerated, with manageable adverse effects. The patient remains progression-free for 32 months postmaintenance therapy (50 months from initial presentation). This study explores the feasibility and safety profile of maintenance therapy in ETMR. Future studies may explore this approach to determine its efficacy in children with ETMR.
Collapse
Affiliation(s)
- Mohamed M Ahmed
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust
| | - Fernando Carceller
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust
- Division of Clinical Studies, The Institute of Cancer Research
| | - Leslie R Bridges
- Department of Cellular Pathology, St. George's University Hospitals NHS Foundation Trust
| | - Conor Mallucci
- Department of Neurosurgery, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Navneet Singh
- Department of Neurosurgery, St. George's NHS Foundation Trust, London
| | - Sucheta Vaidya
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust
- Division of Clinical Studies, The Institute of Cancer Research
| |
Collapse
|
2
|
Tagliaferri L, Fionda B, Casà C, Cornacchione P, Scalise S, Chiesa S, Marconi E, Dinapoli L, Di Capua B, Chieffo DPR, Marazzi F, Frascino V, Colloca GF, Valentini V, Miccichè F, Gambacorta MA. Allies not enemies-creating a more empathetic and uplifting patient experience through technology and art. Strahlenther Onkol 2025; 201:316-332. [PMID: 39259348 PMCID: PMC11839861 DOI: 10.1007/s00066-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/07/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To understand whether art and technology (mainly conversational agents) may help oncology patients to experience a more humanized journey. METHODS This narrative review encompasses a comprehensive examination of the existing literature in this field by a multicenter, multidisciplinary, and multiprofessional team aiming to analyze the current developments and potential future directions of using art and technology for patient engagement. RESULTS We identified three major themes of patient engagement with art and three major themes of patient engagement with technologies. Two real-case scenarios are reported from our experience to practically envision how findings from the literature can be implemented in different contexts. CONCLUSION Art therapy and technologies can be ancillary supports for healthcare professionals but are not substitutive of their expertise and responsibilities. Such tools may help to convey a more empathetic and uplifting patient journey if properly integrated within clinical practice, whereby the humanistic touch of medicine remains pivotal.
Collapse
Affiliation(s)
- Luca Tagliaferri
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Fionda
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Calogero Casà
- UOC di Radioterapia Oncologica, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy.
- Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Patrizia Cornacchione
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Sara Scalise
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Silvia Chiesa
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Elisa Marconi
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Loredana Dinapoli
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Beatrice Di Capua
- Centro di Eccellenza Oncologia Radioterapica e Medica e Radiologia, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- UOS di Psicologia Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio Marazzi
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vincenzo Frascino
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giuseppe Ferdinando Colloca
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vincenzo Valentini
- Centro di Eccellenza Oncologia Radioterapica e Medica e Radiologia, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Francesco Miccichè
- UOC di Radioterapia Oncologica, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Rose ML, Sachdeva R, Mezgueldi Y, Yen RW, Serraj LA, Corbett KL, Yock TI. Systematic Review and Meta-Analysis of Adjuvant Radiation Dose for Pediatric Patients (≤22 years) with Nonmetastatic Intracranial Ependymomas. Int J Radiat Oncol Biol Phys 2025; 121:667-676. [PMID: 39147207 DOI: 10.1016/j.ijrobp.2024.07.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Ependymomas are the third most common brain tumors in children. Standard of care is surgery followed by adjuvant radiation therapy. Controversy in the literature still exists over optimal radiation therapy dose. We completed a systematic review and meta-analysis to determine the optimal dose for local control (LC), event-free survival (EFS), and overall survival (OS) in pediatric patients. METHODS AND MATERIALS We searched MEDLINE (PubMed), Cochrane Database of Systematic Reviews, and Web of Science through January 2024. We included cohort studies that compared adjuvant radiation therapy of ≤54 Gy with >54 Gy in pediatric patients (≤22 years) with nonmetastatic intracranial ependymomas. We assessed study quality using the Newcastle-Ottawa Quality Assessment Scale of Cohort Studies. We pooled studies using a random effects meta-analysis for hazard ratios (HR), 95% confidence intervals (CI), and assessed statistical heterogeneity via I2. When HRs were unavailable, we transformed risks using established methods. We narratively summarized qualitative outcomes. RESULTS Seven studies met our inclusion criteria, covering a combined 1321 patients. Studies included a range of doses from 45 to 66.6 Gy. Compared with >54 Gy, we found no difference in LC for those receiving ≤54 Gy (HR, 0.83; 95% CI, 0.56-1.24; I2, 49.1%), in EFS (HR, 1.02; 95% CI, 0.95-1.09; I2, 0.00%), and OS (HR, 0.99; 95% CI, 0.82-1.20; I2, 37.5%). Two studies reported on subtotal resection by radiation therapy dose, neither study reporting statistical differences in LC, EFS, or OS, although the number of patients was small (n ≤ 30). Five studies reported on late effects, with brainstem radionecrosis, radiation-induced vasculopathy, and secondary tumors being the most frequent. Overall study quality was high, although lower scores were consistently seen in comparability of cohorts. To our knowledge, no studies reported on molecular subgroups. CONCLUSIONS We found no difference in LC, EFS, or OS for those treated with ≤54 Gy compared with >54 Gy. There were insufficient data to complete a subgroup meta-analysis on radiation therapy dosing based on extent of resection or molecular subgroups.
Collapse
Affiliation(s)
- Melanie L Rose
- Dartmouth Cancer Center, Dartmouth-Hitchcock, Lebanon, New Hampshire; The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| | - Rhea Sachdeva
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Yakout Mezgueldi
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Renata W Yen
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Laila Andaloussi Serraj
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Kelly L Corbett
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Pediatrics, Dartmouth Health Children's, Lebanon, New Hampshire
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Rincón-Mantilla IM, Herrero B, Herranz Valero E, Robles-Bermejo F, Herrera-Olivares A, Vázquez-Gómez F, Lassaletta Á. Current situation of central nervous system tumour survivors in a spanish hospital. An Pediatr (Barc) 2025; 102:503719. [PMID: 39794199 DOI: 10.1016/j.anpede.2024.503719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/06/2024] [Indexed: 01/13/2025] Open
Abstract
INTRODUCTION Despite the increasing number of central nervous system (CNS) tumour survivors, long-term (LT) sequelae remain a substantial burden on their health through various life stages. The aim of our study was to evaluate late morbidity, health-related quality of life (HRQoL), self-esteem, functional status, adaptive behaviour, physical activity and social outcomes such as education, employment, relationship status and possession of a driver's license, in addition to the role of LT effects of radiotherapy (RTx) on these outcomes. METHODS The study included 111 CNS tumour survivors with a minimum of 10 years of follow-up. The assessment of patients included a comprehensive clinical evaluation and psychological questionnaires: SF-36 for HRQoL and Rosenberg self-esteem scale. Functional status was assessed with the Lansky/Karnosky scales and adaptive behaviour with the Vineland-II scale. Patients also completed one questionnaire that assessed physical activity and another that assessed other social variables. RESULTS The mean current age of CNS tumour survivors was 20 years (range, 12-34). The median time since diagnosis was 13 years (range, 10-26). The median age at diagnosis was 6 years (range, 1-18). The most prevalent LT sequelae were neurologic (55%), followed by neuropsychiatric (53.1%) and endocrine (49.5%) sequelae. Survivors treated with RTx (n = 52) had poorer outcomes in terms of adaptive behaviour, educational attainment and relationship status compared to those who did not receive RTx, but we did not find differences in quality of life or self-esteem scores between these groups. CONCLUSION We found a high prevalence of long-term sequelae in CNS tumour survivors, especially in those who received RTx. In these patients, LT sequelae have a significant impact on functional status and social outcomes, but not on quality of life or self-esteem.
Collapse
Affiliation(s)
- Ivonne Marcela Rincón-Mantilla
- Doctorado del Programa de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Oncohematología Pediátrica, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Blanca Herrero
- Departamento de Oncohematología Pediátrica, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Elena Herranz Valero
- Psicología Oncohematología Pediátrica, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | | | - Felisa Vázquez-Gómez
- Departamento de Oncohematología Pediátrica, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Álvaro Lassaletta
- Departamento de Oncohematología Pediátrica, Hospital Universitario Niño Jesús, Madrid, Spain.
| |
Collapse
|
5
|
Rose ML, Moen E, Ager B, Bajaj B, Poppe M, Russo G, Yock TI. Radiotherapy dosing in intracranial ependymoma using the national cancer database. J Neurooncol 2024; 170:387-395. [PMID: 39196482 DOI: 10.1007/s11060-024-04805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE To determine the dose-dependent effect of adjuvant radiotherapy on survival for pediatric intracranial ependymomas and explore patient and disease characteristics that experience survival benefit from higher doses. METHODS Data was accessed from the National Cancer Database. Inclusion criteria was comprised of a diagnosis of non-metastatic intracranial ependymoma, World Health Organization (WHO) grade 2 or 3, surgical resection, adjuvant radiotherapy between 4500-6300 cGy, and non-missing survivorship data. Crude and adjusted Cox proportional hazard ratios (HRs) were calculated to estimate the associations of patient, tumor, and treatment characteristics with overall survival (OS). Kaplan-Meier (KM) estimations were used to visualize survival curves for dosing for the general cohort and by subgroups (age, resection extent, and grade). RESULTS Of the 1154 patients who met inclusion criteria, 405 received ≤ 5400 cGy and 749 received > 5400 cGy. We found no difference in OS crude (0.95, 95% CI 0.72-1.06) or adjusted (0.88, 95% CI 0.46-1.69) HR for those receiving ≤ 5400 cGy. KM curves showed no difference in OS for dosing for the general cohort based on age, surgical extent, and grade. However, there was better OS in those with WHO grade 2 tumors compared to grade 3 regardless of dose received. CONCLUSIONS There was no difference in OS between patients who received ≤ 5400 cGy compared to > 5400 cGy. We found improved OS in those with grade 2 tumors compared to grade 3, however there was no difference in OS based on dose received by tumor grade, age, or resection extent. Limitations in data available prevent exploring other outcomes or toxicity.
Collapse
Affiliation(s)
- Melanie L Rose
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| | - Erika Moen
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Bryan Ager
- Department of Radiation Oncology, Cancer Care Northwest, Spokane, WA, USA
| | - Benjamin Bajaj
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Poppe
- Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA
| | - Gregory Russo
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Torunn I Yock
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Moreira DC, Mikkelsen M, Robinson GW. Current Landscape of NTRK Inhibition for Pediatric CNS Tumors. CNS Drugs 2024; 38:841-849. [PMID: 39278868 DOI: 10.1007/s40263-024-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Over the last decade, as molecular platforms have permitted the characterization of the genomic landscape of pediatric central nervous system (CNS) tumors, pediatric neuro-oncology has dramatically transformed. NTRK fusions are oncogenic driver alterations that have been found in a multitude of tumor types, including pediatric CNS tumors. In recent years, NTRK inhibitors have emerged as a promising class of targeted therapies for pediatric CNS tumors with NTRK gene fusions. The use of larotrectinib and entrectinib in the relapsed setting for pediatric CNS tumors has resulted in rapid and robust responses in an important fraction of patients. These agents are well tolerated, although close to 20% of patients have spontaneous bone fractures. Given the existing data for patients with relapsed disease, clinical trials using NTRK inhibitors in the upfront setting is the next natural progression of efficacy testing and many are currently underway. There are still several challenges that need to be addressed to optimize the use of NTRK inhibitors and identify the patients with NTRK fusion-positive CNS tumors who are most likely to benefit from them. As these agents are more broadly used, resistance will become a more pervasive issue and strategies will need to be determined for this scenario. This article summarizes the current status of NTRK inhibitors for pediatric CNS tumors and discusses the opportunities and challenges of their expanding use in the future.
Collapse
Affiliation(s)
- Daniel C Moreira
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Department of Global Pediatric Medicine, St. Jude Children's Children Research Hospital, Memphis, TN, USA
| | - Margit Mikkelsen
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Habibi MA, Rashidi F, Gharedaghi H, Arshadi MR, Kazemivand S. The safety and efficacy of bevacizumab in treatment of recurrent low-grade glioma: a systematic review and meta-analysis. Eur J Clin Pharmacol 2024; 80:1259-1270. [PMID: 38733390 DOI: 10.1007/s00228-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Central nervous system (CNS) tumors are among the most common malignancies in various age ranges. Low-grade glioma (LGG) can account for nearly 30% of pediatric CNS malignancies. Progression or recurrence after the first-line treatments is common among these patients. Therefore, more treatments are required. Bevacizumab as an anti-VEGF antibody has come into the spotlight recently and is especially used in relapse or recurrence settings. This review aims to study the safety and efficacy of bevacizumab for patients with recurrent LGG. METHODS This study was conducted according to The Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PubMed, Scopus, Web of Science, and Embase were comprehensively searched using the relevant key terms until 24th August 2023 to retrieve the studies that investigated clinical outcomes of bevacizumab in patients with recurrent LGG. All statistical analysis was performed by STATA v.17. RESULTS A total of 1306 papers were gathered, out of which 13 were incorporated in the meta-analysis. The pooled incidence rate of treatment according to the RANO scale was 70% (95% CI = 43-98%) for objective response rate, 26% (95% CI = 58-96%) for partial response, 21% (95% CI = 15-28%) for minor response, 14% (95% CI = 3-24%) for complete response, 48% (95% CI = 37-59%) for stable disease, and 8% (95% CI = 4-11%) for progressive disease. Furthermore, according to progressive survival after treatment, it was 4% (95% CI = -1 to 9%) for 6-month PFS, 41% (95% CI = 32-50%) for 2-year PFS, and 29% (95% CI = 22-35%) for 3-year PFS. CONCLUSION According to the RANO scale and PFS, clinicians should be aware that Bevacizumab could be a favorable alternative therapy for recurrent LGG. Furthermore, bevacizumab exhibits minimal toxicity and high tolerability in recurrent LGG.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farhang Rashidi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Arshadi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Kazemivand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Arce-Cabrera D, Escamilla-Asiain G, Nájera-Castillo MF, Navarro-Martín del Campo RM, Ortiz-Azpilcueta M, Pantoja-Guillén FJ, Arreguín González FE, Zapata-Sosa I, Lugo-Juárez JZ, Santillán Cortéz D, Morales-La Madrid A, Moreira DC, Benito-Reséndiz AE. Resources for the practice of pediatric neuro-oncology in Mexico: a cross-sectional evaluation. Front Oncol 2024; 14:1330705. [PMID: 38974245 PMCID: PMC11224457 DOI: 10.3389/fonc.2024.1330705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Background The evaluation of existing resources and services is key to identify gaps and prioritize interventions to expand care capacity for children with central nervous system (CNS) tumors. We sought to evaluate the resources for pediatric neuro-oncology (PNO) in Mexico. Methods A cross-sectional online survey with 35 questions was designed to assess PNO resources and services, covering aspects including number of patients, infrastructure, human resources, and diagnostic and treatment time intervals. The survey was distributed to the members of the Mexican Association of Pediatric Oncology and Hematology (AMOHP) who belong to the nation's many different health systems. Results Responses were obtained from 33 institutions, distributed throughout the country and part of the many health systems that exist in Mexico. Twenty-one (64%) institutions had less than 10 new cases of pediatric CNS tumors per year. Although 30 (91%) institutions saw pediatric patients up to the age of 18 years, 2 (6%) had a cutoff of 15 years. Twenty-four (73%) institutions had between 1 and 3 pediatric oncologists providing care for children with CNS tumors. Six (18%) institutions did not have a neurosurgeon, while 19 (57%) institutions had a pediatric neurosurgeon. All centers had a pathology department, but 13 (39%) institutions only had access to basic histopathology. Eleven (33%) institutions reported histopathological diagnoses within one week, but 3 (9%) took more than 4 weeks. Radiotherapy for pediatric CNS tumors was referred to outside centers at 18 (55%) institutions. All centers had access to conventional cytotoxic chemotherapy, but only 6 (18%) had access to targeted therapy. Eighteen (55%) respondents estimated a survival rate of less than 60%. Fifteen (45%) centers attributed the main cause of mortality to non-tumor related factors, including infection and post-surgical complications. Conclusions This is the first national assessment of the resources available in Mexico for the treatment of CNS tumors. It shows disparities in resource capacity and a lack of the specific and efficient diagnoses that allow timely initiation of treatment. These data will enable the prioritization of collaborative interventions in the future.
Collapse
Affiliation(s)
- Daniela Arce-Cabrera
- Pediatric Oncology Department, Sinaloa Pediatric Hospital, Culiacan, Sinaloa, Mexico
| | - Gabriela Escamilla-Asiain
- Pediatric Oncology Department, Teletón Children’s Hospital of Oncology, Querétaro, Querétaro, Mexico
| | - Melisa F. Nájera-Castillo
- Pediatric Oncology Department Hospital for Children of Toluca. Maternal and Child Institute of the State of Mexico, Toluca, Estado de Mexico, Mexico
| | | | - Mariana Ortiz-Azpilcueta
- Pediatric Oncology Department, Pediatric Hospital of the National Medical Center 21st century Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | | | - Imelda Zapata-Sosa
- Pediatric Oncology Department, Zacatecas General Hospital, Zacatecas, Zacatecas, Mexico
| | - Jocelyn Z. Lugo-Juárez
- Pediatric Oncology Department, Teletón Children’s Hospital of Oncology, Querétaro, Querétaro, Mexico
| | - Daniel Santillán Cortéz
- Pediatric Oncology Department, National Medical Center November 20 ISSSTE, Mexico City, Mexico
| | | | - Daniel C. Moreira
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alma E. Benito-Reséndiz
- Pediatric Oncology Department, National Medical Center November 20 ISSSTE, Mexico City, Mexico
| |
Collapse
|
9
|
Galbraith K, Snuderl M. Molecular Pathology of Gliomas. Clin Lab Med 2024; 44:149-159. [PMID: 38821638 DOI: 10.1016/j.cll.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA.
| |
Collapse
|
10
|
Johns DA, Williams RJ, Smith CM, Nadaminti PP, Samarasinghe RM. Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma. Clin Transl Med 2024; 14:e1560. [PMID: 38299304 PMCID: PMC10831580 DOI: 10.1002/ctm2.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Paediatric and adult astrocytomas are notably different, where clinical treatments used for adults are not as effective on children with the same form of cancer and these treatments lead to adverse long-term health concerns. Integrative omics-based studies have shown the pathology and fundamental molecular characteristics differ significantly and cannot be extrapolated from the more widely studied adult disease. Recent clinical advances in our understanding of paediatric astrocytomas, with the aid of next-generation sequencing and epigenome-wide profiling, have led to the identification of key canonical mutations that vary based on the tumour location and age of onset. These driver mutations, in particular the identification of the recurrent histone H3 mutations in high-grade tumours, have confirmed the important role epigenetic dysregulations play in cancer progression. This review summarises the current updates of the classification, epidemiology, pathogenesis and clinical management of paediatric astrocytoma based on their grades and the ongoing clinical trials. It also provides novel insights on genetic and epigenetic alterations as diagnostic biomarkers, highlighting the potential of targeting these pathways as therapeutics for this devastating childhood cancer.
Collapse
Affiliation(s)
- Dona A. Johns
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Richard J. Williams
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- The Graeme Clark Institute, The University of MelbourneMelbourneVICAustralia
| | - Craig M. Smith
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Pavani P. Nadaminti
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
11
|
Byrne EM, Pascoe M, Cooper D, Armstrong TS, Gilbert MR. Challenges and limitations of clinical trials in the adolescent and young adult CNS cancer population: A systematic review. Neurooncol Adv 2024; 6:vdad159. [PMID: 38250563 PMCID: PMC10798804 DOI: 10.1093/noajnl/vdad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Background The adolescent and young adult (AYA) cancer population, aged 15-39, carries significant morbidity and mortality. Despite growing recognition of unique challenges with this age group, there has been little documentation of unmet needs in their care, trial participation, and quality of life, particularly in those with primary brain tumors. Methods A systematic literature review of 4 databases was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards. Studies included editorials, reviews, and practice guidelines on the challenges and limitations faced by the AYA population. Papers had to address CNS tumors. Results Sixty-eight studies met the inclusion criteria. The challenges and limitations in clinical trials in the AYA population were synthesized into 11 categories: molecular heterogeneity, tumor biology, diagnostic delay, access to care, physician factors, patient factors, primary brain tumor (PBT) factors, accrual, limited trials, long term follow up, and trial design. The published papers' recommendations were categorized based on the target of the recommendation: providers, coordination of care, organizations, accrual, and trial design. The AYA cancer population was found to suffer from unique challenges and barriers to care and the construction of trials. Conclusions The AYA CNS cancer population suffers from unique challenges and barriers to care and construction of trials that make it critical to acknowledge AYAs as a distinct patient population. In addition, AYAs with primary brain tumors are underrecognized and underreported in current literature. More studies in the AYA primary brain tumor patient population are needed to improve their care and participation in trials.
Collapse
Affiliation(s)
- Emma M Byrne
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Maeve Pascoe
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Diane Cooper
- National Institute of Health Library, National Institute of Health, Bethesda, Maryland, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Gottardo NG, Gajjar A. Verschlimmbesserung: Craniospinal Radiotherapy Is Essential in WNT Medulloblastoma Patients. Clin Cancer Res 2023; 29:4996-4998. [PMID: 37823794 PMCID: PMC10722133 DOI: 10.1158/1078-0432.ccr-23-2331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Standard-risk WNT medulloblastoma patients have an excellent prognosis (>90% progression-free survival) using the combination of standard dose craniospinal radiotherapy (CSI) (23.4 Gy) followed by platinum and alkylator based chemotherapy. A recent pilot study that attempted to completely omit radiotherapy was terminated early as all patients (n = 3) relapsed rapidly (on treatment or within 6 months of completing treatment). The study highlights that therapy is the most important prognostic factor, with CSI still required to cure even the most favorable subgroup of medulloblastoma patients. See related article by Cohen et al., p. 5031.
Collapse
Affiliation(s)
- Nicholas G. Gottardo
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Rajagopal R, Teng AJ, Jawin V, Wong OL, Mahsin H, Abd Rani NH, Yap TY, Gunasagaran K, Thevarajah A, Yeoh SL, Ong GB, Ariffin H, Jones D, Bouffet E, Gottardo NG. Prognostic significance of molecular subgroups in survival outcome for children with medulloblastoma in Malaysia. Front Oncol 2023; 13:1278611. [PMID: 37920166 PMCID: PMC10619898 DOI: 10.3389/fonc.2023.1278611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Advancements in genomic profiling led to the discovery of four major molecular subgroups in medulloblastoma (MB), which have now been incorporated into the World Health Organization classification of central nervous system tumors. The current study aimed to determine the prognostic significance of the MB molecular subgroups among children in Malaysia. Methods We assembled MB samples from children <18 years between January 2003 and June 2017 from four pediatric oncology centers in Malaysia. MB was sub-grouped using 850k DNA methylation testing at German Cancer Research Centre, Heidelberg, Germany. Results Fifty samples from patients diagnosed and treated as MB were identified. Two (4%) of the 50 patients' tumor DNA samples were insufficient for analysis. Of the remaining 48 patients, 41 (85%) samples were confirmed as MB, while for 7 (15%) patients, DNA methylation classification results were discrepant with the histopathological diagnosis of MB, with various other diagnoses. Of the 41 MB patients, 15 patients were stratified as standard-risk (SR), 16 patients as high-risk (HR), and ten as infants (age <3 years old). Molecular subgrouping of the whole cohort revealed four (14%) WNT, 11 (27%) SHH, 10 (24%) Group 3, and 16 (39%) Group 4. Treatment abandonment rates for older children and infants were 22.5% and 10%, respectively. After censoring treatment abandonment, for SR patients, the 5-year event-free survival (EFS) and overall survival (OS) were 43.1% ± 14.7% and 46.9 ± 15.6%, respectively, while in HR, 5-year EFS and OS were both 63.6% ± 14.5%. Infants had a 5-year EFS and OS of 55.6% ± 16.6% and 66.7% ± 15.7%, respectively. WNT tumors had the best 5y-OS, followed by Group 3, Group 4, and SHH in children ≥3 years old. In younger children, SHH MB patients showed favorable outcomes. Conclusion The study highlights the importance of DNA methylation profiling for diagnostic accuracy. Most infants had SHH MB, and their EFS and OS were comparable to those reported in high-income countries. Due to the relatively small cohort and the high treatment abandonment rate, definite conclusions cannot be made regarding the prognostic significance of molecular subgroups of MB. Implementing this high-technology investigation would assist pathologists in improving the diagnosis and provide molecular subgrouping of MB, permitting subgroup-specific therapies.
Collapse
Affiliation(s)
- Revathi Rajagopal
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Ay Jiuan Teng
- Division of Hematology and Oncology, Department of Pediatrics, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Malaysia
| | - Vida Jawin
- Division of Hematology and Oncology, Department of Pediatrics, Hospital Sultan Ismail, Ministry of Health Malaysia, Johor Bharu, Malaysia
| | - Oy Leng Wong
- Department of Pathology, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Malaysia
| | - Hakimah Mahsin
- Department of Pathology, Penang General Hospital, Ministry of Health Malaysia, George Town, Malaysia
| | - Nor Haizura Abd Rani
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Malaysia
| | - Tsiao Yi Yap
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Kogilavani Gunasagaran
- Division of Hematology and Oncology, Department of Pediatrics, Sabah Woman and Children’s Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Asohan Thevarajah
- Division of Hematology and Oncology, Department of Pediatrics, Sabah Woman and Children’s Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Seoh Leng Yeoh
- Division of Hematology and Oncology, Department of Pediatrics, Penang General Hospital, Ministry of Health Malaysia, George Town, Malaysia
| | - Gek Bee Ong
- Division of Hematology and Oncology, Department of Pediatrics, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Malaysia
| | - Hany Ariffin
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - David Jones
- Division of Pediatric Neuro-oncology, German Cancer Research Centre, Heidelberg, Germany
| | - Eric Bouffet
- Division of Neuro-oncology, Department of Pediatric Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas G. Gottardo
- Department of Pediatric and Adolescent Oncology/Hematology, Perth Children’s Hospital, Nedlands, Perth, WA, Australia
- Brain Tumor Research Program, Telethon Kids Institute University of Western Australia, Nedlands, Perth, WA, Australia
| |
Collapse
|
14
|
Ehrhardt MJ, Krull KR, Bhakta N, Liu Q, Yasui Y, Robison LL, Hudson MM. Improving quality and quantity of life for childhood cancer survivors globally in the twenty-first century. Nat Rev Clin Oncol 2023; 20:678-696. [PMID: 37488230 DOI: 10.1038/s41571-023-00802-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
The contributions of cooperative groups to performing large-cohort clinical trials and long-term survivorship studies have facilitated advances in treatment, supportive care and, ultimately, survival for patients with paediatric cancers. As a result, the number of childhood cancer survivors in the USA alone is expected to reach almost 580,000 by 2040. Despite these substantial improvements, childhood cancer survivors continue to have an elevated burden of chronic disease and an excess risk of early death compared with the general population and therefore constitute a large, medically vulnerable population for which delivery of high-quality, personalized care is much needed. Data from large survivorship cohorts have enabled the identification of compelling associations between paediatric cancers, cancer therapy and long-term health conditions. Effectively translating these findings into clinical care that improves the quality and quantity of life for survivors remains an important focus of ongoing research. Continued development of well-designed clinical studies incorporating dissemination and implementation strategies with input from patient advocates and other key stakeholders is crucial to overcoming these gaps. This Review highlights the global progress made and future efforts that will be needed to further increase the quality and quantity of life-years gained for childhood cancer survivors.
Collapse
Affiliation(s)
- Matthew J Ehrhardt
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nickhill Bhakta
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Paediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qi Liu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
15
|
Gómez-González S, Llano J, Garcia M, Garrido-Garcia A, Suñol M, Lemos I, Perez-Jaume S, Salvador N, Gene-Olaciregui N, Galán RA, Santa-María V, Perez-Somarriba M, Castañeda A, Hinojosa J, Winter U, Moreira FB, Lubieniecki F, Vazquez V, Mora J, Cruz O, La Madrid AM, Perera A, Lavarino C. EpiGe: A machine-learning strategy for rapid classification of medulloblastoma using PCR-based methyl-genotyping. iScience 2023; 26:107598. [PMID: 37664618 PMCID: PMC10470382 DOI: 10.1016/j.isci.2023.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However, this technology is currently not widely available. We present a machine-learning decision support system (DSS) that enables the classification of the principal molecular groups-WNT, SHH, and non-WNT/non-SHH-directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS appears as a user-friendly web-application-EpiGe-App-that enables automated interpretation of qPCR methylation data and subsequent molecular group prediction. The basis of our classification strategy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment and an easy-to-use web-application.t.
Collapse
Affiliation(s)
- Soledad Gómez-González
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Joshua Llano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marta Garcia
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alicia Garrido-Garcia
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Isadora Lemos
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Noelia Salvador
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Vicente Santa-María
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Alicia Castañeda
- Pediatric Solid Tumor Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ursula Winter
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Francisco Barbosa Moreira
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Valeria Vazquez
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jaume Mora
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Pediatric Solid Tumor Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ofelia Cruz
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrés Morales La Madrid
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alexandre Perera
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Cinzia Lavarino
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
16
|
Geoerger B, Marshall LV, Nysom K, Makin G, Bouffet E, Defachelles AS, Amoroso L, Aerts I, Leblond P, Barahona P, Van-Vlerken K, Fu E, Solca F, Lorence RM, Ziegler DS. Afatinib in paediatric patients with recurrent/refractory ErbB-dysregulated tumours: Results of a phase I/expansion trial. Eur J Cancer 2023; 188:8-19. [PMID: 37178647 DOI: 10.1016/j.ejca.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
AIM This phase I/expansion study assessed the safety, pharmacokinetics and preliminary antitumor activity of afatinib in paediatric patients with cancer. METHODS The dose-finding part enroled patients (2-<18 years) with recurrent/refractory tumours. Patients received 18 or 23 mg/m2/d afatinib orally (tablet or solution) in 28-d cycles. In the maximum tolerated dose (MTD) expansion, eligible patients (1-<18 years) had tumours fulfilling ≥2 of the following criteria in the pre-screening: EGFR amplification; HER2 amplification; EGFR membrane staining (H-score>150); HER2 membrane staining (H-score>0). The primary end-points were dose-limiting toxicities (DLTs), afatinib exposure, and objective response. RESULTS Of 564 patients pre-screened, 536 patients had biomarker data and 63 (12%) fulfilled ≥2 EGFR/HER2 criteria required for inclusion in the expansion part. A total of 56 patients were treated (17 in the dose-finding and 39 in the expansion part). DLTs were observed in one of six MTD-evaluable patients receiving 18 mg/m²/d and in two of five MTD-evaluable patients receiving 23 mg/m²/d; 18 mg/m²/d was defined as the MTD. There were no new safety signals. Pharmacokinetics confirmed exposure consistent with the approved dose in adults. One partial response (-81% per Response Assessment in Neuro-Oncology) was observed in a patient with a glioneuronal tumour harbouring a CLIP2::EGFR fusion; unconfirmed partial responses were observed in two patients. In total, 25% of patients experienced objective response or stable disease (95% confidence interval: 14-38). CONCLUSION Targetable EGFR/HER2 drivers are rare in paediatric cancers. Treatment with afatinib led to a durable response (>3 years) in one patient with a glioneuronal tumour with CLIP2::EGFR fusion.
Collapse
Affiliation(s)
- Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France.
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Guy Makin
- Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Royal Manchester Children's Hospital, Manchester, UK
| | - Eric Bouffet
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | - Isabelle Aerts
- Institut Curie, PSL Research University, Oncology Center SIREDO, Paris, France
| | - Pierre Leblond
- Institute of Pediatric Hematology and Oncology, Centre Léon Bérard, Lyon, France
| | | | | | - Eric Fu
- Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG Vienna, Austria
| | | | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Saenz A, Basilotta Y, Dalton EA, Argañaraz R, Mantese B. Giant Supratentorial Brain Tumors in Children: Functional Outcome and Progression-Free Survival Analysis. Pediatr Neurosurg 2023; 58:117-127. [PMID: 37037189 DOI: 10.1159/000530592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
INTRODUCTION This study aimed to identify factors affecting progression-free survival (PFS) in pediatric patients with giant supratentorial brain tumors (GSBTs) treated with surgical excision. The secondary aim was to analyze how these same factors affected the functional outcome in the long term. METHODS We performed a retrospective, analytical, single-center cohort study. We included all pediatric patients with GSBT between January 2014 and June 2018. Patients were followed for a minimum of 24 months for the PFS and overall survival (OS) analysis. Functional status score (FSS) was used to assess the functional outcome. RESULTS We included 27 patients with GSBT, the median age was six (range 2-12), and eleven patients had a grade IV tumor. The 24-month PFS and OS were 51.85% and 74.04%, respectively. A PFS-ending event or treatment failure occurred in 13 patients. We found that patients with postoperative FFS >16 have a worse PFS than patients with a postoperative FSS <15 (HR 4.51; p = 0.03). Patients with more than three surgeries had worse PFS than patients with one or two procedures (HR 11.39; p = 0.004). High-grade tumors were associated with worse PFS than low-grade tumors (HR 1.55; p = 0.04). Finally, patients with CNS infections had worse PFS than patients without that complication (HR 2.70; p = 0.04). CONCLUSIONS GSBTs in pediatric patients are complex lesions that require multidisciplinary management. Surgical management and quality of life should be considered when choosing the best treatment. Factors influencing long-term PFS were high-grade histopathology, the need for three or more surgeries, postoperative FSS >16, and CNS infections.
Collapse
Affiliation(s)
- Amparo Saenz
- Pediatric Neurosurgery Department, Pediatric Hospital Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Yamila Basilotta
- Pediatric Neurosurgery Department, Pediatric Hospital Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Emma A Dalton
- Neurosurgery Department, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Romina Argañaraz
- Pediatric Neurosurgery Department, Pediatric Hospital Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Beatriz Mantese
- Pediatric Neurosurgery Department, Pediatric Hospital Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
18
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
19
|
O’Donohue T, Sait SF, Bender JG. Progress in precision therapy in pediatric oncology. Curr Opin Pediatr 2023; 35:41-47. [PMID: 36377257 PMCID: PMC9812924 DOI: 10.1097/mop.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW The fields of precision medicine and cancer genomics in pediatric oncology are rapidly evolving. Novel diagnostic tools are critical in refining cancer diagnoses, stratifying patient risk, and informing treatment decisions. This review is timely and relevant as it discusses advantages and drawbacks of common molecular profiling techniques and highlights novel platforms, which may address select limitations. We discuss recent publications demonstrating utility of large-scale molecular profiling and feasibility and logistics of matching targeted therapies to patients. RECENT FINDINGS We describe the increased accessibility of next-generation sequencing, complementary profiling methods, and strategies to guide treatment decisions. We describe curation and sharing of large genomic datasets and novel mechanisms to obtain matched targeted therapies. Importantly, we discuss relevant publications in distinct disease domains that support indications for evidence-based precision therapy. Lastly, we introduce the incremental analyses that can be obtained via whole-genome and transcriptome sequencing. SUMMARY Here we highlight high-yield clinical scenarios of precision medicine approaches and identify the ongoing challenges including universally defining clinical actionability, optimizing trial design to account for molecular heterogeneity while acknowledging limitations in patient accrual, expanding access to molecularly targeted therapies, and validating new tools and technology to aid in precision medicine therapeutic approaches.
Collapse
Affiliation(s)
- Tara O’Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julia Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
20
|
Youlden DR, Baade PD, Moore AS, Pole JD, Valery PC, Aitken JF. Childhood cancer survival and avoided deaths in Australia, 1983-2016. Paediatr Perinat Epidemiol 2023; 37:81-91. [PMID: 35672573 PMCID: PMC10084119 DOI: 10.1111/ppe.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Large improvements in childhood cancer survival have been reported over recent decades. Data from cancer registries have the advantage of providing a 'whole of population' approach to gauge the success of cancer control efforts. OBJECTIVES The aim of this study was to investigate recent survival estimates for children diagnosed with cancer Australia and to examine the extent of changes in survival over the last 35 years. For the first time, we also estimated the number of deaths among Australian children that were potentially avoided due to improvements in survival. METHODS A retrospective, population-based cohort study design was used. Case information was extracted from the Australian Childhood Cancer Registry for 1983-2016, with follow-up to 31 December 2017. Eligible children were aged 0-14 with a basis of diagnosis other than autopsy or death certificate only. Five-year relative survival was calculated using the semi-complete cohort method for three diagnosis periods (1983-1994, 1995-2006 and 2007-2016), and changes in survival over time were assessed via flexible parametric models. Avoided deaths within 5 years for those diagnosed between 1995 and 2016 were estimated under the assumption that survival rates remained the same as for 1983-1994. RESULTS Overall 5-year survival within the study cohort (n = 20,871) increased from 72.8% between 1983 and1994 to 86.1% between 2007 and 2016, equating to an adjusted excess mortality hazard ratio of 1.82 (95% confidence interval 1.67, 1.97). Most cancers showed improvements in survival; other gliomas, hepatoblastoma and osteosarcoma were exceptions. Among children diagnosed between 1995 and 2016, 38.7% of expected deaths within 5 years of diagnosis (n = 1537 of 3970) were avoided due to temporal improvements in survival. CONCLUSIONS Survival for childhood cancer has continued to improve over recent years, thanks mainly to ongoing progress in treatment development combined with improved supportive care. Providing innovative measures of survival, such as avoided deaths, may assist with understanding outcome data produced by cancer registries.
Collapse
Affiliation(s)
- Danny R Youlden
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Peter D Baade
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew S Moore
- Oncology Service, Queensland Children's Hospital, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason D Pole
- Centre for Health Services Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Patricia C Valery
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joanne F Aitken
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Institute for Resilient Regions, University of Southern Queensland, Brisbane, Queensland, Australia.,School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Penco-Campillo M, Molina C, Piris P, Soufi N, Carré M, Pagnuzzi-Boncompagni M, Picco V, Dufies M, Ronco C, Benhida R, Martial S, Pagès G. Targeting of the ELR+CXCL/CXCR1/2 Pathway Is a Relevant Strategy for the Treatment of Paediatric Medulloblastomas. Cells 2022; 11:cells11233933. [PMID: 36497191 PMCID: PMC9738107 DOI: 10.3390/cells11233933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is the most common and aggressive paediatric brain tumour. Although the cure rate can be as high as 70%, current treatments (surgery, radio- and chemotherapy) excessively affect the patients' quality of life. Relapses cannot be controlled by conventional or targeted treatments and are usually fatal. The strong heterogeneity of the disease (four subgroups and several subtypes) is related to innate or acquired resistance to reference treatments. Therefore, more efficient and less-toxic therapies are needed. Here, we demonstrated the efficacy of a novel inhibitor (C29) of CXCR1/2 receptors for ELR+CXCL cytokines for the treatment of childhood MB. The correlation between ELR+CXCL/CXCR1/2 expression and patient survival was determined using the R2: Genomics Analysis and Visualization platform. In vitro efficacy of C29 was evaluated by its ability to inhibit proliferation, migration, invasion, and pseudo-vessel formation of MB cell lines sensitive or resistant to radiotherapy. The growth of experimental MB obtained by MB spheroids on organotypic mouse cerebellar slices was also assayed. ELR+CXCL/CXCR1/2 levels correlated with shorter survival. C29 inhibited proliferation, clone formation, CXCL8/CXCR1/2-dependent migration, invasion, and pseudo-vessel formation by sensitive and radioresistant MB cells. C29 reduced experimental growth of MB in the ex vivo organotypic mouse model and crossed the blood-brain barrier. Targeting CXCR1/2 represents a promising therapeutic strategy for the treatment of paediatric MB in first-line treatment or after relapse following conventional therapy.
Collapse
Affiliation(s)
- Manon Penco-Campillo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Clément Molina
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Patricia Piris
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli Calmettes, Aix-Marseille Université, Inserm U1068, CNRS UMR 758, 27 Boulevard Jean Moulin, 13273 Marseille, France
| | - Nouha Soufi
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli Calmettes, Aix-Marseille Université, Inserm U1068, CNRS UMR 758, 27 Boulevard Jean Moulin, 13273 Marseille, France
| | | | - Vincent Picco
- Centre Scientifique de Monaco (CSM), Biomedical Department, 98000 Monaco, Monaco
| | - Maeva Dufies
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Roca Therapeutics, 06000 Nice, France
| | - Cyril Ronco
- Roca Therapeutics, 06000 Nice, France
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, Centre National de Recherche Scientifique (CNRS), 06108 Nice, France
| | - Rachid Benhida
- Roca Therapeutics, 06000 Nice, France
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, Centre National de Recherche Scientifique (CNRS), 06108 Nice, France
| | - Sonia Martial
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Correspondence: ; Tel.: +33-4-92-03-12-29
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Centre Scientifique de Monaco (CSM), Biomedical Department, 98000 Monaco, Monaco
- Roca Therapeutics, 06000 Nice, France
| |
Collapse
|
22
|
Luo Y, Zhang S, Tan W, Lin G, Zhuang Y, Zeng H. The Diagnostic Efficiency of Quantitative Diffusion Weighted Imaging in Differentiating Medulloblastoma from Posterior Fossa Tumors: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12112796. [PMID: 36428860 PMCID: PMC9689934 DOI: 10.3390/diagnostics12112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma (MB) is considered the most common and highly malignant posterior fossa tumor (PFT) in children. The accurate preoperative diagnosis of MB is beneficial in choosing the appropriate surgical methods and treatment strategies. Diffusion-weighted imaging (DWI) has improved the accuracy of differential diagnosis of posterior fossa tumors. Nonetheless, further studies are needed to confirm its value for clinical application. This study aimed to evaluate the performance of DWI in differentiating MB from other PFT. A literature search was conducted using databases PubMed, Embase, and Web of Science for studies reporting the diagnostic performance of DWI for PFT from January 2000 to January 2022. A bivariate random-effects model was employed to evaluate the pooled sensitivities and specificities. A univariable meta-regression analysis was used to assess relevant factors for heterogeneity, and subgroup analyses were performed. A total of 15 studies with 823 patients were eligible for data extraction. Overall pooled sensitivity and specificity of DWI were 0.94 (95% confident interval [CI]: 0.89-0.97) and 0.94 (95% CI: 0.90-0.96) respectively. The area under the curve (AUC) of DWI was 0.98 (95% CI: 0.96-0.99). Heterogeneity was found in the sensitivity (I2 = 62.59%) and the specificity (I2 = 35.94%). Magnetic field intensity, region of interest definition and DWI diagnostic parameters are the factors that affect the diagnostic performance of DWI. DWI has excellent diagnostic accuracy for differentiating MB from other PFT. Hence, it is necessary to set DWI as a routine examination sequence for posterior fossa tumors.
Collapse
Affiliation(s)
- Yi Luo
- Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou 515041, China
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Siqi Zhang
- Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou 515041, China
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Weiting Tan
- Shenzhen Children’s Hospital of China Medical University, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Guisen Lin
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Yijiang Zhuang
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
- Correspondence:
| |
Collapse
|
23
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
24
|
Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, Jehanno N, Kurch L, Law I, Lim R, Lopci E, Marner L, Morana G, Young Poussaint T, Seghers VJ, Shulkin BL, Warren KE, Traub-Weidinger T, Zucchetta P. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:3852-3869. [PMID: 35536420 PMCID: PMC9399211 DOI: 10.1007/s00259-022-05817-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
Abstract
Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor J Seghers
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Barry L Shulkin
- Nuclear Medicine Department of Diagnostic Imaging St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
25
|
Catanzaro G, Besharat ZM, Carai A, Jäger N, Splendiani E, Colin C, Po A, Chiacchiarini M, Citarella A, Gianno F, Cacchione A, Miele E, Diomedi Camassei F, Gessi M, Massimi L, Locatelli F, Jones DTW, Figarella-Branger D, Pfister SM, Mastronuzzi A, Giangaspero F, Ferretti E. MiR-1248: a new prognostic biomarker able to identify supratentorial hemispheric pediatric low-grade gliomas patients associated with progression. Biomark Res 2022; 10:44. [PMID: 35715818 PMCID: PMC9205050 DOI: 10.1186/s40364-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs), particularly incompletely resected supratentorial tumours, can undergo progression after surgery. However to date, there are no predictive biomarkers for progression. Here, we aimed to identify pLGG-specific microRNA signatures and evaluate their value as a prognostic tool. Methods We identified and validated supratentorial incompletey resected pLGG-specific microRNAs in independent cohorts from four European Pediatric Neuro-Oncology Centres. Results These microRNAs demonstrated high accuracy in differentiating patients with or without progression. Specifically, incompletely resected supratentorial pLGGs with disease progression showed significantly higher miR-1248 combined with lower miR-376a-3p and miR-888-5p levels than tumours without progression. A significant (p < 0.001) prognostic performance for miR-1248 was reported with an area under the curve (AUC) of 1.00. We also highlighted a critical oncogenic role for miR-1248 in gliomas tumours. Indeed, high miR-1248 levels maintain low its validated target genes (CDKN1A (p21)/FRK/SPOP/VHL/MTAP) and consequently sustain the activation of oncogenic pathways. Conclusions Altogether, we provide a novel molecular biomarker able to successfully identify pLGG patients associated with disease progression that could support the clinicians in the decision-making strategy, advancing personalized medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00389-x.
Collapse
Affiliation(s)
- Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Natalie Jäger
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Splendiani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carole Colin
- Institut de Neurophysiopathologie, Aix-Marseille Université, CNRS, Marseille, France
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Citarella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Marco Gessi
- Department of Women, Children and Public Health Sciences, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Department of Gynecology/Obstetrics & Pediatrics, Sapienza University of Rome, Rome, Italy
| | - David T W Jones
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Dominique Figarella-Branger
- Service d'Anatomie Pathologique Et de Neuropathologie, Hôpital de La Timone, Institut de Neurophysiopathologie, Aix-Marseille Université, AP-HM, CNRS, Marseille, France
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, IRCCS Neuromed, Pozzilli, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
26
|
NTRK2 gene fusions are uncommon in pilocytic astrocytoma. Mol Biol Rep 2022; 49:7567-7573. [PMID: 35713800 DOI: 10.1007/s11033-022-07567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pilocytic astrocytoma is the most frequent pediatric glioma. Despite its overall good prognosis, complete surgical resection is sometimes unfeasible, especially for patients with deep-seated tumors. For these patients, the identification of targetable genetic alterations such as NTRK fusions, raised as a new hope for therapy. The presence of gene fusions involving NTRK2 has been rarely reported in pilocytic astrocytoma. The aim of the present study was to investigate the frequency of NTRK2 alterations in a series of Brazilian pilocytic astrocytomas. METHODS Sixty-nine pilocytic astrocytomas, previously characterized for BRAF and FGFR1 alterations were evaluated. The analysis of NTRK2 alterations was performed using a dual color break apart fluorescence in situ hybridization (FISH) assay. RESULTS NTRK2 fusions were successfully evaluated by FISH in 62 of the 69 cases. Neither evidence of NTRK2 gene rearrangements nor NTRK2 copy number alterations were found. CONCLUSIONS NTRK2 alterations are uncommon genetic events in pilocytic astrocytomas, regardless of patients' clinicopathological and molecular features.
Collapse
|
27
|
Yeo KK, Alexandrescu S, Cotter JA, Vogelzang J, Bhave V, Li MM, Ji J, Benhamida JK, Rosenblum MK, Bale TA, Bouvier N, Kaneva K, Rosenberg T, Lim-Fat MJ, Ghosh H, Martinez M, Aguilera D, Smith A, Goldman S, Diamond EL, Gavrilovic I, MacDonald TJ, Wood MD, Nazemi KJ, Truong A, Cluster A, Ligon KL, Cole K, Bi WL, Margol AS, Karajannis MA, Wright KD. Multi-institutional study of the frequency, genomic landscape, and outcome of IDH-mutant glioma in pediatrics. Neuro Oncol 2022; 25:199-210. [PMID: 35604410 PMCID: PMC9825351 DOI: 10.1093/neuonc/noac132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The incidence and biology of IDH1/2 mutations in pediatric gliomas are unclear. Notably, current treatment approaches by pediatric and adult providers vary significantly. We describe the frequency and clinical outcomes of IDH1/2-mutant gliomas in pediatrics. METHODS We performed a multi-institutional analysis of the frequency of pediatric IDH1/2-mutant gliomas, identified by next-generation sequencing (NGS). In parallel, we retrospectively reviewed pediatric IDH1/2-mutant gliomas, analyzing clinico-genomic features, treatment approaches, and outcomes. RESULTS Incidence: Among 851 patients with pediatric glioma who underwent NGS, we identified 78 with IDH1/2 mutations. Among patients 0-9 and 10-21 years old, 2/378 (0.5%) and 76/473 (16.1%) had IDH1/2-mutant tumors, respectively. Frequency of IDH mutations was similar between low-grade glioma (52/570, 9.1%) and high-grade glioma (25/277, 9.0%). Four tumors were graded as intermediate histologically, with one IDH1 mutation. Outcome: Seventy-six patients with IDH1/2-mutant glioma had outcome data available. Eighty-four percent of patients with low-grade glioma (LGG) were managed observantly without additional therapy. For low-grade astrocytoma, 5-year progression-free survival (PFS) was 42.9% (95%CI:20.3-63.8) and, despite excellent short-term overall survival (OS), numerous disease-related deaths after year 10 were reported. Patients with high-grade astrocytoma had a 5-year PFS/OS of 36.8% (95%CI:8.8-66.4) and 84% (95%CI:50.1-95.6), respectively. Patients with oligodendroglioma had excellent OS. CONCLUSIONS A subset of pediatric gliomas is driven by IDH1/2 mutations, with a higher rate among adolescents. The majority of patients underwent upfront observant management without adjuvant therapy. Findings suggest that the natural history of pediatric IDH1/2-mutant glioma may be similar to that of adults, though additional studies are needed.
Collapse
Affiliation(s)
- Kee Kiat Yeo
- Corresponding Author: Kee Kiat Yeo, MD, Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, 450 Brookline Ave, Boston, MA 02215, USA ()
| | | | | | - Jayne Vogelzang
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA
| | | | - Marilyn M Li
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA,USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristiyana Kaneva
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, USA,Tempus Labs, Inc., Chicago, IL, USA
| | - Tom Rosenberg
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mary Jane Lim-Fat
- Department of Medical Oncology, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA, USA
| | - Hia Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Migdalia Martinez
- Department of Pediatrics, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Dolly Aguilera
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Smith
- Department of Pediatrics, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Igor Gavrilovic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew D Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kellie J Nazemi
- Department of Pediatrics, Doernbecher Children’s Hospital, Portland, OR, USA
| | - AiLien Truong
- Department of Pediatrics, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Andrew Cluster
- Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA, USA
| | - Kristina Cole
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Ashley S Margol
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Karen D Wright
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Affiliation(s)
- Alan R Cohen
- From the Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
29
|
Bartlett AL, Lane A, Chaney B, Escorza NY, Black K, Cochrane A, Minturn J, Bartels U, Warren K, Hansford J, Ziegler D, Diez B, Goldman S, Packer R, Kieran M, DeWire-Schottmiller M, Erker C, Monje-Deisseroth M, Wagner L, Koschmann C, Dorris K, Shih CS, Hassall T, Samson Y, Fisher P, Wang SS, Tsui K, Sevlever G, Zhu X, Dexheimer P, Asher A, Fuller C, Drissi R, Jones B, Leach J, Fouladi M. Characteristics of children ≤36 months of age with DIPG: A report from the international DIPG registry. Neuro Oncol 2022; 24:2190-2199. [PMID: 35552452 PMCID: PMC9713498 DOI: 10.1093/neuonc/noac123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Children ≤36 months with diffuse intrinsic pontine glioma (DIPG) have increased long-term survival (LTS, overall survival (OS) ≥24 months). Understanding distinguishing characteristics in this population is critical to improving outcomes. METHODS Patients ≤36 months at diagnosis enrolled on the International DIPG Registry (IDIPGR) with central imaging confirmation were included. Presentation, clinical course, imaging, pathology and molecular findings were analyzed. RESULTS Among 1183 patients in IDIPGR, 40 were eligible (median age: 29 months). Median OS was 15 months. Twelve patients (30%) were LTS, 3 (7.5%) very long-term survivors ≥5 years. Among 8 untreated patients, median OS was 2 months. Patients enrolled in the registry but excluded from our study by central radiology review or tissue diagnosis had median OS of 7 months. All but 1 LTS received radiation. Among 32 treated patients, 1-, 2-, 3-, and 5-year OS rates were 68.8%, 31.2%, 15.6% and 12.5%, respectively. LTS had longer duration of presenting symptoms (P = .018). No imaging features were predictive of outcome. Tissue and genomic data were available in 18 (45%) and 10 patients, respectively. Among 9 with known H3K27M status, 6 had a mutation. CONCLUSIONS Children ≤36 months demonstrated significantly more LTS, with an improved median OS of 15 months; 92% of LTS received radiation. Median OS in untreated children was 2 months, compared to 17 months for treated children. LTS had longer duration of symptoms. Excluded patients demonstrated a lower OS, contradicting the hypothesis that children ≤36 months with DIPG show improved outcomes due to misdiagnosis.
Collapse
Affiliation(s)
- Allison L Bartlett
- Corresponding Author: Allison Bartlett, MD, 3333 Burnet Ave, MLC 1107, Cincinnati, OH 45229, USA ()
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brooklyn Chaney
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nancy Yanez Escorza
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katie Black
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anne Cochrane
- Brain Tumor Center, Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jane Minturn
- Division of Oncology, Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, Pennsylvania,USA
| | - Ute Bartels
- Department of Pediatrics, Division of Oncology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kathy Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jordan Hansford
- Children’s Cancer Centre, Royal Children’s Hospital; Murdoch Children’s Research Institute; University of Melbourne, Melbourne, Australia
| | - David Ziegler
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, UNSW and Kids Cancer Centre, Sydney’s Children Hospital, Randwick, Sydney NSW, Australia,School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Blanca Diez
- FLENI (Fundacion para Lucha contra las Enfermedes Neurologicas de Infantes), Buenos Aires, Argentina
| | - Stewart Goldman
- Division of Pediatric Hematology and Oncology, Center for Cancer and Blood Disorders, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois,USA
| | - Roger Packer
- Department of Neurology, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC, USA
| | - Mark Kieran
- Department of Pediatrics, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mariko DeWire-Schottmiller
- Brain Tumor Center, Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig Erker
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Michelle Monje-Deisseroth
- Department of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Wagner
- Division of Pediatric Hematology/Oncology, Kentucky Children’s Hospital, University of Kentucky, Lexington, Kentucky, USA
| | - Carl Koschmann
- Department of Pediatrics, C.S. Mott Children’s Hospital and University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Kathleen Dorris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Chie-Schin Shih
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, USA
| | - Tim Hassall
- Queensland Children’s Hospital, Brisbane, Queensland, Australia
| | - Yvan Samson
- Department of Hematology-Oncology, Université de Montréal and CHU Sainte-Justine, Montréal, Québec, Canada
| | - Paul Fisher
- Department of Neurology, Division of Child Neurology, Stanford University, Palo Alto, California, USA
| | - Stacie S Wang
- Children’s Cancer Centre, Royal Children’s Hospital; Murdoch Children’s Research Institute; University of Melbourne, Melbourne, Australia
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Health, Auckland, New Zealand
| | - Gustavo Sevlever
- FLENI (Fundacion para Lucha contra las Enfermedes Neurologicas de Infantes), Buenos Aires, Argentina
| | - Xiaoting Zhu
- Brain Tumor Center, Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA
| | - Phillip Dexheimer
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Anthony Asher
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, New York, USA
| | - Rachid Drissi
- Center for Childhood Cancer & Blood Disorders, Nationwide Children’s Hospital, Columbus, Ohio, USA,The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Blaise Jones
- Division of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Leach
- Division of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maryam Fouladi
- The Ohio State University College of Medicine, Columbus, Ohio, USA,Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
30
|
de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Front Immunol 2022; 13:866892. [PMID: 35493490 PMCID: PMC9043602 DOI: 10.3389/fimmu.2022.866892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has seen tremendous strides in the last decade, acquiring a prominent position at the forefront of cancer treatment since it has been proven to be efficacious for a wide variety of tumors. Nevertheless, while immunotherapy has changed the paradigm of adult tumor treatment, this progress has not yet been translated to the pediatric solid tumor population. For this reason, alternative curative therapies are urgently needed for the most aggressive pediatric tumors. In recent years, oncolytic virotherapy has consolidated as a feasible strategy for cancer treatment, not only for its tumor-specific effects and safety profile but also for its capacity to trigger an antitumor immune response. This review will summarize the current status of immunovirotherapy to treat cancer, focusing on pediatric solid malignancies. We will revisit previous basic, translational, and clinical research and discuss advances in overcoming the existing barriers and limitations to translate this promising therapeutic as an every-day cancer treatment for the pediatric and young adult populations.
Collapse
Affiliation(s)
- Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kadir Mert Selvi
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
31
|
Ebel F, Greuter L, Guzman R, Soleman J. Transitional Care in Pediatric Brain Tumor Patients: A Systematic Literature Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:501. [PMID: 35455545 PMCID: PMC9026288 DOI: 10.3390/children9040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Due to advances in the treatment of pediatric brain tumors (PBT), an increasing number of patients are experiencing the transition from the pediatric to the adult health care system. This requires efficient transitional models. METHODS We systematically reviewed the literature regarding PBT concerning different transitional models and aspects of the transitional period. For this purpose, PubMed, Medline, and Embase databases were searched systematically through January 2022. RESULTS We reviewed a total of 304 studies, of which 15 were ultimately included. We identified five transition models described within the literature, while the most frequently mentioned ones were the "adult caregiver model" (45.5%), "joint caregiver model" (45.5%), "continued caregiver model" (27.3%), and the "specialized clinic model" (27.3%). During the transition, the most frequent challenges mentioned by the patients were the lack of knowledge about the disease by the adult health care professionals (62.5%) and the difficulty of establishing a new relationship with the new physician, environment, or hospital (37.5%). CONCLUSIONS An efficient transitional model is mandatory for patients with PBT. Continuity in the treatment and care of the patient and their family is essential. For this purpose, in patients with PBT, the "continued caregiver model", and for NF1 and TSC patients, the "specialized clinic model" seems optimal to offer continuity of care. If such models are unavailable, efficient communication with patients, families, and specialists in a multidisciplinary network is even more critical.
Collapse
Affiliation(s)
- Florian Ebel
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (L.G.); (R.G.); (J.S.)
| | - Ladina Greuter
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (L.G.); (R.G.); (J.S.)
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (L.G.); (R.G.); (J.S.)
- Department of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (L.G.); (R.G.); (J.S.)
- Department of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Liu APY, Northcott PA, Robinson GW, Gajjar A. Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. J Transl Med 2022; 102:134-142. [PMID: 34934181 DOI: 10.1038/s41374-021-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Cell-free DNA (cfDNA) profiling as liquid biopsy has proven value in adult-onset malignancies, serving as a patient-specific surrogate for residual disease and providing a non-invasive tool for serial interrogation of tumor genomics. However, its application in neoplasms of the central nervous system (CNS) has not been as extensively studied. Unique considerations and methodological challenges exist, which need to be addressed before cfDNA studies can be incorporated as a clinical assay for primary CNS diseases. Here, we review the current status of applying cfDNA analysis in patients with CNS tumors, with special attention to diagnosis in pediatric patients. Technical concerns, evidence for utility, and potential developments are discussed.
Collapse
Affiliation(s)
- Anthony Pak-Yin Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, China.
| | - Paul A Northcott
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
33
|
Prognostic impact of semantic MRI features on survival outcomes in molecularly subtyped medulloblastoma. Strahlenther Onkol 2022; 198:291-303. [DOI: 10.1007/s00066-021-01889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
34
|
Varlet P, Bouffet E, Casanova M, Giangaspero F, Antonelli M, Hargrave D, Ladenstein R, Pearson A, Hawkins C, König FB, Rüschoff J, Schmauch C, Bühnemann C, Garin-Chesa P, Schweifer N, Uttenreuther-Fischer M, Gibson N, Ittrich C, Krämer N, Solca F, Stolze B, Geoerger B. Comprehensive analysis of the ErbB receptor family in pediatric nervous system tumors and rhabdomyosarcoma. Pediatr Blood Cancer 2022; 69:e29316. [PMID: 34546642 DOI: 10.1002/pbc.29316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a paucity of knowledge regarding pediatric biomarkers, including the relevance of ErbB pathway aberrations in pediatric tumors. We investigated the occurrence of ErbB receptor aberrations across different pediatric malignancies, to identify patterns of ErbB dysregulation and define biomarkers suitable for patient enrichment in clinical studies. PROCEDURE Tissue samples from 297 patients with nervous system tumors and rhabdomyosarcoma were analyzed for immunohistochemical expression or gene amplification of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Exploratory analyses of HER3/HER4 expression, and mRNA expression of ErbB receptors/ligands (NanoString) were performed. Assay validation followed general procedures, with additional validation to address Clinical Laboratory Improvement Amendments (CLIA) requirements. RESULTS In most tumor types, samples with high ErbB receptor expression were found with heterogeneous distribution. We considered increased/aberrant ErbB pathway activation when greater than or equal to two EGFR/HER2 markers were simultaneously upregulated. ErbB pathway dysregulation was identified in ∼20%-30% of samples for most tumor types (medulloblastoma/primitive neuroectodermal tumors 31.1%, high-grade glioma 27.1%, neuroblastoma 22.7%, rhabdomyosarcoma 23.1%, ependymoma 18.8%), 4.2% of diffuse intrinsic pontine gliomas, and no recurrent or refractory low-grade astrocytomas. In medulloblastoma/primitive neuroectodermal tumors and neuroblastoma, this was attributed mainly to high EGFR polysomy/HER2 amplification, whereas EGFR gene amplification was observed in some high-grade glioma samples. EGFR/HER2 overexpression was most prevalent in ependymoma. CONCLUSIONS Overexpression and/or amplification of EGFR/HER2 were identified as potential enrichment biomarkers for clinical trials of ErbB-targeted drugs.
Collapse
Affiliation(s)
- Pascale Varlet
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de Neuropathologie, Paris, France
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ruth Ladenstein
- Department of Paediatrics, St. Anna Children's Cancer Research Institute, Medical University, Vienna, Austria
| | - Andy Pearson
- Paediatric Drug Development, Children and Young People's Unit, Royal Marsden Hospital, London, UK.,Division of Clinical Studies, Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Pilar Garin-Chesa
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Norbert Schweifer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Neil Gibson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Carina Ittrich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicole Krämer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Britta Stolze
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris Saclay, Villejuif, France
| |
Collapse
|
35
|
Abstract
Childhood cancer is the leading cause of nonaccidental death in children and adolescents. Over the past 50 years, development of novel therapies and improvements in supportive care have led to improvements in long-term survival rates. However, there remains great morbidity associated with cancer treatment among childhood cancer survivors, and the outcomes for patients who relapse remain poor. The introduction of precision medicine, an approach that uses the understanding of genetic and biochemical profiles of a disease (as enabled by next-generation sequencing) to tailor treatment to a patient, has quickly started to change the diagnostic and therapeutic landscape of pediatric oncology. With its use, a better understanding of tumor biology, improved classification systems for various cancers, and genetically and molecularly targeted therapeutic strategies have been developed. We review the implementation of precision medicine in pediatric oncology and its effect on diagnosis, management, and treatment of pediatric cancers. [Pediatr Ann. 2022;51(1):e8-e14.].
Collapse
|
36
|
Dasgupta A, Maitre M, Pungavkar S, Gupta T. Magnetic Resonance Imaging in the Contemporary Management of Medulloblastoma: Current and Emerging Applications. Methods Mol Biol 2022; 2423:187-214. [PMID: 34978700 DOI: 10.1007/978-1-0716-1952-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medulloblastoma, the most common malignant primary brain tumor in children, is now considered to comprise of four distinct molecular subgroups-wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4 medulloblastoma, each associated with distinct developmental origins, unique transcriptional profiles, diverse phenotypes, and variable clinical behavior. Due to its exquisite anatomic resolution, multiparametric nature, and ability to image the entire craniospinal axis, magnetic resonance imaging (MRI) is the preferred and recommended first-line imaging modality for suspected brain tumors including medulloblastoma. Preoperative MRI can reliably differentiate medulloblastoma from other common childhood posterior fossa masses such as ependymoma, pilocytic astrocytoma, and brainstem glioma. On T1-weighted images, medulloblastoma is generally iso- to hypointense, while on T2-weighted images, the densely packed cellular component of the tumor is significantly hypointense and displays restricted diffusion on diffusion-weighted imaging. Following intravenous gadolinium, medulloblastoma shows significant but variable and heterogeneous contrast enhancement. Given the propensity of neuraxial spread in medulloblastoma, sagittal fat-suppressed T1-postcontrast spinal MRI is recommended to rule out leptomeningeal metastases for accurate staging. Following neurosurgical excision, postoperative MRI done within 24-48 h confirms the extent of resection, accurately quantifying residual tumor burden imperative for risk assignment. Post-treatment MRI is needed to assess response and effectiveness of adjuvant radiotherapy and systemic chemotherapy. After completion of planned therapy, surveillance MRI is recommended periodically on follow-up for early detection of recurrence for timely institution of salvage therapy, as well as for monitoring treatment-related late complications. Recent studies suggest that preoperative MRI can reliably identify SHH and Group 4 medulloblastoma but has suboptimal predictive accuracy for WNT and Group 3 tumors. In this review, we focus on the role of MRI in the diagnosis, staging, and quantifying residual disease; post-treatment response assessment; and periodic surveillance, and provide a brief summary on radiogenomics in the contemporary management of medulloblastoma.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Neuro-Oncology Disease Management Group, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| | - Madan Maitre
- Department of Radiation Oncology, Neuro-Oncology Disease Management Group, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sona Pungavkar
- Department of Radiodiagnosis and Imaging, Global Hospitals, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Neuro-Oncology Disease Management Group, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
37
|
Montemagno C, Luciano F, Pagès G. Opposing Roles of Vascular Endothelial Growth Factor C in Metastatic Dissemination and Resistance to Radio/Chemotherapy: Discussion of Mechanisms and Therapeutic Strategies. Methods Mol Biol 2022; 2475:1-23. [PMID: 35451746 DOI: 10.1007/978-1-0716-2217-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many cancers can be cured by combining surgery with healthy margins, radiation therapy and chemotherapies. However, when the pathology becomes metastatic, cancers can be incurable. The best situation involves "chronicization" of the pathology even for several years. However, most of the time, patients die within a few months. To disseminate throughout the body, cancer cells must enter the vascular network and seed in another organ. However, during the initiation of cancer processes, the tumor is avascular. Later, the production of angiogenic factors causes tumor neovascularization and subsequent growth and spread, and the presence of blood and/or lymphatic vessels is associated with high grade tumors. Moreover, during tumor development, cancer cells enter lymphatic vessels and disseminate via the lymphatic network. Hence, blood and lymphatic vessels are considered as main routes of metastatic dissemination and cancer aggressiveness. Therefore, anti-angiogenic drugs entered in the therapeutic arsenal from 2004. Despite undeniable effects however, they are far from curative and only prolong survival by a few months.Recently, the concepts of angio/lymphangiogenesis were revisited by analyzing the role of blood and lymphatic vessels at the initiation steps of tumor development. During this period, cancer cells enter lymphatic vessels and activate immune cells within lymph nodes to initiate an antitumor immune response. Moreover, the presence of blood vessels at the proximity of the initial nodule allows immune cells to reach the tumor and eliminate cancer cells. Therefore, blood and lymphatic networks have a beneficial role during a defined time window. Considering only their detrimental effects is a concern. Hence, administration of anti-angio/lymphangiogenic therapies should be revisited to avoid the destruction of networks involved in antitumor immune response. This review mainly focuses on one of the main drivers of lymphangiogenesis, the VEGFC and its beneficial and pejorative roles according to the grade of aggressive tumors.
Collapse
Affiliation(s)
- Christopher Montemagno
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Frédéric Luciano
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France.
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
38
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
39
|
Leary SES, Kilburn L, Geyer JR, Kocak M, Huang J, Smith KS, Hadley J, Ermoian R, MacDonald TJ, Goldman S, Phillips P, Young Poussaint T, Olson JM, Ellison DW, Dunkel IJ, Fouladi M, Onar-Thomas A, Northcott PA. Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: A report from the Pediatric Brain Tumor Consortium (PBTC-026). Neuro Oncol 2021; 24:1178-1190. [PMID: 34935967 PMCID: PMC9248403 DOI: 10.1093/neuonc/noab293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Embryonal tumors of the CNS are the most common malignant tumors occurring in the first years of life. This study evaluated the feasibility and safety of incorporating novel non-cytotoxic therapy with vorinostat and isotretinoin to an intensive cytotoxic chemotherapy backbone. METHODS PBTC-026 was a prospective multi-institutional clinical trial for children <48 months of age with newly diagnosed embryonal tumors of the CNS. Treatment included three 21-day cycles of induction therapy with vorinostat and isotretinoin, cisplatin, vincristine, cyclophosphamide, and etoposide; three 28-day cycles of consolidation therapy with carboplatin and thiotepa followed by stem cell rescue; and twelve 28-day cycles of maintenance therapy with vorinostat and isotretinoin. Patients with M0 medulloblastoma (MB) received focal radiation following consolidation therapy. Molecular classification was by DNA methylation array. RESULTS Thirty-one patients with median age of 26 months (range 6-46) received treatment on study; 19 (61%) were male. Diagnosis was MB in 20 and supratentorial CNS embryonal tumor in 11. 24/31 patients completed induction therapy within a pre-specified feasibility window of 98 days. Five-year progression-free survival (PFS) and overall survival (OS) for all 31 patients were 55 ± 15 and 61 ± 13, respectively. Five-year PFS was 42 ± 13 for group 3 MB (n = 12); 80 ± 25 for SHH MB (n = 5); 33 ± 19 for embryonal tumor with multilayered rosettes (ETMR, n = 6). CONCLUSION It was safe and feasible to incorporate vorinostat and isotretinoin into an intensive chemotherapy regimen. Further study to define efficacy in this high-risk group of patients is warranted.
Collapse
Affiliation(s)
- Sarah E S Leary
- Corresponding Author: Sarah E. S. Leary, MD, MS, Seattle Children’s Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA 98105, USA ()
| | - Lindsay Kilburn
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - J Russell Geyer
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mehmet Kocak
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Peter Phillips
- Department of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Olson
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maryam Fouladi
- Department of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Eschbacher KL, Rao AN, Greipp PT, Gliem TJ, Daniels DJ, Warad D, Eckel LJ, Raghunathan A. Pediatric Myxopapillary Ependymomas: A Clinicopathologic Evaluation. J Pediatr Hematol Oncol 2021; 43:e1194-e1200. [PMID: 33395181 DOI: 10.1097/mph.0000000000002041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Myxopapillary ependymomas (MPEs) have an indolent clinical course, corresponding to World Health Organization Grade I. A total of 13 pediatric MPEs have been reported in the literature with "anaplastic features," including elevated proliferative activity (≥5 mitoses/10 high-power fields), necrosis, and microvascular proliferation. No consensus exists regarding the prognostic significance of such features. A retrospective clinicopathologic review of pediatric MPEs diagnosed between 1996 and 2018 at Mayo Clinic was performed. Totally, 8 pediatric MPEs (6 male; age: 7.52 to 16.88 y) were identified. Totally, 3 had disseminated disease at presentation. All patients underwent surgical resection (7 gross total; 1 subtotal). Totally, 5 cases harbored ≥5 mitoses/10 high-power fields (range: 5 to 9), 3 of which showed necrosis (2 with disseminated disease). Postsurgery, 2 patients received radiation; one with disseminated disease and another with increased mitotic activity/necrosis; neither has recurred (follow-up: 1.18 and 3.19 y). In all, 2 patients with disseminated disease, elevated mitotic activity, and necrosis had new metastatic disease/progression of nonresected metastatic foci (2.6 and 26.8 mo), received radiation therapy, and remain progression free (3.01 and 9.34 y). All patients are alive (median follow-up 1.31 y, range: 0.66 to 11.75). Among pediatric MPEs, the concurrent presence of elevated mitotic activity and necrosis may be associated with an aggressive clinical course, warranting closer surveillance and consideration of adjuvant therapies.
Collapse
Affiliation(s)
| | - Amulya Nageswara Rao
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | | | - Troy J Gliem
- Departments of Laboratory Medicine and Pathology
| | | | - Deepti Warad
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
42
|
Youlden DR, Henshaw C, Gottardo NG, Hassall T, Aitken JF. Incidence and survival for childhood central nervous system tumours in Australia, 1983-2016. J Neurooncol 2021; 155:203-213. [PMID: 34664177 DOI: 10.1007/s11060-021-03869-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate incidence and survival of childhood tumours of the central nervous system (CNS) by histological subtype, tumour behaviour and tumour grade. METHODS National, population-based data on all children under 15 years old diagnosed with a CNS tumour between 1983 and 2016 were sourced from the Australian Childhood Cancer Registry. Incidence rate trends were calculated using Joinpoint regression. Relative survival was calculated using the cohort method, with changes in survival over time by cancer type and tumour grade assessed by multivariable flexible parametric survival modelling. RESULTS The study cohort included 4914 patients, with astrocytoma (n = 2181, 44%) and embryonal tumours (n = 931, 19%) the most common diagnostic subgroups. Almost half (n = 2181, 44%) of all tumours were classified as high grade (III or IV). Incidence rates increased by 29% between 1983 and 2016, with high grade tumours rising by an annual average of + 1.1% (95% CI = + 0.7%, + 1.5%, p < 0.001). 5-year survival for all patients combined was 72% (95% CI = 71-74%), ranging from 50% (46-54%) for those with other gliomas to 81% (79-83%) for astrocytoma (p < 0.001). Survival improved over time for grade II and III ependymomas but not for patients with astrocytoma irrespective of grade. CONCLUSION Improvements in diagnostic technology leading to more precise tumour classification are likely to explain some of the differences in incidence rate trends by histological type and grade. While improvements in survival over time were noted for some tumours, outcomes remained poor among patients with high-grade astrocytoma.
Collapse
Affiliation(s)
- Danny R Youlden
- Cancer Council Queensland, Brisbane, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia. .,Cancer Council Queensland, PO Box 201, Spring Hill, QLD, 4001, Australia.
| | | | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Perth, WA, Australia.,Brain Tumour Research Program, Telethon Kids Institute, Perth, WA, Australia
| | - Timothy Hassall
- Oncology Unit, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia.,Children's Brain Cancer Centre, Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Joanne F Aitken
- Cancer Council Queensland, Brisbane, QLD, Australia.,Institute for Resilient Regions, University of Southern Queensland, Brisbane, QLD, Australia.,School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Roux A, Beccaria K, Blauwblomme T, Mahlaoui N, Chretien F, Varlet P, Puget S, Pallud J. Toward a transitional care from childhood and adolescence to adulthood in surgical neurooncology? A lesson from the Necker-Enfants Malades and the Sainte-Anne Hospitals collaboration. J Neurosurg Pediatr 2021; 28:380-386. [PMID: 34330092 DOI: 10.3171/2021.3.peds2141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Transitional care in surgical neurooncology is poorly studied. However, this period is pivotal, since it allows the patient to be empowered in his or her disease management. Here, the authors describe the experience of the Necker-Enfants Malades and the Sainte-Anne Hospital collaboration. METHODS The mixed transitional consultations started in September 2019 in a dedicated space for transitional care, named the "La Suite" department, located in the Necker-Enfants Malades Hospital, Paris, France. The authors organized planned consultations to schedule the clinical and radiological follow-up in the adult neurosurgical department but also emergency consultations to manage tumor recurrence in young adult patients. Transitional care was performed jointly by pediatric and adult neurosurgeons who have developed clinical and research skills in the field of surgical neurooncology. Neuropathological analysis was performed by a neuropathologist who is specialized in pediatric and adult neurooncology. RESULTS Fourteen patients benefited from a mixed transitional consultation. All of them accepted to start their management in an adult neurosurgical environment. Eleven patients (78.6%) for whom the disease was controlled benefited from a planned consultation. Three patients (21.4%) required rapid neurosurgical management for a tumor recurrence (n = 2) or for a new primary CNS tumor (n = 1) and benefited from an emergency consultation. CONCLUSIONS For adult patients harboring a brain tumor during childhood or adolescence, the authors suggest that neurosurgeons specialized in adult surgical neurooncology with a full knowledge in pediatric neurooncology will combine the required skills to optimize care management for these patients within a dedicated multidisciplinary organization framework.
Collapse
Affiliation(s)
- Alexandre Roux
- 1Service de Neurochirurgie, GHU Paris-Hôpital Sainte-Anne, Paris
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 3INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris
| | - Kévin Beccaria
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 4Service de Neurochirurgie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris
| | - Thomas Blauwblomme
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 4Service de Neurochirurgie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris
| | - Nizar Mahlaoui
- 5Centre de référence déficits immunitaires héréditaires (Ceredih), Hôpital universitaire Necker-Enfants malades, AP-HP, Paris; Unité d'immuno-hématologie et rhumatologie pédiatrique, Hôpital universitaire Necker-Enfants malades, AP-HP, Paris
- 6La Suite, Hôpital universitaire Necker-Enfants malades, AP-HP, Paris; and
| | - Fabrice Chretien
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 7Service de Neuropathologie, GHU Paris-Hôpital Sainte-Anne, Paris, France
| | - Pascale Varlet
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 3INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris
- 7Service de Neuropathologie, GHU Paris-Hôpital Sainte-Anne, Paris, France
| | - Stéphanie Puget
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 4Service de Neurochirurgie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris
| | - Johan Pallud
- 1Service de Neurochirurgie, GHU Paris-Hôpital Sainte-Anne, Paris
- 2Université de Paris, Sorbonne Paris Cité, Paris
- 3INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris
| |
Collapse
|
44
|
Nakano Y, Satomi K, Okada K, Gotoh M, Ushiama M, Sakamoto H, Yoshida T, Kunihiro N, Hira K, Fukushima H, Inoue T, Hirato J, Ichimura K, Hara J. Malignant brain tumor in an infant showing histopathological features of yolk sac tumor but genetic and epigenetic features of AT/RT. Pediatr Blood Cancer 2021; 68:e29192. [PMID: 34185381 DOI: 10.1002/pbc.29192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
SMARCA4 pathogenic variants are rarely detected in pediatric brain tumors other than atypical teratoid rhabdoid tumors (AT/RTs) without INI1 deficiency or in some cases of medulloblastoma. Here, we report an atypical intracranial immature teratoma that recurred as a yolk sac tumor with metastatic spinal and lung lesions. Sequencing of the tumor revealed two SMARCA4 variants, including a splice-site variant and a non-synonymous variant of uncertain significance. Additionally, the methylation signature of the tumor was close to that of AT/RTs. Our case might be a yet-unrecognized subtype of pediatric tumors in which inactivation of SMARCA4 contributes to the pathogenesis.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Keiko Okada
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Masahiro Gotoh
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Mineko Ushiama
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Noritsugu Kunihiro
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Kouta Hira
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Hiroko Fukushima
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Takeshi Inoue
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Junko Hirato
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Junichi Hara
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
45
|
Levy AS, Krailo M, Chi S, Villaluna D, Springer L, Williams-Hughes C, Fouladi M, Gajjar A. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer 2021; 68:e29031. [PMID: 33844469 PMCID: PMC8764558 DOI: 10.1002/pbc.29031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Approximately 30% of children with medulloblastoma (MB) experience recurrence, which is usually incurable. This study compared the overall survival (OS) of patients receiving temozolomide (TMZ) and irinotecan with that of patients receiving TMZ, irinotecan, and bevacizumab for recurrent MB/central nervous system (CNS) primitive neuroectodermal tumor (PNET). METHODS Patients with relapsed/refractory MB or CNS PNET were randomly assigned to receive TMZ (150 mg/m2 /day PO on days 1-5) and irinotecan (50 mg/m2 /day IV on days 1-5) with or without bevacizumab (10 mg/kg IV on days 1 and 15). RESULTS One hundred five patients were eligible and treated on study. Median OS was 13 months in the standard arm and 19 months with the addition of bevacizumab; median event-free survival (EFS) was 6 months in the standard arm and 9 months with the addition of bevacizumab. The hazard ratio for death from the stratified relative-risk regression model is 0.63. Overall, 23 patients completed 12 courses of planned protocol therapy, 23% (12/52) in the experimental arm with bevacizumab versus 21% (11/53) in the standard arm. Toxicity profiles were comparable in both treatment arms. The estimate of the incidence of feasibility events associated with the bevacizumab arm is three of 52 (5.8%) (95% CI 1.2-16%). Events included myelosuppression, electrolyte abnormalities, diarrhea, and elevated transaminases. One intracranial hemorrhage event was observed in each arm. CONCLUSION The addition of bevacizumab to TMZ/irinotecan significantly reduced the risk of death in children with recurrent MB. The combination was relatively well tolerated in this heavily pretreated cohort. The three-drug regimen demonstrated a sufficient risk reduction to warrant further investigation.
Collapse
Affiliation(s)
| | - Mark Krailo
- Department of Preventive Medicine, University of Southern California, Los Angeles CA
| | - Susan Chi
- Dana-Farber/Harvard Cancer Center, Boston, MA
| | | | | | - Chris Williams-Hughes
- Department of Preventive Medicine, University of Southern California, Los Angeles CA
| | - Maryam Fouladi
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Amar Gajjar
- Saint Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
46
|
Moreira DC, Rajagopal R, Navarro-Martin Del Campo RM, Polanco AC, Alcasabas AP, Arredondo-Navarro LA, Campos D, Casavilca-Zambrano S, Diaz Coronado RY, Faizal N, Ganesan D, Hamid SA, Khan R, Khu K, Loh J, Lukban M, Negreiros T, Pineda E, Yaqoob N, Zia N, Gajjar A, Rodriguez-Galindo C, Qaddoumi I. Bridging the Gap in Access to Care for Children With CNS Tumors Worldwide. JCO Glob Oncol 2021; 6:583-584. [PMID: 32293939 PMCID: PMC7193818 DOI: 10.1200/go.20.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
| | | | | | - Ana C Polanco
- Hospital Nacional de Niños Benjamin Bloom, San Salvador, El Salvador
| | | | | | - Danny Campos
- Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | | | | | - Nor Faizal
- University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | | | | | | | - Kathleen Khu
- University of the Philippines, Philippine General Hospital, Manila, Philippines
| | - Jasmin Loh
- University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Marissa Lukban
- University of the Philippines, Philippine General Hospital, Manila, Philippines
| | | | - Estuardo Pineda
- Hospital Nacional de Niños Benjamin Bloom, San Salvador, El Salvador
| | | | - Nida Zia
- The Indus Hospital, Karachi, Pakistan
| | - Amar Gajjar
- St. Jude Children's Research Hospital, Memphis, TN
| | | | | |
Collapse
|
47
|
Abstract
Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA.
| |
Collapse
|
48
|
Butler E, Ludwig K, Pacenta HL, Klesse LJ, Watt TC, Laetsch TW. Recent progress in the treatment of cancer in children. CA Cancer J Clin 2021; 71:315-332. [PMID: 33793968 DOI: 10.3322/caac.21665] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although significant improvements have been made in the outcomes of children with cancer, the pace of improvement has slowed in recent years as the limits of therapy intensification may have been reached for many pediatric cancers. Furthermore, with increasing numbers of pediatric cancer survivors, the long-term side effects of treatment have become increasingly apparent. Therefore, attention has shifted to the use of molecularly targeted agents and immunotherapies to improve the outcomes of children who are not cured by traditional cytotoxic chemotherapies and to decrease exposure to cytotoxic chemotherapy and reduce late effects. This review describes the recent progress in the treatment of children with cancer, focusing in particular on diseases in which targeted and immunotherapeutic agents have made an impact.
Collapse
Affiliation(s)
- Erin Butler
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas
| | - Kathleen Ludwig
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas
| | - Holly L Pacenta
- Division of Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas
| | - Laura J Klesse
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas
| | - Tanya C Watt
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Abstract
Central nervous system (CNS) tumors are the most common solid tumor in pediatrics and represent the largest cause of childhood cancer-related mortality. With advances in molecular characterization of tumors, considerable developments have occurred impacting diagnosis and management, and refined prognostication. Advances in management have led to better survival, but mortality remains high and significant morbidity persists. Novel therapeutic approaches targeting the biology of these tumors are being investigated to improve overall survival and decrease treatment-related morbidity. Further molecular understanding of pediatric CNS tumors will lead to continued refinement of tumor classification, management, and prognostication.
Collapse
Affiliation(s)
- Fatema Malbari
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin Street, Suite 1250, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Wang Y, Zhou C, Luo H, Cao J, Ma C, Cheng L, Yang Y. Prognostic implications of immune-related eight-gene signature in pediatric brain tumors. ACTA ACUST UNITED AC 2021; 54:e10612. [PMID: 34008756 PMCID: PMC8130135 DOI: 10.1590/1414-431x2020e10612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 02/14/2023]
Abstract
Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors (PBT) that may lead to novel therapeutic strategies. Participants of the cohort Pediatric Brain Tumor Atlas: CBTTC (CBTTC cohort), were randomly divided into training and validation cohorts. In the training cohort, Kaplan-Meier analysis and univariate Cox regression model were applied to preliminary screening of prognostic genes. The LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation and CBTTC cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. Also, gene set enrichment analysis (GSEA) and immune infiltrating analyses were conducted to understand function annotation and the role of the signature in the tumor microenvironment. An eight-gene signature was built, which was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen, either in the training or validation cohorts. The eight-gene signature was further proven to be independent of other clinic-pathologic parameters via the Cox regression analyses. Moreover, ROC analysis demonstrated that this signature owned a better predictive power of PBT prognosis. Furthermore, GSEA and immune infiltrating analyses showed that the signature had close interactions with immune-related pathways and was closely related to CD8 T cells and monocytes in the tumor environment. Identifying the eight-gene signature (CBX7, JADE2, IGF2BP3, OR2W6P, PRAME, TICRR, KIF4A, and PIMREG) could accurately identify patients' prognosis and the signature had close interactions with the immunodominant tumor environment, which may provide insight into personalized prognosis prediction and new therapies for PBT patients.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neonatology and Neonatal Intensive Care, Zhumadian Central Hospital, Zhumadian, China
| | - Chuan Zhou
- Neonatal Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Lulu Cheng
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Yang Yang
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|