1
|
Bishop MW. Osteosarcoma: Diagnosis, Treatment, and Emerging Opportunities. Hematol Oncol Clin North Am 2025:S0889-8588(25)00043-7. [PMID: 40368742 DOI: 10.1016/j.hoc.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Osteosarcoma is the most common primary bone malignancy of childhood and adolescence. Despite advances in cures for many pediatric neoplasms, outcomes for osteosarcoma have not significantly changed for nearly 4 decades and treatment is similar for patients with both standard and higher risk disease. Recent progress has been demonstrated with evidence of activity of multitargeted tyrosine kinase inhibitors for patients with advanced osteosarcoma; further study is needed to evaluate their use for newly diagnosed patients. Novel approaches seek to exploit common cell surface antigens (LRRC15 and B7-H3) as well as aberrant DNA repair mechanisms and cell cycle checkpoints.
Collapse
Affiliation(s)
- Michael W Bishop
- Department of Pediatrics, Section of Hematology/Oncology, Arkansas Children's Hospital, 1 Children's Way, Slot# 512-10, Little Rock, AR 72202, USA.
| |
Collapse
|
2
|
Callan AK, Alexander JH, Montgomery NI, Lindberg AW, Scharschmidt TJ, Binitie O. Contemporary surgical management of osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2025; 72 Suppl 2:e31374. [PMID: 39410791 DOI: 10.1002/pbc.31374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 04/08/2025]
Abstract
The incidence of malignant bone tumors has remained relatively stable over the past two decades between 8% and 9% per 1,000,000 in North America. Multidisciplinary treatment is paramount for optimal care combining surgical resection, chemotherapy, and rehabilitation. Surgical treatment aims for a negative margin resection of the sarcoma with a personalized reconstruction plan. Limb salvage surgery (LSS) is possible in the majority of cases; however, amputation (including rotationplasty) may be required or preferred. Reconstruction can be achieved utilizing endoprostheses, allograft, autograft, or a combination of these techniques. Emerging technologies such as 3D printing of implants and cutting guides, and intraoperative navigation have helped to improve options for LSS.
Collapse
Affiliation(s)
- Alexandra K Callan
- Department of Orthopaedics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John H Alexander
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Odion Binitie
- Department of Sarcoma, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
3
|
Li S, Li Z, Wang J, Han X, Zhang L. Cardamom synergizes with cisplatin against human osteosarcoma cells by mTOR-mediated autophagy. Cancer Gene Ther 2025:10.1038/s41417-025-00894-9. [PMID: 40140723 DOI: 10.1038/s41417-025-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Cisplatin (DDP), a frontline chemotherapeutic agent in osteosarcoma (OS) treatment, is frequently paired with other compounds to enhance its therapeutic potency. Cardamom (CAR), a natural flavonoid, exhibits significant inhibitory effects on human OS cells while minimizing toxic side effects. In this study, we combined CAR and DDP to treat OS, revealing that the DDP/CAR combination synergistically inhibits the growth of human OS cells in vitro and in vivo. Network pharmacological analysis indicated that mammalian target of rapamycin (mTOR) may be an important cross-target for DDP/CAR combination. Notably, this combined treatment significantly reduced mTOR phosphorylation and elevated autophagy levels within OS cells. At the mechanistic level, the DDP/CAR regimen enhanced apoptosis and compromised the viability of OS cells by triggering autophagy. This impact was attenuated by the use of the mTOR activator MHY and the autophagy inhibitor hydroxychloroquine (HCQ). Furthermore, in DDP-resistant cell lines, CAR was able to mitigate DDP resistance by bolstering autophagy levels. In general, our results suggest that CAR bolstering autophagy levels DDP against OS cells through the induction of mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Respiratory Medicine, Shapingba Hospital affiliated to Chongqing University, Chongqing, China
| | - Ziyun Li
- Key Laboratory of Clinical Laboratory Diagnostics Designated By Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jiayu Wang
- Key Laboratory of Clinical Laboratory Diagnostics Designated By Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueqian Han
- Key Laboratory of Clinical Laboratory Diagnostics Designated By Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lulu Zhang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Farooq A, Amin A, Bashir S, Fatima M, Hassan M, Sheikh AZ, Tahseen M, Sheikh UN, Asghar K. Evaluation of Indoleamine 2,3-Dioxygenase (IDO) Expression in Osteosarcoma: Insights From a 10-Year Retrospective Cohort. Onco Targets Ther 2025; 18:367-377. [PMID: 40124927 PMCID: PMC11927580 DOI: 10.2147/ott.s494899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Osteosarcoma, a prevalent bone malignancy in children and adolescents, is currently treated through surgical resection and chemotherapy. Advancements in cancer research are targeting immune checkpoint molecules, such as indoleamine 2,3-dioxygenase, to advance the development of immunotherapy. However, the scarcity of research on IDO in osteosarcoma results in an absence of comprehensive data, highlighting the conflicting findings surrounding IDO's role in various cancers. Our study aims to explore IDO expression in primary tumors and metastatic lesions among osteosarcoma patients, investigating its association with clinicopathological characteristics and assessing its impact on survival outcomes. Methods 150 patients diagnosed with osteosarcoma were selected between 2009 and 2019 from the Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan. FFPE tissue samples of primary tumors and metastatic lesions were retrieved to conduct immunohistochemical analysis. Moreover, the clinicopathological data of these patients were gathered from the hospital information system. Results Out of 150 patients, primary tumors were accessible for 134 individuals, while metastatic lesions were available for 49 patients. IDO expression was identified in 9 (6.71%) primary tumors and 2 (4.08%) metastatic lesions among osteosarcoma patients. Furthermore, 3 patients exhibited high expression (27.3%), while 8 displayed low IDO expression (72.7%). Conclusion Our comprehensive study findings indicate that most osteosarcoma patients do not exhibit expression of IDO. This absence of expression aligns with the characteristic "cold" tumor microenvironment observed in osteosarcoma. Further investigations are imperative to provide deeper insights into the intricacies of this immunomodulatory factor in the context of osteosarcoma.
Collapse
Affiliation(s)
- Asim Farooq
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Aatif Amin
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Shaarif Bashir
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Merium Fatima
- Department of Pharmacy, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Hassan
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Ali Zafar Sheikh
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Umer Nisar Sheikh
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Kashif Asghar
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
5
|
Song G, Tang Q, Lu J, Xu H, Wang A, Deng C, Wu H, Hu J, Zhu X, Wang J. Lenvatinib Monotherapy Versus Lenvatinib in Combination with PD-1 Blockades as Re-Challenging Treatment for Patients with Metastatic Osteosarcoma: A Real-World Study. Drug Des Devel Ther 2025; 19:1119-1128. [PMID: 39991085 PMCID: PMC11846616 DOI: 10.2147/dddt.s501742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose To explore the efficacy and safety of lenvatinib, either as a monotherapy or in combination with programmed death-1 (PD-1) blockades, as re-challenging treatment in patients with metastatic osteosarcoma following treatment failure with previous tyrosine kinase inhibitors (TKIs). Patients and Methods We retrospectively reviewed the data of 26 patients with metastatic osteosarcoma who received rechallenge treatment with lenvatinib monotherapy or lenvatinib plus PD-1 blockades after failure of the initial TKI treatment from January 2020 to June 2024 in our center. The primary endpoint was progression-free survival (PFS). Secondary endpoints included objective response rate (ORR), clinical benefit rate (CBR), and safety. Results Of the 26 patients, ORR and CBR were 11.5% and 61.5%, respectively. The median duration of follow-up was 15 months (range, 4.3-25.6) with a median PFS of 7.2 months (95% CI: 1.9-12.5). A total of 14 patients received lenvatinib as a monotherapy, and 12 received a combination therapy of lenvatinib and PD-1 blockade. No significant differences were observed in ORR (0 vs 25%) and CBR (57.1 vs 66.7%) between the two groups. Additionally, the combination cohort exhibited a significantly longer PFS compared to the monotherapy cohort (8.6 [95% CI: 5.0-12.1] vs 4.0 months [95% CI: 1.0-7.0], p = 0.022). 96.2% of patients experienced grade 1 or more adverse events (AEs). Grade 3 adverse events occurred in 6 (23.1%) patients. The safety profiles of the lenvatinib and PD-1 blockade combination group were found to be comparable to those of the lenvatinib monotherapy group. Conclusion Our data indicated that patients with metastatic osteosarcoma could potentially benefit from lenvatinib rechallenge after progress with initial TKI treatment. The combination of lenvatinib and PD-1 blockade therapy demonstrated promising survival outcomes in patients with metastatic osteosarcoma, accompanied by a manageable toxicity profile.
Collapse
Affiliation(s)
- Guohui Song
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Anqi Wang
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Hao Wu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Jinxin Hu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| |
Collapse
|
6
|
Wu J, Hao X, Qi L, Xu W, Yin C, Tang Y, Sun P, Liao D, Hu X, Tang T, Tu C, Xiang D, Li Z. Assembly of a biomimetic copper-based nanocomplex for alleviating hypoxia to enhance cuproptosis against osteosarcoma and lung metastasis. Acta Biomater 2025; 193:348-361. [PMID: 39710219 DOI: 10.1016/j.actbio.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Osteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol. Simultaneously, we integrated catalase (CAT) to alleviate tumor hypoxia, thereby inducing a greater reliance of tumor cells on aerobic respiration and enhancing cuproptosis sensitivity. In vitro analyses revealed that the nanocomplex exhibited potent cytotoxicity and displayed hallmark characteristics of cuproptosis. In vivo trials further validated targeted tumor accumulation, resulting in the suppression of tumor growth and lung metastasis. An augmentation in the proportion of activated immune cells in both tumor and draining lymph nodes was observed. The improvement of immunosuppressive microenvironment facilitated a synergistic antitumor effect with cuproptosis. The therapeutic efficacy was further evidenced in two osteosarcoma models, highlighting the potential as a safe and effective strategy against osteosarcoma and lung metastasis. STATEMENT OF SIGNIFICANCE: Osteosarcoma tissues exhibit a marked increase in the expression of proteins FDX1 and DLAT, which are crucial for cuproptosis. Moreover, cells that depend on mitochondrial respiration are more susceptible to cuproptosis. Here we developed a biomimetic copper-based nanocomplex to trigger cuproptosis against osteosarcoma and lung metastases. The nanocomplex demonstrated excellent biocompatibility and tumor targeting. Catalase incorporating facilitated oxygen generation within tumor microenvironment and alleviated hypoxia, thereby inducing a greater reliance of tumor cells on aerobic respiration and enhancing cuproptosis sensitivity. Simultaneously, the released Cu-elesclomol complexes induced proteotoxic stress responses and efficiently elicited cuproptosis, leading to increased release of proinflammatory factors and triggering anti-tumor immune activation. Our strategy holds promise for osteosarcoma treatment by inducing cuproptosis and achieving potent tumor suppression.
Collapse
Affiliation(s)
- Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Chi Yin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Pengcheng Sun
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha 410031, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| |
Collapse
|
7
|
Palmerini E, Lopez Pousa A, Grignani G, Redondo A, Hindi N, Provenzano S, Sebio A, Lopez Martin JA, Valverde C, Martinez Trufero J, Gutierrez A, de Alava E, Aparisi Gomez MP, D'Ambrosio L, Collini P, Bazzocchi A, Moura DS, Ibrahim T, Stacchiotti S, Broto JM. Nivolumab and sunitinib in patients with advanced bone sarcomas: A multicenter, single-arm, phase 2 trial. Cancer 2025; 131:e35628. [PMID: 39540661 DOI: 10.1002/cncr.35628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Herein, we present the results of the phase 2 IMMUNOSARC study (NCT03277924), investigating sunitinib and nivolumab in adult patients with advanced bone sarcomas (BS). METHODS Progressing patients with a diagnosis of BS were eligible. Treatment was comprised of sunitinib (37.5 mg/day on days 1-14, 25 mg/day afterword) plus nivolumab (3 mg/kg every 2 weeks). Primary end point was progression-free survival rate (PFSR) at 6 months based on central radiology review. Secondary end points were overall survival (OS), overall response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, and safety. RESULTS A total of 46 patients were screened, 40 patients entered the study, and 38 underwent central radiological review and were evaluable for primary end point. Median age was 47 years (range, 21-74). Histologies include 17 (43%) osteosarcoma, 14 chondrosarcoma (35%, 10 conventional, four dedifferentiated [DDCS]), eight (20%) Ewing sarcoma, and one (2%) undifferentiated pleomorphic sarcoma. The PFSR at 6 months was 42% (95% confidence interval [CI], 27-58). With a median follow-up of 39.8 months (95% CI, 37.9-41.7), the median PFS and OS were 3.8 months (95% CI, 2.7-4.8) and 11.9 months (95% CI, 5.6-18.2). ORR by RECIST was 5%, with two of 38 partial responses (one of four DDCS and one of 17 osteosarcoma), 19 of 38 (50%) stable disease, and 17 of 38 (45%) progressions. Grade ≥3 adverse events were neutropenia (six of 40, 15%), anemia (5/40, hypertension (6/40, 15%), 12.5%), ALT/AST elevation (5/40, 12.5%), and pneumonitis (1/40, 2.5%). Seventeen percent of patients discontinued treatment due to toxicity, including a treatment-related grade 5 pneumonitis CONCLUSION: The trial met its primary end point in the BS cohort with >15% of patients progression-free at 6 months. However, the toxicity profile of this regimen was relevant.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Andres Redondo
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nadia Hindi
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Salvatore Provenzano
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Ana Sebio
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Enrique de Alava
- Institute of Biomedicine of Sevilla, IBiS/Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Maria Pilar Aparisi Gomez
- Department of Radiology, Auckland City Hospital, Auckland District Health Board, Grafton, Auckland, New Zealand
- Department of Radiology, IMSKE, Valencia, Spain
| | - Lorenzo D'Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Paola Collini
- Soft Tissue Tumor Pathology, Advanced Diagnostics Department, IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David S Moura
- Medical Oncology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Javier Martin Broto
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
8
|
Gaspar N, Hung GY, Strauss SJ, Campbell-Hewson Q, Dela Cruz FS, Glade Bender JL, Koh KN, Whittle SB, Chan GCF, Gerber NU, Palmu S, Morgenstern DA, Longhi A, Baecklund F, Lee JA, Locatelli F, Márquez Vega C, Janeway KA, McCowage G, McCabe MG, Bidadi B, Huang J, McKenzie J, Okpara CE, Bautista F. Lenvatinib Plus Ifosfamide and Etoposide in Children and Young Adults With Relapsed Osteosarcoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol 2024; 10:1645-1653. [PMID: 39418029 PMCID: PMC11581622 DOI: 10.1001/jamaoncol.2024.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 10/19/2024]
Abstract
Importance The combination of ifosfamide and etoposide (IE) is commonly used to treat relapsed or refractory osteosarcoma; however, second-line treatment recommendations vary across guidelines. Objective To evaluate whether the addition of lenvatinib to IE (LEN-IE) improves outcomes in children and young adults with relapsed or refractory osteosarcoma. Design, Setting, and Participants The OLIE phase II, open-label, randomized clinical trial was conducted globally across Europe, Asia and the Pacific, and North America. From March 22, 2020, through November 11, 2021, the trial enrolled patients aged 2 to 25 years with high-grade osteosarcoma, measurable or evaluable disease per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1), and 1 to 2 prior lines of systemic treatment. The data analyses were performed between March 22, 2020 (first patient in) and June 22, 2022 (data cutoff for the primary analysis), and September 29, 2023 (end of study final database lock). Interventions The OLIE trial assessed the efficacy and safety of lenvatinib (14 mg/m2 taken orally once daily) combined with up to 5 cycles of ifosfamide (3000 mg/m2 intravenously) and etoposide (100 mg/m2 intravenously) on days 1 to 3 of each cycle vs IE alone at the same doses. Patients randomized to IE could cross over to receive lenvatinib upon disease progression by independent imaging review. Main Outcomes and Measures The primary end point was progression-free survival (PFS) per RECIST 1.1 by independent imaging review. The Kaplan-Meier method was used to estimate the PFS distribution, with a prespecified 1-sided significance threshold of .025 by stratified log-rank test. Secondary end points included PFS rate at 4 months and overall survival. Adverse events were summarized using descriptive statistics. Results A total of 81 patients were enrolled (median [IQR] age, 15.0 [12.0-18.0] years; 46 males [56.8%]), with 40 in the LEN-IE arm and 41 in the IE arm. Median PFS was 6.5 months (95% CI, 5.7-8.2 months) for the LEN-IE arm and 5.5 months (95% CI, 2.9-6.5 months) for the IE arm (hazard ratio [HR], 0.54; 95% CI, 0.27-1.08; 1-sided P = .04). The rate of PFS at 4 months was 76.3% (95% CI, 59.3%-86.9%) in the LEN-IE arm and 66.0% (95% CI, 47.7%-79.2%) in the IE arm. Median overall survival was 11.9 months (95% CI, 10.1 months to not estimable) with LEN-IE and 17.4 months (95% CI, 14.2 months to not estimable) with IE (HR, 1.28; 95% CI, 0.60-2.70; 1-sided nominal P = .75). Grade 3 or higher treatment-related adverse events occurred in 35 of 39 patients (89.7%) in the LEN-IE arm and 31 of 39 patients (79.5%) in the IE arm. Conclusions and Relevance Although LEN-IE did not meet prespecified statistical significance for improved PFS vs IE, this study demonstrates the importance of international collaboration and randomized clinical trials in patients with relapsed or refractory osteosarcoma and may inform future trial design. Trial Registration ClinicalTrials.gov Identifier: NCT04154189.
Collapse
Affiliation(s)
- Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sandra J. Strauss
- London Sarcoma Service, University College London Hospital NHS Trust, London, United Kingdom
| | - Quentin Campbell-Hewson
- The Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julia L. Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sarah B. Whittle
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nicolas U. Gerber
- Department of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Sauli Palmu
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, Tampere, Finland
| | - Daniel A. Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Longhi
- Chemotherapy Service, Istituto Ortopedico Rizzoli, Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Fredrik Baecklund
- Paediatric Oncology Unit, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jun Ah Lee
- Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Katherine A. Janeway
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey McCowage
- Cancer Centre for Children, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Martin G. McCabe
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Behzad Bidadi
- Clinical Research, Merck & Co Inc, Rahway, New Jersey
| | - Jie Huang
- Biostatistics, Eisai Inc, Nutley, New Jersey
| | - Jodi McKenzie
- Oncology Business Group, Eisai Inc, Nutley, New Jersey
| | | | - Francisco Bautista
- Hospital del Niño Jesús, Madrid, Spain
- Now with Princess Maxima Centrum for Pediatric Cancer, Utrecht, the Netherlands
| |
Collapse
|
9
|
Williams LA, Barragan S, Lu Z, Weigel BJ, Spector LG. Sex differences in osteosarcoma survival across the age spectrum: A National Cancer Database analysis (2004-2016). Cancer Epidemiol 2024; 92:102565. [PMID: 38575425 DOI: 10.1016/j.canep.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Osteosarcoma displays a bimodal peak in incidence in adolescence and later adulthood. Males are more frequently diagnosed with osteosarcoma in both periods. Males have worse survival than females, which is generally poor at 30-70% 5-years post diagnosis, depending on age, but treatment received is often unaccounted for in survival analyses. METHODS Therefore, we estimated sex differences in survival for children and adults stratifying by treatment received and other disease characteristics using the National Cancer Database (2004-2016, n=9017). We estimated sex differences in long-term survival using Kaplan Meier survival curves and Log-Rank p-values. We also estimated hazard ratios (HR) and 95% confidence intervals (CIs) as the measure of association between sex and death using Cox regression. RESULTS In all age groups, cases were predominantly male (52-58%). In Kaplan-Meier analyses, males had worse overall survival than females for 0-19, 20-39, and ≥60-year-olds (Log-Rank p<0.05). Females had higher 5- and 10-year survival percentages in all age groups. In adjusted Cox models, males had a higher risk of death among 0-19-year-olds (HRoverall: 1.24, 95% CI: 1.06-1.44; HRnon-metastatic disease: 1.35, 95% CI: 1.12, 1.63, HRlower limb tumors: 1.31, 95% CI: 1.09-1.59). Among 20-39-year-olds, males had an increased risk of death when receiving surgery only (HR: 4.67, 95% CI: 1.44, 15.09). Among those ≥60-year-olds, males had a suggestive increased risk of death overall (HR: 1.17, 95% CI: 0.99-1.39) and a higher risk of death based on some tumor locations, (HRupper limb: 2.52, 95% CI: 1.24, 5.11; HRmidline: 1.36, 95% CI: 1.02, 1.82). CONCLUSIONS Our findings suggest that the worse survival among young males compared to females with osteosarcoma persisted after accounting for many major disease characteristics, including treatment received. Collectively, our work points toward other unexplored mechanisms beyond treatment, potentially biologic or otherwise, which may be driving the observed sex differences in long-term survival.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Sofia Barragan
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Weigel
- Department of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S, DeRenzo C. Redirecting B7-H3.CAR T Cells to Chemokines Expressed in Osteosarcoma Enhances Homing and Antitumor Activity in Preclinical Models. Clin Cancer Res 2024; 30:4434-4449. [PMID: 39101835 PMCID: PMC11443211 DOI: 10.1158/1078-0432.ccr-23-3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Collapse
MESH Headings
- Osteosarcoma/immunology
- Osteosarcoma/therapy
- Osteosarcoma/pathology
- Osteosarcoma/genetics
- Animals
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/immunology
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Xenograft Model Antitumor Assays
- Chemokines/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cell Movement
Collapse
Affiliation(s)
- Lindsay J Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aaron B Ross
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra Beckett
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Shepphard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
11
|
Yang Y, Zhou Y, Wang J, Zhou Y, Watowich SS, Kleinerman ES. CD103 + cDC1 Dendritic Cell Vaccine Therapy for Osteosarcoma Lung Metastases. Cancers (Basel) 2024; 16:3251. [PMID: 39409873 PMCID: PMC11482638 DOI: 10.3390/cancers16193251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We generated a CD103+DC vaccine using K7M3 OS cell lysates (cDCV) and investigated its ability to induce regression of primary tumors, established lung metastases, and a systemic immune response. METHODS A bilateral tumor model was used to assess cDCV therapy efficacy and systemic immunity induction. K7M3 cells were injected into mice bilaterally. Right-sided tumors received PBS (control) or cDCV. Left-sided tumors were untreated. Tumor growth was compared between the vaccine-treated and untreated tumor on the contralateral side and compared to the control group. The immune cell profiles of the tumors, and tumor-draining lymph nodes (TdLNs) and spleen were evaluated. To determine the efficacy of systemic cDCV therapy against established lung metastases, K7M3 cells were injected intratibially. Leg amputation was performed 5 weeks later. Mice were treated intravenously with PBS or cDCV and euthanized 6 weeks later. Lungs, TdLNs and spleen were collected. The number and size of the lung nodules were quantified. The immune cell profile of tumor, and lymph nodes and spleen were also evaluated. Using this same model, we evaluated the effect of cDCV + anti-CTLA-4. RESULTS cDCV therapy inhibited the treated and untreated tumors and increased the number of T-cells in these tumors and the lymph nodes compared to control-treated mice. Systemic cDCV therapy administered following amputation decreased the size and number of lung metastases, and increased T-cell numbers in the tumor and lymph nodes. Combining anti-CTLA-4 with cDCV therapy increased cDCV efficacy against lung metastases. CONCLUSIONS Intratumor cDCV generated a systemic immune response inhibiting the growth of both the treated and untreated tumors, with increased T-cells in the tumor and lymph nodes. Systemic cDCV was effective against established lung metastases. Efficacy was increased by anti-CTLA4. cDCVs may provide a novel therapeutic approach for relapsed/metastatic OS patients.
Collapse
Affiliation(s)
- Yuanzheng Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - You Zhou
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
| | - Eugenie S. Kleinerman
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
12
|
Reed DR, Tulpule A, Metts J, Trucco M, Robertson-Tessi M, O'Donohue TJ, Iglesias-Cardenas F, Isakoff MS, Mauguen A, Shukla N, Dela Cruz FS, Tap W, Kentsis A, Morris CD, Hameed M, Honeyman JN, Behr GG, Sulis ML, Ortiz MV, Slotkin E. Pediatric Leukemia Roadmaps Are a Guide for Positive Metastatic Bone Sarcoma Trials. J Clin Oncol 2024; 42:2955-2960. [PMID: 38843482 PMCID: PMC11534082 DOI: 10.1200/jco.23.02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 08/30/2024] Open
Abstract
ALL cures require many MRD therapies. This strategy should drive experiments and trials in metastatic bone sarcomas.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Metts
- Johns Hopkins All Children's Hospital, St Petersburg, FL
| | | | | | - Tara J O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carol D Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua N Honeyman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gerald G Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
Laetsch TW, Ludwig K, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey B, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Mhlanga J, Fox E, Weigel BJ, Hawkins DS, Mooney MM, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Phase II Study of Samotolisib in Children and Young Adults With Tumors Harboring Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Pathway Alterations: Pediatric MATCH APEC1621D. JCO Precis Oncol 2024; 8:e2400258. [PMID: 39298693 PMCID: PMC11581706 DOI: 10.1200/po.24.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE Patients age 1-21 years with relapsed or refractory solid and CNS tumors were assigned to phase II studies of molecularly targeted therapies on the National Cancer Institute-Children's Oncology Group (NCI-COG) Pediatric Molecular Analysis for Therapy Choice (MATCH) trial. Patients whose tumors harbored predefined genetic alterations in the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway and lacked mitogen-activated protein kinase pathway activating alterations were treated with the PI3K/mTOR inhibitor samotolisib. METHODS Patients received samotolisib twice daily in 28-day cycles until disease progression or unacceptable toxicity. A rolling 6 limited dose escalation was performed as, to our knowledge, this was the first pediatric study of samotolisib. The primary end point was the objective response rate; secondary end points included progression-free survival (PFS) and the recommended phase II dose and toxicity of samotolisib in children. RESULTS A total of 3.4% (41/1,206) of centrally tested patients were matched to this arm. Seventeen patients were treated. Among treated patients, the most common diagnoses included osteosarcoma (n = 6) and high-grade glioma (n = 5) harboring alterations in phosphatase and tensin homolog (n = 6), PIK3CA (n = 5), and tuberous sclerosis complex 2 (n = 3). No objective responses or prolonged stable disease were observed. Three-month PFS was 12% (95% CI, 2 to 31). Two patients experienced dose-limiting toxicities (mucositis and pneumonitis). Dose level 2 (115 mg/m2/dose twice daily) was determined to be the recommended phase II dose of samotolisib in children. CONCLUSION This nationwide study was successful at identifying patients and evaluating the efficacy of molecularly targeted therapy for rare molecular subgroups of patients in a histology-agnostic fashion. Unfortunately, there was no activity of samotolisib against tumors with PI3K/mTOR pathway alterations. Prospective trials such as the NCI-COG Pediatric MATCH are necessary to evaluate the efficacy of molecularly targeted therapies given their increasing use in clinical practice.
Collapse
Affiliation(s)
- Theodore W Laetsch
- Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA
| | | | | | | | - David R Patton
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Brent Coffey
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Joel M Reid
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN
| | - Jin Piao
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Todd A Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stacey L Berg
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Joyce Mhlanga
- Washington University School of Medicine, St Louis, MO
| | | | | | - Douglas S Hawkins
- Seattle Children's Hospital and University of Washington, Seattle, WA
| | - Margaret M Mooney
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Nita L Seibel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
14
|
Green D, van Ewijk R, Tirtei E, Andreou D, Baecklund F, Baumhoer D, Bielack SS, Botchu R, Boye K, Brennan B, Capra M, Cottone L, Dirksen U, Fagioli F, Fernandez N, Flanagan AM, Gambarotti M, Gaspar N, Gelderblom H, Gerrand C, Gomez-Mascard A, Hardes J, Hecker-Nolting S, Kabickova E, Kager L, Kanerva J, Kester LA, Kuijjer ML, Laurence V, Lervat C, Marchais A, Marec-Berard P, Mendes C, Merks JH, Ory B, Palmerini E, Pantziarka P, Papakonstantinou E, Piperno-Neumann S, Raciborska A, Roundhill EA, Rutkauskaite V, Safwat A, Scotlandi K, Staals EL, Strauss SJ, Surdez D, Sys GM, Tabone MD, Toulmonde M, Valverde C, van de Sande MA, Wörtler K, Campbell-Hewson Q, McCabe MG, Nathrath M. Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement. Clin Cancer Res 2024; 30:3395-3406. [PMID: 38869831 PMCID: PMC11334773 DOI: 10.1158/1078-0432.ccr-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Roelof van Ewijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Elisa Tirtei
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Dimosthenis Andreou
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Fredrik Baecklund
- Pediatric Oncology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Baumhoer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| | - Stefan S. Bielack
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Bernadette Brennan
- Paediatric Oncology, Royal Manchester Children’s Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom.
| | - Michael Capra
- Haematology/Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland.
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Franca Fagioli
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Natalia Fernandez
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
| | - Adrienne M. Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- U1015, Université Paris-Saclay, Villejuif, France.
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Craig Gerrand
- Orthopaedic Oncology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Anne Gomez-Mascard
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.
- EQ ONCOSARC, CRCT Inserm/UT3, ERL CNRS, Toulouse, France.
| | - Jendrik Hardes
- Tumour Orthopaedics, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hecker-Nolting
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Edita Kabickova
- Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic.
| | - Leo Kager
- Pediatrics, St Anna Children’s Hospital, Medical University Vienna, Vienna, Austria.
- St Anna Children’s Cancer Research Institute, Vienna, Austria.
| | - Jukka Kanerva
- Hematology-Oncology and Stem Cell Transplantation, HUS Helsinki University Hospital, New Children’s Hospital, Helsinki, Finland.
| | - Lennart A. Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Marieke L. Kuijjer
- Computational Biology and Systems Medicine Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
- Pathology, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Cyril Lervat
- Department of Pediatrics and AYA Oncology, Centre Oscar Lambret, Lille, France.
| | - Antonin Marchais
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Perrine Marec-Berard
- Institute of Hematology and Pediatric Oncology, Léon Bérard Center, Lyon, France.
| | - Cristina Mendes
- Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.
| | - Johannes H.M. Merks
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Benjamin Ory
- School of Medicine, Nantes Université, Nantes, France.
| | - Emanuela Palmerini
- Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Orthopedico Rizzoli, Bologna, Italy.
| | - Pan Pantziarka
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
- Anticancer Fund, Meise, Belgium.
- The George Pantziarka TP53 Trust, London, United Kingdom.
| | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece.
| | | | - Anna Raciborska
- Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland.
| | - Elizabeth A. Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Vilma Rutkauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Akmal Safwat
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Eric L. Staals
- Orthopaedics and Trauma, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Sandra J. Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust, UCL Cancer Institute, London, United Kingdom.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - Gwen M.L. Sys
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Belgium.
| | - Marie-Dominique Tabone
- Department of Hematology and Oncology, A. Trousseau Hospital, Sorbonne University, APHP, Paris, France.
| | - Maud Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Claudia Valverde
- Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Spain.
| | | | - Klaus Wörtler
- Musculoskeletal Radiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Quentin Campbell-Hewson
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Martin G. McCabe
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom.
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Michaela Nathrath
- Children’s Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany.
| |
Collapse
|
15
|
Pearson AD, DuBois SG, Macy ME, de Rojas T, Donoghue M, Weiner S, Knoderer H, Bernardi R, Buenger V, Canaud G, Cantley L, Chung J, Fox E, Friend J, Glade-Bender J, Gorbatchevsky I, Gore L, Gupta A, Hawkins DS, Juric D, Lang LA, Leach D, Liaw D, Lesa G, Ligas F, Lindberg G, Lindberg W, Ludwinski D, Marshall L, Mazar A, McDonough J, Nysom K, Ours C, Pappo A, Parsons DW, Rosenfeld A, Scobie N, Smith M, Taylor D, Weigel B, Weinstein A, Karres D, Vassal G. Paediatric strategy forum for medicinal product development of PI3-K, mTOR, AKT and GSK3β inhibitors in children and adolescents with cancer. Eur J Cancer 2024; 207:114145. [PMID: 38936103 DOI: 10.1016/j.ejca.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.
Collapse
Affiliation(s)
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | | | | | | | | | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA USA
| | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | - John Chung
- Bayer Healthcare Pharmaceuticals, Whippany, NJ, USA
| | | | | | | | | | | | - Abha Gupta
- The Hospital for Sick Children (SickKids), Princess Margaret Hospital Toronto, Canada
| | | | | | - Leigh Anna Lang
- Rally Foundation for Childhood Cancer Research, Atlanta, GA, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | | | | | | | - Lynley Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | | | - Christopher Ours
- National Human Genome Research Institute/National Institutes of Health, MD, USA
| | | | | | | | | | | | | | | | - Amy Weinstein
- Pediatric Brain Tumor Foundation of the US, Atlanta, USA
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
16
|
Oberoi S, Qumseya A, Xue W, Venkatramani R, Weiss AR. Outcome of patients with relapsed or refractory nonrhabdomyosarcoma soft tissue sarcomas enrolled in phase 2 cooperative group clinical trials: A report from the Children's Oncology Group. Cancer 2024; 130:2493-2502. [PMID: 38470405 PMCID: PMC11214599 DOI: 10.1002/cncr.35276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The aim of this study was to estimate the event-free survival (EFS) of children and young adults with relapsed or refractory nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) treated in nonrandomized phase 2 studies conducted by the Children's Oncology Group (COG) and predecessor groups to establish a benchmark EFS for future phase 2 NRSTS trials evaluating the activity of novel agents. METHODS A retrospective analysis of patients with recurrent or refractory NRSTS prospectively enrolled in nonrandomized phase 2 COG and predecessor group trials between 1994 and 2015 was conducted. EFS was defined as disease progression/relapse or death and calculated via the Kaplan-Meier method. The log-rank test and relative risk regression were used to compare EFS distribution by age at enrollment, sex, race, NRSTS histology, prior lines of therapy, calendar year of trial, and type of radiographic response. RESULTS In total, 137 patients were enrolled in 13 phase 2 trials. All trials used radiographic response rate as a primary outcome, and none of the agents used were considered active on the basis of trial-specified thresholds. The estimated median EFS and 6-month EFS of the entire study cohort was 1.5 months (95% confidence interval [CI], 1.3-1.8 months) and 19.4% (95% CI, 12.7%-26%), respectively. No difference in EFS was observed by age at enrollment, sex, race, NRSTS histology subtype, prior lines of therapies, and trial initiation year. EFS significantly differed by radiographic response. CONCLUSIONS The EFS for children and young adults with relapsed or refractory NRSTS remains suboptimal. Established EFS can be referenced as a benchmark for future single-agent phase 2 trials incorporating potentially active novel agents in this population.
Collapse
Affiliation(s)
- Sapna Oberoi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Amira Qumseya
- Department of Biostatistics, College of Public Health and Health Professions College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Xue
- Department of Biostatistics, College of Public Health and Health Professions College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Aaron R Weiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Maine Medical Center, Portland, Maine, USA
| |
Collapse
|
17
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
18
|
Metts J, Xue W, Gao Z, Oberoi S, Weiss AR, Venkatramani R, Harrison DJ. Event-free survival in relapsed and refractory rhabdomyosarcoma treated on cooperative group phase II trials: A report from the Children's Oncology Group. Pediatr Blood Cancer 2024; 71:e31009. [PMID: 38627882 PMCID: PMC11180298 DOI: 10.1002/pbc.31009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/24/2024]
Abstract
BACKGROUND Novel therapies are needed for relapsed and refractory rhabdomyosarcoma (RRMS). Phase II clinical trials in RRMS have typically utilized radiologic response as the primary activity endpoint, an approach that poses several limitations in RRMS. In this analysis, we aimed to estimate an event-free survival (EFS) endpoint for RRMS that could be used as a benchmark for future studies. PROCEDURE We performed a retrospective study of patients with RRMS enrolling on 13 single-agent phase II Children's Oncology Group and legacy group trials from 1997 to 2016. All included trials used radiographic response as their primary activity endpoint. Six-month EFS was estimated from time of trial enrollment with 95% confidence intervals. Clinical characteristics, including trial of enrollment, sex, age, race, histology, number of prior chemotherapies, and radiographic response were evaluated for their impact on 6-month EFS. RESULTS We identified 175 patients across 13 trials. The 6-month EFS was 16.8% (11.6%-22.8%). No differences were seen in 6-month EFS based on age, sex, race, or histology. There were nonsignificant trends toward improved 6-month EFS for patients with less than or equal to two prior lines of therapy versus higher than two, for patients enrolled on trials that achieved their primary radiographic response endpoint versus trials that did not, and for patients who achieved complete or partial response compared to those achieving stable disease. CONCLUSIONS The prognosis of RRMS enrolled on single-agent phase II trials is poor. This pooled 6-month EFS of RRMS on single-agent trials may be used as a RRMS-specific benchmark for future single-agent phase II trials.
Collapse
Affiliation(s)
- Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St Petersburg, FL, USA
| | - Wei Xue
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Zhengya Gao
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Sapna Oberoi
- Department of Pediatric Hematology/Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron R. Weiss
- Department of Pediatrics, Maine Medical Center, Portland, ME, USA
| | | | - Douglas J Harrison
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Schuetze S, Rothe M, Mangat PK, Garrett-Mayer E, Meric-Bernstam F, Calfa CJ, Farrington LC, Livingston MB, Wentzel K, Behl D, Kier Y, Marr AS, von Mehren M, Press JZ, Thota R, Grantham GN, Gregory A, Hinshaw DC, Halabi S, Schilsky RL. Palbociclib in Patients With Soft Tissue Sarcoma With CDK4 Amplifications: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2400219. [PMID: 39013131 DOI: 10.1200/po.24.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Targeted Agent and Profiling Utilization Registry (TAPUR) is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results of a cohort of patients with soft tissue sarcoma with cyclin-dependent kinase 4 (CDK4) amplification treated with palbociclib are reported. METHODS Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0 to 2, adequate organ function, and no standard treatment options. The primary end point was disease control (DC), defined as objective response (OR) or stable disease (SD) of at least 16+ weeks duration (SD16+) according to RECIST v1.1. The DC rate was estimated with a 90% CI. Secondary end points included OR, progression-free survival (PFS), overall survival (OS), duration of response, duration of SD, and safety. RESULTS Forty-two patients with CDK4 amplification were enrolled. One patient was not evaluable for efficacy. One patient with partial response and 18 with SD16+ were observed for DC and OR rates of 46% (90% CI, 36 to 100) and 2% (95% CI, <1 to 13), respectively. Median PFS was 16 weeks (95% CI, 9 to 28) and median OS was 69 weeks (95% CI, 31 to 111) for evaluable patients. Twenty patients had at least one grade 3 to 4 adverse event (AE) at least possibly related to palbociclib, including alanine aminotransferase increase, anemia, fatigue, hypophosphatemia, leukopenia, neutropenia, and thrombocytopenia. No serious AEs were reported. CONCLUSION Palbociclib met prespecified criteria to declare a signal of antitumor activity in patients with sarcoma and CDK4 amplification.
Collapse
Affiliation(s)
- Scott Schuetze
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | - Carmen J Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | | | | | - Kristopher Wentzel
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | - Deepti Behl
- Sutter Sacramento Medical Center, Sacramento, CA
| | - Yelena Kier
- Cancer Research Consortium of West Michigan, Grand Rapids, MI
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tirtei E, Campello A, Sciannameo V, Asaftei SD, Meazza C, Sironi G, Longhi A, Ibrahim T, Tamburini A, Coccoli L, Crocco F, Cagnazzo C, De Luna E, Quarello P, Berchialla P, Fagioli F. Prolonged 14-day continuous infusion of high-dose ifosfamide for patients with relapsed and refractory high-grade osteosarcoma: a retrospective multicentre cohort study. BMC Cancer 2024; 24:747. [PMID: 38898388 PMCID: PMC11186082 DOI: 10.1186/s12885-024-12498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The prognosis of patients with Relapsed/Refractory Osteosarcoma (R/R OS) remains dismal without an agreement on systemic therapy. The use of High-Dose Ifosfamide (14 g/sqm) with an external pump in outpatient setting (14-IFO) in R/R OS patients is limited. This study represents the first retrospective cohort analysis focused on evaluating the activity and toxicity of 14-IFO in this setting. PATIENTS AND METHODS The study investigated 14-IFO activity, in terms of tumour response according to RECIST 1.1 criteria, as well as survival rates and toxicity, according to CTCAE v.5. RESULTS The trial enrolled 26 patients with R/R OS. The Overall Response Rate (ORR) and Disease Control Rate (DCR) obtained was 23% and 57.5%, respectively. Patients with relapsed OS showed a higher ORR (45%) and DCR (82%) compared to refractory patients, irrespective of the number of prior treatment lines received. The achievement of disease control with 14-IFO administration enabled 27% of patients to undergo new local treatment. Four-month Progression-Free Survival (PFS) was 54% for all patients and 82% for the relapsed OS sub-group. Median Overall Survival (OSurv) was 13.7 months, with 1-year OSurv of 51% for all patients and 71% for relapsed patients. Age over 18 years and the presence of refractory disease were identified as negative prognostic factors for this patient cohort. A total of 101 cycles were evaluated for toxic assessment, demonstrating a tolerable profile without grade 3-4 non-haematological toxicities. CONCLUSIONS 14-IFO should be considered a viable treatment option for R/R OS, particularly due to its well tolerated toxicity profile and the potential for home-administration, which can improve patient quality of life without compromising efficacy.
Collapse
Affiliation(s)
- Elisa Tirtei
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy.
| | - Veronica Sciannameo
- Centre for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Italy.
| | - Sebastian Dorin Asaftei
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
| | - Cristina Meazza
- Paediatric Oncology Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sironi
- Paediatric Oncology Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Longhi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angela Tamburini
- Department of Paediatric Haematology-Oncology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Luca Coccoli
- Pediatric Oncology-Hematology Unit, Stem Cell Transplantation and EURACAN Hub Center Unit, S. Chiara Hospital, AOUP, Pisa, Italy
| | - Fanj Crocco
- Paediatrics Division, Department of Health Sciences, AOU Maggiore della Carità di Novara, Piemonte Orientale University, Novara, Italy
| | - Celeste Cagnazzo
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
| | - Elvira De Luna
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
| | - Paola Quarello
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Paola Berchialla
- Centre for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Italy
| | - Franca Fagioli
- Paediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Piazza Polonia 94, Turin, 10126, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Hegde M, Navai S, DeRenzo C, Joseph SK, Sanber K, Wu M, Gad AZ, Janeway KA, Campbell M, Mullikin D, Nawas Z, Robertson C, Mathew PR, Zhang H, Mehta B, Bhat RR, Major A, Shree A, Gerken C, Kalra M, Chakraborty R, Thakkar SG, Dakhova O, Salsman VS, Grilley B, Lapteva N, Gee A, Dotti G, Bao R, Salem AH, Wang T, Brenner MK, Heslop HE, Wels WS, Hicks MJ, Gottschalk S, Ahmed N. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. NATURE CANCER 2024; 5:880-894. [PMID: 38658775 PMCID: PMC11588040 DOI: 10.1038/s43018-024-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Collapse
Affiliation(s)
- Meenakshi Hegde
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Shoba Navai
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher DeRenzo
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujith K Joseph
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Khaled Sanber
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine A Janeway
- Department of Pediatrics, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Campbell
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dolores Mullikin
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zeid Nawas
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Pretty R Mathew
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Raksha R Bhat
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Gerken
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mamta Kalra
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rikhia Chakraborty
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bambi Grilley
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Adrian Gee
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - M John Hicks
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nabil Ahmed
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Greengard E, Williams R, Moriarity B, Liu X, Minard CG, Reid JM, Fisher T, Evans E, Pastore DR, Zauderer M, Voss S, Fox E, Weigel BJ. A phase 1/2 study of pepinemab in children, adolescents, or young adults with recurrent or refractory solid tumors: A children's oncology group consortium report (ADVL1614). Pediatr Blood Cancer 2024; 71:e30938. [PMID: 38520670 PMCID: PMC11187758 DOI: 10.1002/pbc.30938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors. SEMA4D was identified as a strong candidate proto-oncogene in a model of osteosarcoma. Based on these preclinical and clinical data, we conducted a phase 1/2 study to determine the recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics, and immunogenicity, of pepinemab in pediatric patients with recurrent/refractory solid tumors, and activity in osteosarcoma. EXPERIMENTAL DESIGN Pepinemab was administered intravenously on Days 1 and 15 of a 28-day cycle at 20 mg/kg, the adult RP2D. Part A (phase 1) used a Rolling 6 design; Part B (phase 2) used a Simon 2-stage design in patients with osteosarcoma. Pharmacokinetics and target saturation were evaluated in peripheral blood. RESULTS Pepinemab (20 mg/kg) was well tolerated and no dose-limiting toxicities were observed during Part A. There were no objective responses. Two patients with osteosarcoma achieved disease control and prolonged stable disease. Pepinemab pharmacokinetics were similar to adults. CONCLUSIONS Pepinemab (20 mg/kg) is safe, well tolerated and resulted in adequate and sustained target saturation in pediatric patients. Encouraging disease control in two patients with osteosarcoma warrants further investigation with novel combination strategies to modulate the tumor microenvironment and antitumor immune response. CLINICAL TRIAL REGISTRY This trial is registered as NCT03320330 at Clinicaltrials.gov. DISCLAIMER The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
MESH Headings
- Adolescent
- Adult
- Child
- Child, Preschool
- Female
- Humans
- Male
- Young Adult
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Drug Resistance, Neoplasm
- Maximum Tolerated Dose
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasms/drug therapy
- Osteosarcoma/drug therapy
- Osteosarcoma/pathology
Collapse
Affiliation(s)
- Emily Greengard
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Robin Williams
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | | | | | | | | | | | | | | | | | | | | | - Brenda J Weigel
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| |
Collapse
|
23
|
Deyell RJ, Shen Y, Titmuss E, Dixon K, Williamson LM, Pleasance E, Nelson JMT, Abbasi S, Krzywinski M, Armstrong L, Bonakdar M, Ch'ng C, Chuah E, Dunham C, Fok A, Jones M, Lee AF, Ma Y, Moore RA, Mungall AJ, Mungall KL, Rogers PC, Schrader KA, Virani A, Wee K, Young SS, Zhao Y, Jones SJM, Laskin J, Marra MA, Rassekh SR. Whole genome and transcriptome integrated analyses guide clinical care of pediatric poor prognosis cancers. Nat Commun 2024; 15:4165. [PMID: 38755180 PMCID: PMC11099106 DOI: 10.1038/s41467-024-48363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.
Collapse
Affiliation(s)
- Rebecca J Deyell
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada.
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Sanna Abbasi
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Martin Krzywinski
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Melika Bonakdar
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Carolyn Ch'ng
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Chris Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexandra Fok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Martin Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Paul C Rogers
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alice Virani
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Sean S Young
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Cancer Genetics and Genomics Laboratory, Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- Department of Pediatrics, BC Children's Hospital and Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Wang B, Hu H, Wang X, Shao Z, Shi D, Wu F, Liu J, Zhang Z, Li J, Xia Z, Liu W, Wu Q. POLE2 promotes osteosarcoma progression by enhancing the stability of CD44. Cell Death Discov 2024; 10:177. [PMID: 38627379 PMCID: PMC11021398 DOI: 10.1038/s41420-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.
Collapse
Affiliation(s)
- Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Juan Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhidao Xia
- Institute of Life Sciences 2, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| | - Qiang Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
25
|
Silver KI, Mannheimer JD, Saba C, Hendricks WPD, Wang G, Day K, Warrier M, Beck JA, Mazcko C, LeBlanc AK. Clinical, pathologic and molecular findings in 2 Rottweiler littermates with appendicular osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4223759. [PMID: 38659878 PMCID: PMC11042397 DOI: 10.21203/rs.3.rs-4223759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - William P D Hendricks
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Guannan Wang
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Kenneth Day
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Manisha Warrier
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | | | | | | |
Collapse
|
26
|
Yankelevich M, Thakur A, Modak S, Chu R, Taub J, Martin A, Schalk D, Schienshang A, Whitaker S, Rea K, Lee DW, Liu Q, Shields AF, Cheung NKV, Lum LG. Targeting refractory/recurrent neuroblastoma and osteosarcoma with anti-CD3×anti-GD2 bispecific antibody armed T cells. J Immunother Cancer 2024; 12:e008744. [PMID: 38519053 PMCID: PMC10961524 DOI: 10.1136/jitc-2023-008744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.
Collapse
Affiliation(s)
- Maxim Yankelevich
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Archana Thakur
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roland Chu
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Jeffrey Taub
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Alissa Martin
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Dana Schalk
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Amy Schienshang
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Sarah Whitaker
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Katie Rea
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Daniel W Lee
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Qin Liu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lawrence G Lum
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Silver KI, Patkar S, Mazcko C, Berger EP, Beck JA, LeBlanc AK. Patterns of metastatic progression and association with clinical outcomes in canine osteosarcoma: A necropsy study of 83 dogs. Vet Comp Oncol 2023; 21:646-655. [PMID: 37592810 PMCID: PMC10842475 DOI: 10.1111/vco.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly metastatic primary bone tumour that occurs spontaneously in both pet dogs and humans. Patterns of metastasis to organs beyond the most common site (lung) are poorly characterised and it is unknown whether specific associations between patterns of metastatic progression and patient features exist. This retrospective study characterised the necropsy findings of 83 dogs receiving standardised therapy and clinical monitoring in a prospective clinical trial setting to document patterns of metastasis and correlate outcomes with these patterns and other patient and tumour-specific factors. A total of 20 different sites of metastasis were documented, with lung as the most common site, followed by bone, kidney, liver, and heart. Two distinct clusters of dogs were identified based on patterns of metastasis. There was no significant association between site of enrollment, trial arm, sex, serum alkaline phosphatase (ALP) activity, or tumour location and clinical outcomes. A second cancer type was identified at necropsy in 10 dogs (10/83; 12%). These data showcase the extensive nature of osteosarcoma metastasis beyond the lung and provide a benchmark for clinical monitoring of the disease. Further, this study provides insight into transcriptional features of primary tumours that may relate to a propensity for osteosarcoma metastasis to specific organs and tissues.
Collapse
Affiliation(s)
- K I Silver
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - S Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - C Mazcko
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - E P Berger
- Frederick National Laboratory for Cancer Research in the Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J A Beck
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - A K LeBlanc
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
28
|
van Ewijk R, Herold N, Baecklund F, Baumhoer D, Boye K, Gaspar N, Harrabi SB, Haveman LM, Hecker-Nolting S, Hiemcke-Jiwa L, Martin V, Fernández CM, Palmerini E, van de Sande MA, Strauss SJ, Bielack SS, Kager L. European standard clinical practice recommendations for children and adolescents with primary and recurrent osteosarcoma. EJC PAEDIATRIC ONCOLOGY 2023; 2:100029. [DOI: 10.1016/j.ejcped.2023.100029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Shen Y, Xie Q, Wang Y, Liang J, Jiang C, Liu X, Wang Y, Hu C. Design, synthesis and anti-osteosarcoma activity study of novel pyrido[2,3-d]pyrimidine derivatives by inhibiting DKK1-Wnt/β-catenin pathway. Bioorg Chem 2023; 141:106848. [PMID: 37716273 DOI: 10.1016/j.bioorg.2023.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Osteosarcoma is a common primary malignant bone tumor in adolescents. Wnt/β-catenin has been proved to play a pro-oncogenic role and was overactivated in osteosarcoma. Therefore, this pathway has become an interesting therapeutic target for osteosarcoma. Herein we report the design, synthesis and biological activities of a series of novel pyrido[2,3-d]pyrimidine derivatives based on our previous work. Among these, the representative compound 2-{[1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl]amino}-N-[4-(trifluoromethoxy)phenyl]acetamide (7m) has exhibited good antiproliferative activity towards 143B and MG63 cells with good selectivity over non-cancerous HSF cells. In the assay of Ca2+ concentration, the compound 7m increased the intracellular Ca2+ concentration in 143B cells. In addition, the expression of DKK1 increased, and that of p-β-catenin decreased by 7m treatment. Finally, the Hoechst 33,342 staining, Annexin-FITC/PI staining and mitochondrial fluorescence staining have clearly demonstrated that compound 7m induced apoptosis in 143B cells.
Collapse
Affiliation(s)
- Yanni Shen
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Xie
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Orthopaedics, General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yiling Wang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuilu Jiang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| |
Collapse
|
30
|
Campbell K, Posner A, Chen N, Cavanaugh K, Bhushan K, Janeway KA, Shulman DS, George S, Klega K, Crompton B, London WB, DuBois SG. Phase 1 study of cabozantinib in combination with topotecan-cyclophosphamide for patients with relapsed Ewing sarcoma or osteosarcoma. Pediatr Blood Cancer 2023; 70:e30681. [PMID: 37715723 DOI: 10.1002/pbc.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE Phase 1 study assessing the safety and toxicity of cabozantinib in combination with topotecan and cyclophosphamide for relapsed osteosarcoma and Ewing sarcoma. METHODS Oral cabozantinib (25 mg/m2 ) was administered daily for 21 (dose level 1) or 14 (dose level -1B) days. Topotecan (0.75 mg/m2 ) and cyclophosphamide (250 mg/m2 ) were administered intravenously (IV) on days 1-5. A modified 3+3 design based upon first cycle dose-limiting toxicities (DLT) was used for dose escalation. RESULTS Twelve patients with a median age of 15 (12.9-33.2) years were enrolled (seven with Ewing sarcoma; five with osteosarcoma); all were evaluable for toxicity. At dose level 1, three of six patients developed first cycle DLT: grade 3 epistaxis, grade 3 transaminitis, and prolonged grade 2 thrombocytopenia. Six patients were enrolled on dose level -1B (interrupted cabozantinib, given days 8-21), with one first cycle DLT (grade 3 pneumothorax) observed. Of the 10 response evaluable patients, one had partial response (Ewing sarcoma), seven had stable disease, and two had progressive disease. CONCLUSIONS The recommended phase 2 doses and schedules for this combination are topotecan 0.75 mg/m2 IV days 1-5, cyclophosphamide 250 mg/m2 IV days 1-5, and cabozantinib 25 mg/m2 days 8-21. Non-concomitant administration of cabozantinib with cytotoxic therapy in this population has acceptable toxicity, while allowing for potential disease control.
Collapse
Affiliation(s)
- Kevin Campbell
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Posner
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nan Chen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kerri Cavanaugh
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ketki Bhushan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne George
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Welch DL, Fridley BL, Cen L, Teer JK, Yoder SJ, Pettersson F, Xu L, Cheng CH, Zhang Y, Alexandrow MG, Xiang S, Robertson-Tessi M, Brown JS, Metts J, Brohl AS, Reed DR. Modeling phenotypic heterogeneity towards evolutionarily inspired osteosarcoma therapy. Sci Rep 2023; 13:20125. [PMID: 37978271 PMCID: PMC10656496 DOI: 10.1038/s41598-023-47412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Osteosarcoma is the most common bone sarcoma in children and young adults. While universally delivered, chemotherapy only benefits roughly half of patients with localized disease. Increasingly, intratumoral heterogeneity is recognized as a source of therapeutic resistance. In this study, we develop and evaluate an in vitro model of osteosarcoma heterogeneity based on phenotype and genotype. Cancer cell populations vary in their environment-specific growth rates and in their sensitivity to chemotherapy. We present the genotypic and phenotypic characterization of an osteosarcoma cell line panel with a focus on co-cultures of the most phenotypically divergent cell lines, 143B and SAOS2. Modest environmental (pH, glutamine) or chemical perturbations dramatically shift the success and composition of cell lines. We demonstrate that in nutrient rich culture conditions 143B outcompetes SAOS2. But, under nutrient deprivation or conventional chemotherapy, SAOS2 growth can be favored in spheroids. Importantly, when the simplest heterogeneity state is evaluated, a two-cell line coculture, perturbations that affect the faster growing cell line have only a modest effect on final spheroid size. Thus the only evaluated therapies to eliminate the spheroids were by switching therapies from a first strike to a second strike. This extensively characterized, widely available system, can be modeled and scaled to allow for improved strategies to anticipate resistance in osteosarcoma due to heterogeneity.
Collapse
Affiliation(s)
- Darcy L Welch
- Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Brooke L Fridley
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean J Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fredrik Pettersson
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liping Xu
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark G Alexandrow
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shengyan Xiang
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joel S Brown
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Metts
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Damon R Reed
- Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
32
|
Yankelevich M, Thakur A, Modak S, Chu R, Taub J, Martin A, Schalk DL, Schienshang A, Whitaker S, Rea K, Lee DW, Liu Q, Shields A, Cheung NK, Lum LG. Targeting GD2-positive Refractory/Resistant Neuroblastoma and Osteosarcoma with Anti- CD3 x Anti-GD2 Bispecific Antibody Armed T cells. RESEARCH SQUARE 2023:rs.3.rs-3570311. [PMID: 37986911 PMCID: PMC10659559 DOI: 10.21203/rs.3.rs-3570311/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Since treatment of neuroblastoma (NB) with anti-GD2 monoclonal antibodies provides a survival benefit in children with minimal residual disease and our preclinical study shows that anti-CD3 x anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs) were highly cytotoxic to GD2+ cell lines, we conducted a phase I/II study in recurrent/refractory patients to establish safety and explore the clinical benefit of GD2BATs. Methods The 3+3 dose escalation study (NCT02173093) phase I involved 9 evaluable patients with NB (n=5), osteosarcoma (OST) (n=3), and desmoplastic small round cell tumors (DSRCT) (n=1) with twice weekly infusions of GD2BATs at 40, 80, or 160 x 106 GD2BATs/kg/infusion with daily interleukin 2 (300,000 IU/m2) and twice weekly granulocyte-macrophage colony stimulating factor (250 μg/m2). Phase II portion of the trial was conducted in patients with NB at the dose 3 level of 160 x 106 GD2BATs/kg/infusion but failed to enroll the planned number of patients. Results Nine of 12 patients in the phase I completed therapy. There were no dose limiting toxicities (DLTs). All patients developed mild and manageable cytokine release syndrome (CRS) with grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody associated pain was not significant in this study. The median OS for patients in the Phase I and limited Phase II was 18.0 and 31.2 months, respectively, whereas the combined OS was 21.1 months. There was a complete bone marrow response with overall stable disease in one of the phase I patients with NB. Ten of 12 phase II patients were evaluable for response: 1 had partial response. Three additional patients were deemed to have clinical benefit with prolonged stable disease. More than 50% of evaluable patients showed augmented immune responses to GD2+ targets after GD2BATs as measured by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. Conclusions Our study demonstrated safety of up to 160 x 106 cells/kg/infusion of GD2BATs. Combined with evidence for the development of post treatment endogenous immune responses, this data supports further investigation of GD2 BATs in larger Phase II clinical trials.
Collapse
Affiliation(s)
| | | | | | - Roland Chu
- Children's Hospital of Michigan (CHM), Wayne State University
| | - Jeffrey Taub
- Children's Hospital of Michigan (CHM), Wayne State University
| | - Alissa Martin
- Children's Hospital of Michigan (CHM), Wayne State University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Ewijk R, Cleirec M, Herold N, le Deley MC, van Eijkelenburg N, Boudou-Rouquette P, Risbourg S, Strauss SJ, Palmerini E, Boye K, Kager L, Hecker-Nolting S, Marchais A, Gaspar N. A systematic review of recent phase-II trials in refractory or recurrent osteosarcoma: Can we inform future trial design? Cancer Treat Rev 2023; 120:102625. [PMID: 37738712 DOI: 10.1016/j.ctrv.2023.102625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND/OBJECTIVE To analyze changes in recurrent/refractory osteosarcoma phase II trials over time to inform future trials in this population with poor prognosis. METHODS A systematic review of trials registered on trial registries between 01/01/2017-14/02/2022. Comparison of 98 trials identified between 2003 and 2016. Publication search/analysis for both periods, last update on 01/12/2022. RESULTS Between 2017 and 2022, 71 phase-II trials met our selection criteria (19 osteosarcoma-specific trials, 14 solid tumor trials with and 38 trials without an osteosarcoma-specific stratum). The trial number increased over time: 13.9 versus 7 trials/year (p = 0.06). Monotherapy remained the predominant treatment (62% vs. 62%, p = 1). Targeted therapies were increasingly evaluated (66% vs. 41%, P = 0.001). Heterogeneity persisted in the trial characteristics. The inclusion criteria were measurable disease (75%), evaluable disease (14%), and surgical remission (11%). 82% of the trials included pediatric or adolescent patients. Biomarker-driven trials accounted for 25% of the total trials. The survival endpoint use (rather than response) slightly increased (40% versus 31%), but the study H1/H0 hypotheses remained heterogeneous. Single-arm designs predominated over multiarm trials (n = 7). Available efficacy data on 1361 osteosarcoma patients in 58 trials remained disappointing, even though 21% of these trials were considered positive, predominantly those evaluating multi-targeted kinase inhibitors. CONCLUSION Despite observed changes in trial design and an increased number of trials investigating new therapies, high heterogeneity remained with respect to patient selection, study design, primary endpoints, and statistical hypotheses in recently registered phase II trials for osteosarcoma. Continued optimization of trial design informed by a deeper biological understanding should strengthen the development of new therapies.
Collapse
Affiliation(s)
- Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Morgane Cleirec
- Department of Pediatric Oncology, CHU Nantes, Nantes, France
| | - Nikolas Herold
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden, and Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marie-Cécile le Deley
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, U1018 ONCOSTAT, F-94085 Villejuif, France
| | | | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, Cochin Institute, INSERMU1016, Paris Cancer Institute, CARPEM, AP-HP, Paris, France
| | - Séverine Risbourg
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France
| | - Sandra J Strauss
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Norway
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Antonin Marchais
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
34
|
Gong L, Sun X, Jia M. New gene signature from the dominant infiltration immune cell type in osteosarcoma predicts overall survival. Sci Rep 2023; 13:18271. [PMID: 37880378 PMCID: PMC10600156 DOI: 10.1038/s41598-023-45566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
The immune microenvironment of osteosarcoma (OS) has been reported to play an important role in disease progression and prognosis. However, owing to tumor heterogeneity, it is not ideal to predict OS prognosis by examining only infiltrating immune cells. This work aimed to build a prognostic gene signature based on similarities in the immune microenvironments of OS patients. Public datasets were used to examine the correlated genes, and the most consistent dominant infiltrating immune cell type was identified. The LASSO Cox regression model was used to establish a multiple-gene risk prediction signature. A nine-gene prognostic signature was generated from the correlated genes for M0 macrophages and then proven to be effective and reliable in validation cohorts. Signature comparison indicated the priority of the signature. Multivariate Cox regression models indicated that the signature risk score is an independent prognostic factor for OS patients regardless of the Huvos grade in all datasets. In addition, the results of the association between the signature risk score and chemotherapy sensitivity also showed that there was no significant difference in the sensitivity of any drugs between the low- and high-risk groups. A GSEA of GO and KEGG pathways found that antigen processing- and presentation-related biological functions and olfactory transduction receptor signaling pathways have important roles in signature functioning. Our findings showed that M0 macrophages were the dominant infiltrating immune cell type in OS and that the new gene signature is a promising prognostic model for OS patients.
Collapse
Affiliation(s)
- Liping Gong
- Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xifeng Sun
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
35
|
Reed DR, Grohar P, Rubin E, Binitie O, Krailo M, Davis J, DuBois SG, Janeway KA. Children's Oncology Group's 2023 blueprint for research: Bone tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30583. [PMID: 37501549 PMCID: PMC10499366 DOI: 10.1002/pbc.30583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
The Children's Oncology Group (COG) Bone Tumor Committee is responsible for clinical trials and biological research on localized, metastatic, and recurrent osteosarcoma and Ewing sarcoma (EWS). Results of clinical trials in localized disease completed and published in the past 10 years have led to international standard-of-care chemotherapy for osteosarcoma and EWS. A recent focus on identifying disease subgroups has led to the identification of biological features associated with poor outcomes including the presence of circulating tumor DNA (ctDNA) at diagnosis, and specific genomic alterations-MYC amplification for osteosarcoma and STAG2 and TP53 mutation for EWS. Studies validating these potential biomarkers are under way. Clinical trials evaluating the addition of multitargeted kinase inhibitors, which are active in relapsed bone sarcomas, to standard chemotherapy are under way in osteosarcoma and planned in EWS. In addition, the Committee has data analyses and a clinical trial under way to evaluate approaches to local management of the primary tumor and metastatic sites. Given the rarity of bone sarcomas, we have prioritized international interactions and are in the process of forming an international data-sharing consortium to facilitate refinement of risk stratification and study of rare disease subtypes.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, Florida, USA
| | - Patrick Grohar
- Division of Oncology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elyssa Rubin
- Department of Oncology, Children's Hospital of Orange County, Orange, California, USA
| | - Odion Binitie
- Department of Sarcoma, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mark Krailo
- Keck School of Medicine, University of Southern California and Children's Oncology Group, Monrovia, California, USA
| | - Jessica Davis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Mannheimer JD, Tawa G, Gerhold D, Braisted J, Sayers CM, McEachron TA, Meltzer P, Mazcko C, Beck JA, LeBlanc AK. Transcriptional profiling of canine osteosarcoma identifies prognostic gene expression signatures with translational value for humans. Commun Biol 2023; 6:856. [PMID: 37591946 PMCID: PMC10435536 DOI: 10.1038/s42003-023-05208-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Canine osteosarcoma is increasingly recognized as an informative model for human osteosarcoma. Here we show in one of the largest clinically annotated canine osteosarcoma transcriptional datasets that two previously reported, as well as de novo gene signatures devised through single sample Gene Set Enrichment Analysis (ssGSEA), have prognostic utility in both human and canine patients. Shared molecular pathway alterations are seen in immune cell signaling and activation including TH1 and TH2 signaling, interferon signaling, and inflammatory responses. Virtual cell sorting to estimate immune cell populations within canine and human tumors showed similar trends, predominantly for macrophages and CD8+ T cells. Immunohistochemical staining verified the increased presence of immune cells in tumors exhibiting immune gene enrichment. Collectively these findings further validate naturally occurring osteosarcoma of the pet dog as a translationally relevant patient model for humans and improve our understanding of the immunologic and genomic landscape of the disease in both species.
Collapse
Affiliation(s)
- Joshua D Mannheimer
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David Gerhold
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John Braisted
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Troy A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Zhang X, Wen Z, Wang Q, Ren L, Zhao S. A novel stratification framework based on anoikis-related genes for predicting the prognosis in patients with osteosarcoma. Front Immunol 2023; 14:1199869. [PMID: 37575253 PMCID: PMC10413143 DOI: 10.3389/fimmu.2023.1199869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Background Anoikis resistance is a prerequisite for the successful development of osteosarcoma (OS) metastases, whether the expression of anoikis-related genes (ARGs) correlates with OS prognosis remains unclear. This study aimed to investigate the feasibility of using ARGs as prognostic tools for the risk stratification of OS. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provided transcriptome information relevant to OS. The GeneCards database was used to identify ARGs. Differentially expressed ARGs (DEARGs) were identified by overlapping ARGs with common differentially expressed genes (DEGs) between OS and normal samples from the GSE16088, GSE19276, and GSE99671 datasets. Anoikis-related clusters of patients were obtained by consistent clustering, and gene set variation analysis (GSVA) of the different clusters was completed. Next, a risk model was created using Cox regression analyses. Risk scores and clinical features were assessed for independent prognostic values, and a nomogram model was constructed. Subsequently, a functional enrichment analysis of the high- and low-risk groups was performed. In addition, the immunological characteristics of OS samples were compared between the high- and low-risk groups, and their sensitivity to therapeutic agents was explored. Results Seven DEARGs between OS and normal samples were obtained by intersecting 501 ARGs with 68 common DEGs. BNIP3 and CXCL12 were significantly differentially expressed between both clusters (P<0.05) and were identified as prognosis-related genes. The risk model showed that the risk score and tumor metastasis were independent prognostic factors of patients with OS. A nomogram combining risk score and tumor metastasis effectively predicted the prognosis. In addition, patients in the high-risk group had low immune scores and high tumor purity. The levels of immune cell infiltration, expression of human leukocyte antigen (HLA) genes, immune response gene sets, and immune checkpoints were lower in the high-risk group than those in the low-risk group. The low-risk group was sensitive to the immune checkpoint PD-1 inhibitor, and the high-risk group exhibited lower inhibitory concentration values by 50% for 24 drugs, including AG.014699, AMG.706, and AZD6482. Conclusion The prognostic stratification framework of patients with OS based on ARGs, such as BNIP3 and CXCL12, may lead to more efficient clinical management.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Nutrition, College of Public Health of Sun Yat-Sen University, Guangzhou, China
| | - Zhenxing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Qi Wang
- Department of Oncology, Nanyang Central Hospital, Nanyang, China
| | - Lijuan Ren
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shengli Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
38
|
Liao Z, Li M, Wen G, Wang K, Yao D, Chen E, Liang Y, Xing T, Su K, Liang C, Che Z, Ning Q, Tang J, Yan W, Li Y, Huang L. Comprehensive analysis of angiogenesis pattern and related immune landscape for individual treatment in osteosarcoma. NPJ Precis Oncol 2023; 7:62. [PMID: 37386055 DOI: 10.1038/s41698-023-00415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Postoperative recurrence and metastasis are the main reasons for the poor prognosis of osteosarcoma (OS). Currently, an ideal predictor for not only prognosis but also drug sensitivity and immunotherapy responses in OS patients is urgently needed. Angiogenesis plays a crucial role in tumour progression, which suggests its immense potential for predicting prognosis and responses to immunotherapy for OS. Angiogenesis patterns in OS were explored in depth in this study to construct a prognostic model called ANGscore and clarify the underlying mechanism involved in the immune microenvironment. The efficacy and robustness of the model were validated in multiple datasets, including bulk RNA-seq datasets (TARGET-OS, GSE21257), a single-cell RNA-seq dataset (GSE152048) and immunotherapy-related datasets (GSE91061, GSE173839). OS patients with a high ANGscore had a worse prognosis, accompanied by the immune desert phenotype. Pseudotime and cellular communication analyses in scRNA-seq data revealed that as the ANGscore increased, the malignant degree of cells increased, and IFN-γ signalling was involved in tumour progression and regulation of the tumour immune microenvironment. Furthermore, the ANGscore was associated with immune cell infiltration and the response rate to immunotherapy. OS patients with high ANGscore might be resistant to uprosertib, and be sensitive to VE821, AZD6738 and BMS.345541. In conclusion, we established a novel ANGscore system by comprehensively analysing the expression pattern of angiogenesis genes, which can accurately differentiate the prognosis and immune characteristics of OS populations. Additionally, the ANGscore can be used for patient stratification during immunotherapy, and guide individualized treatment strategies.
Collapse
Affiliation(s)
- Zhuangyao Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoming Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengbo Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Enming Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kaihui Su
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changchun Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhen Che
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Ning
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Yan
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
39
|
Liu D, Peng Y, Li X, Zhu Z, Mi Z, Zhang Z, Fan H. Comprehensive landscape of TGFβ-related signature in osteosarcoma for predicting prognosis, immune characteristics, and therapeutic response. J Bone Oncol 2023; 40:100484. [PMID: 37234254 PMCID: PMC10205544 DOI: 10.1016/j.jbo.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcoma (OS) is a highly heterogeneous malignant bone tumor, and its tendency to metastasize leads to a poor prognosis. TGFβ is an important regulator in the tumor microenvironment and is closely associated with the progression of various types of cancer. However, the role of TGFβ-related genes in OS is still unclear. In this study, we identified 82 TGFβ DEGs based on RNA-seq data from the TARGET and GETx databases and classified OS patients into two TGFβ subtypes. The KM curve showed that the Cluster 2 patients had a substantially poorer prognosis than the Cluster 1 patients. Subsequently, a novel TGFβ prognostic signatures (MYC and BMP8B) were developed based on the results of univariate, LASSO, and multifactorial Cox analyses. These signatures showed robust and reliable predictive performance for the prognosis of OS in the training and validation cohorts. To predict the three-year and five-year survival rate of OS, a nomogram that integrated clinical features and risk scores was also developed. The GSEA analysis showed that the different subgroups analyzed had distinct functions, particularly, the low-risk group was associated with high immune activity and a high infiltration abundance of CD8 T cells. Moreover, our results indicated that low-risk cases had higher sensitivity to immunotherapy, while high-risk cases were more sensitive to sorafenib and axitinib. scRNA-Seq analysis further revealed that MYC and BMP8B were strongly expressed mainly in tumor stromal cells. Finally, in this study, we confirmed the expression of MYC and BMP8B by performing qPCR, WB, and IHC analyses. To conclude, we developed and validated a TGFβ-related signature to accurately predict the prognosis of OS. Our findings might contribute to personalized treatment and making better clinical decisions for OS patients.
Collapse
Affiliation(s)
- Dong Liu
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Ye Peng
- Department of Orthopaedics, Air Force Medical Center, PLA, Beijing 100142, China
| | - Xian Li
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, China
| | - Zhijie Zhu
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhao Zhang
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Hongbin Fan
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
40
|
Wood GE, Graves LA, Rubin EM, Reed DR, Riedel RF, Strauss SJ. Bad to the Bone: Emerging Approaches to Aggressive Bone Sarcomas. Am Soc Clin Oncol Educ Book 2023; 43:e390306. [PMID: 37220319 DOI: 10.1200/edbk_390306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone sarcomas are rare heterogeneous tumors that affect patients of all ages including children, adolescent young adults, and older adults. They include many aggressive subtypes and patient groups with poor outcomes, poor access to clinical trials, and lack of defined standard therapeutic strategies. Conventional chondrosarcoma remains a surgical disease, with no defined role for cytotoxic therapy and no approved targeted systemic therapies. Here, we discuss promising novel targets and strategies undergoing evaluation in clinical trials. Multiagent chemotherapy has greatly improved outcomes for patients with Ewing sarcoma (ES) and osteosarcoma, but management of those with high-risk or recurrent disease remains challenging and controversial. We describe the impact of international collaborative trials, such as the rEECur study, that aim to define optimal treatment strategies for those with recurrent, refractory ES, and evidence for high-dose chemotherapy with stem-cell support. We also discuss current and emerging strategies for other small round cell sarcomas, such as CIC-rearranged, BCOR-rearranged tumors, and the evaluation of emerging novel therapeutics and trial designs that may offer a new paradigm to improve survival in these aggressive tumors with notoriously bad (to the bone) outcomes.
Collapse
Affiliation(s)
- Georgina E Wood
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| | - Laurie A Graves
- Division of Hematology/Oncology, Department of Pediatrics, Duke University, Durham, NC
| | - Elyssa M Rubin
- Division of Oncology, Children's Hospital of Orange County, Orange, CA
| | - Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Richard F Riedel
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC
| | - Sandra J Strauss
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| |
Collapse
|
41
|
Xie L, Cai Z, Lu H, Meng F, Zhang X, Luo K, Su X, Lei Y, Xu J, Lou J, Wang H, Du Z, Wang Y, Li Y, Ren T, Xu J, Sun X, Tang X, Guo W. Distinct genomic features between osteosarcomas firstly metastasing to bone and to lung. Heliyon 2023; 9:e15527. [PMID: 37205995 PMCID: PMC10189180 DOI: 10.1016/j.heliyon.2023.e15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Osteosarcoma initially metastasing to bone only shows distinct biological features compared to osteosarcoma that firstly metastasizes to the lung, which suggests us underlying different genomic pathogenetic mechanism. Methods We analyzed whole-exome sequencing (WES) data for 38 osteosarcoma with paired samples in different relapse patterns. We also sought to redefine disease subclassifications for osteosarcoma based on genetic alterations and correlate these genetic profiles with clinical treatment courses to elucidate potential evolving cladograms. Results We investigated WES of 12/38 patients with high-grade osteosarcoma (31.6%) with initial bone metastasis (group A) and 26/38 (68.4%) with initial pulmonary metastasis (group B), of whom 15/38 (39.5%) had paired samples of primary lesions and metastatic lesions. We found that osteosarcoma in group A mainly carries single-nucleotide variations displaying higher tumor mutation burden and neoantigen load and more tertiary lymphoid structures, while those in group B mainly exhibits structural variants. High conservation of reported genetic sequencing over time in their evolving cladograms. Conclusions Osteosarcoma with mainly single-nucleotide variations other than structural variants might exhibit biological behavior predisposing toward bone metastases as well as better immunogenicity in tumor microenvironment.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhenyu Cai
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. A3 Datun Road, Chaoyang District, Beijing 100101, China
| | - Fanfei Meng
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xin Zhang
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Kun Luo
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xiaoxing Su
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Yan Lei
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Han Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yunfan Wang
- Pathology Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, China
| | - Yuan Li
- Radiology Department & Nuclear Medicine Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| |
Collapse
|
42
|
Umeda K, Sakamoto A, Noguchi T, Uchihara Y, Kobushi H, Akazawa R, Ogata H, Saida S, Kato I, Hiramatsu H, Uto M, Mizowaki T, Haga H, Date H, Okamoto T, Watanabe K, Adachi S, Toguchida J, Matsuda S, Takita J. Clinical Outcomes of Patients With Osteosarcoma Experiencing Relapse or Progression: A Single-institute Experience. J Pediatr Hematol Oncol 2023; 45:e356-e362. [PMID: 35973000 DOI: 10.1097/mph.0000000000002521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Patients with osteosarcoma who experience relapse or progression [R/P] have a poor prognosis. METHODS Data from 30 patients who experienced R/P among 59 with a diagnosis of high-grade osteosarcoma, who were younger than 40 years old between 2000 and 2019, were retrospectively analyzed to identify prognostic and therapeutic factors influencing their outcomes. RESULTS The 5-year overall survival [OS] rates after the last R/P of patients experiencing first [n=30], second [n=14], and third [n=9] R/P were 50.3%, 51.3%, and 46.7%, respectively. Multivariate analysis did not identify any independent risk factors affecting OS. The 5-year PFS rate of the 30 patients after first R/P was 22.4%, and multivariate analysis identified histologic subtype and curative local surgery as independent risk factors influencing PFS. Long [>6 mo] partial response was observed in three patients treated using temozolomide+etoposide, irinotecan+carboplatin, or regorafenib. CONCLUSIONS OS rate in the patients with osteosarcoma experiencing R/P included in this study was markedly higher than that reported previously, mainly due to the surgical total removal of tumors, even after subsequent R/P. The recent establishment of salvage chemotherapy or molecular targeted therapy may also increase survival rates in a subgroup of patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Megumi Uto
- Radiation Oncology and Image-Applied Therapy
| | | | | | | | - Takeshi Okamoto
- Department of Orthopedic Surgery, Otsu Red Cross Hospital, Otsu, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Souichi Adachi
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | | | | |
Collapse
|
43
|
Kokkali S, Kyriazoglou A, Mangou E, Economopoulou P, Panousieris M, Psyrri A, Ardavanis A, Vassos N, Boukovinas I. Real-World Data on Cabozantinib in Advanced Osteosarcoma and Ewing Sarcoma Patients: A Study from the Hellenic Group of Sarcoma and Rare Cancers. J Clin Med 2023; 12:jcm12031119. [PMID: 36769769 PMCID: PMC9918141 DOI: 10.3390/jcm12031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Advanced osteosarcomas (OSs) and Ewing sarcomas (ESs) tend to have poor prognosis with limited therapeutic options beyond first-line therapy. Aberrant angiogenesis and MET signaling play an important role in preclinical models. The anti-angiogenic drug cabozantinib was tested in a phase 2 trial of advanced OS and ES and was associated with clinical benefits. We retrospectively analyzed the off-label use of cabozantinib in adult patients with advanced OS and ES/primitive neuroectodermal tumors (PNETs) in three centers of the Hellenic Group of Sarcoma and Rare Cancers (HGSRC). Between April 2019 and January 2022, 16 patients started taking 60 mg of cabozantinib for advanced bone sarcoma or PNET. Median age at cabozantinib initiation was 31 years (17-83). All patients had received peri-operative chemotherapy for primary sarcoma and between 0 and 4 lines of treatment (median; 2.5) for advanced disease. The most common adverse effects included fatigue, anorexia, hypertransaminasemia, weight loss, and diarrhea. One toxic death was noted (cerebral hemorrhage). Dose reduction to 40 mg was required in 31.3% of the patients. No objective response was noted, and 9/16 patients exhibited stable disease outcomes. Progression-free survival varied from 1 to 8 (median; 5) months. Our study demonstrates that cabozantinib has antitumor activity in this population. In the real-life setting, we observed similar adverse events as in the CABONE study and in other neoplasms.
Collapse
Affiliation(s)
- Stefania Kokkali
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
- Medical Oncology Unit, Department of Internal Medicine, Hippocratio General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-2132089511
| | - Anastasios Kyriazoglou
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elpida Mangou
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Panagiota Economopoulou
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Michail Panousieris
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Amanda Psyrri
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Alexandros Ardavanis
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Nikolaos Vassos
- Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ioannis Boukovinas
- Department of Medical Oncology, Bioclinic Hospital, 54622 Thessaloniki, Greece
| |
Collapse
|
44
|
Han T, Wu Z, Zhang Z, Liang J, Xia C, Yan H. Comprehensive analysis of hypoxia-related genes for prognosis value, immune status, and therapy in osteosarcoma patients. Front Pharmacol 2023; 13:1088732. [PMID: 36686667 PMCID: PMC9853159 DOI: 10.3389/fphar.2022.1088732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma is a common malignant bone tumor in children and adolescents. The overall survival of osteosarcoma patients is remarkably poor. Herein, we sought to establish a reliable risk prognostic model to predict the prognosis of osteosarcoma patients. Patients ' RNA expression and corresponding clinical data were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus databases. A consensus clustering was conducted to uncover novel molecular subgroups based on 200 hypoxia-linked genes. A hypoxia-risk models were established by Cox regression analysis coupled with LASSO regression. Functional enrichment analysis, including Gene Ontology annotation and KEGG pathway analysis, were conducted to determine the associated mechanisms. Moreover, we explored relationships between the risk scores and age, gender, tumor microenvironment, and drug sensitivity by correlation analysis. We identified two molecular subgroups with significantly different survival rates and developed a risk model based on 12 genes. Survival analysis indicated that the high-risk osteosarcoma patients likely have a poor prognosis. The area under the curve (AUC) value showed the validity of our risk scoring model, and the nomogram indicates the model's reliability. High-risk patients had lower Tfh cell infiltration and a lower stromal score. We determined the abnormal expression of three prognostic genes in osteosarcoma cells. Sunitinib can promote osteosarcoma cell apoptosis with down-regulation of KCNJ3 expression. In summary, the constructed hypoxia-related risk score model can assist clinicians during clinical practice for osteosarcoma prognosis management. Immune and drug sensitivity analysis can provide essential insights into subsequent mechanisms. KCNJ3 may be a valuable prognostic marker for osteosarcoma development.
Collapse
Affiliation(s)
- Tao Han
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhouwei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Jinghao Liang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Chuanpeng Xia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Hede Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China,*Correspondence: Hede Yan,
| |
Collapse
|
45
|
Harrison D, Gill J, Roth M, Hingorani P, Zhang W, Teicher B, Earley E, Erickson S, Gatto G, Kumasheva R, Houghton P, Smith M, Kolb EA, Gorlick R. Evaluation of the pan-class I phosphoinositide 3-kinase (PI3K) inhibitor copanlisib in the Pediatric Preclinical Testing Consortium in vivo models of osteosarcoma. Pediatr Blood Cancer 2023; 70:e30017. [PMID: 36250964 PMCID: PMC11146293 DOI: 10.1002/pbc.30017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 01/09/2023]
Abstract
Copanlisib is a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, with activity against all four PI3K class I isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ). Whole-genome and RNA sequencing data have revealed several PI3K aberrations in osteosarcoma tumor samples. The in vivo anticancer effects of copanlisib were assessed in a panel of six osteosarcoma models. Copanlisib induced prolonged event-free survival in five of six osteosarcoma models; however, all models demonstrated progressive disease suggesting minimal activity. While copanlisib did not result in tumor regression, more data are needed to fully explore the role of the PI3K pathway in the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Earley
- RTI International, Research Triangle Park, NC
| | | | | | | | - Peter Houghton
- Greehey Children’s Cancer Research Institute, San Antonio, TX
| | | | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Wilmington, DE
| | | |
Collapse
|
46
|
Xie L, Chen C, Liang X, Xu J, Sun X, Sun K, Yang R, Tang X, Guo W. Expression and Clinical Significance of Various Checkpoint Molecules in Advanced Osteosarcoma: Possibilities for Novel Immunotherapy. Orthop Surg 2022; 15:829-838. [PMID: 36519392 PMCID: PMC9977595 DOI: 10.1111/os.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES The fact that studies on anti-programmed cell death 1 (PD-1) or its relevant ligand 1 (PD-L1) have yielded such few responses greatly decreases the confidence in immunotherapy with checkpoint inhibitors for advanced osteosarcoma. We intended to characterize the expression of various checkpoint molecules with immunohistochemistry in osteosarcoma specimens and analyzed the relationship of the expression of these checkpoint molecules with patients' clinical courses. METHODS This study was a retrospective non-intervention study from August 1st 2017 to March 1st 2020. Immunohistochemistry for B7-H3 (CD276, Cluster of Differentiation 276), CD47 (Cluster of Differentiation 47), PD-L1 (programmed cell death ligand 1), TIM3 (mucin-domain containing-3), TGF-β (TransformingGrowth Factor β), CXCR 4 (Chemokine Receptor 4), CD27 (Cluster of Differentiation 27), IDO1 (Indoleamine 2,3-dioxygenase 1), KIRs (Killer cell Immunoglobulin-like Receptors), and SDF-1 (Stromal cell-Derived Factor-1) was performed on 35 resected osteosarcoma specimens. Patients progressed upon first-line chemotherapy with evaluable lesions were qualified for this study, and their specimens previously stored in the pathological department repository would be retrieved for analysis. Associations between the immunohischemistry markers and clinicopathological variables and survival were evaluated by the χ2 displayed by cross-table, Cox proportional hazards regression model, and Kaplan-Meier plots. RESULTS The positive rates of B7-H3, CD47, PD-L1, TIM3, and TGF-β expression in this sample of 35 heavily treated osteosarcomas were 29% (10/35), 15% (5/35), 9% (3/35), 6% (2/35), and 6% (2/35), respectively, and diverse staining intensities were observed. Among these advanced patients, 15/35 (43%) had positive checkpoint expression, of which 33% (5/15) showed evidence of the co-expression of more than one checkpoint molecule. We did not find any obvious correlation with clinicopathological characteristics and the positive expression of these molecules. CONCLUSIONS The present study highlights that only a small subset of progressive osteosarcomas, which had been heavily-treated, expressed tumor immune-associated checkpoint molecules, of which B7-H3 was the most positively expressed checkpoint and might be a promising target for further osteosarcoma investigation.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Chenglong Chen
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Liang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Jie Xu
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Sun
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Kunkun Sun
- Pathology DepartmentPeking University People's HospitalBeijingChina
| | - Rongli Yang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xiaodong Tang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Wei Guo
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| |
Collapse
|
47
|
Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ, Gorlick R. Osteosarcoma. Nat Rev Dis Primers 2022; 8:77. [PMID: 36481668 DOI: 10.1038/s41572-022-00409-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan S Bielack
- Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Adrienne M Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Jonathan Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, University College London, London, UK
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
48
|
Anderson PM, Subbiah V, Trucco MM. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227. Front Med (Lausanne) 2022; 9:1030094. [PMID: 36457575 PMCID: PMC9705365 DOI: 10.3389/fmed.2022.1030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a high-grade sarcoma characterized by osteoid formation, nearly universal expression of IGF1R and with a subset expressing HER-2. These qualities provide opportunities for the use of the alpha particle-emitting isotopes to provide targeted radiation therapy via alpha particles precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing metastases. This review will detail experience using the alpha emitter radium-223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma, specifically related to patient selection, use of gemcitabine for radio-sensitization, and using denosumab to increasing the osteoblastic phenotype of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-mediastinal osteoblastic lesion treated successfully with 223Ra combined with gemcitabine is described. Because not all areas of osteosarcoma lesions are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th) may become other means to provide targeted alpha particle therapy against osteosarcoma (NCT03746431 and NCT04147819).
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vivek Subbiah
- Investigational Cancer Therapeutics, Cancer Medicine, Clinical Center for Targeted Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matteo M. Trucco
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
49
|
Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, Chen Y, Zhang L, Zhou F, Guo Z, Liu H, Zhou S. Current Status and Prospects of Targeted Therapy for Osteosarcoma. Cells 2022; 11:3507. [PMID: 36359903 PMCID: PMC9653755 DOI: 10.3390/cells11213507] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zunguo Hu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wang
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhangyu Guo
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Bao Z, Zhu R, Fan H, Ye Y, Li T, Chai D. Aberrant expression of SPAG6 and NM23 predicts poor prognosis of human osteosarcoma. Front Genet 2022; 13:1012548. [PMID: 36199573 PMCID: PMC9527292 DOI: 10.3389/fgene.2022.1012548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the expression and clinical significance of sperm-associated antigen 6 and NM23 proteins in human osteosarcoma. Methods: The specimens of conventional osteosarcoma with follow-up from 42 Chinese patients were analyzed in this study, and 12 cases of osteochondroma were considered controls. The expression of SPAG6 and NM23 was inspected using immunohistochemical staining, qRT-PCR, and Western blotting methods. Results: The positive expression rate of SPAG6 protein (71.43%) in 42 cases of osteosarcoma tissue was significantly higher than that (33.33%) in 12 cases of osteochondroma tissues (p < 0.05), while the positive rate of NM23 protein (35.71%) in osteosarcoma tissue was lower than that (58.33%) in osteochondroma tissue (p < 0.05). The mRNA and protein levels of SPAG6 were significantly higher than those of the adjacent normal tissues, while the expression of NM23 was lower in osteosarcoma tissues than that in the controls (p < 0.05 for all). There was a positive relationship between the expression of SPAG6 and pathological grade, metastasis, and Enneking stage (p < 0.05 for all). The overall survival rate of osteosarcoma patients with SPAG6 positive expression was significantly lower than that with SPAG6 negative expression. The relationship between the expression of NM23 and pathological grade, metastasis, and Enneking stage was negative (p < 0.05 for all). The overall survival rate of the osteosarcoma patients with NM23 positive expression was higher than that of the patients with NM23 negative expression (p < 0.05). Conclusion: Overexpression of SPAG6 and low expression of NM23 are negatively related to pathological grade, metastasis, and Enneking stage and prognosis of osteosarcoma patients. This suggested that SPAG6 and NM23 should be considered candidate prognostic biomarkers for patients with osteosarcoma.
Collapse
Affiliation(s)
- Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China
| | - Ruizhi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Huagang Fan
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yuchen Ye
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|