1
|
Maïza A, Hamoudi R, Mabondzo A. Targeting the Multiple Complex Processes of Hypoxia-Ischemia to Achieve Neuroprotection. Int J Mol Sci 2024; 25:5449. [PMID: 38791487 PMCID: PMC11121719 DOI: 10.3390/ijms25105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.
Collapse
Affiliation(s)
- Auriane Maïza
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| | - Rifat Hamoudi
- Center of Excellence of Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Aloïse Mabondzo
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Gizli Çoban Ö, Bedel A, Önder A, Sürer Adanır A, Tuhan H, Parlak M. Psychiatric Disorders and Peer-Victimization in Children and Adolescents With Growth Hormone Deficiency. Clin Pediatr (Phila) 2022; 61:684-691. [PMID: 35581721 DOI: 10.1177/00099228221096654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we aimed to investigate psychiatric disorders, bullying/victimization, and quality of life in children and adolescents with idiopathic growth hormone deficiency (GHD). Sixty-one children and adolescents who were diagnosed as having idiopathic GHD were evaluated using a semistructured interview by a child and adolescent psychiatrist. Some 45.9% of the subjects with GHD were diagnosed with at least 1 psychiatric disorder. The most common psychiatric diagnosis was social anxiety disorder (18.3%). Twenty-eight percent of the subjects reported being bullied by their peers. Victimization rates were less frequent in those treated for more than 1 year. Children aged between 6 and 12 years had poorer quality of life and higher anxiety levels than adolescents aged between 13 and 18 years. Due to the higher rates of existing psychiatric disorders, the clinical management of patients with GHD should be conducted with a multidisciplinary approach, in which pediatric endocrinologists and mental health professionals work in coordination.
Collapse
Affiliation(s)
- Özge Gizli Çoban
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aynur Bedel
- Department of Pediatric Endocrinology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Arif Önder
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aslı Sürer Adanır
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Hale Tuhan
- Department of Pediatric Endocrinology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mesut Parlak
- Department of Pediatric Endocrinology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
3
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
4
|
Effects of GH on the Aging Process in Several Organs: Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23147848. [PMID: 35887196 PMCID: PMC9318627 DOI: 10.3390/ijms23147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the possible beneficial effects of GH administration on the aging process, 24-month-old rats of both sexes and 10-month-old SAMP8 mice were used. Male rats showed increased fat content and decreased lean body mass together with enhanced vasoconstriction and reduced vasodilation of their aortic rings compared to young adult animals. Chronic GH treatment for 10 weeks increased lean body mass and reduced fat weight together with inducing an enhancement of the vasodilatory response by increasing eNOS and a reduction of the constrictory responses. Old SAMP8 male mice also showed insulin resistance together with a decrease in insulin production by the endocrine pancreas and a reduced expression of differentiation parameters. GH treatment decreased plasma levels and increased pancreatic production of insulin and restored differentiation parameters in these animals. Ovariectomy plus low calcium diet in rabbits induced osteoporosis Titanium implants inserted into these rabbit tibiae showed after one month lesser bone to implant (BIC) surface and bone mineral density (BMD). Local application of GH in the surgical opening was able to increase BIC in the osteoporotic group. The hippocampus of old rats showed a reduction in the number of neurons and also in neurogenesis compared to young ones, together with an increase of caspases and a reduction of Bcl-2. GH treatment was able to enhance significantly only the total number of neurons. In conclusion, GH treatment was able to show beneficial effects in old animals on all the different organs and metabolic functions studied.
Collapse
|
5
|
Ng TKS, Heyn PC, Tagawa A, Coughlan C, Carollo JJ. Associations of Circulating Insulin-Growth Factor-1 With Cognitive Functions and Quality of Life Domains in Ambulatory Young Adults With Cerebral Palsy: A Pilot Study. Front Neurol 2022; 13:748015. [PMID: 35832183 PMCID: PMC9271561 DOI: 10.3389/fneur.2022.748015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Adults with cerebral palsy (CP) often have impaired cognitive functions. CP also has deteriorations in multiple quality-of-life (QoL) domains. The bio-psycho-social health psychology model posits that biological factor interacts with social and psychological functions. However, the biological determinant of psycho-social and functional outcomes in CP has been scarcely examined. Circulating Insulin-like growth factor-1 (IGF-1) is associated with cognitive deficits in older adults, we thus aimed to examine the associations of circulating IGF-1 with: (1) objectively measured cognitive functions, (2) self-reported cognitive functions, and (3) QoL measures in adults diagnosed with CP. Methods Seventy-two adults with CP and varying degrees of cognitive functions were recruited from an accredited clinical motion analysis laboratory at a regional Children's Hospital. Circulating IGF-1 was measured using post-fasting serum. The Wechsler Adult Intelligence Scale (WAIS) tests were administered to assess multiple cognitive functions, whereas the Patient-Reported Outcomes Measurement Information System (PROMIS) was used to measure multiple domains of self-reported health, including cognitive complaints and eight QoL domains. Results Sixty-eight participants had complete data [mean age = 25 (SD = 5.3), female = 52.8%]. Controlling for covariates, circulating IGF-1 was associated with multiple cognitive domains, including positively with declarative memory and executive function and inversely with visual-spatial and motor skills, and processing speed, while no association with subjective memory complaint was detected. Circulating IGF-1 was also inversely associated with four QoL domains, including depressive symptoms, executive function, physical function, and social roles and activities. Conclusions In CP, circulating IGF-1 might be a useful biological determinant of objective cognitive functions and several quality-of-life domains commonly impaired in CP.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Edson College of Nursing and Health Innovation, Arizona State University, Tempe, AZ, United States
- *Correspondence: Ted Kheng Siang Ng
| | - Patricia C. Heyn
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| | - Alex Tagawa
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| | - Christina Coughlan
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
- University of Colorado Alzheimer's and Cognition Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James J. Carollo
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
6
|
Juárez-Aguilar E, Olivares-Hernández JD, Regalado-Santiago C, García-García F. The role of growth hormone in hippocampal function. VITAMINS AND HORMONES 2021; 118:289-313. [PMID: 35180930 DOI: 10.1016/bs.vh.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.
Collapse
Affiliation(s)
- Enrique Juárez-Aguilar
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico.
| | - Juan David Olivares-Hernández
- Laboratorio D-01, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Fabio García-García
- Departmento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
7
|
Growth Hormone (GH) Enhances Endogenous Mechanisms of Neuroprotection and Neuroplasticity after Oxygen and Glucose Deprivation Injury (OGD) and Reoxygenation (OGD/R) in Chicken Hippocampal Cell Cultures. Neural Plast 2021; 2021:9990166. [PMID: 34567109 PMCID: PMC8461227 DOI: 10.1155/2021/9990166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.
Collapse
|
8
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
9
|
Baltazar-Lara R, Ávila-Mendoza J, Martínez-Moreno CG, Carranza M, Pech-Pool S, Vázquez-Martínez O, Díaz-Muñoz M, Luna M, Arámburo C. Neuroprotective Effects of Growth Hormone (GH) and Insulin-Like Growth Factor Type 1 (IGF-1) after Hypoxic-Ischemic Injury in Chicken Cerebellar Cell Cultures. Int J Mol Sci 2020; 22:ijms22010256. [PMID: 33383827 PMCID: PMC7795313 DOI: 10.3390/ijms22010256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.
Collapse
Affiliation(s)
- Rosario Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos G. Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Santiago Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| |
Collapse
|
10
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Durán-Carabali L, Arcego D, Sanches E, Odorcyk F, Marques M, Tosta A, Reichert L, Carvalho A, Dalmaz C, Netto C. Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 2019; 359:485-497. [DOI: 10.1016/j.bbr.2018.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
|
12
|
Åberg ND, Åberg D, Jood K, Nilsson M, Blomstrand C, Kuhn HG, Svensson J, Jern C, Isgaard J. Altered levels of circulating insulin-like growth factor I (IGF-I) following ischemic stroke are associated with outcome - a prospective observational study. BMC Neurol 2018; 18:106. [PMID: 30081862 PMCID: PMC6091156 DOI: 10.1186/s12883-018-1107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/22/2018] [Indexed: 01/12/2023] Open
Abstract
Background Insulin-like growth factor I (IGF-I) has neuroprotective effects in experimental ischemic stroke (IS). However, in patients who have suffered IS, various associations between the levels of serum IGF-I (s-IGF-I) and clinical outcome have been reported, probably reflecting differences in sampling time-points and follow-up periods. Since changes in the levels of post-stroke s-IGF-I have not been extensively explored, we investigated whether decreases in the levels of s-IGF-I between the acute time-point (median, 4 days) and 3 months (ΔIGF-I, further transformed into ΔIGF-I-quintiles, ΔIGF-I-q) are associated with IS severity and outcome. Methods In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) conducted in Gothenburg, Sweden, patients with IS who had s-IGF-I measurements available were included (N = 354; 65% males; mean age, 55 years). Baseline stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) and converted into NIHSS-quintiles (NIHSS-q). Outcomes were assessed using the modified Rankin Scale (mRS) at 3 months and 2 years. Results In general, the levels of s-IGF-I decreased (positive ΔIGF-I), except for those patients with the most severe NIHSS-q. After correction for sex and age, the 3rd ΔIGF-I-q showed the strongest association to mRS 0–2 [Odds Ratio (OR) 5.11, 95% confidence interval (CI) 2.18–11.9], and after 2 years, the 5th ΔIGF-I-q (OR 3.63, 95% CI 1.40–9.38) showed the strongest association to mRS 0–2. The associations remained significant after multivariate correction for diabetes, smoking, hypertension, and hyperlipidemia after 3 months, but were not significant (p = 0.057) after 2 years. The 3-month associations withstood additional correction for baseline stroke severity (p = 0.035), whereas the 2-year associations were further attenuated (p = 0.31). Conclusions Changes in the levels of s-IGF-I are associated primarily with temporally near 3-month outcomes, while associations with long-term 2-year outcomes are weakened and attenuated by other factors. The significance of the change in post-stroke s-IGF-I is compatible with a positive role for IGF-I in IS recovery. However, the exact mechanisms are unknown and probably reflects combinations of multiple peripheral and central actions. Electronic supplementary material The online version of this article (10.1186/s12883-018-1107-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden.
| | - Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Christian Blomstrand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| |
Collapse
|
13
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
14
|
Leaw B, Nair S, Lim R, Thornton C, Mallard C, Hagberg H. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Front Cell Neurosci 2017; 11:199. [PMID: 28747873 PMCID: PMC5506196 DOI: 10.3389/fncel.2017.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI), there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.
Collapse
Affiliation(s)
- Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Syam Nair
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University ClaytonClayton, VIC, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Perinatal Center, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
15
|
Walser M, Schiöler L, Oscarsson J, Åberg MAI, Wickelgren R, Svensson J, Isgaard J, Åberg ND. Mode of GH administration and gene expression in the female rat brain. J Endocrinol 2017; 233:187-196. [PMID: 28275169 DOI: 10.1530/joe-16-0656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 11/08/2022]
Abstract
The endogenous secretion of growth hormone (GH) is sexually dimorphic in rats with females having a more even and males a more pulsatile secretion and low trough levels. The mode of GH administration, mimicking the sexually dimorphic secretion, has different systemic effects. In the brains of male rats, we have previously found that the mode of GH administration differently affects neuron-haemoglobin beta (Hbb) expression whereas effects on other transcripts were moderate. The different modes of GH administration could have different effects on brain transcripts in female rats. Hypophysectomised female rats were given GH either as injections twice daily or as continuous infusion and GH-responsive transcripts were assessed by quantitative reverse transcription polymerase chain reaction in the hippocampus and parietal cortex (cortex). The different modes of GH-administration markedly increased Hbb and 5'-aminolevulinate synthase 2 (Alas2) in both brain regions. As other effects were relatively moderate, a mixed model analysis (MMA) was used to investigate general effects of the treatments. In the hippocampus, MMA showed that GH-infusion suppressed glia- and neuron-related transcript expression levels, whereas GH-injections increased expression levels. In the cortex, GH-infusion instead increased neuron-related transcripts, whereas GH-injections had no significant effect. Interestingly, this contrasts to previous results obtained from male rat cortex where GH-infusion generally decreased expression levels. In conclusion, the results indicate that there is a small but significant difference in response to mode of GH administration in the hippocampus as compared to the cortex. For both modes of GH administration, there was a robust effect on Hbb and Alas2.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal MedicineInstitute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Department for Public Health and Community MedicineThe Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Maria A I Åberg
- Department of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ruth Wickelgren
- Department of Clinical Chemistry and Transfusion MedicineThe Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal MedicineInstitute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal MedicineInstitute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal MedicineInstitute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Li Y, Zhang P, Liu Y, Liu W, Yin N. Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model. Behav Brain Res 2016; 314:165-72. [PMID: 27515290 DOI: 10.1016/j.bbr.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/03/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate whether helium preconditioning (He-PC) is able to exert neuroprotective effects via improving focal neurovascular niche in a neonatal rat hypoxia/ischemia (HI) brain injury model. Seven day old rat pups were divided into control group, HI group and He-PC group. HI was induced by exposure to 8% oxygen for 90min one day after preconditioning with 70% helium-30% oxygen for three 5-min periods. At 3 and 7 days, the brain was collected for the detection of inflammation related factors (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], IL-10) and growth/neurotrophic factors (brain-derived neurotrophic factor [BDNF], basic fibroblast growth factor [bFGF] and nerve growth factor [NGF]); at 7 days, neurobehaviors were evaluated, and the brain was collected for the detection of mRNA expression of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) by PCR, protein expression of angiogenesis related molecules (VEGF, Ang-1, Tie-2 and Flt-1) by Western blotting and microvessel density (MCD) by immunohistochemistry for vWF. Results showed He-PC was able to reduce TNF-α and IL-1β, further increase IL-10, BDNF, bFGF and NGF, elevate the mRNA expression of VEGF and Ang-1, increase the protein expression of VEGF, Ang-1, Tie-2 and Flt-1, promote angiogenesis and improve neurobehaviors as compared to HI group. These findings suggest that He-PC may improve the post-stroke neurovascular niche to exert neuroprotective effects on neonatal HI brain injury.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Peixi Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Jining City, No 6, Jiankang Road, Jining City, Shandong 272011, China
| | - Ying Liu
- Department of Pathology, Yantaishan Hospital, No 91, Jiefang Road, Zhifu District, Yantai City, Shandong 264001, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, The Second Military Medical University, Shanghai, China.
| | - Na Yin
- Department of Anesthesiology & Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
17
|
Martínez-Moreno CG, Ávila-Mendoza J, Wu Y, Arellanes-Licea EDC, Louie M, Luna M, Arámburo C, Harvey S. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells. Gen Comp Endocrinol 2016; 234:68-80. [PMID: 27129619 DOI: 10.1016/j.ygcen.2016.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.
Collapse
Affiliation(s)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Yilun Wu
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Elvira Del Carmen Arellanes-Licea
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Marcela Louie
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
18
|
Shaikh H, Boudes E, Khoja Z, Shevell M, Wintermark P. Angiogenesis dysregulation in term asphyxiated newborns treated with hypothermia. PLoS One 2015; 10:e0128028. [PMID: 25996847 PMCID: PMC4440713 DOI: 10.1371/journal.pone.0128028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. OBJECTIVE This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. DESIGN/METHODS Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. RESULTS Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. CONCLUSIONS These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery.
Collapse
Affiliation(s)
- Henna Shaikh
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Elodie Boudes
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Zehra Khoja
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Michael Shevell
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
19
|
Devesa P, Agasse F, Xapelli S, Almengló C, Devesa J, Malva JO, Arce VM. Growth hormone pathways signaling for cell proliferation and survival in hippocampal neural precursors from postnatal mice. BMC Neurosci 2014; 15:100. [PMID: 25156632 PMCID: PMC4155078 DOI: 10.1186/1471-2202-15-100] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence suggests that growth hormone (GH) may play a major role in the regulation of postnatal neurogenesis, thus supporting the possibility that it may be also involved in promoting brain repair after brain injury. In order to gain further insight on this possibility, in this study we have investigated the pathways signaling the effect of GH treatment on the proliferation and survival of hippocampal subgranular zone (SGZ)-derived neurospheres. Results Our results demonstrate that GH treatment promotes both proliferation and survival of SGZ neurospheres. By using specific chemical inhibitors we have been also able to demonstrate that GH treatment promotes the activation of both Akt-mTOR and JNK signaling pathways, while blockade of these pathways either reduces or abolishes the GH effects. In contrast, no effect of GH on the activation of the Ras-ERK pathway was observed after GH treatment, despite blockade of this signaling path also resulted in a significant reduction of GH effects. Interestingly, SGZ cells were also capable of producing GH, and blockade of endogenous GH also resulted in a decrease in the proliferation and survival of SGZ neurospheres. Conclusions Altogether, our findings suggest that GH treatment may promote the proliferation and survival of neural progenitors. This effect may be elicited by cooperating with locally-produced GH in order to increase the response of neural progenitors to adequate stimuli. On this view, the possibility of using GH treatment to promote neurogenesis and cell survival in some acquired neural injuries may be envisaged.
Collapse
Affiliation(s)
| | | | | | | | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, 15710 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
20
|
Walser M, Schiöler L, Oscarsson J, Aberg MAI, Svensson J, Aberg ND, Isgaard J. Different modes of GH administration influence gene expression in the male rat brain. J Endocrinol 2014; 222:181-90. [PMID: 24872576 DOI: 10.1530/joe-14-0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endogenous secretion pattern in males of GH is episodic in rats and in humans, whereas GH administration is usually even. Different types of GH administration have different effects on body mass, longitudinal bone growth, and liver metabolism in rodents, whereas possible effects on brain plasticity have not been investigated. In this study, GH was administered as a continuous infusion or as two daily injections in hypophysectomized male rats. Thirteen transcripts previously known to respond to GH in the hippocampus and parietal cortex (cortex) were assessed by RT-PCR. To investigate the effects of type of GH administration on several transcripts with different variations, and categories of transcripts (neuron-, glia-, and GH-related), a mixed model analysis was applied. Accordingly, GH injections increased overall transcript abundance more than GH infusions (21% in the hippocampus, P<0.001 and 10% in the cortex, P=0.09). Specifically, GH infusions and injections robustly increased neuronal hemoglobin beta (Hbb) expression significantly (1.8- to 3.6-fold), and GH injections were more effective than GH infusions in increasing Hbb in the cortex (41%, P=0.02), whereas a 23% difference in the hippocampus was not significant. Also cortical connexin 43 was higher in the group with GH injections than in those with GH infusions (26%, P<0.007). Also, there were differences between GH injections and infusions in GH-related transcripts of the cortex (23%, P=0.04) and glia-related transcripts of the hippocampus (15%, P=0.02). Thus, with the exception of Hbb there is a moderate difference in responsiveness to different modes of GH administration.
Collapse
Affiliation(s)
- Marion Walser
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Oscarsson
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria A I Aberg
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenLaboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - N David Aberg
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenLaboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Laboratory of Experimental EndocrinologyDepartment of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 5, SE-413 45 Gothenburg, SwedenDepartment for Public Health and Community MedicineThe Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenAstraZeneca R&DSE-431 83 Mölndal, Gothenburg, SwedenInstitute for Neuroscience and PhysiologyThe Sahlgrenska Academy, Center for Brain Repair and RehabilitationDepartment of Primary Health CareInstitute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Arámburo C, Alba-Betancourt C, Luna M, Harvey S. Expression and function of growth hormone in the nervous system: a brief review. Gen Comp Endocrinol 2014; 203:35-42. [PMID: 24837495 DOI: 10.1016/j.ygcen.2014.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that growth hormone (GH) expression is not confined exclusively to the pituitary somatotrophs as it is synthesized in many extrapituitary locations. The nervous system is one of those extrapituitary sites. In this brief review we summarize data that substantiate the expression, distribution and characterization of neural GH and detail its roles in neural function, including cellular growth, proliferation, differentiation, neuroprotection and survival, as well as its functional roles in behavior, cognition and neurotransmission. Although systemic GH may exert some of these effects, it is increasingly evident that locally expressed neural GH, acting through intracrine, autocrine or paracrine mechanisms, may also be causally involved as a neurotrophic factor.
Collapse
Affiliation(s)
- Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México.
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
22
|
Vaaga CE, Tovar KR, Westbrook GL. The IGF-derived tripeptide Gly-Pro-Glu is a weak NMDA receptor agonist. J Neurophysiol 2014; 112:1241-5. [PMID: 24944213 DOI: 10.1152/jn.00290.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate acts as the universal agonist at ionotropic glutamate receptors in part because of its high degree of conformational flexibility. Other amino acids and small peptides, however, can activate N-methyl-d-aspartate (NMDA) receptors, albeit usually with lower affinity and efficacy. Here, we examined the action of glycine-proline-glutamate (GPE), a naturally occurring tripeptide formed in the brain following cleavage of IGF-I. GPE is thought to have biological activity in the brain, but its mechanism of action remains unclear. With its flanking glutamate and glycine residues, GPE could bind to either the agonist or coagonist sites on NMDA receptors, however, this has not been directly tested. Using whole cell patch-clamp recordings in combination with rapid solution exchange, we examined both steady-state currents induced by GPE as well as the effects of GPE on synaptically evoked currents. High concentrations of GPE evoked inward currents, which were blocked either by NMDA receptor competitive antagonists or the voltage-dependent channel blocker Mg(2+). GPE also produced a slight attenuation in the NMDA- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated excitatory postsynaptic currents without altering the paired-pulse ratio. Our results suggest that GPE can activate NMDA receptors but at concentrations well above the expected concentration of GPE in the brain. Therefore, it is unlikely that endogenous GPE interacts with glutamate receptors under normal conditions.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon; and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kenneth R Tovar
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
23
|
Almeida DV, Bianchini A, Marins LF. Growth hormone overexpression generates an unfavorable phenotype in juvenile transgenic zebrafish under hypoxic conditions. Gen Comp Endocrinol 2013; 194:102-9. [PMID: 24055561 DOI: 10.1016/j.ygcen.2013.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/24/2022]
Abstract
Growth hormone (GH) has numerous functions in different organisms. A recently described function for GH is its role in protecting against damage caused by a decrease in oxygen levels. To evaluate the effects of GH-transgenesis on hypoxia tolerance, we used a GH-transgenic zebrafish model. We found that the transgenic fish have higher mortality rates when exposed to low oxygen levels (1.5 mg O₂L(-1)) for 24 h. The lower capacity of GH-transgenic fish to manage a hypoxic environment was investigated by analyzing different metabolic and molecular factors. The transgenic fish showed increased oxygen consumption, which confirms the larger oxygen demand imposed by transgenesis. At the gene expression level, transgenesis increased lactate dehydrogenase (LDH) and creatine kinase muscle (CKM) expression in fish under normoxic conditions. This result suggests that excessive GH expression stimulates the synthesis of enzymes involved in anaerobic metabolism. Conversely, the interaction between transgenesis and hypoxia caused an increased expression of hemoglobin (Hb), hypoxia-inducible factor (HIF1a) and prolyl-4-hydroxylase (PHD) genes. Additionally, GH-transgenesis increased LDH activity and increased lactate content. Taken together, these findings indicate that GH-transgenesis impaired the ability of juvenile zebrafish to sustain an aerobic metabolism and induced anaerobic metabolism when the fish were challenged with low oxygen levels.
Collapse
Affiliation(s)
- Daniela Volcan Almeida
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | |
Collapse
|
24
|
Arce VM, Devesa P, Devesa J. Role of growth hormone (GH) in the treatment on neural diseases: from neuroprotection to neural repair. Neurosci Res 2013; 76:179-86. [PMID: 23602740 DOI: 10.1016/j.neures.2013.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved.
Collapse
Affiliation(s)
- Víctor M Arce
- Departamento de Fisioloxía, Facultade de Medicina, Universidade de Santiago de Compostela, Spain.
| | | | | |
Collapse
|
25
|
Heredia M, Fuente A, Criado J, Yajeya J, Devesa J, Riolobos AS. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats. Behav Brain Res 2013; 247:48-58. [PMID: 23518437 DOI: 10.1016/j.bbr.2013.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area).
Collapse
Affiliation(s)
- Margarita Heredia
- Department of Physiology and Pharmacology, School of Medicine, INCyL, University of Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Alba-Betancourt C, Luna-Acosta JL, Ramírez-Martínez CE, Avila-González D, Granados-Ávalos E, Carranza M, Martínez-Coria H, Arámburo C, Luna M. Neuro-protective effects of growth hormone (GH) after hypoxia-ischemia injury in embryonic chicken cerebellum. Gen Comp Endocrinol 2013; 183:17-31. [PMID: 23262274 DOI: 10.1016/j.ygcen.2012.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/27/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
Abstract
Neuroprotection is a mechanism within the central nervous system (CNS) that protects neurons from damage as a result of a severe insult. It is known that growth hormone (GH) is involved in cell survival and may inhibit apoptosis in several cell types, including those of the CNS. Both GH and GH-receptor (GHR) genes are expressed in the cerebellum. Thus, we investigated the possible neuroprotective role of GH in this organ, which is very sensitive to hypoxic/ischemic conditions. Endogenous GH levels increased in the brain and cerebellum (30% and 74%, respectively) of 15-day-old chicken embryos exposed to hypoxia during 24h compared to normoxia. In primary embryonic cerebellar neuron cultures treated under hypoxia (0.5% O(2)) and low glucose (1g/L) conditions (HLG) for 1h, GH levels increased 1.16-fold compared to the control. The addition of 1nM recombinant chicken GH (rcGH) to cultures during HLG increased cell viability (1.7-fold) and the expression of Bcl-2 (1.67-fold); in contrast the caspase-3 activity and the proportion of apoptotic cells decreased (37% and 54.2%, respectively) compared to HLG. rcGH activated the PI3K/Akt pathway both under normoxic and HLG conditions, increasing the proportion of phosphorylated Akt (1.7- and 1.4-fold, respectively). These effects were abolished by wortmannin and by immunoneutralization, indicating that GH acts through this signaling pathway. Furthermore, the 15-kDa GH variant (10nM) significantly increased cell viability and decreased caspase-3 activity during HLG condition. Thus GH may act as a paracrine/autocrine neuroprotective factor that preserves cellular viability and inhibits apoptotic cell death.
Collapse
Affiliation(s)
- Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kireev RA, Cuesta S, Vara E, Tresguerres JAF. Effect of growth hormone and melatonin on the brain: from molecular mechanisms to structural changes. Horm Mol Biol Clin Investig 2011; 7:337-50. [PMID: 25961272 DOI: 10.1515/hmbci.2011.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/19/2011] [Indexed: 01/01/2023]
Abstract
Aging of the brain causes important reductions in quality of life and has wide socio-economic consequences. An increase in oxidative stress, and the associated inflammation and apoptosis, could be responsible for the pathogenesis of aging associated brain lesions. Melatonin has neuroprotective effects, by limiting the negative effects of oxygen and nitrogen free radicals. Growth hormone (GH) might exert additional neuro-protective and or neurogenic effects on the brain. The molecular mechanisms of the protective effects of GH and melatonin on the aging brain have been investigated in young and old Wistar rats. A reduction in the total number of neurons in the hilus of the dentate gyrus was evident at 24 months of age and was associated with a significant increase in inflammation markers as well as in pro-apoptotic parameters, confirming the role of apoptosis in its reduction. Melatonin treatment was able to enhance neurogenesis in old rats without modification of the total number of neurons, whereas GH treatment increased the total number of neurons without enhancing neurogenesis. Both GH and melatonin were able to reduce inflammation and apoptosis in the hippocampus. In conclusion, neuroprotective effects demonstrated by GH and melatonin in the hippocampus were exerted by decreasing inflammation and apoptosis.
Collapse
|
28
|
Li RC, Guo SZ, Raccurt M, Moudilou E, Morel G, Brittian KR, Gozal D. Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience 2011; 196:237-50. [PMID: 21888951 DOI: 10.1016/j.neuroscience.2011.08.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/30/2022]
Abstract
Sleep disordered breathing (SDB), which is characterized by intermittent hypoxia (IH) during sleep, causes substantial cardiovascular and neurocognitive complications and has become a growing public health problem. SDB is associated with suppression of growth hormone (GH) secretion, the latter being integrally involved in the growth, development, and function of the CNS. Since GH treatment is able to attenuate neurocognitive deficits in a hypoxic-ischemic stroke model, GH, GH receptor (GHR) mRNA expression, and GH protein expression were assessed in rat hippocampus after exposures to chronic sustained hypoxia (CH, 10% O(2)) or IH (10% O(2) alternating with 21% O(2) every 90 s). In addition, the effect of GH treatment (50 μg/kg daily s.c. injection) on erythropoietin (EPO), vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1), and GLUT-1 mRNA expression and neurobehavioral function was assessed. CH significantly increased GH mRNA and protein expression, as well as insulin-like growth factor-1 (IGF-1). In contrast, IH only induced a moderate increase in GH mRNA and a slight elevation in GH protein at day 1, but no increases in IGF-1. CH, but not IH, up-regulated GHR mRNA in the hippocampus. IH induced marked neurocognitive deficits compared with CH or room air (RA). Furthermore, exogenous GH administration increased hippocampal mRNA expression of IGF-1, EPO, and VEGF, and not only reduced IH-induced hippocampal injury, but also attenuated IH-induced cognitive deficits. Thus, exogenous GH may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from SDB-associated neuronal loss and associated neurocognitive dysfunction.
Collapse
Affiliation(s)
- R C Li
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Åberg D, Jood K, Blomstrand C, Jern C, Nilsson M, Isgaard J, Aberg ND. Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab 2011; 96:E1055-64. [PMID: 21508132 DOI: 10.1210/jc.2010-2802] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT AND OBJECTIVE GH has positive cognitive effects when given to GH-IGF-I-deficient patients. GH and IGF-I exert both neuroprotective and regenerative effects on experimental stroke. We investigated whether the endogenous serum IGF-I (s-IGF-I) levels correlated with recovery of functional independence in patients who had suffered an ischemic stroke. SUBJECTS AND METHODS The s-IGF-I levels were measured in 407 patients (260 males, 147 females) with mean age of 55 (range, 18-69) yr and 40 randomly selected matched controls who were previously included in the Sahlgrenska Academy Study on Ischemic Stroke. Serum samples were collected on two occasions: acutely at 1-10 d (median, 4 d) after stroke and 3 months after the stroke. Recovery after ischemic stroke was evaluated using the modified Rankin scale 3 and 24 months after the stroke, and the Scandinavian Stroke Scale was used for assessments during the acute stage and 3 months after the stroke. RESULTS The s-IGF-I levels were higher in the acute stage than after 3 months and compared with the controls (P < 0.001 and P < 0.01, respectively), and the s-IGF-I levels were progressively lower in the elderly patients. The levels of s-IGF-I in the acute phase and after 3 months both positively correlated with improvement in the modified Rankin scale scores between 3 and 24 months (P = 0.001; r = 0.174, and P < 0.001; r = 0.24, respectively). CONCLUSION A high s-IGF-I during the rehabilitation phase of stroke correlates to better recovery of long-term function.
Collapse
Affiliation(s)
- Daniel Åberg
- Laboratory of Experimental Endocrinology, Sahlgrenska University Hospital, The SahlgrenskaAcademy at University of Gothenburg, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
30
|
Birth asphyxia as the major complication in newborns: moving towards improved individual outcomes by prediction, targeted prevention and tailored medical care. EPMA J 2011. [PMID: 23199149 PMCID: PMC3405378 DOI: 10.1007/s13167-011-0087-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perinatal Asphyxia—oxygen deficit at delivery—can lead to severe hypoxic ischaemic organ damage in newborns followed by a fatal outcome or severe life-long pathologies. The severe insults often cause neurodegenerative diseases, mental retardation and epilepsies. The mild insults lead to so-called “minimal brain-damage disorders” such as attention deficits and hyperactivity, but can also be associated with the development of schizophrenia and life-long functional psychotic syndromes. Asphyxia followed by re-oxygenation can potentially lead to development of several neurodegenerative pathologies, diabetes type 2 and cancer. The task of individual prediction, targeted prevention and personalised treatments before a manifestation of the life-long chronic pathologies usually developed by newborns with asphyxic deficits, should be given the extraordinary priority in neonatology and paediatrics. Socio-economical impacts of educational measures and advanced strategies in development of robust diagnostic approaches targeted at effected molecular pathways, biomarker-candidates and potential drug-targets for tailored treatments are reviewed in the paper.
Collapse
|
31
|
Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release 2011; 151:45-50. [DOI: 10.1016/j.jconrel.2011.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 01/12/2023]
|
32
|
Walser M, Hansén A, Svensson PA, Jernås M, Oscarsson J, Isgaard J, Åberg ND. Peripheral administration of bovine GH regulates the expression of cerebrocortical beta-globin, GABAB receptor 1, and the Lissencephaly-1 protein (LIS-1) in adult hypophysectomized rats. Growth Horm IGF Res 2011; 21:16-24. [PMID: 21212011 DOI: 10.1016/j.ghir.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/17/2010] [Accepted: 11/27/2010] [Indexed: 11/20/2022]
Abstract
Growth hormone (GH) therapy substantially improves several cognitive functions in hypopituitary experimental animals and in humans. Although a number of biochemical correlates to these effects have been characterized, there are no comprehensive analysis available examining effects of GH on the brain. Hypophysectomized female rats were given replacement therapy with cortisol and thyroxine (=hx). Subcutaneous infusions of bovine GH (bGH, henceforth designated GH) were supplied in osmotic minipumps for 6 days (=hx+GH). To evaluate whether GH normalized specific transcript expression levels in cerebral cortex, pituitary-intact rats were used as normal controls. DNA microarrays (Affymetrix) of cerebrocortical samples showed that 24 transcripts were changed by more than 1.5-fold by GH treatment in addition to being normalized by GH treatment. The expression of three selected highly regulated transcripts was confirmed by quantitative real-time polymerase chain reaction analysis. These were the GABAB receptor 1, Lissencephaly-1 protein (LIS-1), and hemoglobin b or beta-globin. A similar regulation was found for hemoglobin b also in the hippocampus. Both the GABAB receptor 1 and hemoglobin b may have importance for the previously described neuroprotective and perhaps cognitive potential of GH treatment. Altogether, these results show that short term GH treatment affects a number of transcripts in cerebral cortex with various biological functions. These transcripts represent potential novel mechanisms by which GH can interact with the brain.
Collapse
Affiliation(s)
- Marion Walser
- Laboratory of Experimental Endocrinology, Department of Internal Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Ramis M, Tresguerres JA, Rial R. Improving Effects of Long-Term Growth Hormone Treatment on Monoaminergic Neurotransmission and Related Behavioral Tests in Aged Rats. Rejuvenation Res 2010; 13:707-16. [DOI: 10.1089/rej.2010.1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Celia Garau
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Sara Aparicio
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - David Moranta
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Fundación Caubet-Cimera, Hospital Joan March, Mallorca, Spain
| | - Pere Barceló
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Margarita Ramis
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | | | - Rubén Rial
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| |
Collapse
|
34
|
Reimunde P, Rodicio C, López N, Alonso A, Devesa P, Devesa J. Effects of recombinant growth hormone replacement and physical rehabilitation in recovery of gross motor function in children with cerebral palsy. Ther Clin Risk Manag 2010; 6:585-92. [PMID: 21151628 PMCID: PMC2999511 DOI: 10.2147/tcrm.s14919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cerebral palsy is an important health issue that has a strong socioeconomic impact. There is no cure for cerebral palsy, and therapeutic approaches only report small benefits for affected people. In this study we assessed the effects of growth hormone treatment (0.3 μg/kg/day) combined with physical rehabilitation in the recovery of gross motor function in children with growth hormone deficiency and cerebral palsy (four males and six females, mean age 5.63 ± 2.32 years) as compared with that observed in a similar population of cerebral palsy children (five males, five females, mean age 5.9 ± 2.18 years) without growth hormone deficiency treated only with physical rehabilitation for two months. The Gross Motor Function Measure (GMFM-88) and Modified Ashworth Scale were performed before commencing the treatment and after completion thereof. In children with cerebral palsy and growth hormone deficiency, Dimension A (P < 0.02), dimension B (P < 0.02), and dimension C (P < 0.02) of the GMFM-88, and the total score of the test (P < 0.01) significantly improved after the treatment; dimension D and dimension E did not increase, and four of five spastic patients showed a reduction in spasticity. However, in children with cerebral palsy and without growth hormone deficiency, only the total score of the test improved significantly after the treatment period. This indicates that growth hormone replacement therapy was responsible for the large differences observed between both groups in response to physical rehabilitation. We propose that the combined therapy involving growth hormone administration and physical rehabilitation may be a useful therapeutic approach in the recovery of gross motor function in children with growth hormone deficiency and cerebral palsy.
Collapse
Affiliation(s)
- Pedro Reimunde
- Medical Center "Proyecto Foltra", Cacheiras (Teo), A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Reimunde P, Quintana A, Castañón B, Casteleiro N, Vilarnovo Z, Otero A, Devesa A, Otero-Cepeda XL, Devesa J. Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury. Brain Inj 2010; 25:65-73. [PMID: 21117918 DOI: 10.3109/02699052.2010.536196] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To assess the effects of growth hormone (GH) treatment combined with cognitive rehabilitation in patients with adult growth hormone deficiency (GHD) and cognitive disorders occurring after traumatic brain injury (TBI). PARTICIPANTS Nineteen adult patients with TBI: GHD was found in 11 of them. INTERVENTION Patients were treated with GH (GHD; sc; 1 mg/day) or vehicle (controls; sc; 1 mg/day); daily cognitive rehabilitation therapy was performed in both groups for 3 months. MAIN OUTCOME MEASURES The GHRH-arginine test established GHD. The neuropsychological test WAIS was performed before commencing the treatment and 3 months after commencing it. RESULTS Controls achieved significant improvements in digits and in manipulative intelligence quotient (IQ) (p < 0.05 vs. baseline). GHD achieved significant improvements in more cognitive parameters: understanding, digits, numbers and incomplete figures (p < 0.05 vs. baseline) and similarities, vocabulary, verbal IQ, manipulative IQ and total IQ (p < 0.01). GHD reached significantly greater improvements than controls in similarities (p < 0.01) and in vocabulary, verbal IQ and total IQ (p < 0.05). CONCLUSION GH administration significantly improved cognitive rehabilitation in GHD patients. Since at the end of treatment period plasma IGF-I levels were similar in both groups it is likely that exogenous GH administration is responsible for the significant differences found.
Collapse
Affiliation(s)
- P Reimunde
- Medical Center Proyecto Foltra, Cacheiras (Teo), A Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Devesa J, Casteleiro N, Rodicio C, López N, Reimunde P. Growth hormone deficiency and cerebral palsy. Ther Clin Risk Manag 2010; 6:413-8. [PMID: 20856687 PMCID: PMC2940749 DOI: 10.2147/tcrm.s12312] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy (CP) is a catastrophic acquired disease, occurring during development of the fetal or infant brain. It mainly affects the motor control centres of the developing brain, but can also affect cognitive functions, and is usually accompanied by a cohort of symptoms including lack of communication, epilepsy, and alterations in behavior. Most children with cerebral palsy exhibit a short stature, progressively declining from birth to puberty. We tested here whether this lack of normal growth might be due to an impaired or deficient growth hormone (GH) secretion. Our study sample comprised 46 CP children, of which 28 were male and 18 were female, aged between 3 and 11 years. Data obtained show that 70% of these children lack normal GH secretion. We conclude that GH replacement therapy should be implemented early for CP children, not only to allow them to achieve a normal height, but also because of the known neurotrophic effects of the hormone, perhaps allowing for the correction of some of the common disabilities experienced by CP children.
Collapse
Affiliation(s)
- Jesús Devesa
- Department of Physiology, School of Medicine of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
37
|
Golubnitschaja O, Costigliola V. Common origin but individual outcomes: time for new guidelines in personalized healthcare. Per Med 2010; 7:561-568. [PMID: 29776246 DOI: 10.2217/pme.10.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical observations clearly demonstrate that similar endogenous and exogenous risk factors cause individual reactions and pathologic characteristics; therefore, the same therapeutic approaches applied within one cohort of patients lead to individual outcomes. How could we optimize approaches used in the current healthcare systems? Individualized treatment algorithms and paradigm change from a late interventional approach to predictive diagnosis, followed by the targeted prevention of a disease before pathology manifests, presents an innovative concept for advanced healthcare that is cost effective. Predictive perinatal/postnatal diagnosis and the preselection of a particular healthy but disease-predisposed individual, followed by targeted preventive measures, represent the primary task in the overall action of personalized healthcare. Those highly effective measures can lead to a reduced prevalence of severe pathologies and better long-term outcomes for patients treated according to individual parameters and therapeutic algorithms. Furthermore, an increased portion of socially active members remaining vibrant with excellent physical and mental health can therefore, be expected in the elderly. Improving the quality of life of aging populations and reducing costs in advanced healthcare systems, is a global challenge of the 21st century. This task requires intelligent political regulations and the creation of new guidelines to advance the current healthcare systems. Targeted preventive measures should be well regulated by innovative reimbursement programs introduced by policy-makers. This is considered as the cost-effective preventive 'medicine of the future'.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Germany. .,The European Association for Predictive, Preventive & Personalized Medicine, Avenue des Volontaires, 19, 1160 Brussels, Belgium
| | - Vincenzo Costigliola
- The European Association for Predictive, Preventive & Personalized Medicine, Avenue des Volontaires, 19, 1160 Brussels, Belgium
| |
Collapse
|
38
|
David Aberg N, Lind J, Isgaard J, Georg Kuhn H. Peripheral growth hormone induces cell proliferation in the intact adult rat brain. Growth Horm IGF Res 2010; 20:264-269. [PMID: 20106687 DOI: 10.1016/j.ghir.2009.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/23/2009] [Accepted: 12/16/2009] [Indexed: 01/17/2023]
Abstract
Growth hormone (GH) and insulin-like growth factor I (IGF-I) increase cell genesis in several regions of the brains of GH-IGF-I-deficient hypophysectomized rats. However, it is not known to what degree GH treatment stimulates adult cell genesis in pituitary-intact rodents. We investigated the effect of peripheral administration of bovine growth hormone (bGH) on cellular proliferation in various regions of the brains of normal adult female rats. To monitor cell division, bromodeoxyuridine (BrdU) was administered daily for 5 days. We studied the two areas of ongoing neurogenesis, the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, as well as the corpus callosum, striatum, and the parietal and piriform cortices. After bGH treatment, the numbers of BrdU-positive cells increased 2.0- to 2.5-fold in all the brain regions, with the exception of the SVZ, in which there was no increase in the numbers of BrdU-positive cells. The present study shows for the first time that peripheral bGH administration increases the generation of new brain cells in normal adult female rats. Thus, bGH may stimulate cellular proliferation not only under GH-deficiency, but also under physiologic conditions. These findings have important implications for GH treatment strategies for patients who have normal or near-normal circulating levels of GH or IGF-I.
Collapse
Affiliation(s)
- N David Aberg
- Center of Brain Research and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
39
|
Devesa J, Devesa P, Reimunde P. [Growth hormone revisited]. Med Clin (Barc) 2009; 135:665-70. [PMID: 20045134 DOI: 10.1016/j.medcli.2009.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 02/02/2023]
Abstract
Growth hormone (GH) is a pleiotropic hormone, expressed at pituitary and peripheral level, which plays a number of different roles far beyond of those classically described. Among these effects it is remarkable the neurotropic role of GH: the hormone increases the proliferation and survival of neural precursors in response to neurological injuries. At the cardiovascular level, GH improves the lipidic profile and decreases the factors of cardiac risk; the hormone recovers the endothelial function, improves the cardiac function and potentiates revascularisation in ischemic territories. Differently to that occurring with autocrine GH, exogenous GH administration does not seem to be related to oncogenesis. According to its effects, there are multiple potential clinical applications of GH: acute treatment of brain injury, due to its antiapoptotic effect; central or peripheral neural regeneration; acute treatment of perinatal anoxia, prevention cerebral palsy; revascularisation of ischemic areas; decrease of the time of bone consolidation after a bone fracture; and torpid ulcer healing.
Collapse
Affiliation(s)
- Jesús Devesa
- Departamento de Fisiología, Facultad de Medicina, Santiago de Compostela, España; Centro Médico Proyecto Foltra, Cacheiras, Teo, A Coruña, España.
| | | | | |
Collapse
|
40
|
Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, Scheepens A. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res 2009; 19:497-506. [PMID: 19524466 DOI: 10.1016/j.ghir.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND During recovery from an ischemic brain injury, a cerebral growth hormone (GH) axis is activated. Whilst GH has been demonstrated to be neuroprotective both in vitro and in vivo, a role for GH in neuro-restorative processes after brain injury has yet to be studied. OBJECTIVE To explore a role for GH in injury-induced neurogenesis by examining GH receptor (GH-R) immunoreactivity within the subventricular zone (SVZ) of juvenile rats after brain injury and by testing the proliferative capacity of GH on embryonic mouse neural stem cells. DESIGN Twenty-one day old rats were subjected to unilateral hypoxic-ischemia of the brain and sacrificed 1-15days later. Coronal brain sections from these animals and age-matched naïve controls were immunostained for GH-R and cell markers of neurogenesis. The level of GH-R immunoreactivity in the ipsilateral and contralateral SVZ of each animal was semi-quantified both by independent blinded scoring by two examiners and blinded image analysis. To examine the effect of GH on proliferation of embryonic mouse neural stem cells, cells were treated with increasing concentrations of rat pituitary GH for 48h in the presence of 5'-bromo-2'-deoxyuridine. RESULTS The level of GH-R immunoreactivity in the ipsilateral SVZ was significantly increased 5days after injury vs. the contralateral SVZ, coinciding both spatially and temporally with injury-induced neurogenesis. The population of GH-R immunopositive cells in the ipsilateral SVZ at this time was found to include proliferating cells (Ki67 immunopositive), neural progenitor cells (nestin immunopositive) and post-proliferative migratory neuroblasts (doublecortin immunopositive). Stimulation of embryonic mouse NSCs with physiological concentrations of rat pituitary GH elicited a dose-dependent proliferative response. CONCLUSION These results indicate a novel role for GH and its receptor in injury-induced neurogenesis, and suggest that GH treatment may potentiate endogenous neuro-restorative processes after brain injury.
Collapse
|
41
|
Beresewicz M, Majewska M, Makarewicz D, Vayro S, Zabłocka B, Górecki DC. Changes in the expression of insulin-like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int J Dev Neurosci 2009; 28:91-7. [PMID: 19766709 DOI: 10.1016/j.ijdevneu.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/07/2009] [Accepted: 09/13/2009] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a multifunctional peptide of which numerous isoforms exist. The predominant form, IGF-1Ea is involved in physiological processes while IGF-1Ec (mechano-growth factor, MGF) is expressed in response to a different set of stimuli. We have identified specific changes in the expression patterns of these IGF-1 variants in brain development in normal rats and following neonatal hypoxia-ischaemia (HI). Both IGF-1Ea and IGF-1Ec are expressed during normal postnatal brain development, albeit with highly specific temporal distributions. In contrast, HI produced increased and prolonged expression of the IGF-1Ec isoform only. Importantly, hypoxia alone stimulated the expression of IGF-1Ec as well. Thus, IGF-1Ec may play a role in HI pathology. Neonatal hypoxia-ischaemia occurs in approximately 1:4000-1:10,000 newborns and causes neurological deficits in approximately 75% of those affected. Unfortunately, no specific treatment is available. IGF-1 is known to have neuroprotective activity and its IGF-1Ec variant appears to be an endogenous protective factor in hypoxia-ischaemia. Therefore, IGF-1Ec could potentially be developed into a therapeutic modality for the attenuation or prevention of neuronal damage in this and related disorders.
Collapse
Affiliation(s)
- Małgorzata Beresewicz
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Hong KS, Kang J, Kim MJ, Yu J, Chang YP. Effect of growth hormone on neuronal death in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.5.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kyung Sik Hong
- Department of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| | - Jihui Kang
- Department of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| | - Myeung Ju Kim
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, Korea
| | - Jeesuk Yu
- Department of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| | - Young Pyo Chang
- Department of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
43
|
Tresguerres JAF, Kireev R, Tresguerres AF, Borras C, Vara E, Ariznavarreta C. Molecular mechanisms involved in the hormonal prevention of aging in the rat. J Steroid Biochem Mol Biol 2008; 108:318-26. [PMID: 18252241 DOI: 10.1016/j.jsbmb.2007.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous data from our group have provided support for the role of GH, melatonin and estrogens in the prevention of aging of several physiological parameters from bone, liver metabolism, vascular activity, the central nervous system (CNS), the immune system and the skin. In the present work data on the molecular mechanisms involved are presented. A total of 140 male and female rats have been submitted to different treatments over 10 weeks, between 22 and 24 months of age. Males have been treated with GH and melatonin. Females were divided in two groups: intact and castrated at 12 months of age. The first group was treated with GH and melatonin and the second with the two latter compounds and additionally with estradiol and Phytosoya. Aging was associated with a reduction in the number of neurons of the hylus of the dentate gyrus of the hippocampus and with a reduction of neurogenesis. GH treatment increased the number of neurons but did not increase neurogenesis thus suggesting a reduction of apoptosis. This was supported by the reduction in nucleosomes and the increase in Bcl2 observed in cerebral homogenates together with an increase in sirtuin2 and a reduction of caspases 9 and 3. Melatonin, estrogen and Phytosoya treatments increased neurogenesis but did not enhance the total number of neurons. Aging induced a significant increase in mitochondrial nitric oxide in the hepatocytes, together with a reduction in the mitochondrial fraction content in cytochrome C and an increase of this compound in the cytosolic fraction. Reductions of glutathione peroxidase and glutathione S-transferase were also detected, thus indicating oxidative stress and possibly apoptosis. Treatment for 2.5 months of old rats with GH and melatonin were able to significantly and favourably affect age-induced deteriorations, thus reducing oxidative damage. Keratinocytes obtained from old rats in primary culture showed an increase in lipoperoxides, caspases 8 and 3 as well as a reduction in Bcl2 leading to enhanced number of nucleosomes that was also restored upon treatments with GH and melatonin. In conclusion, GH and melatonin treatment seem to have beneficial effects against age-induced damage in the CNS the liver and the skin through molecular mechanisms reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jesús A F Tresguerres
- Department of Physiology, Faculty of Medicine, Complutense University, Avenida Complutense s/n, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Han TR, Chun MH, Jang DH, Kim KS, Lim KH, Cho HJ. Neuroprotective effects of growth hormone against hypoxic-ischemic brain injury in neonatal rats: 1H magnetic resonance spectroscopic study. J Korean Med Sci 2007; 22:122-6. [PMID: 17297264 PMCID: PMC2693548 DOI: 10.3346/jkms.2007.22.1.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/09/2006] [Indexed: 12/02/2022] Open
Abstract
Using 1H-MRS, we evaluated the effects of growth hormone (GH) as a caspase inhibitor on hypoxic-ischemic injury in neonatal rat brains. The right common carotid arteries of rats were ligated, allowed to recover for 3 hr, and exposed to 8% oxygen for 2 hr. GH was given just prior to HI insult and animals were divided into four groups: control, intracerebroventricular (ICV), intracerebroventricular/intraperitoneal (ICV/IP), and intraperitoneal (IP). Localized in vivo 1H-MRS and TUNEL staining were performed 24 hr after HI injury. Lipid/N-acetyl aspartate (NAA) and lipid/creatine (Cr) ratios were used as apoptotic markers. Gross morphologic changes at 2 weeks were used to evaluate the effects of GH. The lipid/NAA ratio was lower in the ICV and ICV/IP groups than in the control, and the lipid/Cr ratio was lower in the ICV group than in the control. The number of TUNEL positive cells was decreased in the ICV and ICV/IP groups, and the degree of morphologic change indicative of brain injury was lower in the ICV group and somewhat lower in the ICV/IP group. The degree of morphologic change correlated with the lipid/NAA and lipid/Cr ratios. These findings suggest that GH exerts neuroprotective effects in cerebral hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Tai Ryoon Han
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Hyun Jang
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Soo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun Ho Lim
- NMR Laboratory, Asan Institute for Life Sciences, Seoul, Korea
| | - Hee Jin Cho
- NMR Laboratory, Asan Institute for Life Sciences, Seoul, Korea
| |
Collapse
|
45
|
Nurmi A, Goldsteins G, Närväinen J, Pihlaja R, Ahtoniemi T, Gröhn O, Koistinaho J. Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radic Biol Med 2006; 40:1776-84. [PMID: 16678015 DOI: 10.1016/j.freeradbiomed.2006.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 01/02/2006] [Accepted: 01/10/2006] [Indexed: 12/29/2022]
Abstract
Pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor of transcription factor nuclear factor kappa-B (NF-kappaB), has been reported to reduce inflammation and apoptosis. Because PDTC was recently found to protect in various models of adult brain ischemia with a wide therapeutic time window, we tested the effect of PDTC in a rodent model of neonatal hypoxia-ischemia (HI) brain injury. T2-weighed magnetic resonance imaging (T2-MRI) 7 days after the insult showed that a single PDTC (50 mg/kg) injection 2.5 h after the HI reduced the mean brain infarct size by 59%. PDTC reduced the HI-induced dephosphorylation of Akt and glycogen synthase kinase-3beta (GSK-3beta), expression of cleaved caspase-3, and nuclear translocation of NF-kappaB in the neonatal brain. PDTC targeted directly neurons, as PDTC reduced hypoxia-reoxygenation-induced cell death in pure hippocampal neuronal cultures. It is suggested that in addition to the previously indicated NF-kappaB inhibition as a protective mechanism of PDTC treatment, PDTC may reduce HI-induced brain injury at least partially by acting as an antioxidant, which reduces the Akt-GSK-3beta pathway of apoptotic cell death. The clinically approved PDTC and its analogues may be beneficial after HI insults with a reasonable time window.
Collapse
Affiliation(s)
- Antti Nurmi
- Department of Neurobiology, A.I.Virtanen Institute of Molecular Sciences, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
46
|
Yapicioğlu H, Satar M, Canacankatan N, Tutak E, Sertdemir Y, Antmen E, Narli N. The effect of human growth hormone on superoxide dismutase activity, glutathione and malondialdehyde levels of hypoxic-ischemic newborn rat brain. Neonatology 2006; 90:168-73. [PMID: 16636532 DOI: 10.1159/000092680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 12/19/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We investigated the effect of human growth hormone (GH) on newborn rat brain superoxide dismutase, glutathione and malondialdehyde (MDA) levels in hypoxic-ischemic (H-I) newborn rats. METHODS Fourty-eight 7 days old newborn rats were randomized to a healthy (n: 15), H-I (n: 18) and GH administered H-I (GH-H-I, n: 15) group. Permanent, left common carotid ligation was performed in the H-I groups. In the GH-H-I group, 50 mg/kg human GH (Norditropin Simplex, Novo Nordisk A/S) was administered subcutaneously just before carotid artery ligation. Two hours after ligation, rats were subjected to 2 h of hypoxemia and then were decapitated. Right and left cerebral hemispheres (CHs) and cerebellum-brain stem (C-BS) were separated. RESULTS Glutathione levels of each region were not statistically different from each other in and between the groups. Superoxide dismutase levels were higher in C-BSs compared to CHs (for each comparison p < 0.01). CHs and C-BS MDA levels were similar in the control and H-I groups but MDA levels of both CHs of the GH-H-I group were significantly higher than the levels of the H-I group (p = 0.01; p = 0.024, respectively). Left CH MDA level of GH-H-I group was higher compared to left CH MDA of the control group (p = 0.045) while there was no difference between right CHs. In the GH-H-I group, left CH MDA level was higher than the C-BS (p = 0.03). MDA levels of the C-BSs did not differ between the groups (p > 0.05). CONCLUSION Although we have not evaluated the effect of GH histopathologically, increased lipid peroxidation especially in the H-I (left) hemisphere of the GH treated rats might suggest that GH treatment may be harmful in H-I encephalopathy.
Collapse
Affiliation(s)
- Hacer Yapicioğlu
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | | | | | | | | | | | | |
Collapse
|
47
|
Russell JC, Szuflita N, Khatri R, Laterra J, Hossain MA. Transgenic expression of human FGF-1 protects against hypoxic-ischemic injury in perinatal brain by intervening at caspase-XIAP signaling cascades. Neurobiol Dis 2006; 22:677-90. [PMID: 16635575 DOI: 10.1016/j.nbd.2006.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/16/2005] [Accepted: 01/15/2006] [Indexed: 11/30/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of neurological disability and mortality in infant and children. In the present study, we explored the neuroprotective efficacy of FGF-1 in a rat model of perinatal HI. Carotid ligation combined with hypoxia caused marked infarctions in the ipsilateral cerebral hemisphere with significant loss of ipsilateral striatal, cortical and hippocampal volumes. Morphological analyses revealed both apoptotic and necrotic form of neuronal death determined by Nissl histology, dark-field microscopy and TUNEL staining. HI induced a marked increase in activated caspase-9, caspase-3 and PARP cleavage at 12 h to 7 days after HI in brain areas displaying TUNEL (+) cells. In addition, expression of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) was decreased under similar conditions of HI. Expression of human FGF-1 in brain significantly reduced the extent of both apoptotic and necrotic injury caused by HI. FGF-1 attenuated the HI-induced increase in activated caspase-3, caspase-9 and cleaved PARP protein levels and markedly blocked the HI-induced decrease in XIAP expression under the conditions at which FGF-1 showed significant neuroprotection. These findings demonstrate that FGF-1 prevents the onset of both apoptotic and necrotic death in neurons otherwise "destined to die" following hypoxic-ischemic injury by intervening at the level of caspase-signaling cascades and by restoring prosurvival protein XIAP expression in central neurons.
Collapse
Affiliation(s)
- Juliet C Russell
- The Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
48
|
Boksa P, Zhang Y, Amritraj A, Kar S. Birth insults involving hypoxia produce long-term increases in hippocampal [125I]insulin-like growth factor-I and -II receptor binding in the rat. Neuroscience 2006; 139:451-62. [PMID: 16448776 DOI: 10.1016/j.neuroscience.2005.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/05/2005] [Accepted: 12/12/2005] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factors-I and -II and insulin are structurally related mitogenic growth factors with multiple actions in the developing nervous system and adult CNS. Previous studies have demonstrated acute induction of insulin-like growth factors and their receptors, over a time course of several days, in response to hypoxic/ischemic insult to developing or adult brain. The current study tested whether birth insults involving hypoxia may produce long term changes in brain insulin-like growth factor or insulin receptor levels, lasting into adulthood. For this, rats were born vaginally (controls), by cesarean section, or by cesarean section with 15 min of added global anoxia (cesarean section+anoxia), and brain [125I]insulin-like growth factor-I, [125I]insulin-like growth factor-II and [125I]insulin receptor binding sites were assessed autoradiographically at adulthood. [125I]Insulin-like growth factor-I receptor binding sites were increased in all hippocampal subfields (CA1-CA3, dentate gyrus) in rats born either by cesarean section or by cesarean section+anoxia, compared with vaginal birth. [125I]Insulin-like growth factor-II binding was increased in all hippocampal subfields only in rats born by cesarean section+anoxia compared with either vaginal birth or cesarean section groups. [125I]Insulin-like growth factor-I and [125I]insulin-like growth factor-II binding in frontal cortex, striatum and cerebellum were unaffected by birth group, except for increased [125I]insulin-like growth factor-I binding in the cerebellar molecular layer of cesarean-sectioned animals. Birth group had no significant effect on [125I]insulin binding in any brain region. Affinity cross-linking experiments performed with hippocampal membranes from the three birth groups showed that i) [125I]insulin-like growth factor-I and [125I]insulin-like growth factor-II recognized bands of molecular weights characteristic of insulin-like growth factor-I and insulin-like growth factor-II receptors, respectively, and ii) [125I]insulin-like growth factor-I and [125I]insulin-like growth factor-II were displaced more potently by their respective unlabeled ligands than by related molecules. It is concluded that birth insults involving hypoxia can induce lasting increases in insulin-like growth factor-I and -II receptors in the CNS. There is specificity with respect to the subtype of insulin-like growth factor receptor affected by the particular birth insult and the brain region affected. It is suggested that enduring increases in levels of insulin-like growth factor receptors consequent to hypoxic birth insult may help to maintain hippocampal function at adulthood, and could modulate responsiveness to insulin-like growth factor administration.
Collapse
Affiliation(s)
- P Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3
| | | | | | | |
Collapse
|
49
|
Popken GJ, Dechert-Zeger M, Ye P, D'Ercole AJ. Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:187-220. [PMID: 16372399 DOI: 10.1007/0-387-26274-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Gregory J Popken
- Division Pediatric Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, NC 27599-7039, USA
| | | | | | | |
Collapse
|
50
|
van Marle G, Antony JM, Silva C, Sullivan A, Power C. Aberrant cortical neurogenesis in a pediatric neuroAIDS model: neurotrophic effects of growth hormone. AIDS 2005; 19:1781-91. [PMID: 16227785 DOI: 10.1097/01.aids.0000189854.06194.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the effects of HIV-1 and feline immunodeficiency virus (FIV) on neural stem cell viability, together with the neurotrophic properties of growth hormone (GH) in models of pediatric neuroAIDS. DESIGN AND METHODS Mouse neural stem cells were infected in vitro with a Sindbis virus vector (SIN-HIVenv) expressing the envelope protein from the brain-derived HIV-1 strain JR-FL using a vector expressing enhanced green fluorescent protein (SIN-EGFP) as control. Cell survival and alterations in expression of neural stem cell markers upon GH treatment was assessed. Neonatal cats were infected with a neurovirulent FIV strain and 6 weeks after infection treated with GH for 6 weeks. Twelve weeks post-infection, neural progenitor cell marker expression, neuronal loss and neuroinflammation in brain were examined using real time reverse transcription-PCR and immunohistochemical analyses. RESULTS HIV-1 envelope expression in neural stem cells reduced nestin expression (P < 0.05) and induced cell death (P < 0.001), which was blocked by GH. In the frontal cortex of FIV-infected cats neuroinflammation, loss of differentiated neurons (P < 0.01) and aberrant neuronal progenitor cell gene expression (P < 0.05) were observed. FIV envelope expression was detected in neural progenitor and monocytoid cells. GH treatment of FIV-infected animals induced insulin-like growth factor-1 expression in neurons (P < 0.01), enhanced neuronal survival (P < 0.01) and increased nestin expression (P < 0.05). Moreover, improved neurobehavioral performance (P < 0.01) and immunological status (P < 0.001) were observed, among GH-treated animals infected with FIV. CONCLUSION GH protects neural stem cells that are susceptible to lentivirus-mediated injury. Thus, GH may be a potential treatment for pediatric neuroAIDS because of its neurotrophic actions.
Collapse
Affiliation(s)
- Guido van Marle
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary AB, Canada
| | | | | | | | | |
Collapse
|