1
|
de Scordilli M, Bortolot M, Torresan S, Noto C, Rota S, Di Nardo P, Fumagalli A, Guardascione M, Ongaro E, Foltran L, Puglisi F. Precision oncology in biliary tract cancer: the emerging role of liquid biopsy. ESMO Open 2025; 10:105079. [PMID: 40311184 DOI: 10.1016/j.esmoop.2025.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Liquid biopsy has already proven effective in aiding diagnosis, risk stratification and treatment personalization in several malignancies, and it could represent a practice-changing tool also in biliary tract cancer, even though clinical applications are currently still limited. It is promising for early diagnosis, especially in high-risk populations, and several studies on circulating free DNA (cfDNA), circulating tumour cells and differential microRNA (miRNA) profiles in this setting are ongoing. Circulating tumour DNA (ctDNA) also appears as a feasible noninvasive biomarker in the curative setting, in detecting minimal residual disease after resection and in monitoring disease recurrence. As of today, it can be particularly valuable in biliary tract cancer for genomic profiling, with a good concordance with tissue samples for most molecular alterations. CtDNA analysis may especially be considered in clinical practice when the tumour tissue is not sufficient for next-generation sequencing, or when urgent therapeutic decisions are needed. Moreover, it offers the possibility of providing a real-time picture to monitor treatment response and dynamically identify resistance mutations, potentially representing a way to optimize treatment strategies.
Collapse
Affiliation(s)
- M de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - M Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - S Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - C Noto
- Department of Medicine, University of Udine, Udine, Italy; Medical Oncology, ASUGI, Ospedale Maggiore, Trieste, Italy
| | - S Rota
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - P Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - A Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - M Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - E Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - L Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - F Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Goyal L, DiToro D, Facchinetti F, Martin EE, Peng P, Baiev I, Iyer R, Maurer J, Reyes S, Zhang K, Majeed U, Berchuck JE, Chen CT, Walmsley C, Pinto C, Vasseur D, Gordan JD, Mody K, Borad M, Karasic T, Damjanov N, Danysh BP, Wehrenberg-Klee E, Kambadakone AR, Saha SK, Hoffman ID, Nelson KJ, Iyer S, Qiang X, Sun C, Wang H, Li L, Javle M, Lin B, Harris W, Zhu AX, Cleary JM, Flaherty KT, Harris T, Shroff RT, Leshchiner I, Parida L, Kelley RK, Fan J, Stone JR, Uboha NV, Hirai H, Sootome H, Wu F, Bensen DC, Hollebecque A, Friboulet L, Lennerz JK, Getz G, Juric D. A model for decoding resistance in precision oncology: acquired resistance to FGFR inhibitors in cholangiocarcinoma. Ann Oncol 2025; 36:426-443. [PMID: 39706336 DOI: 10.1016/j.annonc.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. As with many targeted therapies, however, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors. PATIENTS AND METHODS This study integrated data from six investigative strategies: cell-free DNA, tissue biopsy, rapid autopsy, statistical genomics, in vitro and in vivo studies, and pharmacology. We characterized the diversity, clonality, frequency, and mechanisms of acquired resistance to FGFR inhibitors in patients with FGFR-altered cholangiocarcinoma. Clinical samples were analyzed longitudinally as part of routine care across 10 institutions. RESULTS Among 138 patients evaluated, 77 met eligibility, yielding a total of 486 clinical samples. Patients with clinical benefit exhibited a significantly higher rate of FGFR2 kinase domain mutations compared with those without clinical benefit (65% versus 10%, P < 0.0001). We identified 26 distinct FGFR2 kinase domain mutations, with 63% of patients harboring multiple. While IC50 assessments indicated strong potency of pan-FGFR inhibitors against common resistance mutations, pharmacokinetic studies revealed that low clinically achievable drug concentrations may underly polyclonal resistance. Molecular brake and gatekeeper mutations predominated, with 94% of patients with FGFR2 mutations exhibiting one or both, whereas mutations at the cysteine residue targeted by covalent inhibitors were rare. Statistical genomics and functional studies demonstrated that mutation frequencies were driven by their combined effects on drug binding and kinase activity rather than intrinsic mutational processes. CONCLUSION Our multimodal analysis led to a model characterizing the biology of acquired resistance, informing the rational design of next-generation FGFR inhibitors. FGFR inhibitors should be small, high-affinity, and selective for specific FGFR family members. Tinengotinib, a novel small molecule inhibitor with these characteristics, exhibited preclinical and clinical activity against key resistance mutations. This integrated approach offers a blueprint for advancing drug resistance research across cancer types.
Collapse
Affiliation(s)
- L Goyal
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA; Department of Medicine, Stanford Cancer Center, Stanford University School of Medicine, Palo Alto, USA.
| | - D DiToro
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - F Facchinetti
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - E E Martin
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - P Peng
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - I Baiev
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - R Iyer
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - J Maurer
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - S Reyes
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - K Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - U Majeed
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, USA
| | - J E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - C T Chen
- Department of Medicine, Stanford Cancer Center, Stanford University School of Medicine, Palo Alto, USA
| | - C Walmsley
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - C Pinto
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - D Vasseur
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - J D Gordan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - K Mody
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, USA
| | - M Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, USA
| | - T Karasic
- Department of Medicine, University of Pennsylvania Abramson Cancer Center, Philadelphia, USA
| | - N Damjanov
- Department of Medicine, University of Pennsylvania Abramson Cancer Center, Philadelphia, USA
| | - B P Danysh
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - E Wehrenberg-Klee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - A R Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S K Saha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | | | - S Iyer
- Tyra Biosciences, San Diego, USA
| | - X Qiang
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - C Sun
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - H Wang
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - L Li
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - M Javle
- MD Anderson Cancer Center, Houston, USA
| | - B Lin
- Virginia Mason Medical Center, Seattle, USA
| | - W Harris
- Department of Medicine, University of Washington/Fred Hutchinson Cancer Center, Seattle, USA
| | - A X Zhu
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - J M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - K T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - T Harris
- Tyra Biosciences, San Diego, USA
| | - R T Shroff
- Department of Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - I Leshchiner
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - L Parida
- IBM Research, Yorktown Heights, USA
| | - R K Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - J Fan
- TransThera Sciences (US), Inc., Gaithersburg, USA
| | - J R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - N V Uboha
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - H Hirai
- Tsukuba Research Institute, Taiho Pharmaceutical Co., Ltd., Japan
| | - H Sootome
- Tsukuba Research Institute, Taiho Pharmaceutical Co., Ltd., Japan
| | - F Wu
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | | | - A Hollebecque
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - L Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - J K Lennerz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - G Getz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Broad Institute of Harvard and MIT, Cambridge, USA
| | - D Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Rimassa L, Lamarca A, O'Kane GM, Edeline J, McNamara MG, Vogel A, Fassan M, Forner A, Kendall T, Adeva J, Casadei-Gardini A, Fornaro L, Hollebecque A, Lowery MA, Macarulla T, Malka D, Mariamidze E, Niger M, Ustav A, Bridgewater J, Macias RI, Braconi C. New systemic treatment paradigms in advanced biliary tract cancer and variations in patient access across Europe. THE LANCET REGIONAL HEALTH. EUROPE 2025; 50:101170. [PMID: 40093395 PMCID: PMC11910789 DOI: 10.1016/j.lanepe.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
In recent years, treatment options for patients with advanced biliary tract cancer (BTC) have increased significantly due to the positive results from phase 2/3 clinical trials of immune checkpoint inhibitors, combined with chemotherapy, and molecularly targeted agents. These advances have led to the need for molecular testing to identify actionable alterations and patients amenable to targeted therapies. However, these improvements have brought with them many questions and challenges, including the identification of resistance mechanisms and therapeutic sequences. In this Series paper we aim to provide an overview of the current systemic treatment options for patients with BTC, highlighting disparities in access to innovative treatments and molecular testing across European countries, which lead to inequalities in the possibilities of treating patients with advanced BTC. We also discuss how ongoing European collaborative projects, such as the COST Action Precision-BTC-Network CA22125, supported by COST (European Cooperation in Science and Technology), linked to the European Network for the Study of Cholangiocarcinoma (ENSCCA), can help overcome these disparities and improve the current scenario.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, 20072, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Angela Lamarca
- Department of Medical Oncology, Oncohealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jimenez Diaz University Hospital, Avda Reyes Católicos 2, Madrid, 28040, Spain
| | - Grainne M. O'Kane
- University College Dublin, Belfield, Dublin 4, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Julien Edeline
- INSERM, Department of Medical Oncology, University Rennes, CLCC Eugène Marquis, COSS [(Chemistry Oncogenesis Stress Signaling)] – UMR_S 1242, Rennes, F-35000, France
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester & Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Arndt Vogel
- Toronto General Hospital, UHN, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
- Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON, M5G 2M9, Canada
- Hannover Medical School, Carl-Neuberg Str. 1, Hannover, 30659, Germany
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Via Gabelli 61, Padua, 35121, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Via Gattamelata 64, Padua, 35128, Italy
| | - Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, ICMDM, Hospital Clinic IDIBAPS, University of Barcelona, Villarroel 170, Barcelona, 08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Timothy Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Edinburgh Pathology, University of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
- CRUK Scotland Cancer Centre, Switchback Rd, Glasgow, G61 1BD, UK
| | - Jorge Adeva
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, Usera, Madrid, 28041, Spain
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Via Olgettina 60, Milan, 20132, Italy
| | - Lorenzo Fornaro
- Medical Oncology 2 Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, Pisa, 56126, Italy
| | - Antoine Hollebecque
- Département de Médecine Oncologique, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif, F-94805, France
| | - Maeve A. Lowery
- Trinity St James Cancer Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Teresa Macarulla
- Vall d'Hebrón Institute of Oncology (VHIO), Vall d'Hebrón University Hospital, Centre Cellex, Carrer de Natzaret, 115-117, Barcelona, 08035, Spain
| | - David Malka
- Department of Medical Oncology, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, Paris, 75014, France
| | - Elene Mariamidze
- Department of Oncology and Hematology, Todua Clinic, Tevdore Mgvdeli #13, Tbilisi, 0112, Georgia
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, Milan, 20133, Italy
| | - Anu Ustav
- Clinic of Oncology, North-Estonian Medical Centre, Sytiste Rd 19, Tallinn, 13419, Estonia
| | | | - Rocio I.R. Macias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, CIBERehd, Campus M. Unamuno s/n, Salamanca, 37007, Spain
| | - Chiara Braconi
- CRUK Scotland Cancer Centre, Switchback Rd, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Rd, Glasgow, G61 1QH, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow, G12 0YN, UK
| |
Collapse
|
4
|
Facchinetti F, Loriot Y, Brayé F, Vasseur D, Bahleda R, Bigot L, Barbé R, Nobre C, Combarel D, Michiels S, Italiano A, Smolenschi C, Tselikas L, Scoazec JY, Ponce-Aix S, Besse B, André F, Olaussen KA, Hollebecque A, Friboulet L. Understanding and Overcoming Resistance to Selective FGFR Inhibitors across FGFR2-Driven Malignancies. Clin Cancer Res 2024; 30:4943-4956. [PMID: 39226398 PMCID: PMC7616615 DOI: 10.1158/1078-0432.ccr-24-1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Understanding resistance to selective FGFR inhibitors is crucial to improve the clinical outcomes of patients with FGFR2-driven malignancies. EXPERIMENTAL DESIGN We analyzed sequential ctDNA, ± whole-exome sequencing, or targeted next-generation sequencing on tissue biopsies from patients with tumors harboring activating FGFR2 alterations progressing on pan-FGFR-selective inhibitors, collected in the prospective UNLOCK program. FGFR2::BICC1 Ba/F3 and patient-derived xenograft models were used for functional studies. RESULTS Thirty-six patients were included. In cholangiocarcinoma, at resistance to both reversible inhibitors (e.g., pemigatinib and erdafitinib) and the irreversible inhibitor futibatinib, polyclonal FGFR2 kinase domain mutations were frequent (14/27 patients). Tumors other than cholangiocarcinoma shared the same mutated FGFR2 residues, but polyclonality was rare (1/9 patients). At resistance to reversible inhibitors, 14 residues in the FGFR2 kinase domain were mutated-after futibatinib, only the molecular brake N550 and the gatekeeper V565. Off-target alterations in PI3K/mTOR and MAPK pathways were found in 11 patients, often together with on-target mutations. At progression to a first FGFR inhibitor, 12 patients received futibatinib or lirafugratinib (irreversible inhibitors), with variable clinical outcomes depending on previous resistance mechanisms. Two patients with TSC1 or PIK3CA mutations benefited from everolimus. In cell viability assays on Ba/F3 and in pharmacologic studies on patient-derived xenografts, irreversible inhibitors retained better activity against FGFR2 kinase domain mutations, with lirafugratinib active against the recalcitrant V565L/F/Y. CONCLUSIONS At progression to FGFR inhibitors, FGFR2-driven malignancies are characterized by high intra- and interpatient molecular heterogeneity, particularly in cholangiocarcinoma. Resistance to FGFR inhibitors can be overcome by sequential, molecularly oriented treatment strategies across FGFR2-driven tumors.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département d’Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Floriane Brayé
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Rémy Barbé
- Département de Radiologie, Gustave Roussy, Villejuif, France
| | - Catline Nobre
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - David Combarel
- Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
- Département de Biologie et Pathologies Médicales, Service de Pharmacologie, Gustave Roussy, Villejuif, France
| | - Stefan Michiels
- Université Paris-Saclay, Inserm, CESP, Villejuif, France
- Gustave Roussy, Office of Biostatistics and Epidemiology, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Cristina Smolenschi
- Département d’Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- BIOTHERIS, Department of Interventional Radiology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Département de Biologie et Pathologie Médicales, Service de Pathologie Moléculaire, Gustave Roussy, AMMICa, CNRS UAR3655 INSERM US23, Université Paris Saclay, Villejuif, France
| | - Santiago Ponce-Aix
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Fabrice André
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Ken A. Olaussen
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Antoine Hollebecque
- Département d’Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| |
Collapse
|
5
|
González-Medina A, Vila-Casadesús M, Gomez-Rey M, Fabregat-Franco C, Sierra A, Tian TV, Castet F, Castillo G, Matito J, Martinez P, Miquel JM, Nuciforo P, Pérez-López R, Macarulla T, Vivancos A. Clinical Value of Liquid Biopsy in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma During Targeted Therapy. Clin Cancer Res 2024; 30:4491-4504. [PMID: 39078735 PMCID: PMC11443220 DOI: 10.1158/1078-0432.ccr-23-3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE FGFR2 fusions occur in 10% to 15% of patients with intrahepatic cholangiocarcinoma (iCCA), potentially benefiting from FGFR inhibitors (FGFRi). We aimed to assess the feasibility of detecting FGFR2 fusions in plasma and explore plasma biomarkers for managing FGFRi treatment. EXPERIMENTAL DESIGN We conducted a retrospective study in 18 patients with iCCA and known FGFR2 fusions previously identified in tissue samples from prior FGFRi treatment. Both tissue and synchronous plasma samples were analyzed using a custom hybrid capture gene panel with next-generation sequencing (VHIO-iCCA panel) and validated against commercial vendor results. Longitudinal plasma analysis during FGFRi was performed. Subsequently, we explored the correlation between plasma biomarkers, liver enzymes, tumor volume, and clinical outcomes. RESULTS Sixteen patients (88.9%) were positive for FGFR2 fusion events in plasma. Remarkably, the analysis of plasma suggests that lower levels of ctDNA are linked to clinical benefits from targeted therapy and result in improved progression-free survival and overall survival. Higher concentrations of cell-free DNA before FGFRi treatment were linked to worse overall survival, correlating with impaired liver function and indicating compromised cell-free DNA removal by the liver. Additionally, increased ctDNA or the emergence of resistance mutations allowed earlier detection of disease progression compared with standard radiologic imaging methods. CONCLUSIONS VHIO-iCCA demonstrated accurate detection of FGFR2 fusions in plasma. The integration of information from various plasma biomarkers holds the potential to predict clinical outcomes and identify treatment failure prior to radiologic progression, offering valuable guidance for the clinical management of patients with iCCA.
Collapse
Affiliation(s)
| | - Maria Vila-Casadesús
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marina Gomez-Rey
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carles Fabregat-Franco
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alexandre Sierra
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tian V Tian
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Gloria Castillo
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Judit Matito
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paola Martinez
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Josep M Miquel
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Raquel Pérez-López
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Teresa Macarulla
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
6
|
Patel RK, Parappilly MS, Walker BS, Heussner RT, Fung A, Chang YH, Kardosh A, Lopez CD, Mayo SC, Wong MH. Exploratory Analyses of Circulating Neoplastic-Immune Hybrid Cells as Prognostic Biomarkers in Advanced Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2024; 25:9198. [PMID: 39273147 PMCID: PMC11395231 DOI: 10.3390/ijms25179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Existing clinical biomarkers do not reliably predict treatment response or disease progression in patients with advanced intrahepatic cholangiocarcinoma (ICC). Circulating neoplastic-immune hybrid cells (CHCs) have great promise as a blood-based biomarker for patients with advanced ICC. Peripheral blood specimens were longitudinally collected from patients with advanced ICC enrolled in the HELIX-1 phase II clinical trial (NCT04251715). CHCs were identified by co-expression of pan-cytokeratin (CK) and CD45, and levels were correlated to patient clinical disease course. Unsupervised machine learning was then performed to extract their morphological features to compare them across disease courses. Five patients were included in this study, with a median of nine specimens collected per patient. A median of 13.5 CHCs per 50,000 peripheral blood mononuclear cells were identified at baseline, and levels decreased to zero following the initiation of treatment in all patients. Counts remained undetectable in three patients who demonstrated end-of-trial clinical treatment response and conversely increased in two patients with evidence of therapeutic resistance. In the post-trial surveillance period, interval counts increased prior to or at the time of clinical progression in three patients and remain undetectable in one patient with continued long-term disease stability. Using our machine learning platform, treatment-resistant CHCs exhibited upregulation of CK and downregulation of CD45 relative to treatment-responsive CHCs. CHCs represent a promising blood-based biomarker to supplement traditional radiographic and biochemical measures.
Collapse
Affiliation(s)
- Ranish K. Patel
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Michael S. Parappilly
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Brett S. Walker
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Robert T. Heussner
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Adel Kardosh
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Charles D. Lopez
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Skye C. Mayo
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| |
Collapse
|
7
|
Wang J, Liu S, Cao Y, Chen Y. Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects. Front Cell Dev Biol 2024; 12:1408852. [PMID: 39156971 PMCID: PMC11327014 DOI: 10.3389/fcell.2024.1408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5 years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Wang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Siyan Liu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Rodón J, Damian S, Furqan M, García-Donas J, Imai H, Italiano A, Spanggaard I, Ueno M, Yokota T, Veronese ML, Oliveira N, Li X, Gilmartin A, Schaffer M, Goyal L. Pemigatinib in previously treated solid tumors with activating FGFR1-FGFR3 alterations: phase 2 FIGHT-207 basket trial. Nat Med 2024; 30:1645-1654. [PMID: 38710951 PMCID: PMC11186762 DOI: 10.1038/s41591-024-02934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
Fibroblast growth factor receptor (FGFR) alterations drive oncogenesis in multiple tumor types. Here we studied pemigatinib, a selective, potent, oral FGFR1-FGFR3 inhibitor, in the phase 2 FIGHT-207 basket study of FGFR-altered advanced solid tumors. Primary end points were objective response rate (ORR) in cohorts A (fusions/rearrangements, n = 49) and B (activating non-kinase domain mutations, n = 32). Secondary end points were progression-free survival, duration of response and overall survival in cohorts A and B, and safety. Exploratory end points included ORR of cohort C (kinase domain mutations, potentially pathogenic variants of unknown significance, n = 26) and analysis of co-alterations associated with resistance and response. ORRs for cohorts A, B and C were 26.5% (13/49), 9.4% (3/32) and 3.8% (1/26), respectively. Tumors with no approved FGFR inhibitors or those with alterations not previously confirmed to be sensitive to FGFR inhibition had objective responses. In cohorts A and B, the median progression-free survival was 4.5 and 3.7 months, median duration of response was 7.8 and 6.9 months and median overall survival was 17.5 and 11.4 months, respectively. Safety was consistent with previous reports. The most common any-grade treatment-emergent adverse events were hyperphosphatemia (84%) and stomatitis (53%). TP53 co-mutations were associated with lack of response and BAP1 alterations with higher response rates. FGFR1-FGFR3 gatekeeper and molecular brake mutations led to acquired resistance. New therapeutic areas for FGFR inhibition and drug failure mechanisms were identified across tumor types. ClinicalTrials.gov identifier: NCT03822117 .
Collapse
MESH Headings
- Humans
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Female
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
- Male
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Middle Aged
- Adult
- Aged
- Mutation
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Progression-Free Survival
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Morpholines
- Pyrroles
Collapse
Affiliation(s)
- Jordi Rodón
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Silvia Damian
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Hiroo Imai
- Tohoku University Hospital, Sendai-Shi, Japan
| | - Antoine Italiano
- Institut Bergonié, Bordeaux, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Iben Spanggaard
- Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | - Xin Li
- Incyte Corporation, Wilmington, DE, USA
| | | | | | - Lipika Goyal
- Mass General Cancer Center, Harvard Medical School, Boston, MA, USA.
- Stanford Cancer Center, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Zhen Y, Liu K, Shi L, Shah S, Xu Q, Ellis H, Balasooriya ER, Kreuzer J, Morris R, Baldwin AS, Juric D, Haas W, Bardeesy N. FGFR inhibition blocks NF-ĸB-dependent glucose metabolism and confers metabolic vulnerabilities in cholangiocarcinoma. Nat Commun 2024; 15:3805. [PMID: 38714664 PMCID: PMC11076599 DOI: 10.1038/s41467-024-47514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024] Open
Abstract
Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.
Collapse
Affiliation(s)
- Yuanli Zhen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Simran Shah
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Qin Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Haley Ellis
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Eranga R Balasooriya
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Johannes Kreuzer
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert Morris
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Dejan Juric
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Dept. of Medicine, Harvard Medical School, Boston, MA, USA.
- The Cancer Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
12
|
Subbiah V, Sahai V, Maglic D, Bruderek K, Touré BB, Zhao S, Valverde R, O'Hearn PJ, Moustakas DT, Schönherr H, Gerami-Moayed N, Taylor AM, Hudson BM, Houde DJ, Pal D, Foster L, Gunaydin H, Ayaz P, Sharon DA, Goyal L, Schram AM, Kamath S, Sherwin CA, Schmidt-Kittler O, Jen KY, Ricard F, Wolf BB, Shaw DE, Bergstrom DA, Watters J, Casaletto JB. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations. Cancer Discov 2023; 13:2012-2031. [PMID: 37270847 PMCID: PMC10481131 DOI: 10.1158/2159-8290.cd-23-0475] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Oncogenic activation of fibroblast growth factor receptor 2 (FGFR2) drives multiple cancers and represents a broad therapeutic opportunity, yet selective targeting of FGFR2 has not been achieved. Although the clinical efficacy of pan-FGFR inhibitors (pan-FGFRi) validates FGFR2 driver status in FGFR2 fusion-positive intrahepatic cholangiocarcinoma, their benefit is limited by incomplete target coverage due to FGFR1- and FGFR4-mediated toxicities (hyperphosphatemia and diarrhea, respectively) and the emergence of FGFR2 resistance mutations. RLY-4008 is a highly selective, irreversible FGFR2 inhibitor designed to overcome these limitations. In vitro, RLY-4008 demonstrates >250- and >5,000-fold selectivity over FGFR1 and FGFR4, respectively, and targets primary alterations and resistance mutations. In vivo, RLY-4008 induces regression in multiple xenograft models-including models with FGFR2 resistance mutations that drive clinical progression on current pan-FGFRi-while sparing FGFR1 and FGFR4. In early clinical testing, RLY-4008 induced responses without clinically significant off-isoform FGFR toxicities, confirming the broad therapeutic potential of selective FGFR2 targeting. SIGNIFICANCE Patients with FGFR2-driven cancers derive limited benefit from pan-FGFRi due to multiple FGFR1-4-mediated toxicities and acquired FGFR2 resistance mutations. RLY-4008 is a highly selective FGFR2 inhibitor that targets primary alterations and resistance mutations and induces tumor regression while sparing other FGFRs, suggesting it may have broad therapeutic potential. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dejan Maglic
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | - Debjani Pal
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Lipika Goyal
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Suneel Kamath
- The Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | | | | | - Kai Yu Jen
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Beni B. Wolf
- Relay Therapeutics, Inc., Cambridge, Massachusetts
| | - David E. Shaw
- D. E. Shaw Research, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | | | | | | |
Collapse
|
13
|
Facchinetti F, Hollebecque A, Braye F, Vasseur D, Pradat Y, Bahleda R, Pobel C, Bigot L, Déas O, Florez Arango JD, Guaitoli G, Mizuta H, Combarel D, Tselikas L, Michiels S, Nikolaev SI, Scoazec JY, Ponce-Aix S, Besse B, Olaussen KA, Loriot Y, Friboulet L. Resistance to Selective FGFR Inhibitors in FGFR-Driven Urothelial Cancer. Cancer Discov 2023; 13:1998-2011. [PMID: 37377403 PMCID: PMC10481128 DOI: 10.1158/2159-8290.cd-22-1441] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Several fibroblast growth factor receptor (FGFR) inhibitors are approved or in clinical development for the treatment of FGFR-driven urothelial cancer, and molecular mechanisms of resistance leading to patient relapses have not been fully explored. We identified 21 patients with FGFR-driven urothelial cancer treated with selective FGFR inhibitors and analyzed postprogression tissue and/or circulating tumor DNA (ctDNA). We detected single mutations in the FGFR tyrosine kinase domain in seven (33%) patients (FGFR3 N540K, V553L/M, V555L/M, E587Q; FGFR2 L551F) and multiple mutations in one (5%) case (FGFR3 N540K, V555L, and L608V). Using Ba/F3 cells, we defined their spectrum of resistance/sensitivity to multiple selective FGFR inhibitors. Eleven (52%) patients harbored alterations in the PI3K-mTOR pathway (n = 4 TSC1/2, n = 4 PIK3CA, n = 1 TSC1 and PIK3CA, n = 1 NF2, n = 1 PTEN). In patient-derived models, erdafitinib was synergistic with pictilisib in the presence of PIK3CA E545K, whereas erdafitinib-gefitinib combination was able to overcome bypass resistance mediated by EGFR activation. SIGNIFICANCE In the largest study on the topic thus far, we detected a high frequency of FGFR kinase domain mutations responsible for resistance to FGFR inhibitors in urothelial cancer. Off-target resistance mechanisms involved primarily the PI3K-mTOR pathway. Our findings provide preclinical evidence sustaining combinatorial treatment strategies to overcome bypass resistance. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Floriane Braye
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Yoann Pradat
- Université Paris-Saclay, CentraleSupélec, MICS Lab, Gif-Sur-Yvette, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Cédric Pobel
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | | | | | - Giorgia Guaitoli
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Hayato Mizuta
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - David Combarel
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- BIOTHERIS, Department of Interventional Radiology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Stefan Michiels
- Université Paris-Saclay, Inserm, CESP, Villejuif, France
- Gustave Roussy, Office of Biostatistics and Epidemiology, Villejuif, France
| | | | - Jean-Yves Scoazec
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Santiago Ponce-Aix
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Ken A. Olaussen
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Yohann Loriot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| |
Collapse
|
14
|
Nicolò E, Munoz-Arcos L, Vagia E, D'Amico P, Reduzzi C, Donahue J, Lorico-Rappa M, Manai M, Behdad A, Zhang Y, Curigliano G, Shah A, Cristofanilli M. Circulating Tumor DNA and Unique Actionable Genomic Alterations in the Longitudinal Monitoring of Metastatic Breast Cancer: A Case of FGFR2-KIAA1598 Gene Fusion. JCO Precis Oncol 2023; 7:e2200702. [PMID: 37437229 DOI: 10.1200/po.22.00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
| | - Laura Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
| | - Elena Vagia
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Paolo D'Amico
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeannine Donahue
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marco Lorico-Rappa
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Royal College of Surgeons School of Medicine, Dublin, Ireland
| | - Maroua Manai
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Amir Behdad
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Youbin Zhang
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ami Shah
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
15
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
16
|
Karasic TB, Eads JR, Goyal L. Precision Medicine and Immunotherapy Have Arrived for Cholangiocarcinoma: An Overview of Recent Approvals and Ongoing Clinical Trials. JCO Precis Oncol 2023; 7:e2200573. [PMID: 37053534 PMCID: PMC10309532 DOI: 10.1200/po.22.00573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/31/2023] [Indexed: 04/15/2023] Open
Affiliation(s)
- Thomas B. Karasic
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jennifer R. Eads
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Lipika Goyal
- Department of Medicine, Division of Hematology and Oncology, Stanford Cancer Center, Palo Alto, CA
| |
Collapse
|
17
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
18
|
Ascione CM, Napolitano F, Esposito D, Servetto A, Belli S, Santaniello A, Scagliarini S, Crocetto F, Bianco R, Formisano L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev 2023; 115:102530. [PMID: 36898352 DOI: 10.1016/j.ctrv.2023.102530] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Bladder cancer is a heterogeneous malignancy and is responsible for approximately 3.2% of new diagnoses of cancer per year (Sung et al., 2021). Fibroblast Growth Factor Receptors (FGFRs) have recently emerged as a novel therapeutic target in cancer. In particular, FGFR3 genomic alterations are potent oncogenic drivers in bladder cancer and represent predictive biomarkers of response to FGFR inhibitors. Indeed, overall ∼50% of bladder cancers have somatic mutations in the FGFR3 -coding sequence (Cappellen et al., 1999; Turner and Grose, 2010). FGFR3 gene rearrangements are typical alterations in bladder cancer (Nelson et al., 2016; Parker et al., 2014). In this review, we summarize the most relevant evidence on the role of FGFR3 and the state-of-art of anti-FGFR3 treatment in bladder cancer. Furthermore, we interrogated the AACR Project GENIE to investigate clinical and molecular features of FGFR3-altered bladder cancers. We found that FGFR3 rearrangements and missense mutations were associated with a lower fraction of mutated genome, compared to the FGFR3 wild-type tumors, as also observed in other oncogene-addicted cancers. Moreover, we observed that FGFR3 genomic alterations are mutually exclusive with other genomic aberrations of canonical bladder cancer oncogenes, such as TP53 and RB1. Finally, we provide an overview of the treatment landscape of FGFR3-altered bladder cancer, discussing future perspectives for the management of this disease.
Collapse
Affiliation(s)
- Claudia Maria Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Antonio Santaniello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Sarah Scagliarini
- Division of Oncology, Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
19
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
20
|
Choi WJ, Ivanics T, Gravely A, Gallinger S, Sapisochin G, O'Kane GM. Optimizing Circulating Tumour DNA Use in the Perioperative Setting for Intrahepatic Cholangiocarcinoma: Diagnosis, Screening, Minimal Residual Disease Detection and Treatment Response Monitoring. Ann Surg Oncol 2023; 30:3849-3863. [PMID: 36808320 DOI: 10.1245/s10434-023-13126-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
In this review, we present the current evidence and future perspectives on the use of circulating tumour DNA (ctDNA) in the diagnosis, management and understanding the prognosis of patients with intrahepatic cholangiocarcinoma (iCCA) undergoing surgery. Liquid biopsies or ctDNA maybe utilized to: (1) determine the molecular profile of the tumour and therefore guide the selection of molecular targeted therapy in the neoadjuvant setting, (2) form a surveillance tool for the detection of minimal residual disease or cancer recurrence after surgery, and (3) diagnose and screen for early iCCA detection in high-risk populations. The potential for ctDNA can be tumour-informed or -uninformed depending on the goals of its use. Future studies will require ctDNA extraction technique validations, with standardizations of both the platforms and the timing of ctDNA collections.
Collapse
Affiliation(s)
- Woo Jin Choi
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Tommy Ivanics
- Department of Surgery, Henry Ford Hospital, Detroit, MI, USA.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Annabel Gravely
- HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Steven Gallinger
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada.,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Gonzalo Sapisochin
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. .,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada.
| | - Grainne M O'Kane
- Department of Medical Oncology, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Goyal L, Meric-Bernstam F, Hollebecque A, Valle JW, Morizane C, Karasic TB, Abrams TA, Furuse J, Kelley RK, Cassier PA, Klümpen HJ, Chang HM, Chen LT, Tabernero J, Oh DY, Mahipal A, Moehler M, Mitchell EP, Komatsu Y, Masuda K, Ahn D, Epstein RS, Halim AB, Fu Y, Salimi T, Wacheck V, He Y, Liu M, Benhadji KA, Bridgewater JA. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N Engl J Med 2023; 388:228-239. [PMID: 36652354 DOI: 10.1056/nejmoa2206834] [Citation(s) in RCA: 256] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Alterations in fibroblast growth factor receptor 2 (FGFR2) have emerged as promising drug targets for intrahepatic cholangiocarcinoma, a rare cancer with a poor prognosis. Futibatinib, a next-generation, covalently binding FGFR1-4 inhibitor, has been shown to have both antitumor activity in patients with FGFR-altered tumors and strong preclinical activity against acquired resistance mutations associated with ATP-competitive FGFR inhibitors. METHODS In this multinational, open-label, single-group, phase 2 study, we enrolled patients with unresectable or metastatic FGFR2 fusion-positive or FGFR2 rearrangement-positive intrahepatic cholangiocarcinoma and disease progression after one or more previous lines of systemic therapy (excluding FGFR inhibitors). The patients received oral futibatinib at a dose of 20 mg once daily in a continuous regimen. The primary end point was objective response (partial or complete response), as assessed by independent central review. Secondary end points included the response duration, progression-free and overall survival, safety, and patient-reported outcomes. RESULTS Between April 16, 2018, and November 29, 2019, a total of 103 patients were enrolled and received futibatinib. A total of 43 of 103 patients (42%; 95% confidence interval, 32 to 52) had a response, and the median duration of response was 9.7 months. Responses were consistent across patient subgroups, including patients with heavily pretreated disease, older adults, and patients who had co-occurring TP53 mutations. At a median follow-up of 17.1 months, the median progression-free survival was 9.0 months and overall survival was 21.7 months. Common treatment-related grade 3 adverse events were hyperphosphatemia (in 30% of the patients), an increased aspartate aminotransferase level (in 7%), stomatitis (in 6%), and fatigue (in 6%). Treatment-related adverse events led to permanent discontinuation of futibatinib in 2% of the patients. No treatment-related deaths occurred. Quality of life was maintained throughout treatment. CONCLUSIONS In previously treated patients with FGFR2 fusion or rearrangement-positive intrahepatic cholangiocarcinoma, the use of futibatinib, a covalent FGFR inhibitor, led to measurable clinical benefit. (Funded by Taiho Oncology and Taiho Pharmaceutical; FOENIX-CCA2 ClinicalTrials.gov number, NCT02052778.).
Collapse
Affiliation(s)
- Lipika Goyal
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Funda Meric-Bernstam
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Antoine Hollebecque
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Juan W Valle
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Chigusa Morizane
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Thomas B Karasic
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Thomas A Abrams
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Junji Furuse
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Robin K Kelley
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Philippe A Cassier
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Heinz-Josef Klümpen
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Heung-Moon Chang
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Li-Tzong Chen
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Josep Tabernero
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Do-Youn Oh
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Amit Mahipal
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Markus Moehler
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Edith P Mitchell
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Yoshito Komatsu
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Kunihiro Masuda
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Daniel Ahn
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Robert S Epstein
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Abdel-Baset Halim
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Yao Fu
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Tehseen Salimi
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Volker Wacheck
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Yaohua He
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Mei Liu
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - Karim A Benhadji
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| | - John A Bridgewater
- From the Department of Medicine, Stanford University School of Medicine, and the Stanford Cancer Center, Palo Alto (L.G.), and the University of California, San Francisco, San Francisco (R.K.K.) - both in California; the Mass General Cancer Center, Harvard Medical School (L.G.), and Dana-Farber Cancer Institute (T.A.A.) - both in Boston; the University of Texas M.D. Anderson Cancer Center, Houston (F.M.-B.); the Drug Development Department, Gustave Roussy, Villejuif (A.H.), and Centre Léon Bérard, Lyon (P.A.C.) - both in France; the University of Manchester and the Christie NHS Foundation Trust, Manchester (J.W.V.), and University College London Cancer Institute, London (J.A.B.) - both in the United Kingdom; National Cancer Center Hospital, Tokyo (C.M.), Kanagawa Cancer Center, Yokohama (J.F.), Hokkaido University Hospital Cancer Center, Sapporo (Y.K.), and Tohoku University Graduate School of Medicine, Sendai (K.M.) - all in Japan; the Hospital of the University of Pennsylvania (T.B.K.) and Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital (E.P.M.) - both in Philadelphia; Amsterdam University Medical Center, University of Amsterdam, Amsterdam (H.-J.K.); Asan Medical Center, University of Ulsan College of Medicine (H.-M.C.), and Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine (D.-Y.O.) - both in Seoul, South Korea; the National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan (L.-T.C.); Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, University of Vic-Central University of Catalonia, Baselga Oncologic Institute, Hospital Quiron, Barcelona (J.T.); Mayo Clinic, Rochester, MN (A.M.); Johannes Gutenberg-Mainz University Medical Center, Mainz, Germany (M.M.); Mayo Clinic, Phoenix, AZ (D.A.); Epstein Health, Woodcliff Lake, NJ (R.S.E.); Taiho Oncology, Princeton, NJ (A.-B.H., T.S., V.W., Y.H., M.L., K.A.B.); and Ilumina, San Diego, CA (Y.F.)
| |
Collapse
|
22
|
Ellinghaus P, Neureiter D, Nogai H, Stintzing S, Ocker M. Patient Selection Approaches in FGFR Inhibitor Trials-Many Paths to the Same End? Cells 2022; 11:3180. [PMID: 36231142 PMCID: PMC9563413 DOI: 10.3390/cells11193180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-selected patient populations. Different approaches and technologies have been applied in clinical trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hybridization) and to detection of various DNA alterations (e.g., copy number variations, mutations, gene fusions). We review, here, the advantages and limitations of the different technologies and discuss the importance of tissue and disease context in identifying the best predictive biomarker for FGFR targeting therapies.
Collapse
Affiliation(s)
- Peter Ellinghaus
- Global Clinical Development Oncology, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | | | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Matthias Ocker
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
- Anji Pharmaceuticals, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Berchuck JE, Facchinetti F, DiToro DF, Baiev I, Majeed U, Reyes S, Chen C, Zhang K, Sharman R, Junior PLSU, Maurer J, Shroff RT, Pritchard CC, Wu MJ, Catenacci DVT, Javle M, Friboulet L, Hollebecque A, Bardeesy N, Zhu AX, Lennerz JK, Tan B, Borad M, Parikh AR, Kiedrowski LA, Kelley RK, Mody K, Juric D, Goyal L. The Clinical Landscape of Cell-Free DNA Alterations in 1,671 Patients with Advanced Biliary Tract Cancer. Ann Oncol 2022; 33:1269-1283. [PMID: 36089135 DOI: 10.1016/j.annonc.2022.09.150] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Targeted therapies have transformed clinical management of advanced biliary tract cancer (BTC). Cell-free DNA (cfDNA) analysis is an attractive approach for cancer genomic profiling that overcomes many limitations of traditional tissue-based analysis. We examined cfDNA as a tool to inform clinical management of patients with advanced BTC and generate novel insights into BTC tumor biology. PATIENTS AND METHODS We analyzed next-generation sequencing data of 2,068 cfDNA samples from 1,671 patients with advanced BTC generated with Guardant360. We performed clinical annotation on a multi-institutional subset (n=225) to assess intra-patient cfDNA-tumor concordance and the association of cfDNA variant allele fraction (VAF) with clinical outcomes. RESULTS Genetic alterations were detected in cfDNA in 84% of patients, with targetable alterations detected in 44% of patients. FGFR2 fusions, IDH1 mutations, and BRAF V600E were clonal in majority of cases, affirming these targetable alterations as early driver events in BTC. Concordance between cfDNA and tissue for mutation detection was high for IDH1 mutations (87%) and BRAF V600E (100%), and low for FGFR2 fusions (18%). cfDNA analysis uncovered novel putative mechanisms of resistance to targeted therapies, including mutation of the cysteine residue (FGFR2 C492F) to which covalent FGFR inhibitors bind. High pre-treatment cfDNA VAF associated with poor prognosis and shorter response to chemotherapy and targeted therapy. Finally, we report the frequency of promising targets in advanced BTC currently under investigation in other advanced solid tumors, including KRAS G12C (1.0%), KRAS G12D (5.1%), PIK3CA mutations (6.8%), and ERBB2 amplifications (4.9%). CONCLUSIONS These findings from the largest and most comprehensive study to date of cfDNA from patients with advanced BTC highlight the utility of cfDNA analysis in current management of this disease. Characterization of oncogenic drivers and mechanisms of therapeutic resistance in this study will inform drug development efforts to reduce mortality for patients with BTC.
Collapse
Affiliation(s)
- Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Francesco Facchinetti
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Daniel F DiToro
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Islam Baiev
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | - Umair Majeed
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL
| | | | - Christopher Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Karen Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Reya Sharman
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | | | - Jordan Maurer
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | - Rachna T Shroff
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Meng-Ju Wu
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | | | - Milind Javle
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luc Friboulet
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Antoine Hollebecque
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Nabeel Bardeesy
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | - Andrew X Zhu
- Jiahui International Cancer Center, Jihaui Health, Shanghai, China; I-Mab Biopharma, Shanghai, China
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Benjamin Tan
- Department of Medicine, Washington University, St. Louis, MO
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ
| | - Aparna R Parikh
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | | | - Robin Kate Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL
| | - Dejan Juric
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA
| | - Lipika Goyal
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
24
|
Outcomes following FGFR Inhibitor Therapy in Patients with Cholangiocarcinoma. Target Oncol 2022; 17:529-538. [PMID: 36056231 DOI: 10.1007/s11523-022-00914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Sequencing efforts in patients with cholangiocarcinoma (CCA) have provided insights into molecular mechanisms including fibroblast growth factor receptor (FGFR) alterations. There is a lack of data on outcomes of patients following cessation of FGFR inhibitor (FGFRi) therapy. OBJECTIVE We describe the clinical outcomes following initial FGFRi treatment in CCA harboring FGFR alterations. PATIENTS AND METHODS We conducted a multicentric, retrospective analysis of patients with FGFR-altered CCA diagnosed between 2010 and 2021. Median overall survival (OS) and progression-free survival (PFS) analyses were performed using the Kaplan-Meier method. RESULTS We identified 88 advanced or metastatic CCA patients, 28 males (31.8%) and 60 females (68.2%), harboring FGFR alterations who received FGFRi. Median PFS on initial FGFRi was 6.6 months (95% confidence interval (CI): 5.5-8.3). Following cessation of first FGFRi therapy, 55% patients received systemic therapy as next line: 67% received chemotherapy or targeted treatment and 33% received another FGFRi. Median PFS for patients who received chemotherapy or targeted agent was 2.1 months (95% CI 1.6-5.7) and for patients who received a second FGFRi was 3.7 months (95% CI 1.5-not evaluable). OS was 2.0 months for patients who did not receive any therapy compared to 8.7 months with chemotherapy and 8.6 months with another FGFRi. In addition, one patient treated with pemigatinib developed FGFR2 M540_I541insMM alteration at time of resistance, which has not been functionally characterized and its effect on protein function remains unknown. CONCLUSIONS Understanding the mechanisms of resistance with FGFRi is essential to understand sequencing of treatments. In this study, patients received standard chemotherapy in the first line and were fit enough to be considered for subsequent therapy with an FGFRi. Almost half of the patients become ineligible to receive further systemic therapy following progression on FGFRi. As more agents are being introduced, detailed understanding of outcomes following treatment with an FGFRi, including subsequent FGFRi, is essential.
Collapse
|
25
|
Luo Y, Wu Y, Chang X, Huang B, Luo D, Zhang J, Zhang P, Shi H, Fan J, Nie X. Identification of a novel FGFR2-KIAA1217 fusion in esophageal gastrointestinal stromal tumours: A case report. Front Oncol 2022; 12:884814. [PMID: 35978808 PMCID: PMC9377458 DOI: 10.3389/fonc.2022.884814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GISTs) rarely arise in the esophagus. The clinical course and treatment options for esophageal GISTs are poorly understood because of their rarity. In general, the mutation spectrum of esophageal GISTs resembles that of gastric GISTs. Wild-type (WT) GISTs lacking KIT and PDGFRA gene mutations occasionally occur in adults; primary esophageal GISTs are commonly WT. Case presentation Herein, we report the case of a 41-year-old female patient who presented with a 1-week history of anterior upper chest pain. Chest computed tomography revealed a 3.7 cm × 2.8 cm × 6.7 cm soft tissue mass in the right posterior mediastinum adjacent to the esophagus. The patient underwent thoracoscopic mediastinal tumor resection and was subsequently diagnosed with an esophageal GIST. Neither KIT nor PDGFRA mutations were detected by Sanger sequencing; however, next-generation sequencing (NGS) identified an FGFR2-KIAA1217 gene fusion in the tumor tissue. No relapse was observed in this patient during the 8-month treatment-free follow-up period. Conclusion To the best of our knowledge, this report is the first to describe an FGFR2-KIAA1217 fusion in a patient with a quadruple WT esophageal GIST. When WT KIT/PDGFRA GISTS are suspected, intensive genetic analysis is recommended, and obtaining a better molecular characterization of these tumours might reveal novel therapeutic avenues.
Collapse
Affiliation(s)
- Yuehao Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiu Nie, ; Jun Fan,
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiu Nie, ; Jun Fan,
| |
Collapse
|
26
|
Wu Q, Zhen Y, Shi L, Vu P, Greninger P, Adil R, Merritt J, Egan R, Wu MJ, Yin X, Ferrone CR, Deshpande V, Baiev I, Pinto CJ, McLoughlin DE, Walmsley CS, Stone JR, Gordan JD, Zhu AX, Juric D, Goyal L, Benes CH, Bardeesy N. EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov 2022; 12:1378-1395. [PMID: 35420673 PMCID: PMC9064956 DOI: 10.1158/2159-8290.cd-21-1168] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
FGFR inhibitors are approved for the treatment of advanced cholangiocarcinoma harboring FGFR2 fusions. However, the response rate is moderate, and resistance emerges rapidly due to acquired secondary FGFR2 mutations or due to other less-defined mechanisms. Here, we conducted high-throughput combination drug screens, biochemical analysis, and therapeutic studies using patient-derived models of FGFR2 fusion-positive cholangiocarcinoma to gain insight into these clinical profiles and uncover improved treatment strategies. We found that feedback activation of EGFR signaling limits FGFR inhibitor efficacy, restricting cell death induction in sensitive models and causing resistance in insensitive models lacking secondary FGFR2 mutations. Inhibition of wild-type EGFR potentiated responses to FGFR inhibitors in both contexts, durably suppressing MEK/ERK and mTOR signaling, increasing apoptosis, and causing marked tumor regressions in vivo. Our findings reveal EGFR-dependent adaptive signaling as an important mechanism limiting FGFR inhibitor efficacy and driving resistance and support clinical testing of FGFR/EGFR inhibitor therapy for FGFR2 fusion-positive cholangiocarcinoma. SIGNIFICANCE We demonstrate that feedback activation of EGFR signaling limits the effectiveness of FGFR inhibitor therapy and drives adaptive resistance in patient-derived models of FGFR2 fusion-positive cholangiocarcinoma. These studies support the potential of combination treatment with FGFR and EGFR inhibitors as an improved treatment for patients with FGFR2-driven cholangiocarcinoma.
Collapse
Affiliation(s)
- Qibiao Wu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yuanli Zhen
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lei Shi
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phuong Vu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patricia Greninger
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ramzi Adil
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua Merritt
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Regina Egan
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xunqin Yin
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Islam Baiev
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher J Pinto
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel E McLoughlin
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charlotte S Walmsley
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center and Quantitative Biosciences Institute, University of California, San Francisco
| | - Andrew X Zhu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lipika Goyal
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cyril H Benes
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
27
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Chakrabarti S, Finnes HD, Mahipal A. Fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma: current status, insight on resistance mechanisms and toxicity management. Expert Opin Drug Metab Toxicol 2022; 18:85-98. [PMID: 35129006 DOI: 10.1080/17425255.2022.2039118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) frequently presents with an advanced disease precluding curative surgery and shows modest response to chemotherapy. Advancements in genomic profiling have unfolded critical pathophysiologic underpinnings of CCA, leading to the development of targeted therapies with encouraging early results. Of the targetable genomic alterations, fibroblast growth factor receptor-2 (FGFR-2) fusions or rearrangements are present in 10-15% of patients with intrahepatic CCA. Clinical trials demonstrating significant antitumor activity of FGFR inhibitors in FGFR-2 fusion or rearrangement enriched chemotherapy-refractory patients led to FDA approval of FGFR inhibitors, pemigatinib and infigratinib, in the second-line setting. We identified peer-reviewed articles on FGFR inhibitors utilizing the PubMed database published between 2015 and 2021. AREAS COVERED This article provides an overview of clinical and biological characteristics of FGFR-driven CCA, pharmacology and antitumor activity of currently available FGFR inhibitors, and the evolving knowledge of drug resistance mechanisms. Additionally, toxicities associated with FGFR inhibitor use and their management have been described. EXPERT OPINION The development of FGFR inhibitors is a significant advancement in the therapeutic paradigm of advanced CCA. Ongoing research utilizing FGFR inhibitors in treatment-naïve patients, elucidation of resistance mechanisms to harness future trials, and exploration of combination strategies will transform the treatment landscape of CCA.
Collapse
Affiliation(s)
- Sakti Chakrabarti
- Department of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heidi D Finnes
- Pharmacy Cancer Research, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Raza M, Kumar N, Nair U, Luthra G, Bhattacharyya U, Jayasundar S, Jayasundar R, Sehrawat S. Current updates on precision therapy for breast cancer associated brain metastasis: Emphasis on combination therapy. Mol Cell Biochem 2021; 476:3271-3284. [PMID: 33886058 DOI: 10.1007/s11010-021-04149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Cancer therapies have undergone a tremendous progress over the past decade. Precision medicine provides a more tailored approach, making the combination of existing therapies more precise. Different types of cancers are characterized by unique biomarkers that are targeted using various genomic approaches by clinicians and companies worldwide to achieve efficient treatment with minimal side effects. Precision medicine has two broad approaches namely stratified and personalized medicine. The driver mutations could vary within a subtype while the same driver mutations could be found across different subtypes. Precision medicine has recently gained a lot of importance for breast cancer therapy. Various kinds of mutations like hotspot mutations, gene alterations, gene amplification mutations are targeted to design a more specific therapy. Apart from these known gene mutations there are various unknown mutations. Thus, tumor heterogeneity can pose a challenge to precision medicine. For breast cancer, one of the most successful models developed in case of precision medicine is the anti-HER2 therapies as HER2 was considered to have the worst prognosis being highly malignant. But now due to the advent of HER2 receptor targeted therapies, it has a good prognosis. Moreover, precision medicine helps in identifying if the drug molecules being used for the treatment of one kind of cancer can be beneficial in the treatment of another kind of cancer as well, considering the signaling pathways and machinery is similar in most of the cancers. This reduces the time for new drug development and is economically more feasible. Precision medicine will prove to be very advantageous in case of brain metastasis.
Collapse
Affiliation(s)
- Masoom Raza
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Naveen Kumar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Uttara Nair
- Department of Women's and Reproductive Health, Oxford Fertility, Oxford Business Park North, University of Oxford, Oxford, OX4 2HW, UK
| | - Gehna Luthra
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Ushosi Bhattacharyya
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Smruthi Jayasundar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Rama Jayasundar
- Department of Nuclear Magnetic Resonance & MRI, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Sehrawat
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India.
| |
Collapse
|