1
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
2
|
Arai T, Komatsu A, Kanazawa N, Nonaka K, Ishiwata T. Clinicopathological and molecular characteristics of gastric papillary adenocarcinoma. Pathol Int 2023; 73:358-366. [PMID: 37341602 DOI: 10.1111/pin.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Papillary adenocarcinoma is defined as carcinoma with a well-defined papillary or villous structure. Despite sharing clinicopathological and morphological features with tubular adenocarcinomas, papillary adenocarcinomas frequently show microsatellite instability. The present study aimed to clarify the clinicopathological features, molecular classification, and programmed death-ligand 1 (PD-L1) expression characteristics of papillary adenocarcinoma, especially tumors with microsatellite instability. We examined the microsatellite status and expression of mucin core proteins and PD-L1 as well as the clinicopathological features in 40 gastric papillary adenocarcinomas. Surrogate immunohistochemical analysis of p53 and mismatch repair proteins along with Epstein-Barr virus-encoded RNA in situ hybridization were performed for molecular classification. Female predominance and frequent microsatellite instability were observed in papillary adenocarcinoma in comparison with tubular adenocarcinoma. The presence of microsatellite instability in papillary adenocarcinoma was significantly correlated with older age, tumor-infiltrating lymphocytes, and Crohn's-like lymphoid reactions. Surrogate examination demonstrated that the genomically stable type (17 cases, 42.5%) was the most common, followed by the microsatellite-unstable type (14 cases, 35%). Among the seven cases showing PD-L1-positive expression in tumor cells, four involved carcinomas with microsatellite instability. These results reveal the clinicopathological and molecular characteristics of gastric papillary adenocarcinoma.
Collapse
Affiliation(s)
- Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akiko Komatsu
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Nobuo Kanazawa
- Department of Surgery, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | | | |
Collapse
|
3
|
Su Y, Qi R, Li L, Wang X, Li S, Zhao X, Hou R, Ma W, Liu D, Zheng J, Shi M. An immune-related gene prognostic risk index for pancreatic adenocarcinoma. Front Immunol 2022; 13:945878. [PMID: 35958614 PMCID: PMC9360334 DOI: 10.3389/fimmu.2022.945878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Our goal is to construct an immune-related gene prognostic risk index (IRGPRI) for pancreatic adenocarcinoma (PAAD), and to clarify the immune and molecular features in IRGPRI-defined PAAD subgroups and the benefit of immune checkpoint inhibitors (ICIs) therapy. Method Through differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and univariate Cox regression analysis, 16 immune-related hub genes were identified using the Cancer Genome Atlas (TCGA) PAAD dataset (n = 182) and immune gene set. From these genes, we constructed an IRGPRI with the Cox regression method and the IRGPRI was verified based on the Gene Expression Omnibus (GEO) dataset (n = 45). Then, we analyzed the immune and molecular features and the benefit of ICI therapy in IRGPRI-defined subgroups. Results Five genes, including S100A16, CD40, VCAM1, TNFRSF4 and TRAF1 were used to construct IRGPRI. As with the results of the GEO cohort, the overall survival (OS) was more favorable in low IRGPRI patients versus high IRGPRI patients. The composite results pointed out that low IRGPRI was associated with immune response-related pathways, high level of CTLA4, low KRAS and TP53 mutation rate, more infiltration of activated memory CD4+ T cells, CD8+ T cells, and more benefits from ICIs therapy. In comparison, high IRGPRI was associated with cancer-related pathways, low expression of CTLA4, high KRAS and TP53 mutation rate, more infiltration of M2 macrophages, and less benefit from ICIs therapies. Conclusion This IRGPRI is an encouraging biomarker to define the prognosis, immune and molecular features, and benefits from ICIs treatments in PAAD.
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Ruoshan Qi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lanying Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sijin Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Ming Shi, ; Junnian Zheng, ; Dan Liu,
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Ming Shi, ; Junnian Zheng, ; Dan Liu,
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Ming Shi, ; Junnian Zheng, ; Dan Liu,
| |
Collapse
|
4
|
Wang Y, Jiao X, Li S, Chen H, Wei X, Liu C, Gong J, Zhang X, Wang X, Peng Z, Qi C, Wang Z, Wang Y, Zhuo N, Zou J, Zhang H, Li J, Shen L, Lu Z. Alterations in DNA damage response and repair genes as potential biomarkers for immune checkpoint blockade in gastrointestinal cancer. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0708. [PMID: 34570439 PMCID: PMC9425187 DOI: 10.20892/j.issn.2095-3941.2020.0708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) have achieved remarkable results in cancer treatments. However, there is no effective predictive biomarker for gastrointestinal (GI) cancer. METHODS We conducted integrative analyses of the genomic and survival data of ICI-treated GI cancer patients from the Memorial Sloan Kettering Cancer Center cohort (MSK-GI, n = 227), the Janjigian cohort (n = 40), and the Peking University Cancer Hospital & Institute cohort (PUCH, n = 80) to determine the possible associations between DNA damage response and repair (DDR) gene mutations and clinical outcomes. Data from The Cancer Genome Atlas database were analyzed to determine the possible correlations between DDR gene mutations and the tumor microenvironment. RESULTS In the MSK cohort, the presence of ≥ 2 DDR gene mutations was correlated with prolonged overall survival (OS). The Janjigian and PUCH cohorts further confirmed that subgroups with ≥ 2 DDR gene mutations displayed a prolonged OS and a higher durable clinical benefit. Furthermore, the DDR gene mutation load could be considered as an independent prognostic factor, and exhibited a potential predictive value for survival in GI cancer patients treated with ICIs. Mechanistically, we showed that the presence of ≥ 2 DDR gene mutations was correlated with higher levels of tumor mutation burden, neoantigen, and T cell infiltration. CONCLUSIONS The DDR gene mutation status was correlated with favorable clinical outcomes in GI cancer patients receiving ICIs, which could serve as a potential biomarker to guide patient selection for immunotherapy.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuang Li
- Department of Gastric & Colorectal Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huan Chen
- Genecast Precision Medicine Technology Institute, Beijing 100192, China
| | - Xin Wei
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Na Zhuo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianling Zou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
Reimann H, Nguyen A, Sanborn JZ, Vaske CJ, Benz SC, Niazi K, Rabizadeh S, Spilman P, Mackensen A, Ruebner M, Hein A, Beckmann MW, van der Meijden ED, Bausenwein J, Kretschmann S, Griffioen M, Schlom J, Gulley JL, Lee KL, Hamilton DH, Soon-Shiong P, Fasching PA, Kremer AN. Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002605. [PMID: 34172517 PMCID: PMC8237736 DOI: 10.1136/jitc-2021-002605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Therapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies. Methods Using GPS Cancer, NantOmics research, and The Cancer Genome Atlas databases, we developed a novel bioinformatic-based approach which assesses mutational load, neoepitope expression, human leukocyte antigen (HLA)-binding prediction, and in vitro confirmation of T-cell recognition to preferentially identify targetable neoepitopes. This program was validated by application to a BC cell line and confirmed using tumor biopsies from two patients with BC enrolled in the Tumor-Infiltrating Lymphocytes and Genomics (TILGen) study. Results The antigenicity and HLA-A2 restriction of the BC cell line predicted neoepitopes were determined by reactivity of T cells from HLA-A2-expressing healthy donors. For the TILGen subjects, tumor-infiltrating lymphocytes (TILs) recognized the predicted neoepitopes both as peptides and on retroviral expression in HLA-matched Epstein-Barr virus–lymphoblastoid cell line and BC cell line MCF-7 cells; PCR clonotyping revealed the presence of T cells in the periphery with T-cell receptors for the predicted neoepitopes. These high-avidity immune responses were polyclonal, mutation-specific and restricted to either HLA class I or II. Interestingly, we observed the persistence and expansion of polyclonal T-cell responses following neoadjuvant chemotherapy. Conclusions We demonstrate our neoepitope prediction program allows for the successful identification of neoepitopes targeted by TILs in patients with BC, providing a means to identify tumor-specific immunogenic targets for individualized treatment, including vaccines or adoptively transferred cellular therapies.
Collapse
Affiliation(s)
- Hannah Reimann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Edith D van der Meijden
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karin L Lee
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter A Fasching
- Department of Gynecology and Obstetrics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
7
|
Khoshghamat N, Jafari N, Moetamani-Ahmadi M, Khalili-Tanha G, Khajavi Rad MH, Sahebdel S, Khalili-Tanha N, Soleimanpour S, Khazaei M, Hassanian SM, Ferns GA, Avan A. Programmed cell death 1 as prognostic marker and therapeutic target in upper gastrointestinal cancers. Pathol Res Pract 2021; 220:153390. [PMID: 33640713 DOI: 10.1016/j.prp.2021.153390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
Gastrointestinal (GIs) cancers are among the most common causes of cancer related death, and hence the importance for the identification of novel prognostic/predictive biomarkers for detection of patients at an early stage, and for using these to identify novel targeted therapies to improve the efficacy of existing chemotherapeutic regimens. Programmed cell death 1 has been reported as a potential target in several malignancies, and targeting agents are being developed, some already approved by FDA, such as: pembrolizumab, Atezolizumab, Nivolumab. Pembrolizumab that have been approved for the treatment of metastatic non-small cell lung cancer. Here we provide an overview of the mechanism of action PD-1/PD-L1, prognostic value and current progress in clinical trials using PD-1/PD-L1 inhibitors, and the resistant mechanisms at underlie the inhibitory effect of these agents in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negar Khoshghamat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran
| | - Niloufar Jafari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Khalili-Tanha
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeed Sahebdel
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Iran
| | - Saman Soleimanpour
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Choi E, Chang MS, Byeon SJ, Jin H, Jung KC, Kim H, Lee KL, Kim W, Park JH, Kim KH, Kim JS, Choi IS, Han DS, Ahn HS, Heo SC. Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas. Diagn Pathol 2020; 15:69. [PMID: 32498695 PMCID: PMC7271517 DOI: 10.1186/s13000-020-00979-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background The prognostic potential of PD-L1 is currently unclear in gastric carcinomas, although the immune checkpoint PD-1/PD-L1 inhibitors have produced promising results in clinical trials. Methods We explored the prognostic implications of programmed death ligand 1 (PD-L1) in 514 consecutive surgically-resected gastric carcinomas. Overall survival and recurrence-free survival were evaluated. Immunohistochemistry for PD-L1, CD8, FOXP3, and PD-1, and molecular grouping by in situ hybridization for Epstein-Barr virus (EBV)-encoded small RNAs and multiplex PCR for microsatellite instability (MSI) markers were performed. Additionally, to explore the function inherent to PD-L1, PD-L1-specific siRNA transfection, cell proliferation, invasion, migration and apoptosis assays were conducted in five gastric carcinoma cell lines. Results PD-L1(+) tumor and immune cells were observed in 101 (20%) and 244 patients (47%), respectively. “Tumoral PD-L1(+)/immune cell PD-L1(-)/CD8+/low tumor-infiltrating lymphocytes (TILs),” and more advanced-stage tumors were associated with unfavorable clinical outcomes in the entire cohort through multivariate analysis. Furthermore, tumoral PD-L1(+)/FOXP3+/low TILs were associated with worse clinical outcomes in EBV-positive and MSI-high carcinomas. Tumoral PD-L1(+) alone was an adverse prognostic factor in EBV-positive carcinomas, but not in MSI-high carcinomas, whereas PD-L1(+) immune cells or FOXP3+/high TILs alone were correlated with a favorable prognosis. PD-L1 knockdown in gastric carcinoma cells suppressed cell proliferation, invasion and migration, and increased apoptosis, which were all statistically significant in two EBV(+) cell lines, but not all in three EBV(−) cell lines. Conclusions The prognostic impact of PD-L1 may depend on the tumor microenvironment, and statuses of EBV and MSI, although PD-L1 innately promotes cancer cell survival in cell-based assays. The combination of “tumoral PD-L1/immune cell PD-L1/CD8+ TILs” may serve as an independent prognostic factor. Tumoral PD-L1(+)/immune cell PD-L1(−)/CD8+/low TILs showing a worse prognosis may be beneficial for combinatorial therapies of anti-PD-L1/PD-1 and anti-cytotoxic T-lymphocyte associated antigen 4 (CTLA4) that would promote effector T cells, thus attack the tumor.
Collapse
Affiliation(s)
- Euno Choi
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Sun-Ju Byeon
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Heejin Jin
- Medical Research Collaborating Center, Department of Biostatistics, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyun Park
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hwan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Sil Choi
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Han
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong Ahn
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 1006] [Impact Index Per Article: 201.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
10
|
Ruiz-Bañobre J, Goel A. DNA Mismatch Repair Deficiency and Immune Checkpoint Inhibitors in Gastrointestinal Cancers. Gastroenterology 2019; 156:890-903. [PMID: 30578781 PMCID: PMC6409193 DOI: 10.1053/j.gastro.2018.11.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
In the recent few years, significant efforts have been undertaken for the development of different immunotherapeutic approaches against cancer. In this context, immune checkpoint inhibitors (ICIs), a novel class of immunotherapeutic drugs with the potential to unleash the immune system, have emerged as authentic game-changers for managing patients with various cancers, including gastrointestinal malignancies. Although the majority of gastrointestinal cancers are generally considered poorly immunogenic, basic research findings and data from clinical trials have proven that subset(s) of patients with various digestive tract cancers are highly responsive to ICI-based therapy. In this context, a better understanding on the role of various DNA repair pathway alterations, especially the evidence supporting the significant importance of DNA mismatch repair deficiencies and the efficacy of the anti-programmed cell death 1 drugs, have led to US Food and Drug Administration approval of 2 anti-programmed cell death 1 antibodies (pembrolizumab and nivolumab) for the treatment of patients with microsatellite instability. This review aims to provide a comprehensive and up-to-date summary for the role of DNA mismatch repair deficiency in cancer, and its importance in the development of ICI therapy. In addition, we provide insights into the spectrum of various genetic alterations underlying ICI resistance, together with the important influence that the tumor microenvironment plays in mediating the therapeutic response to this new class of drugs. Finally, we provide a comprehensive yet succinct glimpse into the most exciting preclinical discoveries and ongoing clinical trials in the field, highlighting bench-to-beside translational impact of this exciting area of research.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Medical Oncology Department, Arquitecto Marcide University Hospital, Ferrol, Spain; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago, University Clinical Hospital of Santiago de Compostela, Centro de Investigación Biomédica en Red de Cáncer, Santiago de Compostela, Spain
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
11
|
Bian B, Fanale D, Dusetti N, Roque J, Pastor S, Chretien AS, Incorvaia L, Russo A, Olive D, Iovanna J. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology 2019; 8:e1561120. [PMID: 30906655 PMCID: PMC6422385 DOI: 10.1080/2162402x.2018.1561120] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
PDAC is one of the most heterogeneous cancers with low chemotherapeutic sensitivity due to a dense stroma, a weak vasculature and significant biological aggressivity. In cancer, suppressive immune checkpoints are often hyper-activated to ensure an effective evasion of tumor cells from immune surveillance. These immune checkpoints include in part, the B7/butyrophilin-like receptors such as butyrophilin sub-family 3A/CD277 receptors (BTN3A), the B and T lymphocyte attenuator (BTLA) belonging to the B7-like receptors and the programmed death protein (PD-1) with its ligand PD-L1. We evaluated the plasma level of these markers in 32 PDAC patients (learning cohort) by ad hoc developed ELISA’s and showed that there are highly correlated. We used ROC curves and univariate analysis to characterize their prognostic relevance in these patients and showed that their plasma level can serve as survival predictor. Plasma level thresholds that correlate with less than six months survival were established for sPD-1 (>8.6 ng/ml), sPD-L1 (>0.36 ng/ml), sBTLA (>1.91 ng/ml), sBTN3A1 (>6.98 ng/ml) and pan-sBTN3A (>6.92 ng/ml). These thresholds were applied in independent validation cohort composed by 27 new samples and could efficiently discriminate short versus long PDAC survivors. Our study reveals that monitoring the concentration of soluble forms of inhibitory immune checkpoints in plasma can help predict survival in PDAC patients and therefore improve their treatments.
Collapse
Affiliation(s)
- Benjamin Bian
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nelson Dusetti
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Julie Roque
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Sonia Pastor
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Juan Iovanna
- Team Pancreatic Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
12
|
Dahl O, Brydøy M. The pioneers behind immune checkpoint blockers awarded the Nobel Prize in physiology or medicine 2018. Acta Oncol 2019; 58:1-8. [PMID: 30698061 DOI: 10.1080/0284186x.2018.1555375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Olav Dahl
- Department of Clinical Science Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, da Silva A, Mu XJ, Twombly TS, Koh H, Yang J, Song M, Liu L, Gu M, Shi Y, Nosho K, Morikawa T, Inamura K, Shukla SA, Wu CJ, Garraway LA, Zhang X, Wu K, Meyerhardt JA, Chan AT, Glickman JN, Rodig SJ, Freeman GJ, Fuchs CS, Nishihara R, Giannakis M, Ogino S. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology 2018; 7:e1442999. [PMID: 29900052 DOI: 10.1080/2162402x.2018.1442999] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
Inhibitors targeting the PDCD1 (programmed cell death 1, PD-1) immune checkpoint pathway have revolutionized cancer treatment strategies. The TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PDCD1 ligand 1, PD-L1) expression and tumor-infiltrating lymphocytes (TIL) has been proposed to predict response to immunotherapy. It remains to be determined clinical, pathological, and molecular features of TIME subtypes of colorectal cancer. Using 812 colon and rectal carcinoma cases from the Nurses' Health Study and Health Professionals Follow-up Study, we examined the association of tumor characteristics and survival outcomes with four TIME subtypes (TIME 1, CD274low/TILabsent; TIME 2, CD274high/TILpresent; TIME 3, CD274low/TILpresent; and TIME 4, CD274high/TILabsent). In survival analyses, Cox proportional hazards models were adjusted for potential confounders, including microsatellite instability (MSI) status, CpG island methylator phenotype (CIMP) status, LINE-1 methylation level, and KRAS, BRAF, and PIK3CA mutation status. TIME subtypes 1, 2, 3 and 4 had 218 (27%), 117 (14%), 103 (13%), and 374 (46%) colorectal cancer cases, respectively. Compared with TIL-absent subtypes (TIME 1 and 4), TIL-present subtypes (TIME 2 and 3) were associated with high-level MSI, high-degree CIMP, BRAF mutation, and higher amounts of neoantigens (p < 0.001). TIME subtypes were not significantly associated with colorectal cancer-specific or overall survival. In conclusion, TIL-present TIME subtypes of colorectal cancer are associated with high levels of MSI and neoantigen load, supporting better responsiveness to cancer immunotherapy. Further studies examining tumor molecular alterations and additional factors in the tumor microenvironment may inform development of immunoprevention and immunotherapy strategies.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thing Rinda Soong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xinmeng Jasmine Mu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Juhong Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, P.R. China
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Scott J Rodig
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Basel MT, Narayanan S, Ganta C, Shreshta TB, Marquez A, Pyle M, Hill J, Bossmann SH, Troyer DL. Developing a xenograft human tumor model in immunocompetent mice. Cancer Lett 2018; 412:256-263. [DOI: 10.1016/j.canlet.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023]
|
15
|
Yan Y, Gao R, Trinh TLP, Grant MB. Immunodeficiency in Pancreatic Adenocarcinoma with Diabetes Revealed by Comparative Genomics. Clin Cancer Res 2017; 23:6363-6373. [PMID: 28684632 PMCID: PMC6022738 DOI: 10.1158/1078-0432.ccr-17-0250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/22/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
Purpose: Pancreatic adenocarcinomas (PAAD) often are not diagnosed until their late stages, leaving no effective treatments. Currently, immunotherapy provides a promising treatment option against this malignancy. However, a set of immunotherapy agents benefit patients with many types of cancer, but not PAAD. Sharing the origin in the same organ, diabetes and PAAD tend to occur concurrently. We aimed to identify the impact of diabetes on immunotherapy of PAAD by conducting a comparative genomics analysis.Experimental Design: We analyzed level 3 PAAD genomics data (RNAseq, miRNAseq, DNA methylation, somatic copy number, and somatic mutation) from The Cancer Genome Atlas (TCGA) and Firehose. The differential molecular profiles in PAAD with/out diabetes were performed by the differential gene expression, pathway analysis, epigenetic regulation, somatic copy-number alteration, and somatic gene mutation.Results: Differential gene expression analysis revealed a strong enrichment of immunogenic signature genes in diabetic individuals, including PD-1 and CTLA4, that were currently targetable for immunotherapy. Pathway analysis further implied that diabetic individuals were defective in immune modulation genes. Somatic copy-number aberration (SCNA) analysis showed a higher frequency of amplification and deletion occurred in the cohort without diabetes. Integrative analysis revealed strong association between differential gene expression, and epigenetic regulations, however, seemed not affected by SCNAs. Importantly, our somatic mutation analysis showed that the occurrence of diabetes in PAAD was associated with a large set of gene mutations encoding genes participating in immune modulation.Conclusions: Our analysis reveals the impact of diabetes on immunodeficiency in PAAD patients and provides novel insights into new therapeutic opportunities. Clin Cancer Res; 23(20); 6363-73. ©2017 AACR.
Collapse
Affiliation(s)
- Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thao L P Trinh
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
16
|
HLA-G 3'UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4) Chemotherapy in Non-Metastatic Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18071366. [PMID: 28653974 PMCID: PMC5535859 DOI: 10.3390/ijms18071366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC) that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4). Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4) toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR) polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity) with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015) and neurotoxicity (OR = 8.78, p = 0.016); rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027). HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017) and neurotoxicity (OR = 11.29, p = 0.009). A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC.
Collapse
|
17
|
Bilgin B, Sendur MAN, Bülent Akıncı M, Şener Dede D, Yalçın B. Targeting the PD-1 pathway: a new hope for gastrointestinal cancers. Curr Med Res Opin 2017; 33:749-759. [PMID: 28055269 DOI: 10.1080/03007995.2017.1279132] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND VEGF, HER2 and EGFR targeted agents are currently used in gastric, esophageal and colorectal cancers. However, treatment outcomes are still poor in most gastrointestinal (GI) cancers. Immune checkpoints are one of the most promising immunotherapy approaches. In this review article, we aim to discuss the efficacy and safety of anti-PD-1/PD-L1 therapies in GI cancers, including gastric, esophageal and colorectal cancer in published or reported recent studies. SCOPE A literature search was made from PubMed and ASCO Annual Meeting abstracts by using the following search keywords: "nivolumab", "pembrolizumab", "avelumab", "GI cancers" "anti-PD1 therapy" and "anti-PD-L1 therapy". The last search was on 2 November 2016. The most important limitation of our review is that most of the data on anti-PD-1/PD-L1 therapies in GI cancers relies on phase 1 and 2 trials. FINDINGS Currently, there are two anti-PD-1 (nivolumab and pembrolizumab) and one anti-PDL1 (atezolizumab) agents approved by FDA. After the treatment efficacy of immune checkpoint blockade was shown in melanoma, renal cell cancer and non-squamous lung cancer, trials which evaluate immune checkpoint blockade in GI cancers are ongoing. Early results of trials have been promising and encouraging for patients with advanced stage gastroesophageal cancer. According to early results of published trials, response to anti-PD1/PD-L1 agents appears to be associated with tumor PD-L1 levels. According to two recently published phase 2 trials, the clinical benefits of immune checkpoint blockade with both nivolumab and pembrolizumab were limited in patients with microsatellite instability (MSI) positive advanced colorectal cancer. However, several phase 2/3 trials are still ongoing. CONCLUSION Both pembrolizumab and nivolumab show promising efficacy with acceptable safety data in published trials in GI cancers, especially in refractory MSI positive metastatic colorectal cancer.
Collapse
Affiliation(s)
- Burak Bilgin
- a Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Mehmet A N Sendur
- a Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Muhammed Bülent Akıncı
- a Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Didem Şener Dede
- a Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Bülent Yalçın
- a Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| |
Collapse
|
18
|
Kruger S, Legenstein ML, Rösgen V, Haas M, Modest DP, Westphalen CB, Ormanns S, Kirchner T, Heinemann V, Holdenrieder S, Boeck S. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017. [PMID: 28638732 DOI: 10.1080/2162402x.2017.1310358] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Up to now, the efficacy of programmed death protein 1/programmed death ligand 1 (PD-1/PD-L1) blockade in pancreatic cancer (PC) remains uncertain. Serum levels of soluble PD-1 and PD-L1 (sPD-1/sPD-L1) have been reported to be independent prognostic factors in solid tumors susceptible to checkpoint blockade. Provenience, regulation and immunologic function of sPD-1 and sPD-L1 in cancer are poorly understood. To the best of our knowledge, sPD-1 and sPD-L1 have not been measured conjointly in any cancer type yet. In contrast to other tumor entities, sPD-1/sPD-L1 levels did not indicate an adverse outcome in a cohort of 41 patients with advanced PC. We observed a close positive correlation of sPD-L1 levels with sPD-1 in patients with advanced PC, suggesting a common provenience and regulation of sPD-1 and sPD-L1 in cancer patients. Higher sPD-L1 levels were present in patients with elevated C-reactive protein or strong tumoral T cell infiltration, while no correlation of sPD-L1 levels with tumoral PD-L1 expression was found. Our findings indicate that sPD-1 and sPD-L1 are markers of systemic inflammation in (pancreatic) cancer. In a subset of PC patients, elevation in sPD-L1 levels might be caused by an inflammatory tumor type - independent of tumoral PD-L1 expression.
Collapse
Affiliation(s)
- Stephan Kruger
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Marie-Louise Legenstein
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Verena Rösgen
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Dominik Paul Modest
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Benedikt Westphalen
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Kirchner
- DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University of Munich, Munich, Germany.,Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Bourdais R, Rousseau B, Pujals A, Boussion H, Joly C, Guillemin A, Baumgaertner I, Neuzillet C, Tournigand C. Polymerase proofreading domain mutations: New opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Crit Rev Oncol Hematol 2017; 113:242-248. [PMID: 28427513 DOI: 10.1016/j.critrevonc.2017.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibition is a new therapeutic strategy that has shown promising efficacy in many cancer types. Significant activity associated with mismatch repair (MMR) deficiency has been observed in hypermutated, microsatellite unstable (MSI) metastatic colorectal cancer (CRC). Beyond deficient-MMR tumors, somatic or germline DNA polymerase D1 (POLD1) or DNA polymerase E (POLE) alterations cause a hypermutated phenotype in CRC. This recently identified and rare subgroup of proficient-MMR tumors may also benefit from immunotherapy. In this review, we provide a comprehensive overview of recent data on CRC tumors harboring POLD1 or POLE mutations, with a focus on their molecular, histological, and clinical features. We also examine the evidence supporting the development of immune checkpoint inhibitors in this specific subgroup of CRC patients.
Collapse
Affiliation(s)
- Rémi Bourdais
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France
| | - Benoît Rousseau
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France; Université Paris Est, Faculté de médecine, Créteil, France; INSERM U955 Equipe 18, Créteil, France
| | - Anaïs Pujals
- Université Paris Est, Faculté de médecine, Créteil, France; AP-HP, Hôpital Henri Mondor, Département de pathologie, Créteil, France; INSERM U955, Equipe 9, Créteil, France
| | - Helene Boussion
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France; Université Paris Est, Faculté de médecine, Créteil, France
| | - Charlotte Joly
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France
| | - Aude Guillemin
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France
| | - Isabelle Baumgaertner
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France; Université Paris Est, Faculté de médecine, EA7375 Cancer Research Lab. (EC2M3) Créteil France
| | - Cindy Neuzillet
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France
| | - Christophe Tournigand
- AP-HP, Hôpital Henri Mondor, service d'oncologie médicale, Créteil, France; Université Paris Est, Faculté de médecine, Créteil, France; Université Paris Est, Faculté de médecine, EA7375 Cancer Research Lab. (EC2M3) Créteil France.
| |
Collapse
|
20
|
Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support Care Cancer 2017; 25:1713-1739. [PMID: 28224235 DOI: 10.1007/s00520-017-3629-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022]
Abstract
Development of biological targeted therapies and immune checkpoint inhibitors has redefined the treatment for many cancers; however, the increasing use of new protocols has led to physicians observing a new spectrum of toxicities. To date, oral adverse events induced by these new anticancer therapies have been mainly reported using nonspecific terminology ("stomatitis," "mucosal inflammation," "mucositis") and remain poorly characterized, with the exception of mammalian target of rapamycin (mTOR) inhibitor-associated stomatitis. Oral toxicities of targeted therapies often display very characteristic features which clearly differ from classic oral injuries observed with cytotoxic chemotherapy and/or radiotherapy. In addition, they frequently affect more than 20% of treated patients and can lead to a significant morbidity or permanent treatment discontinuation. Oral mucosal toxicities described in this review include mTOR inhibitor-associated stomatitis (mIAS); stomatitis, benign migratory glossitis, and osteonecrosis of the jaw associated with multi-targeted kinase inhibitors of the VEGF and PDGF receptors; mucositis induced by EGFR inhibitors (in monotherapy or in combination with head and neck radiotherapy and/or chemotherapy); hyperkeratotic lesions with BRAF inhibitors; pigmentary changes and lichenoid reactions secondary to imatinib; and more recent data on the "Osler-Weber-Rendu-like syndrome" described with the antibody-drug conjugate, TDM-1. Finally, we provide, to our knowledge, the first available structured data on oral toxicities induced by the new recently FDA- and EMA-approved monoclonal antibodies targeting PD-1. Clinical management of these targeted therapy-related oral changes is also discussed.
Collapse
|
21
|
Neuzillet C, Rousseau B, Kocher H, Bourget P, Tournigand C. Unravelling the pharmacologic opportunities and future directions for targeted therapies in gastro-intestinal cancers Part 1: GI carcinomas. Pharmacol Ther 2017; 174:145-172. [PMID: 28223233 DOI: 10.1016/j.pharmthera.2017.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Until the 1990s, cytotoxic chemotherapy has been the cornerstone of medical therapy for gastrointestinal (GI) cancers. Better understanding of the molecular biology of cancer cell has led to the therapeutic revolution of targeted therapies, i.e. monoclonal antibodies or small molecule inhibitors directed against proteins that are specifically overexpressed or mutated in cancer cells. These agents being more specific to cancer cells were expected to be less toxic than cytotoxic agents. Targeted agents have provided clinical benefit in many GI cancer types. For example, antiangiogenics and anti-EGFR therapies have significantly improved survival of patients affected by metastatic colorectal cancer and have deeply changed the therapeutic strategy in this disease. However, their effects have sometimes been disappointing, due to intrinsic or acquired resistance mechanisms (e.g., RAS mutation for anti-EGFR therapies), or to an activity restricted to some tumour settings (e.g., lack of activity in other cancer types, or on the microscopic residual disease in adjuvant setting). Many studies are negative in overall population but positive in some specific patient subgroups (e.g., trastuzumab in HER2-positive gastric cancer), illustrating the importance of patient selection and early identification of predictive biomarkers of response to these therapies. We propose a comprehensive two-part review providing a panoramic approach of the successes and failures of targeted agents in GI cancers to unravel the pharmacologic opportunities and future directions for these agents in GI oncology. In this first part, we will focus on adenocarcinomas and squamous cell carcinomas, for which targeted therapies are mostly used in combination with chemotherapy.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom.
| | - Benoît Rousseau
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hemant Kocher
- Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| |
Collapse
|
22
|
Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget 2016; 7:66212-66225. [PMID: 27517155 PMCID: PMC5323228 DOI: 10.18632/oncotarget.11184] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
AIMS We sought to objectively assess the internal and external validity of patient-derived xenograft (PDX) models as a platform in pre-clinical research into colorectal cancer (CRC). Metastatic disease is the most common cause of death from CRC, and despite significant research, the results of current combination chemotherapy and targeted therapies have been underwhelming for most of this patient group. One of the key factors limiting the success of translational CRC research is the biologically inaccurate models in which new therapies are developed. METHODS We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) guidelines to search Ovid MEDLINE and Embase databases up to July 2015 to identify studies involving PDX models of CRC where the model had been validated across multiple parameters. Data was extracted including host mouse strain, engraftment rate, site of engraftment, donor tumour source and development of metastases in the model. RESULTS Thirteen articles satisfied the inclusion criteria. There was significant heterogeneity amongst the included studies, but overall the median engraftment rate was high (70%) and PDX models faithfully recapitulated the characteristics of their patient tumours on the microscopic, genetic and functional levels. CONCLUSIONS PDX models of CRC have a reasonable internal validity and a high external validity. Developments in xenografting technology are broadening the applications of the PDX platform. However, the included studies could be improved by standardising reporting standards and closed following the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines.
Collapse
Affiliation(s)
- Kai M. Brown
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, New South Wales, Australia
- Cancer Surgery and Metabolism Research Group, The Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Research Group, The Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Anubhav Mittal
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, New South Wales, Australia
- Cancer Surgery and Metabolism Research Group, The Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jaswinder S. Samra
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, New South Wales, Australia
| | - Ross Smith
- Cancer Surgery and Metabolism Research Group, The Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Thomas J. Hugh
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, New South Wales, Australia
- Cancer Surgery and Metabolism Research Group, The Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Moehler M, Delic M, Goepfert K, Aust D, Grabsch HI, Halama N, Heinrich B, Julie C, Lordick F, Lutz MP, Mauer M, Alsina Maqueda M, Schild H, Schimanski CC, Wagner AD, Roth A, Ducreux M. Immunotherapy in gastrointestinal cancer: Recent results, current studies and future perspectives. Eur J Cancer 2016; 59:160-170. [DOI: 10.1016/j.ejca.2016.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 02/23/2016] [Indexed: 12/25/2022]
|
24
|
Narayanan V, Weekes CD. Molecular therapeutics in pancreas cancer. World J Gastrointest Oncol 2016; 8:366-79. [PMID: 27096032 PMCID: PMC4824715 DOI: 10.4251/wjgo.v8.i4.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease.
Collapse
|
25
|
Sinn M, Bahra M, Denecke T, Travis S, Pelzer U, Riess H. Perioperative treatment options in resectable pancreatic cancer - how to improve long-term survival. World J Gastrointest Oncol 2016; 8:248-57. [PMID: 26989460 PMCID: PMC4789610 DOI: 10.4251/wjgo.v8.i3.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Surgery remains the only chance of cure for pancreatic cancer, but only 15%-25% of patients present with resectable disease at the time of primary diagnosis. Important goals in clinical research must therefore be to allow early detection with suitable diagnostic procedures, to further broaden operation techniques and to determine the most effective perioperative treatment of either chemotherapy and/or radiation therapy. More extensive operations involving extended pancreatectomy, portal vein resection and pancreatic resection in resectable pancreatic cancer with limited liver metastasis, performed in specialized centers seem to be the surgical procedures with a possible impact on survival. After many years of stagnation in pharmacological clinical research on advanced pancreatic ductal adenocarcinomas (PDAC) - since the approval of gemcitabine in 1997 - more effective cytotoxic substances (nab-paclitaxel) and combinations (FOLFIRINOX) are now available for perioperative treatment. Additionally, therapies with a broader mechanism of action are emerging (stroma depletion, immunotherapy, anti-inflammation), raising hopes for more effective adjuvant and neoadjuvant treatment concepts, especially in the context of "borderline resectability". Only multidisciplinary approaches including radiology, surgery, medical and radiation oncology as the backbones of the treatment of potentially resectable PDAC may be able to further improve the rate of cure in the future.
Collapse
|
26
|
Wojtowicz ME, Dunn BK, Umar A. Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Semin Oncol 2015; 43:161-172. [PMID: 26970135 DOI: 10.1053/j.seminoncol.2015.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of the immune system to recognize and reject tumors has been investigated for more than a century. However, only recently impressive breakthroughs in cancer immunotherapy have been seen with the use of checkpoint inhibitors. The experience with various immune-based strategies in the treatment of late cancer highlighted the importance of negative impact advanced disease has on immunity. Consequently, use of immune modulation for cancer prevention rather than therapy has gained considerable attention, with many promising results seen already in preclinical and early clinical studies. Although not without challenges, these results provide much excitement and optimism that successful cancer immunoprevention could be within our reach. In this review we will discuss the current state of predominantly primary and secondary cancer immunoprevention, relevant research, potential barriers, and future directions.
Collapse
Affiliation(s)
- Malgorzata E Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer 2015; 15:653-67. [PMID: 26493646 DOI: 10.1038/nrc4017] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past decade, research on primary liver cancers has particularly highlighted the uncommon plasticity of differentiated parenchymal liver cells (that is, hepatocytes and cholangiocytes (also known as biliary epithelial cells)), the role of liver progenitor cells in malignant transformation, the importance of the tumour microenvironment and the molecular complexity of liver tumours. Whereas other reviews have focused on the landscape of genetic alterations that promote development and progression of primary liver cancers and the role of the tumour microenvironment, the crucial importance of the cellular origin of liver cancer has been much less explored. Therefore, in this Review, we emphasize the importance and complexity of the cellular origin in tumour initiation and progression, and attempt to integrate this aspect with recent discoveries in tumour genomics and the contribution of the disrupted hepatic microenvironment to liver carcinogenesis.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy. J Immunol Res 2015; 2015:308574. [PMID: 26579545 PMCID: PMC4633567 DOI: 10.1155/2015/308574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.
Collapse
|
29
|
Neuzillet C, Tijeras-Raballand A, Bourget P, Cros J, Couvelard A, Sauvanet A, Vullierme MP, Tournigand C, Hammel P. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol Ther 2015; 155:80-104. [PMID: 26299994 DOI: 10.1016/j.pharmthera.2015.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second cause of cancer-related death in 2030. PDAC is the poorest prognostic tumor of the digestive tract, with 80% of patients having advanced disease at diagnosis and 5-year survival rate not exceeding 7%. Until 2010, gemcitabine was the only validated therapy for advanced PDAC with a modest improvement in median overall survival as compared to best supportive care (5-6 vs 3 months). Multiple phase II-III studies have used various combinations of gemcitabine with other cytotoxics or targeted agents, most in vain, in attempt to improve this outcome. Over the past few years, the landscape of PDAC management has undergone major and rapid changes with the approval of the FOLFIRINOX and gemcitabine plus nab-paclitaxel regimens in patients with metastatic disease. These two active combination chemotherapy options yield an improved median overall survival (11.1 vs 8.5 months, respectively) thus making longer survival a reasonably achievable goal. This breakthrough raises some new clinical questions about the management of PDAC. Moreover, better knowledge of the environmental and genetic events that underpin multistep carcinogenesis and of the microenvironment surrounding cancer cells in PDAC has open new perspectives and therapeutic opportunities. In this new dynamic context of deep transformation in basic research and clinical management aspects of the disease, we gathered updated preclinical and clinical data in a multifaceted review encompassing the lessons learned from the past, the yet unanswered questions, and the most promising research priorities to be addressed for the next 5 years.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.
| | - Annemilaï Tijeras-Raballand
- Department of Translational Research, AAREC Filia Research, 1 place Paul Verlaine, 92100 Boulogne-Billancourt, France
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Jérôme Cros
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Anne Couvelard
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Alain Sauvanet
- Department of Biliary and Pancreatic Surgery, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Marie-Pierre Vullierme
- Department of Radiology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Pascal Hammel
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
30
|
Affiliation(s)
| | - Joel E Tepper
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Alan P Venook
- University of California, San Francisco Cancer Center, San Francisco, CA
| |
Collapse
|