1
|
Capozzi A, Jansen FA, Smetsers SE, Bakhuizen JJ, Hiemcke-Jiwa LS, Kranendonk MEG, Flucke U, Alaggio R, de Krijger RR. The Histological Spectrum of DICER1-Associated Neoplasms. Pediatr Dev Pathol 2025:10935266251329752. [PMID: 40231379 DOI: 10.1177/10935266251329752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
DICER1 syndrome is a heterogeneous cancer predisposition syndrome, characterized by a large variety of benign and malignant tumor types, and caused by germline heterozygous pathogenic variants in the DICER1 gene, which is essential in miRNA processing and RNA interference. The clinical manifestations are diverse, with pleuropulmonary blastoma, Sertoli-Leydig cell tumor, cystic nephroma, uterine cervical embryonal rhabdomyosarcoma, and thyroid follicular nodular disease being the most prevalent tumor types. Since these neoplasms are rare and particularly occur in the pediatric population, pathologists should be aware of the potential relationship of these tumors with an underlying DICER1 syndrome in order to perform or suggest additional molecular pathologic analysis and refer patients and their parents for genetic counseling and testing. This review describes the various DICER1-related tumor types with emphasis on the histological features, reflects on the molecular pathogenesis of DICER1, and aims to raise awareness of this syndrome to facilitate earlier diagnosis.
Collapse
Affiliation(s)
- Alessia Capozzi
- Research Unit of Anatomical Pathology, Department of Medicine, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Floor A Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Jette J Bakhuizen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Uta Flucke
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rita Alaggio
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Raymakers-Janssen PAMA, van den Berg G, Lilien MR, van Kessel IA, van der Steeg AFW, Wijnen MHWA, Triest MI, van Peer SE, Jongmans MCJ, van Tinteren H, Janssens GO, Fiocco M, Wösten-van Asperen RM, van den Heuvel-Eibrink MM. The incidence and outcome of acute kidney injury during pediatric kidney tumor treatment-a national cohort study. Pediatr Nephrol 2025:10.1007/s00467-025-06684-7. [PMID: 39966140 DOI: 10.1007/s00467-025-06684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious complication of pediatric cancer treatment that is suggested to increase the risk of chronic kidney disease (CKD). Children with a kidney tumor may be at particular risk. This study aimed to determine the incidence and risk factors of AKI and its association with CKD during pediatric kidney tumor treatment. METHODS We analyzed data from a prospective national cohort of patients ≤ 18 years old diagnosed with a kidney tumor between 2015 and 2021 in the Princess Máxima Center for Pediatric Oncology in the Netherlands. AKI was defined according to KDIGO criteria. CKD was assessed 1 year post-treatment based on proteinuria and/or decreased estimated glomerular filtration rate (eGFR). RESULTS Of 147 patients, we observed AKI in 104 patients (71%) during therapy. AKI occurred most often within 48 h after tumor nephrectomy (88/104), while the rest had non-nephrectomy-related AKI from multifactorial causes. Sixteen patients experienced more than one AKI episode, and 92/104 episodes were reversible. Patients who developed AKI had a higher eGFR prior to surgery compared to those who did not develop AKI. CKD was observed in 16/120 patients (13%). Risk factors for developing CKD included the occurrence of at least 1 AKI event, the use of a > 3-drug regimen, and a lower eGFR at the start of treatment. CONCLUSION The high incidence of AKI and its association with early CKD highlights the need for early detection, prevention, and intervention strategies during pediatric kidney tumor treatment.
Collapse
Affiliation(s)
- Paulien A M A Raymakers-Janssen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Gerrit van den Berg
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge A van Kessel
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alida F W van der Steeg
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Mieke I Triest
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Sophie E van Peer
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical Science, Medical Statistical Section, Leiden University Medical Centre, Leiden, The Netherlands
| | - Roelie M Wösten-van Asperen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology and Wilhelmina Children's Hospital, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Wilhelmina Children's Hospital/University Medical Center Utrecht, Theme Child Health, Utrecht, The Netherlands
| |
Collapse
|
3
|
Treger TD, Wegert J, Wenger A, Coorens THH, Al-Saadi R, Kemps PG, Kennedy J, Parks C, Anderson ND, Hodder A, Letunovska A, Jung H, Ogbonnah T, Trinh MK, Lee-Six H, Morcrette G, van den Heuvel-Eibrink MM, Drost J, van Boxtel R, Bertrums EJM, Goemans BF, Antoniou E, Reinhardt D, Streitenberger H, Ziegler B, Bartram J, Hutchinson JC, Vujanic GM, Vokuhl C, Chowdhury T, Furtwängler R, Graf N, Pritchard-Jones K, Gessler M, Behjati S. Predisposition Footprints in the Somatic Genome of Wilms Tumors. Cancer Discov 2025; 15:286-298. [PMID: 39665570 PMCID: PMC7617291 DOI: 10.1158/2159-8290.cd-24-0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Approximately 10% of children with cancer harbor a mutation in a predisposition gene. In children with the kidney cancer Wilms tumor, the prevalence is as high as 30%. Certain predispositions are associated with defined histological and clinical features, suggesting differences in tumorigenesis. To investigate this, we assembled a cohort of 137 children with Wilms tumor, of whom 71 had a pathogenic germline or mosaic variant. We examined 237 neoplasms (including two secondary leukemias), utilizing whole-genome sequencing, RNA sequencing, and genome-wide methylation, validating our findings in an independent cohort. Tumor development differed in children harboring a predisposition, depending on the variant gene and its developmental timing. Differences pervaded the repertoire of driver events, including high-risk mutations, the clonal architecture of normal kidneys, and the relatedness of neoplasms from the same individual. Our findings indicate that predisposition may preordain Wilms tumorigenesis, suggesting a variant-specific approach to managing children merits consideration. Significance: Tumors that arise in children with a cancer predisposition may develop through the same mutational pathways as sporadic tumors. We examined this question in the childhood kidney cancer, Wilms tumor. We found that certain predispositions dictate the genetic development of tumors, with clinical implications for these children. See related commentary by Brzezinski and Malkin, p. 258.
Collapse
Affiliation(s)
- Taryn D Treger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Anna Wenger
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tim H H Coorens
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Reem Al-Saadi
- Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Paul G Kemps
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jonathan Kennedy
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Conor Parks
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Angus Hodder
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Great Ormond Street Hospital for Children, London, United Kingdom
| | | | | | | | - Mi K Trinh
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Guillaume Morcrette
- Department of Fetopathology, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | | | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Heike Streitenberger
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Barbara Ziegler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Jack Bartram
- Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | | - Christian Vokuhl
- Department of Pathology, Section of Pediatric Pathology, University of Bonn, Bonn, Germany
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rhoikos Furtwängler
- Department of Paediatric Haematology and Oncology, Saarland University, Homburg, Germany
- Pediatric Hematology and Oncology, Inselspital Children's Hospital, University Bern, Bern, Switzerland
| | - Norbert Graf
- Department of Paediatric Haematology and Oncology, Saarland University, Homburg, Germany
| | | | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
4
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Schurink B, Reyes-Múgica M, de Krijger RR. Pediatric cancer predisposition syndromes involving non-central nervous system solid pediatric tumors: a review on their manifestations with a focus on histopathology. Virchows Arch 2025; 486:3-21. [PMID: 39847050 PMCID: PMC11782299 DOI: 10.1007/s00428-025-04029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Germline genetic alterations and their associated cancer predisposition syndromes (CPS) are an important cause of pediatric cancer. Early recognition is of great importance for targeted surveillance, early detection, and prompt (personalized) therapeutic interventions. This review provides an overview of non-central nervous system solid pediatric tumor types, in relation to their associated CPS, with an emphasis on their histology. It serves as a guide for (pediatric) pathologists to increase their awareness of histological clues that suggest a CPS and warrant referral to the clinical geneticist.
Collapse
Affiliation(s)
- B Schurink
- Department of Pathology, Amsterdam University Medical Centers, Location VUmc. De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - M Reyes-Múgica
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, 5301 South Congress Avenue Atlantis, Miami, FL, 33462, USA
| | - R R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
6
|
Bon SBB, Wouters RHP, Bakhuizen JJ, van den Heuvel-Eibrink MM, Maurice-Stam H, Jongmans MCJ, Grootenhuis MA. Parents' experiences with sequencing of all known pediatric cancer predisposition genes in children with cancer. Genet Med 2025; 27:101250. [PMID: 39244644 DOI: 10.1016/j.gim.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
PURPOSE Germline DNA sequencing is increasingly used within pediatric oncology, yet parental experiences remain underexplored. METHODS Parents of children undergoing cancer predisposition gene panel sequencing (143 genes) were surveyed before and after disclosure of results. Questionnaires assessed knowledge, expectations, worries, satisfaction, and regret. Next to descriptives, linear mixed models and generalized mixed models were utilized to explore factors associated with knowledge and worries. RESULTS Out of 325 eligible families, 310 parents (176 mothers and 128 fathers of 188 families) completed all after-consent questionnaires, whereas 260 parents (150 mothers and 110 fathers of 181 families) completed all after disclosure questionnaires. Most parents hoped their participation would benefit others, although individual hopes were also common. Sequencing-related worries were common, particularly concerning whether their child would get cancer again, cancer risks for family members and psychosocial implications of testing. Parental satisfaction after disclosure was high and regret scores were low. Lower education was associated with lower knowledge levels, whereas foreign-born parents were at increased risk of experiencing worries. CONCLUSION Germline sequencing of children with cancer is generally well received by their parents. However, careful genetic counseling is essential to ensure that parents are adequately informed and supported throughout the process.
Collapse
Affiliation(s)
- S B B Bon
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - R H P Wouters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Division of Child Health, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Maurice-Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M A Grootenhuis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Division of Child Health, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
van Peer SE, Kuiper RP, Hol JA, Egging S, van der Zwaag B, Lilien MR, Lombardi MP, van den Heuvel-Eibrink MM, Jongmans MC. Clinical Characterization of a National Cohort of Patients With Germline WT1 Variants Including Late-Onset Phenotypes. Kidney Int Rep 2024; 9:3570-3579. [PMID: 39698353 PMCID: PMC11652072 DOI: 10.1016/j.ekir.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction WT1 disorder is a recently introduced term for phenotypes associated with germline Wilms Tumor 1 (WT1) variants, including glomerulopathy, urogenital anomalies, and Wilms tumor. Previous studies showed a bias toward missense variants in the DNA-binding/Zinc-finger domain of WT1 (exon 8 and 9) and patients with early-onset glomerulopathy. Thorough genotype-phenotype correlations including follow-up data on late-onset glomerulopathy risk are lacking. To characterize the genotypic and phenotypic spectrum of WT1 disorder, we describe a national cohort of individuals with WT1 variants. Methods We requested clinical and genetic data of all patients with germline WT1 variants at all Dutch genetic laboratories. Results We identified 43 patients with pathogenic WT1 variants (truncating, n = 19; missense, n = 13; splice-site, n = 7; and deletions, n = 4). Wilms tumor was the only clinical manifestation in 10 patients, of whom 9 were female. Wilms tumor occurred in 18 of 19 patients with truncating variants, in 4 of 4 patients with deletions, and was rarer in patients with missense or splice-site variants. All patients with missense and 6 of 7 with splice-site variants developed chronic kidney disease (CKD) versus 5 of 19 patients with truncating variants (3 in adulthood, with kidney failure at the age of 24, 26, and 41 years) and 1 of 4 with a deletion. Urogenital malformations occurred predominantly in 46,XY individuals. Conclusion Among patients with WT1 variants, a genotype-phenotype correlation was observed for Wilms tumor risk and age of CKD onset. Although childhood-onset CKD was more common in patients with missense variants in the DNA-binding/Zinc-finger domain, other patients may develop CKD and kidney failure later in life. Therefore, life-long surveillance of kidney function is recommended. Being alert about WT1 variants is especially important for girls with Wilms tumor who often miss additional phenotypes.
Collapse
Affiliation(s)
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Janna A. Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne Egging
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc R. Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - M. Paola Lombardi
- Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Child Health, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolijn C.J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Bakhuizen JJ, van Dijk F, Koudijs MJ, Bladergroen RS, Bon SBB, Hopman SMJ, Kester LA, Kranendonk MEG, Loeffen JLC, Smetsers SE, Sonneveld E, Tachdjian M, de Vos-Kerkhof E, Goudie C, Merks JHM, Kuiper RP, Jongmans MCJ. Comparison of clinical selection-based genetic testing with phenotype-agnostic extensive germline sequencing to diagnose genetic predisposition in children with cancer: a prospective diagnostic study. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:751-761. [PMID: 39159644 DOI: 10.1016/s2352-4642(24)00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Germline data have become widely available in paediatric oncology since the introduction of paired tumour-germline sequencing. To guide best practice in cancer predisposition syndrome (CPS) diagnostics, we aimed to assess the diagnostic yield of extensive germline analysis compared with clinical selection-based genetic testing among all children with cancer. METHODS In this prospective diagnostic study, all children (aged 0-19 years) with newly diagnosed neoplasms treated in the Netherlands national centre, the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands), between June 1, 2020, and July 31, 2022, were offered two approaches to identify CPSs. In a phenotype-driven approach, paediatric oncologists used the McGill Interactive Pediatric OncoGenetic Guidelines tool to select children for referral to a clinical geneticist, and for genetic testing. In a phenotype-agnostic approach, CPS gene panel sequencing (143 genes) was offered to all children. In children declining the research CPS gene panel, 49 CPS genes were still analysed as part of routine diagnostics by the pathologist. Children with a causative CPS identified before neoplasm diagnosis were excluded. The primary objective was to compare the number and type of patients diagnosed with a CPS between the two approaches. FINDINGS 1052 children were eligible for this study, of whom 733 (70%) completed both the phenotype-driven approach and received phenotype-agnostic CPS gene panel sequencing (143 genes n=600; 49 genes n=133). In 53 children, a CPS was identified: 14 (26%) were diagnosed by the phenotype-driven approach only, 22 (42%) by CPS gene sequencing only, and 17 (32%) by both approaches. In 27 (51%) of the 53 children, the identified CPS was considered causative for the child's neoplasm. Only one (4%) of the 27 causative CPSs was missed by the phenotype-driven approach and was identified solely by phenotype-agnostic CPS gene sequencing. In 26 (49%) children, a CPS with uncertain causality was identified, including 14 adult-onset CPSs. The CPSs with uncertain causality were mainly detected by the phenotype-agnostic approach (21 [81%] of 26). INTERPRETATION Phenotype-driven genetic testing and phenotype-agnostic CPS gene panel sequencing were complementary. The phenotype-driven approach identified the most causative CPSs. CPS gene panel sequencing identified additional CPSs, many of those with uncertain causality, but some with clinical utility. We advise clinical evaluation for CPSs in all children with neoplasms. Phenotype-agnostic testing of all CPS genes is preferably conducted only in research settings and should be paired with counseling. FUNDING Stichting Kinderen Kankervrij.
Collapse
Affiliation(s)
- Jette J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freerk van Dijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | | | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Melissa Tachdjian
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada
| | | | - Catherine Goudie
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada; Department of Pediatrics, Division of Hematology-Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
9
|
Ciceri S, Bertolotti A, Serra A, Gattuso G, Boschetti L, Capasso M, Cecchi C, Sorrentino S, Quarello P, Ciniselli CM, Verderio P, De Cecco L, Manenti G, Diomedi Camassei F, Collini P, Spreafico F, Perotti D. Widening the spectrum of players affected by genetic changes in Wilms tumor relapse. iScience 2024; 27:110684. [PMID: 39262773 PMCID: PMC11387809 DOI: 10.1016/j.isci.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Few studies investigated the genetics of relapsed Wilms tumor (WT), suggesting the SIX1 gene, the microRNA processing genes, and the MYCN network as possibly involved in a relevant percentage of relapses. We investigated 28 relapsing WT patients (10 new cases and 18 cases in which the involvement of SIX and miRNAPG had been excluded) with a panel of ∼5000 genes. We identified variants affecting genes involved in DNA damage prevention and repair in 12/28 relapsing patients (42.9%), and affecting genes involved in chromatin modification and regulation in 6/28 relapsing patients (21.4%), widening the spectrum of anomalies detected in relapsed tumors. The disclosure of molecular pathways possibly underlying tumor progression might allow to use molecularly targeted therapies at relapse. Surprisingly, germline anomalies, mostly affecting DNA damage prevention and repair genes, were identified in 13/28 patients (46.4%), raising the issue of performing a genetic testing to all children presenting with a WT.
Collapse
Affiliation(s)
- Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, Gene and Cellular Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Capasso
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Cecilia Cecchi
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giacomo Manenti
- Unit of Animal Health and Welfare, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
10
|
Desrosiers-Battu LR, Wang T, Reuther J, Miles G, Dai H, Jo E, Russell H, Raesz-Martinez R, Recinos A, Gutierrez S, Thomas A, Berenson E, Corredor J, Nugent K, Castillo RW, Althaus R, Littlejohn R, Gessay S, Tomlinson G, Gill J, Bernini JC, Vallance K, Griffin T, Scollon S, Lin F, Eng C, Kulkarni S, Hilsenbeck SG, Roy A, McGuire AL, Parsons DW, Plon SE. Comparing the Diagnostic Yield of Germline Exome Versus Panel Sequencing in the Diverse Population of the Texas KidsCanSeq Pediatric Cancer Study. JCO Precis Oncol 2024; 8:e2400187. [PMID: 39259914 PMCID: PMC11392521 DOI: 10.1200/po.24.00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To evaluate the relative diagnostic yield of clinical germline genomic tests in a diverse pediatric cancer population. PATIENTS AND METHODS The KidsCanSeq study enrolled pediatric cancer patients across six sites in Texas. Germline analysis included both exome sequencing and a therapy-focused pediatric cancer gene panel. The results were categorized by participants demographics, the presence of pathogenic or likely pathogenic (P/LP) variants, and variants of uncertain significance (VUS) in cancer predisposition genes (CPGs). Pediatric actionable CPGs were defined as those with cancer surveillance recommendations during childhood. RESULTS Cancer P/LP variants were reported by at least one platform in 103 of 578 (17.8%) participants of which 76 were dominant cancer genes (13.1%) with no significant differences by self-described race or Hispanic ethnicity. However, the proportion of participants with VUS was greater in Asian and African American participants (P = .0029). Diagnostic yield was 16.6% for exome versus 8.5% for panel (P < .0001) with 42 participants with concordant germline results. Exome-only results included P/LP variants in 30 different CPGs in 54 participants, whereas panel-only results included seven participants with a copy number or structural P/LP variants in CPGs. There was no significant difference in diagnostic yield limited to pediatric actionable CPGs (P = .6171). CONCLUSION Approximately 18% of a diverse pediatric cancer population had germline diagnostic findings with 50% of P/LP variants reported by only one platform because of CPGs not on the targeted panel and copy number variants (CNVs)/rearrangements not reported by exome. Although diagnostic yields were similar in this diverse population, increases in VUS results were observed in Asian and African American populations. Given the clinical significance of CNVs/rearrangements in this cohort, detection is critical to optimize germline analysis of pediatric cancer populations.
Collapse
Affiliation(s)
| | | | | | - George Miles
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | - Alva Recinos
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | - Kimberly Nugent
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | | | - Rebecca Littlejohn
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | | | | | | | | | - Timothy Griffin
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | - Frank Lin
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chapman S, Lichtbroun B, Patel H, Doppalapudi SK, Thaker H, Smith C, Salazar CG, Moerdler S, Ghodoussipour S. Epithelial Predominant Wilms Tumor in an Adult Patient: Case Report and Literature Review. J Kidney Cancer VHL 2024; 11:33-39. [PMID: 39148862 PMCID: PMC11325451 DOI: 10.15586/jkcvhl.v11i3.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Although rare in adults, Wilms tumor is the most common pediatric renal tumor. Treatment typically involves radical nephrectomy followed by adjuvant chemotherapy or radiation, although outcomes differ between children and adults which may be due to challenges in accurately diagnosing these patients. In this article, we present a case report of an adult patient with Jeune syndrome and multiple urologic abnormalities who underwent radical nephrectomy for a large renal mass and was subsequently diagnosed with an epithelial predominant Wilms tumor. Epithelial predominant Wilms tumor may have distinct origins from other Wilms tumor histological subtypes and may incur better outcomes. Herein, we discuss the literature surrounding this rare entity as well as the anticipated treatment course.
Collapse
Affiliation(s)
- Sofia Chapman
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Benjamin Lichtbroun
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Hiren Patel
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sai Krishnaraya Doppalapudi
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA
| | - Colton Smith
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Cristo Guardado Salazar
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA
| | - Scott Moerdler
- Section of Pediatric Hematology and Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Saum Ghodoussipour
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
12
|
Kaffai S, Angelova-Toshkin D, Weins AB, Ickinger S, Steinke-Lange V, Vollert K, Frühwald MC, Kuhlen M. Cancer predisposing syndromes in childhood and adolescence pose several challenges necessitating interdisciplinary care in dedicated programs. Front Pediatr 2024; 12:1410061. [PMID: 38887560 PMCID: PMC11180882 DOI: 10.3389/fped.2024.1410061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Genetic disposition is a major etiologic factor in childhood cancer. More than 100 cancer predisposing syndromes (CPS) are known. Surveillance protocols seek to mitigate morbidity and mortality. To implement recommendations in patient care and to ascertain that the constant gain of knowledge forces its way into practice specific pediatric CPS programs were established. Patients and methods We retrospectively analyzed data on children, adolescents, and young adults referred to our pediatric CPS program between October 1, 2021, and March 31, 2023. Follow-up ended on December 31, 2023. Results We identified 67 patients (30 male, 36 female, 1 non-binary, median age 9.5 years). Thirty-five patients were referred for CPS surveillance, 32 for features suspicious of a CPS including café-au-lait macules (n = 10), overgrowth (n = 9), other specific symptoms (n = 4), cancer suspicious of a CPS (n = 6), and rare neoplasms (n = 3). CPS was confirmed by clinical criteria in 6 patients and genetic testing in 7 (of 13). In addition, 6 clinically unaffected at-risk relatives were identified carrying a cancer predisposing pathogenic variant. A total of 48 patients were eventually diagnosed with CPS, surveillance recommendations were on record for 45. Of those, 8 patients did not keep their appointments for various reasons. Surveillance revealed neoplasms (n = 2) and metachronous tumors (n = 4) by clinical (n = 2), radiological examination (n = 2), and endoscopy (n = 2). Psychosocial counselling was utilized by 16 (of 45; 35.6%) families. Conclusions The diverse pediatric CPSs pose several challenges necessitating interdisciplinary care in specified CPS programs. To ultimately improve outcome including psychosocial well-being joint clinical and research efforts are necessary.
Collapse
Affiliation(s)
- Stefanie Kaffai
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniela Angelova-Toshkin
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas B. Weins
- Augsburger Zentrum für Seltene Erkrankungen, University of Augsburg, Augsburg, Germany
| | - Sonja Ickinger
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology, University of Augsburg, Augsburg, Germany
| | - Michael C. Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
13
|
Kratz CP, Lupo PJ, Zelley K, Schienda J, Nichols KE, Stewart DR, Malkin D, Brodeur GM, Maxwell K, Plon SE, Walsh MF. Adult-Onset Cancer Predisposition Syndromes in Children and Adolescents-To Test or not to Test? Clin Cancer Res 2024; 30:1733-1738. [PMID: 38411636 DOI: 10.1158/1078-0432.ccr-23-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
With the increasing use of comprehensive germline genetic testing of children and adolescents with cancer, it has become evident that pathogenic variants (PV) in adult-onset cancer predisposition genes (aoCPG) underlying adult-onset cancer predisposition syndromes, such as Lynch syndrome or hereditary breast and ovarian cancer, are enriched and reported in 1% to 2% of children and adolescents with cancer. However, the causal relationship between PVs in aoCPGs and childhood cancer is still under investigation. The best-studied examples include heterozygous PVs in mismatch repair genes associated with Lynch syndrome in children with mismatch repair deficient high-grade glioma, heterozygous PVs in BARD1 in childhood neuroblastoma, and heterozygous PVs in BRCA2 in children with rhabdomyosarcoma. The low penetrance for pediatric cancers is considered to result from a combination of the low baseline risk of cancer in childhood and the report of only a modest relative risk of disease in childhood. Therefore, we do not advise that healthy children empirically be tested for PVs in an aoCPG before adulthood outside a research study. However, germline panel testing is increasingly being performed in children and adolescents with cancer, and exome and genome sequencing may be offered more commonly in this population in the future. The precise pediatric cancer risks and spectra associated with PVs in aoCPGs, underlying cellular mechanisms and somatic mutational signatures, as well as treatment response, second neoplasm risks, and psycho-oncological aspects require further research.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara Maxwell
- Department of Medicine, Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon E Plon
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Weijers DD, Hirsch S, Bakhuizen JJ, van Engelen N, Kester LA, Kranendonk MEG, Hiemcke-Jiwa LS, de Vos-Kerkhof E, Loeffen JLC, Autry RJ, Pajtler KW, Jäger N, Jongmans MCJ, Kuiper RP. Molecular analysis of cancer genomes in children with Lynch syndrome: Exploring causal associations. Int J Cancer 2024; 154:1455-1463. [PMID: 38175816 DOI: 10.1002/ijc.34832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.
Collapse
Affiliation(s)
- Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jette J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Robert J Autry
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Spreafico F, Biasoni D, Montini G. Most appropriate surgical approach in children with Wilms tumour, risk of kidney disease, and related considerations. Pediatr Nephrol 2024; 39:1019-1022. [PMID: 37934272 DOI: 10.1007/s00467-023-06213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy.
| | - Davide Biasoni
- Surgical Department, Pediatric Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| |
Collapse
|
16
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
17
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski CM, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. Genetic and epigenetic features of bilateral Wilms tumor predisposition in patients from the Children's Oncology Group AREN18B5-Q. Nat Commun 2023; 14:8006. [PMID: 38110397 PMCID: PMC10728430 DOI: 10.1038/s41467-023-43730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay A Renfro
- Children's Oncology Group and Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Brett Tornwall
- Children's Oncology Group Statistics and Data Center, Monrovia, CA, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Peter F Ehrlich
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie Maciezsek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Carolyn M Jablonowski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew M Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | | | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
18
|
Stoltze UK, Hildonen M, Hansen TVO, Foss-Skiftesvik J, Byrjalsen A, Lundsgaard M, Pignata L, Grønskov K, Tumer Z, Schmiegelow K, Brok JS, Wadt KAW. Germline (epi)genetics reveals high predisposition in females: a 5-year, nationwide, prospective Wilms tumour cohort. J Med Genet 2023; 60:842-849. [PMID: 37019617 PMCID: PMC10447365 DOI: 10.1136/jmg-2022-108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Studies suggest that Wilms tumours (WT) are caused by underlying genetic (5%-10%) and epigenetic (2%-29%) mechanisms, yet studies covering both aspects are sparse. METHODS We performed prospective whole-genome sequencing of germline DNA in Danish children diagnosed with WT from 2016 to 2021, and linked genotypes to deep phenotypes. RESULTS Of 24 patients (58% female), 3 (13%, all female) harboured pathogenic germline variants in WT risk genes (FBXW7, WT1 and REST). Only one patient had a family history of WT (3 cases), segregating with the REST variant. Epigenetic testing revealed one (4%) additional patient (female) with uniparental disomy of chromosome 11 and Beckwith-Wiedemann syndrome (BWS). We observed a tendency of higher methylation of the BWS-related imprinting centre 1 in patients with WT than in healthy controls. Three patients (13%, all female) with bilateral tumours and/or features of BWS had higher birth weights (4780 g vs 3575 g; p=0.002). We observed more patients with macrosomia (>4250 g, n=5, all female) than expected (OR 9.98 (95% CI 2.56 to 34.66)). Genes involved in early kidney development were enriched in our constrained gene analysis, including both known (WT1, FBXW7) and candidate (CTNND1, FRMD4A) WT predisposition genes. WT predisposing variants, BWS and/or macrosomia (n=8, all female) were more common in female patients than male patients (p=0.01). CONCLUSION We find that most females (57%) and 33% of all patients with WT had either a genetic or another indicator of WT predisposition. This emphasises the need for scrutiny when diagnosing patients with WT, as early detection of underlying predisposition may impact treatment, follow-up and genetic counselling.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | - Mathis Hildonen
- Department of Genetics, Kennedy Center-National Research Center on Rare Genetic Diseases, Glostrup, Denmark
| | | | | | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Laura Pignata
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Zeynep Tumer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Jesper Sune Brok
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Grubliauskaite M, van der Perk MEM, Bos AME, Meijer AJM, Gudleviciene Z, van den Heuvel-Eibrink MM, Rascon J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers (Basel) 2023; 15:4199. [PMID: 37686475 PMCID: PMC10486797 DOI: 10.3390/cancers15174199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation and transplantation are the only available fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID) within ovarian tissue. METHODS A broad search for peer-reviewed articles in the PubMed database was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included 'minimal residual disease', 'cryopreservation', 'ovarian', 'cancer' and synonyms. RESULTS Out of 542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma (EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript, FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript) patients. CONCLUSION While the majority of malignancies were found to have a low risk of containing malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future fertility restoration in clinical practice.
Collapse
Affiliation(s)
- Monika Grubliauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Biobank, National Cancer Institute, Santariskiu Str. 1, LT-08406 Vilnius, Lithuania
| | | | - Annelies M. E. Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Reproductive Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Zivile Gudleviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Child Health, UMCU-Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
20
|
Libes J, Hol J, Neto JCDA, Vallance KL, Tinteren HV, Benedetti DJ, Villar GLR, Duncan C, Ehrlich PF. Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges. Pediatr Blood Cancer 2023; 70 Suppl 2:e30343. [PMID: 37096796 DOI: 10.1002/pbc.30343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 04/26/2023]
Abstract
Pediatric renal tumors account for 3%-11% of childhood cancers, the most common of which is Wilms tumor or nephroblastoma. Epidemiology plays a key role in cancer prevention and control by describing the distribution of cancer and discovering risk factors for cancer. Large pediatric research consortium trials have led to a clearer understanding of pediatric renal tumors, identification of risk factors, and development of more risk-adapted therapies. These therapies have improved event-free and overall survival for children. However, several challenges remain and not all children have benefited from the improved outcomes. In this article, we review the global epidemiology of pediatric renal tumors, including key consortium and global studies. We identify current knowledge gaps and challenges facing both high and low middle-incomes countries.
Collapse
Affiliation(s)
- Jaime Libes
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Janna Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | | | - Daniel J Benedetti
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gema Lucia Ramirez Villar
- Hospital Universitario Virgen del Rocio, Pediatric Oncology Unit, University of Seville, Seville, Spain
| | - Catriona Duncan
- Great Ormond Street Hospital for Children (GOSH), NHS Foundation Trust, NIHR, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Peter F Ehrlich
- Department of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski C, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. The Genetic and Epigenetic Features of Bilateral Wilms Tumor Predisposition: A Report from the Children's Oncology Group AREN18B5-Q Study. RESEARCH SQUARE 2023:rs.3.rs-2675436. [PMID: 36993649 PMCID: PMC10055651 DOI: 10.21203/rs.3.rs-2675436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center
| | | | | | | | | | | | - Ninad Oak
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | - Jun Yang
- St. Jude Children's Research Hospital
| | | | | | | | | |
Collapse
|
22
|
Somatic, Genetic and Epigenetic Changes in Nephrogenic Rests and Their Role in the Transformation to Wilms Tumors, a Systematic Review. Cancers (Basel) 2023; 15:cancers15051363. [PMID: 36900155 PMCID: PMC10000075 DOI: 10.3390/cancers15051363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE To review somatic genetic changes in nephrogenic rests (NR), which are considered to be precursor lesions of Wilms tumors (WT). METHODS This systematic review is written according to the PRISMA statement. PubMed and EMBASE were systematically searched for articles in the English language studying somatic genetic changes in NR between 1990 and 2022. RESULTS Twenty-three studies were included in this review, describing 221 NR of which 119 were pairs of NR and WT. Single gene studies showed mutations in WT1 and WTX, but not CTNNB1 to occur in both NR and WT. Studies investigating chromosomal changes showed loss of heterozygosity of 11p13 and 11p15 to occur in both NR and WT, but loss of 7p and 16q occurred in WT only. Methylome-based studies found differential methylation patterns between NR, WT, and normal kidney (NK). CONCLUSIONS Over a 30-year time frame, few studies have addressed genetic changes in NR, likely hampered by technical and practical limitations. A limited number of genes and chromosomal regions have been implicated in the early pathogenesis of WT, exemplified by their occurrence in NR, including WT1, WTX, and genes located at 11p15. Further studies of NR and corresponding WT are urgently needed.
Collapse
|
23
|
Quarello P, Carli D, Biasoni D, Gerocarni Nappo S, Morosi C, Cotti R, Garelli E, Zucchetti G, Spadea M, Tirtei E, Spreafico F, Fagioli F. Implications of an Underlying Beckwith-Wiedemann Syndrome for Wilms Tumor Treatment Strategies. Cancers (Basel) 2023; 15:1292. [PMID: 36831633 PMCID: PMC9954715 DOI: 10.3390/cancers15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is a pediatric overgrowth disorder involving a predisposition to embryonal tumors. Most of the tumors associated with BWS occur in the first 8-10 years of life, and the most common is Wilms tumor (WT). BWS clinical heterogeneity includes subtle overgrowth features or even silent phenotypes, and WT may be the presenting symptom of BWS. WT in BWS individuals exhibit distinct characteristics from those of sporadic WT, and the management of these patients needs a peculiar approach. The most important feature is a higher risk of developing bilateral disease at some time in the course of the illness (synchronous bilateral disease at diagnosis or metachronous recurrence after initial presentation with unilateral disease). Accordingly, neoadjuvant chemotherapy is the recommended approach also for BWS patients with unilateral WT to facilitate nephron-sparing surgical approaches. This review emphasizes the importance of early BWS recognition, particularly if a WT has already occurred, as this will result in an urgent consideration of first-line cancer therapy.
Collapse
Affiliation(s)
- Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Diana Carli
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Davide Biasoni
- Pediatric Surgical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | | | - Carlo Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Cotti
- Pediatric Radiology, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Emanuela Garelli
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Giulia Zucchetti
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Manuela Spadea
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Elisa Tirtei
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| |
Collapse
|
24
|
Bakhuizen JJ, Hopman SMJ, Bosscha MI, Dommering CJ, van den Heuvel-Eibrink MM, Hol JA, Kester LA, Koudijs MJ, Langenberg KPS, Loeffen JLC, van der Lugt J, Moll AC, van Noesel MM, Smetsers SE, de Vos-Kerkhof E, Merks JHM, Kuiper RP, Jongmans MCJ. Assessment of Cancer Predisposition Syndromes in a National Cohort of Children With a Neoplasm. JAMA Netw Open 2023; 6:e2254157. [PMID: 36735256 PMCID: PMC9898819 DOI: 10.1001/jamanetworkopen.2022.54157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IMPORTANCE To improve diagnostics of cancer predisposition syndromes (CPSs) in children with cancer, it is essential to evaluate the effect of CPS gene sequencing among all children with cancer and compare it with genetic testing based on clinical selection. However, a reliable comparison is difficult because recent reports on a phenotype-first approach in large, unselected childhood cancer cohorts are lacking. OBJECTIVE To describe a national children's cancer center's experience in diagnosing CPSs before introducing routine next-generation sequencing. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted at the National Retinoblastoma Treatment Center (Amsterdam, the Netherlands) and the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands) and included Dutch pediatric patients with a new diagnosis of neoplasm between June 1, 2018, and December 31, 2019. Follow-up was at least 18 months after neoplasm diagnosis. Data analysis was conducted from July 2021 to February 2022. EXPOSURES As part of routine diagnostics, pediatric oncologists and ophthalmologists checked for characteristics of CPSs and selected children for referral to clinical geneticists and genetic testing. MAIN OUTCOMES AND MEASURES Detected cancer predisposition syndromes. RESULTS A total of 824 patients (median [range] age at diagnosis 7.5 [0-18.9] years; 361 girls [44%]) were assessed, including 335 children with a hematological neoplasm (41%) and 489 (59%) with a solid tumor. In 71 of 824 children (8.6%), a CPS was identified, of which most (96%) were identified by a phenotype-driven approach. Down syndrome and neurofibromatosis type 1 were the most common CPSs diagnosed. In 42 of 71 patients (59%), a CPS was identified after these children developed a neoplasm. The specific type of neoplasm was the most frequent indicator for genetic testing, whereas family history played a minor role. CONCLUSIONS AND RELEVANCE In this cohort study of children with a neoplasm, the prevalence of CPSs identified by a phenotype-driven approach was 8.6%. The diagnostic approach for identifying CPSs is currently shifting toward a genotype-first approach. Future studies are needed to determine the diagnostic value, as well as possible disadvantages of CPS gene sequencing among all children with cancer compared with the phenotype-driven approach.
Collapse
Affiliation(s)
- Jette J. Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia M. J. Hopman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Machteld I. Bosscha
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Charlotte J. Dommering
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center-Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Janna A. Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Jan L. C. Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Annette C. Moll
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Johannes H. M. Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Childhood cancer is rare, but it remains the leading cause of disease-related mortality among children 1-14 years of age. As exposure to environmental factors is lower in children, inherited genetic factors become an important player in the cause of childhood cancer. This review highlights the current knowledge and approach for cancer predisposition syndromes in children. RECENT FINDINGS Current literature suggests that 10-18% of paediatric cancer patients have an underlying genetic susceptibility to their disease. With better knowledge and technology, more genes and syndromes are being discovered, allowing tailored treatment and surveillance for the probands and their families.Studies have demonstrated that focused surveillance can detect early malignancies and increase overall survival in several cancer predisposition syndromes. Various approaches have been proposed to refine early tumour detection strategies while minimizing the burden on patients and families. Newer therapeutic strategies are being investigated to treat, or even prevent, tumours in children with cancer predisposition. SUMMARY This review summarizes the current knowledge about different cancer predisposition syndromes, focusing on the diagnosis, genetic counselling, surveillance and future directions.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ron Rabinowicz
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Performance Metrics of the Scoring System for the Diagnosis of the Beckwith-Wiedemann Spectrum (BWSp) and Its Correlation with Cancer Development. Cancers (Basel) 2023; 15:cancers15030773. [PMID: 36765732 PMCID: PMC9913441 DOI: 10.3390/cancers15030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).
Collapse
|
27
|
Abstract
The algorithm that has been used successfully in the surgical management of unilateral Wilms tumor, radical nephroureterectomy, cannot be used in children who present with synchronous bilateral renal masses. Instead, a surgical approach that removes all tumor masses while preserving as much normal renal parenchyma as possible is encouraged to avoid acute and long-term renal insufficiency. We will review technical aspects of the conduct of nephron-sparing surgery for synchronous bilateral Wilms tumor, including the more recent advances in the use of imaging adjuncts such as pre-operative 3D imaging and fluorescence-guided surgery. The potential role of nephron-sparing surgery for unilateral Wilms tumor will also be discussed.
Collapse
Affiliation(s)
- Andrew J. Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
28
|
Walz AL, Maschietto M, Crompton B, Evageliou N, Dix D, Tytgat G, Gessler M, Gisselsson D, Daw NC, Wegert J. Tumor biology, biomarkers, and liquid biopsy in pediatric renal tumors. Pediatr Blood Cancer 2023; 70 Suppl 2:e30130. [PMID: 36592003 DOI: 10.1002/pbc.30130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 01/03/2023]
Abstract
The expansion of knowledge regarding driver mutations for Wilms tumor (WT) and malignant rhabdoid tumor of the kidney (MRT) and various translocations for other pediatric renal tumors opens up new possibilities for diagnosis and treatment. In addition, there are growing data surrounding prognostic factors that can be used to stratify WT treatment to improve outcomes. Here, we review the molecular landscape of WT and other pediatric renal tumors as well as WT prognostic factors. We also review incorporation of circulating tumor DNA/liquid biopsies to leverage this molecular landscape, with potential use in the future for distinguishing renal tumors at the time of diagnosis and elucidating intratumor heterogeneity, which is not well evaluated with standard biopsies. Incorporation of liquid biopsies will require longitudinal collection of multiple biospecimens. Further preclinical research, identification and validation of biomarkers, molecular studies, and data sharing among investigators are crucial to inform therapeutic strategies that improve patient outcomes.
Collapse
Affiliation(s)
- Amy L Walz
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Harvard Cancer Center, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicholas Evageliou
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David Dix
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology, CS Utrecht, The Netherlands
| | - Manfred Gessler
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany.,Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Najat C Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Libes J, Hol J, Neto JCDA, Vallance KL, Tinteren HV, Benedetti DJ, Villar GLR, Duncan C, Ehrlich PF. Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges. Pediatr Blood Cancer 2023; 70:e30006. [PMID: 36326750 DOI: 10.1002/pbc.30006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Pediatric renal tumors account for 3%-11% of childhood cancers, the most common of which is Wilms tumor or nephroblastoma. Epidemiology plays a key role in cancer prevention and control by describing the distribution of cancer and discovering risk factors for cancer. Large pediatric research consortium trials have led to a clearer understanding of pediatric renal tumors, identification of risk factors, and development of more risk-adapted therapies. These therapies have improved event-free and overall survival for children. However, several challenges remain and not all children have benefited from the improved outcomes. In this article, we review the global epidemiology of pediatric renal tumors, including key consortium and global studies. We identify current knowledge gaps and challenges facing both high and low middle-incomes countries.
Collapse
Affiliation(s)
- Jaime Libes
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Janna Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | | | - Daniel J Benedetti
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gema Lucia Ramirez Villar
- Hospital Universitario Virgen del Rocio, Pediatric Oncology Unit, University of Seville, Seville, Spain
| | - Catriona Duncan
- Great Ormond Street Hospital for Children (GOSH), NHS Foundation Trust, NIHR, Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Peter F Ehrlich
- Department of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Bon SBB, Wouters RHP, Hol JA, Jongmans MCJ, van den Heuvel‐Eibrink MM, Grootenhuis MA. Parents' experiences with large-scale sequencing for genetic predisposition in pediatric renal cancer: A qualitative study. Psychooncology 2022; 31:1692-1699. [PMID: 35962481 PMCID: PMC9804506 DOI: 10.1002/pon.6016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 08/07/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In pediatric oncology, large-scale genetic sequencing contributes to the identification of cancer predisposition, which can facilitate surveillance and family counseling. Our qualitative study explores families' motives, knowledge, and views regarding germline genetic sequencing to improve future counseling and support. METHODS Semi-structured interviews were conducted with parents of children with renal tumors participating in a national center, germline sequencing study. An inductive thematic analysis approach was used. Twenty nine parents participated, 17 mothers and 12 fathers. The median age of the affected children was 4 years. RESULTS Parents were generally positive about sequencing and reported a combination of individual and altruistic motives to participate. Some families counseled about sequencing shortly after cancer diagnosis felt overwhelmed. Many parents had difficulties distinguishing between panel and exome-wide analysis. Families in which no predisposition was identified felt reassured. Most families did not experience distress after a predisposition was disclosed, although sometimes stress following disclosure of a predisposition added to pre-existing (cancer-related) stress. CONCLUSIONS Even though families reported positive experiences with germline genetic sequencing to detect cancer predisposition, timing of consent for sequencing as well as parents' understanding of genetic concepts can be further improved.
Collapse
Affiliation(s)
| | | | - Janna A. Hol
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands,Division of Child HealthUMCU‐Wilhelmina's Children's HospitalUtrechtThe Netherlands
| | - Marry M. van den Heuvel‐Eibrink
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Division of Child HealthUMCU‐Wilhelmina's Children's HospitalUtrechtThe Netherlands
| | - Martha A. Grootenhuis
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Division of Child HealthUMCU‐Wilhelmina's Children's HospitalUtrechtThe Netherlands
| |
Collapse
|
31
|
Welter N, Brzezinski J, Treece A, Chintagumpala M, Young MD, Perotti D, Kieran K, Jongmans MCJ, Murphy AJ. The pathophysiology of bilateral and multifocal Wilms tumors: What we can learn from the study of predisposition syndromes. Pediatr Blood Cancer 2022; 70 Suppl 2:e29984. [PMID: 36094328 DOI: 10.1002/pbc.29984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Approximately 5% of patients with Wilms tumor present with synchronous bilateral disease. The development of synchronous bilateral Wilms tumor (BWT) is highly suggestive of a genetic or epigenetic predisposition. Patients with known germline predisposition to Wilms tumor (WT1 variants, Beckwith Wiedemann spectrum, TRIM28 variants) have a higher incidence of BWT. This Children's Oncology Group (COG)-International Society for Pediatric Oncology (SIOP-) HARMONICA initiative review for pediatric renal tumors details germline genetic and epigenetic predisposition to BWT development, with an emphasis on alterations in 11p15.5 (ICR1 gain of methylation, paternal uniparental disomy, and postzygotic somatic mosaicism), WT1, TRIM28, and REST. Molecular mechanisms that result in BWT are often also present in multifocal Wilms tumor (multiple separate tumors in one or both kidneys). We identify priority areas for international collaborative research to better understand how predisposing genetic or epigenetic factors associate with response to neoadjuvant chemotherapy, oncologic outcomes, and long-term renal function outcomes.
Collapse
Affiliation(s)
- Nils Welter
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy Treece
- Department of Pathology, Children's Hospital Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Kathleen Kieran
- Division of Urology, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Integrated Analysis of the lncRNA-Associated ceRNA Network in Wilms Tumor via TARGET and GEO Databases. Genet Res (Camb) 2022; 2022:2365991. [PMID: 36101743 PMCID: PMC9452976 DOI: 10.1155/2022/2365991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607 differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131 DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2 DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WT patients (P < 0.05). Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus infection, may be associated with WT. The present study constructed a dysregulated lncRNA-mediated ceRNA network in WT and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WT development and progression. Survival-associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be important for determining optimal therapeutic strategies.
Collapse
|
33
|
Molecular Basis of Beckwith–Wiedemann Syndrome Spectrum with Associated Tumors and Consequences for Clinical Practice. Cancers (Basel) 2022; 14:cancers14133083. [PMID: 35804856 PMCID: PMC9265096 DOI: 10.3390/cancers14133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is an inborn overgrowth disorder caused by molecular alterations in chromosome 11p15.5. These molecular changes affect so-called imprinted genes, i.e., genes which underlie a complex regulation which is linked to the parental origin of the gene copy. Thus, either the maternal gene copy is expressed or the paternal, but this balanced regulation is prone to disturbances. In fact, different types of molecular variants have been identified in BWS, resulting in a variable phenotype; thus, it was consented that the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). Some molecular subgroups of BWSp are associated with an increased embryonic tumor risk and have different likelihoods for specific tumors. Therefore, the precise determination of the molecular subgroup is needed for precise monitoring and treatment, but the molecular diagnostic procedure has several limitations and challenges which have to be considered. Abstract Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is a congenital imprinting condition with a heterogenous clinical presentation of overgrowth and an increased childhood cancer risk (mainly nephroblastoma, hepatoblastoma or neuroblastoma). Due to the varying clinical presentation encompassing classical, clinical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly, the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). The tumor risk of up to 30% depends on the molecular subtype of BWSp with causative genetic or epigenetic alterations in the chromosomal region 11p15.5. The molecular diagnosis of BWSp can be challenging for several reasons, including the range of causative molecular mechanisms which are frequently mosaic. The molecular basis of tumor formation appears to relate to stalled cellular differentiation in certain organs that predisposes persisting embryonic cells to accumulate additional molecular defects, which then results in a range of embryonal tumors. The molecular subtype of BWSp not only influences the overall risk of neoplasia, but also the likelihood of specific embryonal tumors.
Collapse
|
34
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
35
|
Turner JT, Hill DA, Dome JS. Revisiting the Threshold for Cancer Genetics Referral in Patients With Wilms Tumor. J Clin Oncol 2022; 40:1853-1860. [DOI: 10.1200/jco.22.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in the Journal of Clinical Oncology , to patients seen in their own clinical practice.
Collapse
Affiliation(s)
- Joyce T. Turner
- Division of Genetics and Metabolism, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC
- Division of Oncology, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC
| | - D. Ashley Hill
- Division of Pathology and Laboratory Medicine, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jeffrey S. Dome
- Division of Oncology, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|