1
|
Liu J, Zhao XS, Chang YJ, Qin YZ, Jiang Q, Jiang H, Zhang XH, Xu LP, Wang Y, Lv M, Liu KY, Huang XJ, Zhao XY. Monitoring the KMT2A gene post-chemotherapy independently predicts the relapse and survival risk after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2025. [PMID: 40081934 DOI: 10.1111/bjh.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
This study evaluated the kinetics of KMT2A-r during chemotherapy and its impact on allogeneic haematopoietic stem cell transplantation (allo-HSCT) outcomes. KMT2A-r was assessed post-induction (MRD1), after the first (MRD2) and second (MRD3) consolidations and pre-transplant (MRD4) in 52 patients with acute myeloid leukaemia (AML). KMT2A-r significantly decreased from diagnosis to MRD2 (p < 0.001 for diagnosis vs. MRD1; p = 0.019 for MRD1 vs. MRD2). The incidence of KMT2A-r negativity (57.5%) peaked at MRD2. KMT2A-r status at each time point significantly affected post-transplant outcomes. Cluster analysis identified four KMT2A-r kinetic profiles: persistently negative (-/-), turned negative at transplant (+/-), turned positive at transplant (-/+) and persistently positive (+/+). The (-/-) group had the best outcomes, with a cumulative incidence of relapse (CIR) of 13.0%, overall survival (OS) of 82.0% and leukaemia-free survival (LFS) of 81.7%. The (+/+) group had the worst prognosis, with a CIR of 58.8%, OS of 29.4% and LFS of 23.5%. KMT2A dynamics were an independent risk factor for CIR (Hazard ratio [HR] = 11.070, 95%CI 2.395-51.165, p = 0.002), LFS (HR = 9.316, 95%CI 2.656-32.668, p < 0.001) and OS (HR = 7.172, 95%CI 1.999-25.730, p = 0.003). In conclusion, KMT2A-r status after chemotherapy and its kinetics are significant HSCT prognostic indicators.
Collapse
Affiliation(s)
- Jing Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| |
Collapse
|
2
|
Rao M, Luo W, Luo C, Wu B, Xu T, Wei Z, Deng H, Li K, Zhou D. Prognostic factors and outcomes in pediatric acute myeloid leukemia: a comprehensive bibliometric analysis of global research trends. Front Oncol 2025; 15:1466818. [PMID: 40034590 PMCID: PMC11873564 DOI: 10.3389/fonc.2025.1466818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Background Pediatric AML prognosis research has advanced significantly, yet gaps in understanding genetic and molecular interactions persist. Despite improved outcomes, relapse/refractory cases and personalized treatment integration remain critical clinical challenges. Objective To analyze the global research landscape on pediatric AML prognosis, highlight influential components and collaborations, and identify major potential research trends. Methods Publications on pediatric AML prognosis research from 1999 to 2023 were retrieved from the Clarivate Analytics Web of Science Core Collection (WoSCC) database. Bibliometric analysis was conducted using CiteSpace and VOSviewer to identify leading countries, prominent institutions, high-impact journals, key research categories, influential authors, and emerging research topics. Results The bibliometric analysis encompassed 924 publications, with St. Jude Children's Research Hospital emerging as the most prolific institution. The United States leads globally in terms of countries, institutions, journals, and authors. Todd A. Alonzo ranks highest in publication volume, while U. Creutzig leads in citations. The top research categories were Oncology, Hematology, and Pediatrics. Key research topics included genomics, transcriptomics, epigenomics, targeted therapies, immune therapy, and integrative diagnostic approaches. Conclusion This bibliometric analysis highlights significant advancements in pediatric AML prognosis over the past 25 years, driven by the integration of genetic markers, immunological insights, transcriptomics, and epigenomics, which have collectively transformed risk stratification and treatment strategies. Overcoming challenges, such as discovering new therapeutic targets and enhancing treatment combinations, will depend on global collaboration and advanced technologies to propel the field forward.
Collapse
Affiliation(s)
- Mingliang Rao
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenna Luo
- Department of Laboratory Medicine, Heyuan People’s Hospital, Heyuan, China
| | - Caiju Luo
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baojing Wu
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Xu
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziqian Wei
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haolan Deng
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kejing Li
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dunhua Zhou
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Wang L, Chen Y, Zang M, Zhou J, Xiao M, Fu H, Mo X, Wang F, Han W, Zhang Y, Yan C, Wang Z, Han T, Lv M, Chen H, Chen Y, Chen Y, Wang J, Wang Y, Xu L, Liu K, Huang X, Zhang X. Molecular measurable residual disease before transplantation independently predicts survival and relapse risk in adult lysine methyltransferase 2a-rearranged acute myeloid leukemia. Cancer 2025; 131:e35717. [PMID: 39760486 DOI: 10.1002/cncr.35717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Patients with lysine methyltransferase 2a (KMT2A)-rearranged (KMT2A-r) acute myeloid leukemia (AML) are assigned to intermediate-risk and adverse-risk categories at diagnosis. However, the value of molecular measurable residual disease (MRD) status in patients who have KMT2A-r AML before allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult cohorts has rarely been evaluated. METHODS Patients with KMT2A-r AML who achieved complete remission and subsequently underwent allo-HSCT between January 2015 and January 2023 were included in this analysis. Real-time quantitative polymerase chain reaction was used to detect molecular MRD in bone marrow samples. The end points were overall survival (OS), leukemia-free survival (LFS), the cumulative incidence of relapse (CIR), and nonrelapse mortality (NRM). RESULTS Pretransplantation molecular MRD was identified in 52 of 125 patients (42%) with KMT2A-r AML. The presence of KMT2A-r MRD was associated with inferior 3-year OS (51% vs. 82%; p < .001), LFS (42% vs. 81%; p < .001), CIR (33% vs. 12%; p < .001), and NRM (11% vs. 5%; p = .12). In multivariate models, molecular MRD status before transplantation independently predicted OS, LFS, and CIR. The survival of adult patients with KMT2A-r AML was heterogeneous, depending on the KMT2A translocation partners, and was more favorable in patients who had t(9;11) and t(10;11) than in those who had t(11;19) and t(6;11). In addition, flow cytometry-based MRD analysis conferred no additional prognostic value to the results of molecular MRD status. CONCLUSIONS Residual KMT2A-r before allo-HSCT independently predicts the risk of survival and relapse, and donor lymphocyte infusion or posttransplantation maintenance therapies should be considered for patients who have AML with detectable molecular MRD.
Collapse
Affiliation(s)
- Lulu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuxiu Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Mengtong Zang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jianying Zhou
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Mengyu Xiao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Haixia Fu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaodong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Fengrong Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Wei Han
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuanyuan Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Chenhua Yan
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhidong Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Tingting Han
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Huan Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuhong Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yao Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jingzhi Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lanping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kaiyan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaohui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
4
|
Hu Z, Feng Z, Liu S, He H, Dong Y, Fan Z, Li Y, Huang F, Xu N, Liu C, Zeng Y, Zhu P, Lin R, Jin H, Zhang X, Sun R, Liu Q, Xuan L. Intensified conditioning containing decitabine versus standard myeloablative conditioning for adult patients with KMT2A-rearranged leukemia: a multicenter retrospective study. BMC Med 2024; 22:605. [PMID: 39736728 DOI: 10.1186/s12916-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recommended for patients with KMT2A-rearranged (KMT2A-r) leukemia whereas relapse remains high. We aimed to determine whether intensified conditioning containing decitabine (Dec) could reduce relapse compared with standard myeloablative conditioning in adult patients with KMT2A-r leukemia. METHODS We performed a multicenter retrospective study at seven institutions in China. Eligible patients were aged 14 years or older at transplantation, had a diagnosis of KMT2A-r leukemia, and underwent the first allo-HSCT. Standard myeloablative conditioning regimens (standard group) included BuCy (busulfan 3.2 mg/kg/day on days -7 to -4; cyclophosphamide 60 mg/kg/day on days -3 to -2) and TBI-Cy (total body irradiation 4.5 Gy/day on days -5 to -4; Cy 60 mg/kg/day on days -3 to -2). Intensified conditioning regimens containing Dec (intensified group) consisted of Dec-BuCy (Dec 20 mg/m2/day on days -14 to -10; the same dose of BuCy) and Dec-TBI-Cy (Dec 20 mg/m2/day on days -10 to -6; the same dose of TBI-Cy). RESULTS Between April 2009 and December 2019, 218 patients were included in this study, of whom 105 were in the intensified group and 113 were in the standard group. The 3-year cumulative incidence of relapse was 17.6% and 34.5%, overall survival was 71.3% and 61.0%, disease-free survival was 70.1% and 56.0%, and non-relapse mortality was 12.3% and 9.5% in the intensified and standard groups, respectively (P = 0.001; P = 0.034; P = 0.005; P = 0.629). Subgroup analysis showed that the relapse rate of intensified conditioning was lower than that of standard conditioning in multiple subgroups, including different leukemia types, disease status at transplantation, high-risk cytogenetics and Bu-based regimens. There was no difference in regimen-related toxicity, engraftment, or graft-versus-host disease between the intensified and standard groups. CONCLUSIONS These results suggest that intensified conditioning containing Dec might be a better strategy than standard myeloablative conditioning for adult patients with KMT2A-r leukemia undergoing allo-HSCT.
Collapse
Affiliation(s)
- Zhongli Hu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zinan Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hai He
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Ying Dong
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Can Liu
- Department of Hematology, Hunan Provincial People's Hospital, Changsha, China
| | - Yunxin Zeng
- Department of Hematology, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ping Zhu
- Department of Hematology, the First People Hospital of Chenzhou, Chenzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xiong Zhang
- Department of Hematology, Maoming People's Hospital, Maoming, China.
| | - Ruijuan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China.
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Zhang C, Lang X, Liu L, Chen N, Chen H, Chen X, Chen Y, Jin L, Liu C, Wang H, Fu A, Xiao S. A RUNX1: RUNX1T1 AML with a simultaneous false positive KMT2A rearrangement: FISH interpretation pitfalls. Hematology 2024; 29:2420306. [PMID: 39535162 DOI: 10.1080/16078454.2024.2420306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION KMT2A rearrangement (KMT2Ar) is a common genomic alteration in acute leukemia that can be effectively targeted by menin inhibitors. While FISH is the standard laboratory test for KMT2Ar, false positives can occur. CASE REPORT We present a case of AML in which both RUNX1::RUNX1T1 and KMT2Ar were identified by karyotype analysis and FISH. Although a targeted RNA next generation sequencing (NGS) assay confirmed the presence of the RUNX1::RUNX1T1 fusion, it did not detect a KMT2A fusion transcript. To investigate the discrepancy between the positive KMT2A FISH result and the negative fusion transcript, we performed whole-genome mate-pair DNA NGS to examine the KMT2A locus on chromosome 11q23. This analysis revealed a breakpoint located 5.8 kb downstream of KMT2A, which did not disrupt the gene itself. Given that KMT2A FISH probes cover approximately 1 Mb around KMT2A, this subtle shift led to a split-apart signal pattern mimicking a genuine KMT2A rearrangement, resulting in a false positive FISH interpretation. CONCLUSION This case highlights a false positive KMT2Ar in primary AML, indicating the need for additional molecular testing for confirmation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Hematology, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Xingping Lang
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Lingfeng Liu
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Nan Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Huafei Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Xiaojun Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Yongyan Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Liqin Jin
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, People's Republic of China
- Suzhou Sano Precision Medicine Ltd, Suzhou, People's Republic of China
| | - Chengyin Liu
- Department of Hematology, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Huan Wang
- Department of Hematology, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Ailin Fu
- Department of Hematology, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
He H, Li J, Li W, Zhao X, Xue T, Liu S, Zhang R, Zheng H, Gao C. Clinical features and long-term outcomes of pediatric patients with de novo acute myeloid leukemia in China with or without specific gene abnormalities: a cohort study of patients treated with BCH-AML 2005. Hematology 2024; 29:2406596. [PMID: 39361146 DOI: 10.1080/16078454.2024.2406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Acute myeloid leukemia (AML), which has distinct genetic abnormalities, has unique clinical and biological features. In this study, the incidence, clinical characteristics, induction treatment response, and outcomes of a large cohort of Chinese AML pediatric patients treated according to the BCH-AML 2005 protocol were analyzed. RUNX1-RUNX1T1 was the most common fusion transcript, followed by the CBFβ-MHY11 and KMT2A rearrangements. FLT3-ITD and KIT mutations are associated with unfavorable clinical features and induction responses, along with KMT2A rearrangements, DEK-NUP214, and CBF-AML. The 5-year event-free survival (EFS) and overall survival (OS) rates of our cohort were 53.9 ± 3.7% and 58.5 ± 3.6%, with the best survival found among patients with CBFβ-MYH11 and the worst survival among those with DEK-NUP214. In addition, we found that patients with FLT3-ITD mutation had adverse outcomes and that KIT mutation had a negative impact on OS in RUNX1-RUNX1T1+ patients. Furthermore, the risk classification and response to treatment after each induction block also influenced the prognosis, and HSCT after first remission could improve OS in high-risk patients. Not achieving complete remission after induction 2 was found to be an independent prognostic factor for OS and EFS. These findings indicate that genetic abnormalities could be considered stratification factors, predict patient outcomes, and imply the application of targeted therapy.
Collapse
Affiliation(s)
- Hongbo He
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jun Li
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Weijing Li
- Hematologic Disease Laboratory, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Xiaoxi Zhao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tianlin Xue
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuguang Liu
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Ruidong Zhang
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huyong Zheng
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chao Gao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
7
|
Cantilena S, AlAmeri M, Che N, Williams O, de Boer J. Synergistic Strategies for KMT2A-Rearranged Leukemias: Beyond Menin Inhibitor. Cancers (Basel) 2024; 16:4017. [PMID: 39682203 DOI: 10.3390/cancers16234017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge. This review explores combination therapies aimed at overcoming resistance and improving patient outcomes. Potential strategies include inhibiting DOT1L, a histone methyltransferase essential for KMT2A-driven transcription, and BRD4, a regulator of transcriptional super-enhancers. Additionally, targeting MYC, a key oncogene frequently upregulated in KMT2A-rearranged leukemia, offers another approach. Direct inhibition of KMT2A-fusion proteins and c-MYB, a transcription factor critical for leukemic stem cell maintenance, is also explored. By integrating these diverse strategies, we propose a comprehensive therapeutic paradigm that targets multiple points of the leukemic transcriptional and epigenetic network. These combination approaches aim to disrupt key oncogenic pathways, reduce resistance, and enhance treatment efficacy, ultimately providing more durable remissions and improved survival for patients with KMT2A-rearranged leukemias.
Collapse
Affiliation(s)
- Sandra Cantilena
- Hemispherian AS, 0585 Oslo, Norway
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Mohamed AlAmeri
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Department of Health-Abu Dhabi, Abu Dhabi 20224, United Arab Emirates
| | - Noelia Che
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Australian & New Zealand Children's Haematology/Oncology Group, Melbourne, VIC 3052, Australia
- Australia & Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| |
Collapse
|
8
|
Boulland ML, Aliouat A, Jalaber E, Desmares A, Toujani S, Luque Paz D, Wiber M, Voirin E, Lachot S, Basinko A, Lambert WC, Carras S, Cousin E, Marchand T, de Tayrac M, Fest T, Houot R, Pastoret C. Tailored Digital PCR Follow-Up of Rare Fusion Transcripts after Initial Detection through RNA Sequencing in Hematological Malignancies. J Mol Diagn 2024; 26:1007-1017. [PMID: 39182671 DOI: 10.1016/j.jmoldx.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Minimal residual disease (MRD) monitoring plays a pivotal role in the management of hematologic malignancies. Well-established molecular targets, such as PML::RARA, CBFB::MYH11, or RUNX1::RUNX1T1, are conventionally tracked by quantitative RT-PCR. Recently, a broader landscape of fusion transcripts has been unveiled through transcriptomic analysis. These newly discovered fusion transcripts may emerge as novel molecular markers for MRD quantification. In this study, we compared a targeted RNA-sequencing (RNA-seq) approach (FusionPlex) with a whole-transcriptomic strategy (Advanta RNA-Seq XT) for fusion detection in a training set of 21 samples. We evidenced a concordance of 100% for the detection of known fusions, and showed a good correlation for gene expression quantification between the two techniques (Spearman r = 0.77). Additionally, we prospectively evaluated the identification of fusions by targeted RNA-seq in a real-life series of 126 patients with hematological malignancy. At least one fusion transcript was detected for 60 patients (48%). We designed tailored digital PCR assays for 11 rare fusions, and validated this technique for MRD quantification with a limit of detection of <0.01%. The combination of RNA-seq and tailored digital PCR may become a new standard for MRD evaluation in patients lacking conventional molecular targets.
Collapse
Affiliation(s)
- Marie-Laure Boulland
- Hematology Laboratory, Rennes University Hospital, Rennes, France; Inserm U1236, Rennes University, Rennes, France
| | - Amyra Aliouat
- Genetics Laboratory, Rennes University Hospital, Rennes, France
| | - Elie Jalaber
- Clinical Hematology Department, Rennes University Hospital, Rennes, France
| | - Anne Desmares
- Hematology Laboratory, Rennes University Hospital, Rennes, France
| | - Saloua Toujani
- Cytogenetics and Cellular Biology Laboratory, Rennes University Hospital, Rennes, France
| | - Damien Luque Paz
- Angers, Nantes University, Angers University Hospital, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI(2)NA), Angers, France
| | - Margaux Wiber
- Angers, Nantes University, Angers University Hospital, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI(2)NA), Angers, France
| | - Emeline Voirin
- Hematology Laboratory, Tours University Hospital, Tours, France
| | | | - Audrey Basinko
- Cytogenetics Laboratory, Brest University Hospital, Brest, France
| | | | - Sylvain Carras
- Hematology Laboratory, Grenoble-Alpes University Hospital, La Tronche, France
| | - Elie Cousin
- Pediatric Onco-Hematology Department, Rennes University Hospital, Rennes, France
| | - Tony Marchand
- Inserm U1236, Rennes University, Rennes, France; Clinical Hematology Department, Rennes University Hospital, Rennes, France
| | - Marie de Tayrac
- Genetics Laboratory, Rennes University Hospital, Rennes, France
| | - Thierry Fest
- Hematology Laboratory, Rennes University Hospital, Rennes, France; Inserm U1236, Rennes University, Rennes, France
| | - Roch Houot
- Inserm U1236, Rennes University, Rennes, France; Clinical Hematology Department, Rennes University Hospital, Rennes, France
| | - Cédric Pastoret
- Hematology Laboratory, Rennes University Hospital, Rennes, France; Inserm U1236, Rennes University, Rennes, France.
| |
Collapse
|
9
|
Shen Q, Gong X, Feng Y, Hu Y, Wang T, Yan W, Zhang W, Qi S, Gale RP, Chen J. Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways? Blood Rev 2024; 68:101226. [PMID: 39164126 DOI: 10.1016/j.blre.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Measurable residual disease (MRD)-testing is used in many haematological cancers to estimate relapse risk and to direct therapy. Sometimes MRD-test results are used for regulatory approval. However, some people including regulators wrongfully believe results of MRD-testing are highly accurate and of proven efficacy in directing therapy. We review MRD-testing technologies and evaluate the accuracy of MRD-testing for predicting relapse and the strength of evidence supporting efficacy of MRD-guided therapy. We show that at the individual level MRD-test results are often an inaccurate relapse predictor. Also, no convincing data indicate that increasing therapy-intensity based on a positive MRD-test reduces relapse risk or improves survival. We caution against adjusting therapy-intensity based solely on results of MRD-testing.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
10
|
Yang H, Xun Y, Shen Y, Wang H, Tao Y, Wang H, Zhang X, Liu R, Yu H, Wei L, Yan J, Zhu X, You H. A simplified and robust risk stratification model for stem cell transplantation in pediatric acute myeloid leukemia. Cell Rep Med 2024; 5:101762. [PMID: 39366384 PMCID: PMC11513827 DOI: 10.1016/j.xcrm.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
The efficacy of stem cell transplantation (SCT) in pediatric acute myeloid leukemia (pAML) remains unsatisfactory due to the limitations of existing prognostic models in predicting efficacy and selecting suitable candidates. This study aims to develop a cytomolecular risk stratification-independent prognostic model for SCT in pAML patients at CR1 stage. The pAML SCT model, based on age, KMT2A rearrangement (KMT2A-r), and minimal residual disease at end of course 1 (MRD1), effectively classifies patients into low-, intermediate-, and high-risk groups. We validate the effectiveness in an internal validation cohort and in four external validation cohorts, consisting of different graft sources and donors. Moreover, by incorporating the FMS-like tyrosine kinase 3/internal tandem duplication (FLT3/ITD) allelic ratio, the pAML SCT model is refined, enhancing its ability to effectively select suitable candidates. We develop a simple and robust risk stratification model for pAML patients undergoing SCT, to aid in risk stratification and inform pretransplant decision-making at CR1 stage.
Collapse
Affiliation(s)
- Hua Yang
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Basic Medicine, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yang Xun
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Basic Medicine, School of Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yali Shen
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tao
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongqiu Liu
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huarong Yu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Xiaoyu Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C Sequencing for Detection of Gene Fusions in Hematologic and Solid Tumor Pediatric Cancer Samples. Cancers (Basel) 2024; 16:2936. [PMID: 39272793 PMCID: PMC11394547 DOI: 10.3390/cancers16172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Hi-C sequencing is a DNA-based next-generation sequencing method that preserves the 3D genome conformation and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate Hi-C as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens. Archived viable and non-viable frozen leukemic cells and formalin-fixed paraffin-embedded (FFPE) tumor specimens were analyzed. Pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to Hi-C to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases without known genomic rearrangements based on prior clinical diagnostic testing was evaluated to determine whether Hi-C could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, we observed 100% concordance between Hi-C and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study provides an institutional proof of principle evaluation of Hi-C sequencing to medical diagnostic testing as it identified several clinically relevant rearrangements, including those that were missed by current clinical testing workflows.
Collapse
Affiliation(s)
| | - Kristin Sikkink
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Atif A Ahmed
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shadi Melnyk
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Derek Reid
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Logan Van Meter
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Erin M Guest
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Lisa A Lansdon
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Irina Pushel
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Byunggil Yoo
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Midhat S Farooqi
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Tito Rodriguez PR, Mehta D, Subhan M, Yadav RP, Yousofzai BS, Al-Najjar EH, Bibi R, Idries M, Singh A, Adnan M. Evolving Horizons in Pediatric Leukemia: Novel Insights, Challenges, and the Journey Ahead. Cureus 2024; 16:e67480. [PMID: 39310608 PMCID: PMC11415937 DOI: 10.7759/cureus.67480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Pediatric leukemia, encompassing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia, remains a formidable challenge despite significant treatment advancements. This review examines recent developments in immunotherapy, chemotherapy, and bone marrow transplantation for pediatric leukemia through a comprehensive analysis of recent literature, focusing on critical studies and clinical trials. Immunotherapy, including monoclonal antibodies, such as blinatumomab and inotuzumab ozogamicin, and chimeric antigen receptor T-cell therapies, such as tisagenlecleucel and brexucabtagene autoleucel, have demonstrated promising results in relapsed or refractory B-cell ALL (B-ALL), achieving notable remission rates with manageable side effects. Chemotherapy continues to be the primary treatment, utilizing multiphase regimens tailored to individual risk profiles. Bone marrow transplantation, especially allogeneic stem cell transplantation, offers potential cures for high-risk or relapsed cases, though it poses risks including graft-versus-host disease and infections. Despite these advancements, treatment resistance, toxicity, and accessibility persist. This review also discusses the long-term outcomes among pediatric leukemia survivors, focusing on late-onset side effects associated with treatments such as chemotherapy and bone marrow transplantation, encompassing secondary malignancies, organ dysfunction, and neurocognitive impacts. Ongoing research and clinical trials are crucial to refine these therapies, enhance their efficacy, and reduce adverse effects, ultimately improving young patients' survival and quality of life.
Collapse
Affiliation(s)
| | - Deepalee Mehta
- Internal Medicine, Bharati Vidyapeeth Medical College, Sangli, Sangli, IND
| | - Muhammad Subhan
- Medicine, Allama Iqbal Medical College, Jinnah Hospital, Lahore, PAK
| | | | | | | | - Ruqiya Bibi
- Medicine, Allama Iqbal Medical College, Jinnah Hospital, Lahore, PAK
| | - Mohamed Idries
- Biochemistry, St. George's University School of Medicine, St. George's, GRD
| | - Atinder Singh
- Medicine, World College of Medical Sciences and Research Hospital, Gurugram, IND
| | - Muhammad Adnan
- Pediatrics, Lady Reading Hospital, Peshawar, PAK
- Pediatrics, Khyber Medical College, Peshawar, PAK
| |
Collapse
|
14
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
15
|
van Weelderen RE, Harrison CJ, Klein K, Jiang Y, Abrahamsson J, Alonzo T, Aplenc R, Arad-Cohen N, Bart-Delabesse E, Buldini B, De Moerloose B, Dworzak MN, Elitzur S, Fernández Navarro JM, Gamis A, Gerbing RB, Goemans BF, de Groot-Kruseman HA, Guest E, Ha SY, Hasle H, Kelaidi C, Lapillonne H, Leverger G, Locatelli F, Miyamura T, Norén-Nyström U, Polychronopoulou S, Rasche M, Rubnitz JE, Stary J, Tierens A, Tomizawa D, Zwaan CM, Kaspers GJL. Optimized cytogenetic risk-group stratification of KMT2A-rearranged pediatric acute myeloid leukemia. Blood Adv 2024; 8:3200-3213. [PMID: 38621200 PMCID: PMC11225675 DOI: 10.1182/bloodadvances.2023011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
ABSTRACT A comprehensive international consensus on the cytogenetic risk-group stratification of KMT2A-rearranged (KMT2A-r) pediatric acute myeloid leukemia (AML) is lacking. This retrospective (2005-2016) International Berlin-Frankfurt-Münster Study Group study on 1256 children with KMT2A-r AML aims to validate the prognostic value of established recurring KMT2A fusions and additional cytogenetic aberrations (ACAs) and to define additional, recurring KMT2A fusions and ACAs, evaluating their prognostic relevance. Compared with our previous study, 3 additional, recurring KMT2A-r groups were defined: Xq24/KMT2A::SEPT6, 1p32/KMT2A::EPS15, and 17q12/t(11;17)(q23;q12). Across 13 KMT2A-r groups, 5-year event-free survival probabilities varied significantly (21.8%-76.2%; P < .01). ACAs occurred in 46.8% of 1200 patients with complete karyotypes, correlating with inferior overall survival (56.8% vs 67.9%; P < .01). Multivariable analyses confirmed independent associations of 4q21/KMT2A::AFF1, 6q27/KMT2A::AFDN, 10p12/KMT2A::MLLT10, 10p11.2/KMT2A::ABI1, and 19p13.3/KMT2A::MLLT1 with adverse outcomes, but not those of 1q21/KMT2A::MLLT11 and trisomy 19 with favorable and adverse outcomes, respectively. Newly identified ACAs with independent adverse prognoses were monosomy 10, trisomies 1, 6, 16, and X, add(12p), and del(9q). Among patients with 9p22/KMT2A::MLLT3, the independent association of French-American-British-type M5 with favorable outcomes was confirmed, and those of trisomy 6 and measurable residual disease at end of induction with adverse outcomes were identified. We provide evidence to incorporate 5 adverse-risk KMT2A fusions into the cytogenetic risk-group stratification of KMT2A-r pediatric AML, to revise the favorable-risk classification of 1q21/KMT2A::MLLT11 to intermediate risk, and to refine the risk-stratification of 9p22/KMT2A::MLLT3 AML. Future studies should validate the associations between the newly identified ACAs and outcomes and unravel the underlying biological pathogenesis of KMT2A fusions and ACAs.
Collapse
Affiliation(s)
- Romy E. van Weelderen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christine J. Harrison
- Leukemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, United Kingdom
| | - Kim Klein
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yilin Jiang
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jonas Abrahamsson
- Department of Pediatrics, Institute of Clinical Sciences, Salgrenska University Hospital, Gothenburg, Sweden
| | - Todd Alonzo
- Division of Biostatistics, University of Southern California, Los Angeles, CA
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nira Arad-Cohen
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Emmanuelle Bart-Delabesse
- Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d’Hématologie secteur Génétique des Hémopathies, Toulouse, France
| | - Barbara Buldini
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplant, Department of Maternal and Child Health, Padua University, Padua, Italy
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Michael N. Dworzak
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna & St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children’s Medical Center & Tel Aviv University, Tel Aviv, Israel
| | | | - Alan Gamis
- Department of Hematology and Oncology, Children’s Mercy Hospital, Kansas City, MO
| | | | - Bianca F. Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hester A. de Groot-Kruseman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- DCOG, Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Erin Guest
- Department of Hematology and Oncology, Children’s Mercy Hospital, Kansas City, MO
| | - Shau-Yin Ha
- Department of Pediatrics & Adolescent Medicine, Hong Kong Children’s Hospital, Kowloon Bay, Hong Kong
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Hôpital Armand Trousseau, Paris, France
| | - Guy Leverger
- Department of Pediatric Hematology and Oncology, Hôpital Armand Trousseau, Paris, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Mareike Rasche
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, University Hospital Motol and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anne Tierens
- Department of Pathobiology and Laboratory Medicine, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Daisuke Tomizawa
- Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Gertjan J. L. Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Chen J, Gale RP, Hu Y, Yan W, Wang T, Zhang W. Measurable residual disease (MRD)-testing in haematological and solid cancers. Leukemia 2024; 38:1202-1212. [PMID: 38637690 PMCID: PMC11147778 DOI: 10.1038/s41375-024-02252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
17
|
Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, da Fonseca AMN, Stutterheim J, Pieters R, Zwaan CM, Stam RW. Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia. Int J Mol Sci 2024; 25:6020. [PMID: 38892207 PMCID: PMC11173273 DOI: 10.3390/ijms25116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.
Collapse
Affiliation(s)
- Fabienne R. S. Adriaanse
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Janine Stutterheim
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - C. Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
18
|
Ye Y, Labopin M, Chen J, Wu D, Gedde-Dahl T, Blaise D, Socie G, Forcade E, Salmenniemi U, Maury S, Versluis J, Bazarbachi A, Nagler A, Brissot E, Li L, Luo Y, Shi J, Ciceri F, Huang H, Mohty M, Gorin NC. Lower relapse incidence with HAPLO versus MSD or MUD HCTs for AML patients with KMT2A rearrangement: a study from the Global Committee and the ALWP of the EBMT. Blood Cancer J 2024; 14:85. [PMID: 38802349 PMCID: PMC11130289 DOI: 10.1038/s41408-024-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Yishan Ye
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Myriam Labopin
- EBMT Paris Office, Hôpital Saint Antoine 184, rue du faubourg Saint Antoine, 75571, Paris, cedex 12, France
| | - Jia Chen
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Didier Blaise
- Program of Transplant and cellular immunotherapy, Department of Hematology, Institut Paoli Calmettes, Management Sport Cancer (MSC) Lab, Aix Marseille University (AMU), Marseille, France
| | | | | | | | | | | | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Arnon Nagler
- Department of Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eolia Brissot
- EBMT Paris Office, Hôpital Saint Antoine 184, rue du faubourg Saint Antoine, 75571, Paris, cedex 12, France
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France
| | - Lin Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fabio Ciceri
- Ospedale San Raffaele s.r.l., Haematology and BMT, Milano, Italy
| | - He Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Mohamad Mohty
- EBMT Paris Office, Hôpital Saint Antoine 184, rue du faubourg Saint Antoine, 75571, Paris, cedex 12, France.
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France.
| | - Norbert Claude Gorin
- EBMT Paris Office, Hôpital Saint Antoine 184, rue du faubourg Saint Antoine, 75571, Paris, cedex 12, France.
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France.
| |
Collapse
|
19
|
Liu J, Huang XJ. [Progress of allogeneic hematopoietic stem cell transplantation in KMT2A-rearranged acute leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:514-520. [PMID: 38964931 PMCID: PMC11270489 DOI: 10.3760/cma.j.cn121090-20231026-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 07/06/2024]
Abstract
KMT2A (lysine methyltransferase 2A) -rearranged acute leukemia is a class of leukemia with unique biological characteristics with moderate or poor prognosis. In recent years, allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been increasingly indicated for patients with KMT2A-rearranged acute leukemia. By reviewing the clinical studies of allo-HSCT in KMT2A-rearranged acute leukemia, the efficacy of allo-HSCT in children and adults with KMT2A-rearranged acute myeloid leukemia and acute lymphoblastic leukemia was assessed, the factors affecting the prognosis of allo-HSCT were summarized, and the methods that may improve the outcomes of allo-HSCT were explored.
Collapse
Affiliation(s)
- J Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
20
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C sequencing for the detection of gene fusions in hematologic and solid pediatric cancer samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24306838. [PMID: 38765974 PMCID: PMC11100933 DOI: 10.1101/2024.05.10.24306838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate HiC as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens previously positive for clinically significant genomic rearrangements. Archived specimen types tested included viable and nonviable frozen leukemic cells, as well as formalin-fixed paraffin-embedded (FFPE) tumor tissues. Initially, pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to HiC analysis to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases with no known genomic rearrangements based on prior clinical diagnostic testing were evaluated to determine whether HiC could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, 100% concordance was observed between HiC and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study demonstrates the value of HiC sequencing to medical diagnostic testing as it identified several clinically significant rearrangements, including those that might have been missed by current clinical testing workflows. Key points HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome, facilitating detection of genomic rearrangements.HiC was 100% concordant with clinical diagnostic testing workflows for detecting clinically significant genomic rearrangements in pediatric leukemia and rhabdomyosarcoma specimens.HiC detected clinically significant genomic rearrangements not previously detected by prior clinical cytogenetic and molecular testing.HiC performed well with archived non-viable and viable frozen leukemic cell samples, as well as archived formalin-fixed paraffin-embedded tumor tissue specimens.
Collapse
|
21
|
Abla O, Ries RE, Triche T, Gerbing RB, Hirsch B, Raimondi S, Cooper T, Farrar JE, Buteyn N, Harmon LM, Wen H, Deshpande AJ, Kolb EA, Gamis AS, Aplenc R, Alonzo T, Meshinchi S. Structural variants involving MLLT10 fusion are associated with adverse outcomes in pediatric acute myeloid leukemia. Blood Adv 2024; 8:2005-2017. [PMID: 38306602 PMCID: PMC11024924 DOI: 10.1182/bloodadvances.2023010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
ABSTRACT MLLT10 gene rearrangements with KMT2A occur in pediatric acute myeloid leukemia (AML) and confer poor prognosis, but the prognostic impact of MLLT10 in partnership with other genes is unknown. We conducted a retrospective study with 2080 children and young adults with AML registered on the Children's Oncology Group AAML0531 (NCT00372593) and AAML1031 trials (NCT01371981). Transcriptome profiling and/or karyotyping were performed to identify leukemia-associated fusions associated with prognosis. Collectively, 127 patients (6.1%) were identified with MLLT10 fusions: 104 (81.9%) with KMT2A::MLLT10, 13 (10.2%) with PICALM::MLLT10, and 10 (7.9%) X::MLLT10: (2 each of DDX3X and TEC), with 6 partners (DDX3Y, CEP164, SCN2B, TREH, NAP1L1, and XPO1) observed in single patients. Patients with MLLT10 (n = 127) demonstrated adverse outcomes, with 5-year event-free survival (EFS) of 18.6% vs 49% in patients without MLLT10 (n = 1953, P < .001), inferior 5-year overall survival (OS) of 38.2% vs 65.7% (P ≤ .001), and a higher relapse risk of 76% vs 38.6% (P < .001). Patients with KMT2A::MLLT10 had an EFS from study entry of 19.5% vs 12.7% (P = .628), and an OS from study entry of 40.4% vs 27.6% (P = .361) in those with other MLLT10 fusion partners. Patients with PICALM::MLLT10 had an EFS of 9.2% vs 20% in other MLLT10- without PICALM (X::MLLT10; P = .788). Patients with PICALM::MLLT10 and X::MLLT10 fusions exhibit a DNA hypermethylation signature resembling NUP98::NSD1 fusions, whereas patients with KMT2A::MLLT10 bear aberrations primarily affecting distal regulatory elements. Regardless of the fusion partner, patients with AML harboring MLLT10 fusions exhibit very high-risk features and should be prioritized for alternative therapeutic interventions.
Collapse
Affiliation(s)
- Oussama Abla
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tim Triche
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - Betsy Hirsch
- Division of Laboratory Medicine, University of Minnesota Medical Center, Minneapolis, MN
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd Cooper
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Jason E. Farrar
- Department of Pediatrics, Hematology-Oncology Section, Arkansas Children's Research Institute, Little Rock, AR
| | | | | | - Hong Wen
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Alan S. Gamis
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | | | - Todd Alonzo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| |
Collapse
|
22
|
Yu J, Song F, Zhang M, Xiao P, Feng J, Hong R, Hu Y, Huang H, Wei G. A rare KMT2A::CBL transcript in an acute monoblastic leukemia patient with an unfavorable outcome. Mol Biol Rep 2024; 51:561. [PMID: 38643442 PMCID: PMC11033236 DOI: 10.1007/s11033-024-09543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Lysine [K] methyltransferase 2A (KMT2A, previously known as MLL) gene rearrangements are common in acute leukemias of various lineages and are associated with features such as chemotherapy resistance and rapid relapse. KMT2A::CBL is a rare fusion of unknown pathogenesis generated by a unique interstitial deletion of chromosome 11 that has been reported across a wide age range in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. The leukemogenic effect of the KMT2A::CBL rearrangement and its association with clinical prognosis have not been well clarified. METHODS AND RESULTS We report the case of a 64-year-old female who was diagnosed with acute monoblastic leukemia (M5a) and who acquired the rare KMT2A::CBL fusion. The patient received multiple cycles of therapy but did not achieve remission and eventually succumbed to severe infection and disease progression. Additionally, we characterized the predicted KMT2A-CBL protein structure in this case to reveal the underlying leukemogenic mechanisms and summarized reported cases of hematological malignancies with KMT2A::CBL fusion to investigate the correlation of gene rearrangements with clinical outcomes. CONCLUSIONS This report provides novel insights into the leukemogenic potential of the KMT2A::CBL rearrangement and the correlation between gene rearrangements and clinical outcomes.
Collapse
Affiliation(s)
- Jinglei Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Fengmei Song
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pingnan Xiao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
23
|
Sharma A, Galimard JE, Pryce A, Bhoopalan SV, Dalissier A, Dalle JH, Locatelli F, Jubert C, Mirci-Danicar O, Kitra-Roussou V, Bertrand Y, Fagioli F, Rialland F, Biffi A, Wynn RF, Michel G, Tambaro FP, Al-Ahmari A, Tbakhi A, Furness CL, Diaz MA, Sedlacek P, Bodova I, Faraci M, Rao K, Kleinschmidt K, Petit A, Gibson B, Bhatt NS, Kalwak K, Corbacioglu S. Cytogenetic abnormalities predict survival after allogeneic hematopoietic stem cell transplantation for pediatric acute myeloid leukemia: a PDWP/EBMT study. Bone Marrow Transplant 2024; 59:451-458. [PMID: 38225386 DOI: 10.1038/s41409-024-02197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Poor-risk (PR) cytogenetic/molecular abnormalities generally direct pediatric patients with acute myeloid leukemia (AML) to allogeneic hematopoietic stem cell transplant (HSCT). We assessed the predictive value of cytogenetic risk classification at diagnosis with respect to post-HSCT outcomes in pediatric patients. Patients younger than 18 years at the time of their first allogeneic HSCT for AML in CR1 between 2005 and 2022 who were reported to the European Society for Blood and Marrow Transplantation registry were subgrouped into four categories. Of the 845 pediatric patients included in this study, 36% had an 11q23 abnormality, 24% had monosomy 7/del7q or monosomy 5/del5q, 24% had a complex or monosomal karyotype, and 16% had other PR cytogenetic abnormalities. In a multivariable model, 11q23 (hazard ratio [HR] = 0.66, P = 0.03) and other PR cytogenetic abnormalities (HR = 0.55, P = 0.02) were associated with significantly better overall survival when compared with monosomy 7/del7q or monosomy 5/del5q. Patients with other PR cytogenetic abnormalities had a lower risk of disease relapse after HSCT (HR = 0.49, P = 0.01) and, hence, better leukemia-free survival (HR = 0.55, P = 0.01). Therefore, we conclude that PR cytogenetic abnormalities at diagnosis predict overall survival after HSCT for AML in pediatric patients.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | | - Angharad Pryce
- Anthony Nolan Research Institute, Imperial College Healthcare NHS Trust, London, UK
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jean-Hugues Dalle
- Pediatric Hematology and Immunology Department, Hôpital Robert-Debré, GHU APHP Nord Université Paris Cité, Paris, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Charlotte Jubert
- CHU Bordeaux Groupe Hospitalier Pellegrin-Enfants, Bordeaux, France
| | - Oana Mirci-Danicar
- Paediatric Bone Marrow Transplant Service, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Yves Bertrand
- Unité de coordination interne et externe, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Franca Fagioli
- Centro Trapianti Cellule Staminali, Onco-Ematologia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Fanny Rialland
- Oncopediatrics department, Nantes University Hospital, Nantes, France
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University and Hospital, Padua, Italy
| | - Robert F Wynn
- Blood and Marrow Transplant Unit, Department of Paediatric Haematology, Royal Manchester Children's Hospital, Manchester, UK
| | - Gérard Michel
- Département Hématologie Oncologie Pédiatrique, Hôpital de la Timone, Marseille, France
| | - Francesco Paolo Tambaro
- Dipartimento di Ematologia Pediatrica, Azienda Ospedaliera di Rilievo Nazionale, Naples, Italy
| | - Ali Al-Ahmari
- Department of Paediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | - Miguel Angel Diaz
- Department of Pediatrics, Niño Jesus Children's Hospital, Madrid, Spain
| | - Petr Sedlacek
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Ivana Bodova
- Bone Marrow Transplant Unit, II Children's Clinic, University Children's Hospital, Bratislava, Slovakia
| | - Maura Faraci
- HSCT Unit, Department of Hematology and Oncology, IRCCS Institute G. Gaslini, Genoa, Italy
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Katharina Kleinschmidt
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Arnaud Petit
- Hôpital Armand Trousseau, APHP, Sorbonne Université, Paris, France
| | | | - Neel S Bhatt
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Krzysztof Kalwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wrocław Medical University, Wrocław, Poland
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Liu LP, Zong SY, Zhang AL, Ren YY, Qi BQ, Chang LX, Yang WY, Chen XJ, Chen YM, Zhang L, Zou Y, Guo Y, Zhang YC, Ruan M, Zhu XF. Early Detection of Molecular Residual Disease and Risk Stratification for Children with Acute Myeloid Leukemia via Circulating Tumor DNA. Clin Cancer Res 2024; 30:1143-1151. [PMID: 38170574 DOI: 10.1158/1078-0432.ccr-23-2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.
Collapse
Affiliation(s)
- Li-Peng Liu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Su-Yu Zong
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ao-Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan-Yuan Ren
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ben-Quan Qi
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li-Xian Chang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen-Yu Yang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Juan Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu-Mei Chen
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yao Zou
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying-Chi Zhang
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Ruan
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Fan Zhu
- Division of Pediatric Blood Diseases Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
25
|
Goldman JW, Mody RJ. Further validation of poor prognosis for pediatric KMT2A-rearranged leukemia and the need for rapid integration of targeted therapies for these patients. Transl Pediatr 2024; 13:370-375. [PMID: 38455748 PMCID: PMC10915434 DOI: 10.21037/tp-23-567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
|
26
|
Zheng Y, Pan L, Li J, Feng X, Li C, Zheng M, Mai H, Yang L, He Y, He X, Xu H, Wen H, Le S. Prognostic significance of multiparametric flow cytometry minimal residual disease at two time points after induction in pediatric acute myeloid leukemia. BMC Cancer 2024; 24:46. [PMID: 38195455 PMCID: PMC10775489 DOI: 10.1186/s12885-023-11784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Prompt response to induction chemotherapy is a prognostic factor in pediatric acute myeloid leukemia. In this study, we aimed to evaluate the prognostic significance of multiparametric flow cytometry-minimal residual disease (MFC-MRD), assessed at the end of the first and second induction courses. METHODS MFC-MRD was performed at the end of the first induction (TP1) in 524 patients and second induction (TP2) in 467 patients who were treated according to the modified Medical Research Council (UK) acute myeloid leukemia 15 protocol. RESULTS Using a 0.1% cutoff level, patients with MFC-MRD at the two time points had lower event-free survival and overall survival. Only the TP2 MFC-MRD level could predict the outcome in a separate analysis of high and intermediate risks based on European LeukemiaNet risk stratification and KMT2A rearrangement. The TP2 MFC-MRD level could further differentiate the prognosis of patients into complete remission or non-complete remission based on morphological evaluation. Multivariate analysis indicated the TP2 MFC-MRD level as an independent adverse prognostic factor for event-free survival and overall survival. When comparing patients with MFC-MRD ≥ 0.1%, those who underwent hematopoietic stem cell transplant during the first complete remission had significantly higher 5-year event-free survival and overall survival and lower cumulative incidence of relapse than those who only received consolidation chemotherapy. CONCLUSIONS The TP2 MFC-MRD level can predict the outcomes in pediatric patients with acute myeloid leukemia and help stratify post-remission treatment.
Collapse
Affiliation(s)
- Yongzhi Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lili Pan
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Li
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, TaiXin Hospital, Dongguan, China
| | - Mincui Zheng
- Department of Pediatric Hematology/Oncology, Hematology and Oncology, Hunan Children's Hospital, Changsha, China
| | - Huirong Mai
- Department of Pediatric Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Lihua Yang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yingyi He
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiangling He
- People's Hospital of Hunan Province, Changsha, China
| | - Honggui Xu
- Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Hong Wen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shaohua Le
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
27
|
Jiang B, Zhao Y, Luo Y, Yu J, Chen Y, Ye B, Fu H, Lai X, Liu L, Ye Y, Zheng W, Sun J, He J, Zhao Y, Wei G, Cai Z, Huang H, Shi J. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients With Acute Myeloid Leukemia Harboring KMT2A Rearrangement and Its Prognostic Factors. Cell Transplant 2024; 33:9636897231225821. [PMID: 38270130 PMCID: PMC10812095 DOI: 10.1177/09636897231225821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
KMT2A rearrangement (KMT2A-r) in patients with acute myeloid leukemia (AML) is associated with poor outcomes; the prognostic factors after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain unclear. We investigated 364 adults with AML who underwent allo-HSCT between April 2016 and May 2022, and 45 had KMT2A-r among them. Propensity score analysis with 1:1 matching and the nearest neighbor matching method identified 42 patients in KMT2A-r and non-KMT2A-r cohorts, respectively. The 2-year overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapsed mortality rates of patients with KMT2A-r (n = 45) were 59.1%, 49.6%, 41.5%, and 8.9%, respectively. Using propensity score matching, the 2-year OS rate of patients with KMT2A-r (n = 42) was lower than that of those without KMT2A-r (n = 42; 56.1% vs 88.1%, P = 0.003). Among patients with KMT2A-r (n = 45), the prognostic advantage was exhibited from transplantation in first complete remission (CR1) and measurable residual disease (MRD) negative, which was reflected in OS, RFS, and CIR (P < 0.001, P < 0.001, and P = 0.002, respectively). Furthermore, patients with AF6 had poorer outcomes than those with AF9, ELL, and other KMT2A-r subtypes (P = 0.032, P = 0.001, and P = 0.001 for OS, RFS, and CIR, respectively). However, no differences were found in the OS, RFS, and CIR between patients with KMT2A-r with and without mutations (all P > 0.05). Univariate and multivariate analyses revealed that achieving CR1 MRD negative before HSCT was a protective factor for OS [hazard ratio (HR) = 0.242, P = 0.007], RFS (HR = 0.350, P = 0.036), and CIR (HR = 0.271, P = 0.021), while AF6 was a risk factor for RFS (HR = 2.985, P = 0.028) and CIR (HR = 4.675, P = 0.004). The prognosis of patients with KMT2A-r AML was poor, particularly those harboring AF6-related translocation; however, it is not associated with the presence of mutations. These patients can benefit from achieving CR1 MRD negative before HSCT.
Collapse
Affiliation(s)
- Bingqian Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hematology, Wenzhou, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Conneely SE, Rau RE. Fusion and flow: refining risk prediction in KMT2A-rearranged pediatric acute myeloid leukemia. Transl Pediatr 2023; 12:2099-2102. [PMID: 38197101 PMCID: PMC10772840 DOI: 10.21037/tp-23-436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Shannon E. Conneely
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX, USA
| | - Rachel E. Rau
- Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Ceolin V, Ishimaru S, Karol SE, Bautista F, Goemans BF, Gueguen G, Willemse M, Di Laurenzio L, Lukin J, van Tinteren H, Locatelli F, Petit A, Tomizawa D, Norton A, Kaspers G, Reinhardt D, Tasian SK, Nichols G, Kolb EA, Zwaan CM, Cooper TM. The PedAL/EuPAL Project: A Global Initiative to Address the Unmet Medical Needs of Pediatric Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers (Basel) 2023; 16:78. [PMID: 38201506 PMCID: PMC10778551 DOI: 10.3390/cancers16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last few decades. However, at relapse, overall survival (OS) is approximately 40-50% and is even lower for patients with chemo-refractory disease. Effective and less toxic therapies are urgently needed for these children. The Pediatric Acute Leukemia (PedAL) program is a strategic global initiative that aims to overcome the obstacles in treating children with relapsed/refractory acute leukemia and is supported by the Leukemia and Lymphoma Society in collaboration with the Children's Oncology Group, the Innovative Therapies for Children with Cancer consortium, and the European Pediatric Acute Leukemia (EuPAL) foundation, amongst others. In Europe, the study is set up as a complex clinical trial with a stratification approach to allocate patients to sub-trials of targeted inhibitors at relapse and employing harmonized response and safety definitions across sub-trials. The PedAL/EuPAL international collaboration aims to determine new standards of care for AML in a first and second relapse, using biology-based selection markers for treatment stratification, and deliver essential data to move drugs to front-line pediatric AML studies. An overview of potential treatment targets in pediatric AML, focused on drugs that are planned to be included in the PedAL/EuPAL project, is provided in this manuscript.
Collapse
Affiliation(s)
- Valeria Ceolin
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- Department of Pediatric Hematology/Oncology, Regina Margherita Children’s Hospital, University of Turin, 10126 Turin, Italy
| | - Sae Ishimaru
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Seth E. Karol
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Francisco Bautista
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- The Innovative Therapies for Children with Cancer (ITCC) Consortium, 94805 Paris, France
| | - Bianca Frederika Goemans
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Gwenaëlle Gueguen
- Center of Clinical Investigations, INSERM CIC 1426, Robert Debre Hospital, University of Paris, 75019 Paris, France;
| | - Marieke Willemse
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Laura Di Laurenzio
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Jennifer Lukin
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Catholic University of the Sacred Heart, 00163 Rome, Italy;
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, APHP Sorbonne Université, 75012 Paris, France;
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 104-0045, Japan;
| | - Alice Norton
- Birmingham Children’s Hospital, Birmingham B4 6NH, UK;
| | - Gertjan Kaspers
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit, 1105 Amsterdam, The Netherlands
| | - Dirk Reinhardt
- Department of Pediatric Hematology/Oncology, Pediatrics III, University Hospital of Essen, 45147 Essen, Germany;
| | - Sarah K. Tasian
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, School of Medicine, Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Gwen Nichols
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Edward Anders Kolb
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- The Innovative Therapies for Children with Cancer (ITCC) Consortium, 94805 Paris, France
- Department of Pediatric Hematology/Oncology, Erasmus University MC-Sophia Children’s Hospital, 3015 Rotterdam, The Netherlands
| | - Todd Michael Cooper
- Division of Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, DC 98105, USA;
| |
Collapse
|
30
|
Li J, Zong S, Wan Y, Ruan M, Zhang L, Yang W, Chen X, Zou Y, Chen Y, Guo Y, Wu P, Zhang Y, Zhu X. Integration of Transcriptomic Features to Improve Prognosis Prediction of Pediatric Acute Myeloid Leukemia With KMT2A Rearrangement. Hemasphere 2023; 7:e979. [PMID: 38026790 PMCID: PMC10666994 DOI: 10.1097/hs9.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Lysine methyltransferase 2A-rearranged acute myeloid leukemia (KMT2A-r AML) is a special entity in the 2022 World Health Organization classification of myeloid neoplasms, characterized by high relapse rate and adverse outcomes. Current risk stratification was established on the treatment response and translocation partner of KMT2A. To study the transcriptomic feature and refine the current stratification of pediatric KMT2A-r AML, we analyzed clinical and RNA sequencing data of 351 patients. By implementing least absolute shrinkage and selection operator algorithm, we identified 7 genes (KIAA1522, SKAP2, EGFL7, GAB2, HEBP1, FAM174B, and STARD8) of which the expression levels were strongly associated with outcomes. We then developed a transcriptome-based score, dividing patients into 2 groups with distinct gene expression patterns and prognosis, which was further validated in an independent cohort and outperformed the LSC17 score. We also found cell cycle, oxidative phosphorylation, and metabolism pathways were upregulated in patients with inferior outcomes. By integrating clinical characteristics, we proposed a simple-to-use prognostic scoring system with excellent discriminability, which allowed us to distinguish allogeneic hematopoietic stem cell transplantation candidates more precisely. In conclusion, pediatric KMT2A-r AML is heterogenous on transcriptomic level and the newly proposed scoring system combining clinical characteristics and transcriptomic features can be instructive in clinical routines.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Suyu Zong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
31
|
Mrózek K. Prognostic importance of the fusion partners and measurable residual disease in patients with acute myeloid leukemia who harbor 11q23/ KMT2A alterations. Transl Pediatr 2023; 12:1920-1925. [PMID: 37969120 PMCID: PMC10644025 DOI: 10.21037/tp-23-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/08/2023] [Indexed: 11/17/2023] Open
|
32
|
Zhao Y, Guo H, Chang Y. MRD-directed and risk-adapted individualized stratified treatment of AML. Chin J Cancer Res 2023; 35:451-469. [PMID: 37969959 PMCID: PMC10643342 DOI: 10.21147/j.issn.1000-9604.2023.05.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Measurable residual disease (MRD) has been widely recognized as a biomarker for deeply evaluating complete remission (CR), predicting relapse, guiding pre-emptive interventions, and serving as an endpoint surrogate for drug testing. However, despite the emergence of new technologies, there remains a lack of comprehensive understanding regarding the proper techniques, sample materials, and optimal time points for MRD assessment. In this review, we summarized the MRD methods, sample sources, and evaluation frequency according to the risk category of the European Leukemia Net (ELN) 2022. Additionally, we emphasize the importance of properly utilizing and combining these technologies. We have also refined the flowchart outlining each time point for pre-emptive interventions and intervention paths. The evaluation of MRD in acute myeloid leukemia (AML) is sophisticated, clinically applicable, and technology-dependent, and necessitates standardized approaches and further research.
Collapse
Affiliation(s)
- Yijing Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Hanfei Guo
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto 94304, USA
- the First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
33
|
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4171. [PMID: 37627199 PMCID: PMC10452723 DOI: 10.3390/cancers15164171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children. Recent advances in high-resolution genomic profiling techniques have uncovered the mutational landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed countries. This was accomplished by the intensification of conventional chemotherapy, improvement in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in supportive care. However, the principle therapeutic approach for pediatric AML has not changed substantially for decades and improvement in event-free survival is rather modest. Further refinements in risk stratification and the introduction of emerging novel therapies to contemporary therapy, through international collaboration, would be key solutions for further improvements in outcomes.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|