1
|
Wang Z, Han Q, Wang J, Yao W, Wang L, Li K. Rapamycin induces autophagy and apoptosis in Kaposiform hemangioendothelioma primary cells in vitro. J Pediatr Surg 2022; 57:1274-1280. [PMID: 35428493 DOI: 10.1016/j.jpedsurg.2022.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapamycin has been recommended to treat Kaposiform hemangioendothelioma (KHE) with Kasabach-Merritt phenomenon (KMP), but the underlying mechanism of the clinical effect has not been established. Therefore, we determined rapamycin cytotoxicity on KHE cells in vitro and the underlying mechanism. METHODS KHE primary cells were derived from a tumor specimen and treated with rapamycin. Immunofluorescence was applied to identify the cells. Cell viability was measured using the Cell Counting Kit-8 (CCK-8) assay. Cell cycle and apoptosis were assessed using flow cytometry (FCM). Western blots (WB) were performed to determine phosphorylation of mammalian target of rapamycin (mTOR), p70 S6 kinase (S6K1), and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), as well light chain 3 (LC3) expression. RESULTS Rapamycin inhibited the growth of KHE primary cells in a dose- and time-dependent manner. Cell cycle progression was arrested in the G0/G1 phase and apoptosis was induced. WB results showed that LC3-II/I expression was significantly elevated in KHE primary cells treated with rapamycin, while the level of p-mTOR, p-S6K1, and p-4E-BP1 expression was reduced. LC3 fluorescent spots were increased in the rapamycin treatment group. CONCLUSIONS Rapamycin inhibited KHE primary cell proliferation, induced apoptosis and autophagy, and blocked the mTOR signaling pathway.
Collapse
Affiliation(s)
- ZuoPeng Wang
- Department of Pediatric Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Qilei Han
- Department of Pediatric Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pediatric Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Yao
- Department of Pediatric Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - LiuHui Wang
- Department of Dermatology, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Li
- Department of Pediatric Oncology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018; 177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. AIM The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. METHODS rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. RESULTS After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). CONCLUSION rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Xiaolin You
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Gu R, Sun X, Chi Y, Zhou Q, Xiang H, Bosco DB, Lai X, Qin C, So KF, Ren Y, Chen XM. Integrin β3/Akt signaling contributes to platelet-induced hemangioendothelioma growth. Sci Rep 2017; 7:6455. [PMID: 28744026 PMCID: PMC5527091 DOI: 10.1038/s41598-017-06927-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Hemangioendothelioma (HE) is a type of angiomatous lesions that features endothelial cell proliferation. Understanding the mechanisms orchestrating HE angiogenesis can provide therapeutic insights. It has been shown that platelets can support normal and malignant endothelial cells during angiogenesis. Using the mouse endothelial-derived EOMA cell line as a model of HE, we explored the regulatory effect of platelets. We found that platelets stimulated EOMA proliferation but did not mitigate apoptosis. Furthermore, direct platelet-EOMA cell contact was required and the proliferation was mediated via integrin β3/Akt signaling in EOMA cells. SiRNA knockdown of integrin β3 and inhibition of Akt activity significantly abolished platelet-induced EOMA cell proliferation in vitro and tumor development in vivo. These results provide a new mechanism by which platelets support HE progression and suggest integrin β3 as a potential target to treat HE.
Collapse
Affiliation(s)
- Rui Gu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong, China
| | - Yijie Chi
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qishuang Zhou
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongkai Xiang
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dale B Bosco
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Xinhe Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caixia Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China. .,Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Abstract
The objective of this article is to provide a comprehensive overview of the Kasabach-Merritt Phenomenon. The clinical presentation, laboratory findings, vascular pathology, and pathophysiology are discussed.
Collapse
Affiliation(s)
- Michael Kelly
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
5
|
Ryan C, Price V, John P, Mahant S, Baruchel S, Brandão L, Blanchette V, Pope E, Weinstein M. Kasabach-Merritt phenomenon: a single centre experience. Eur J Haematol 2009; 84:97-104. [PMID: 19889011 DOI: 10.1111/j.1600-0609.2009.01370.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Kasabach-Merritt phenomenon (KMP) can lead to life-threatening bleeding, and its optimum treatment has not been established. We review the experience of managing KMP in a single institution. METHODS A retrospective chart review on all children with KMP treated at the Hospital for Sick Children, Toronto, over an 18 yr period was carried out. RESULTS All 15 patients had profound thrombocytopenia and hypofibrinogenemia at presentation, half had bleeding symptoms, and three had cardiac failure. All patients received corticosteroids. Five responded to steroids alone, given for an average of 13 wk, increasing platelets to >20 x 10(9)/L at a mean of 6.2 d and fibrinogen >1 g/dL at 25.6 d. Ten patients received at least one other therapeutic modality in addition to steroids, including vincristine, interferon, anti-platelet agents and pentoxifylline. Five patients received vincristine, for a mean of 6 wk, with two patients responding. Eight patients received interferon, for a mean of 4 months, with two patients responding. Overall, the mean time to increasing platelets >20 x 10(9)/L was 56 d, to >150 x 10(9)/L was 88 d and fibrinogen >1 g/dL 49 d. Ten patients showed a partial response to embolisation, with a mean of 2.8 procedures performed. Thrombotic complications occurred in 7%. Twelve patients remain alive, with relapse in six patients, all treated successfully. One patient died, and two patients have been lost to follow-up. CONCLUSION KMP is a rare condition, with significant morbidity and mortality. The therapeutic approach should include a multidisciplinary team and consensus on guidelines.
Collapse
Affiliation(s)
- Clodagh Ryan
- Department of Haematology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sausville J, Molinolo AA, Cheng X, Frampton J, Takebe N, Gutkind JS, Feldman RA. RCAS/SCL-TVA animal model allows targeted delivery of polyoma middle T oncogene to vascular endothelial progenitors in vivo and results in hemangioma development. Clin Cancer Res 2008; 14:3948-55. [PMID: 18559617 DOI: 10.1158/1078-0432.ccr-07-5152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To recapitulate the generation of cancer stem cells in the context of an intact animal using a retroviral vector capable of in vivo delivery of oncogenes to primitive endothelial and hematopoietic stem cells. EXPERIMENTAL DESIGN Targeting of these progenitors was achieved using transgenic mice in which the avian TVA retroviral receptor was placed under the control of the stem cell leukemia (scl/tal-1) gene promoter and SCL +19 enhancer. RESULTS Injection of an avian retrovirus encoding polyoma middle T (PyMT), an oncogene that transforms endothelial cells, caused rapid lethality in all SCL-TVA mice but not in control TVA(-) littermates. The infected animals exhibited hemorrhagic foci in several organs. Histopathologic analysis confirmed the presence of hemangiomas and the endothelial origin of the PyMT-transformed cells. Surprisingly, the transformed endothelial cells contained readily detectable numbers of TVA(+) cells. By contrast, normal blood vessels had very few of these cells. The presence of TVA(+) cells in the lesions suggests that the cells originally infected by PyMT retained stem cell characteristics. Further analysis showed that the tumor cells exhibited activation of the phosphatidylinositol 3-kinase/Akt and S6/mammalian target of rapamycin pathways, suggesting a mechanism used by PyMT to transform endothelial progenitors in vivo. CONCLUSIONS We conclude that this experimental system can specifically deliver oncogenes to vascular endothelial progenitors in vivo and cause a fatal neoplastic disease. This animal model should allow the generation of endothelial cancer stem cells in the natural environment of an immunocompetent animal, thereby enabling the recapitulation of genetic alterations that are responsible for the initiation and progression of human malignancies of endothelial origin.
Collapse
Affiliation(s)
- Justin Sausville
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- P Le Nouail
- Service de Dermatologie et Vénéréologie, CHU Sud, Amiens
| | | | | |
Collapse
|
8
|
Gordillo GM, Onat D, Stockinger M, Roy S, Atalay M, Beck FM, Sen CK. A key angiogenic role of monocyte chemoattractant protein-1 in hemangioendothelioma proliferation. Am J Physiol Cell Physiol 2004; 287:C866-73. [PMID: 15163622 DOI: 10.1152/ajpcell.00238.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiomatous lesions are common in infants and children. Hemangioendotheliomas (HE) represent one type of these lesions. Endothelial cell proliferation and the development of vascular/blood cell-filled spaces are inherent in the growth of HE. Therefore, understanding mechanisms that regulate the proliferation of these lesions should provide key insight into mechanisms regulating angiogenesis. A murine model was used to test the significance of monocyte chemoattractant protein (MCP)-1 in HE proliferation. EOMA cells, a cell line derived from a spontaneously arising murine HE, generate these lesions with 100% efficiency when injected subcutaneously into syngeneic mice. MCP-1 produced by EOMA cells recruit macrophages, which were shown to induce angiogenic behavior in EOMA cells by stimulating transwell migration and inducing sprout formation on type I collagen gels. When EOMA cells were injected into MCP-1(-/-) mice, only 50% of the mice developed tumors, presumably because the low levels of MCP-1 expressed by the injected EOMA cells were enough to overcome any host deficits of this chemokine. When EOMA cells were coinjected with a neutralizing antibody to MCP-1, tumors failed to develop in any of the treated mice, including syngeneic 129P3, C57Bl/6 (wild type), and MCP-1(-/-). These results present the first evidence that MCP-1 is required for HE proliferation and may promote the growth of these lesions by stimulating angiogenic behavior of endothelial cells. This study has produced the first in vivo evidence of a complete response for any neoplasm, specifically a vascular proliferative lesion, to anti-MCP-1 therapy in animals with intact immune systems.
Collapse
Affiliation(s)
- Gayle M Gordillo
- Division of Plastic Surgery, The Ohio State University Medical Center, 410 W. 10th Ave., Columbus, OH 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Atalay M, Gordillo G, Roy S, Rovin B, Bagchi D, Bagchi M, Sen CK. Anti-angiogenic property of edible berry in a model of hemangioma. FEBS Lett 2003; 544:252-7. [PMID: 12782326 DOI: 10.1016/s0014-5793(03)00509-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemangiomas represent a powerful model to study in vivo angiogenesis. Monocyte chemotactic protein 1 (MCP-1) is known to be responsible for recruiting macrophages to sites of infection or inflammation and facilitate angiogenesis. Recently we have demonstrated that edible berry extracts potently suppress inducible vascular endothelial growth factor expression and in vitro angiogenesis. Comparative analysis of several berry extracts led to the observation that wild blueberry and a berry mix were most effective. Our goal was to follow up on our findings with wild blueberry and the berry mix (OptiBerry). The present work rests on our current finding that these two berry powders significantly inhibit inducible MCP-1 expression in endothelioma cells. Therefore, we sought to examine the effects of wild blueberry and berry mix in an in vivo model of experimental angiogenesis. Reporter studies showed that the berry powders significantly inhibited basal MCP-1 transcription and inducible nuclear factor kappaB transcription. Endothelioma cells pre-treated with berry powders showed diminished ability to form hemangioma. Histological analysis demonstrated markedly decreased infiltration of macrophages in hemangioma of treated mice compared to placebo-treated controls. The current results provide the first in vivo evidence substantiating the anti-angiogenic property of edible berries.
Collapse
Affiliation(s)
- Mustafa Atalay
- Laboratory of Molecular Medicine, Department of Surgery, 512 Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, 473 W. 12th Avenue, Columbus 43210, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Kasabach-Merritt syndrome (KMS) is a consumptive coagulopathy associated with the presence of a large vascular lesion. It is often a frustrating condition to treat and it carries a high mortality rate. There are currently no known treatment guidelines. Kasabach-Merritt syndrome is associated with kaposiform hemangioendothelioma (KHE) and tufted angioma (TA); these lesions, when associated with KMS, are locally invasive, aggressive vascular tumors. Treatment options include supportive care, local therapies, and drug and surgical management. In most recent case reports, a multimodal approach to therapy is taken. OBJECTIVE AND CONCLUSION The objective of this article is to provide a comprehensive review of KMS and give an up-to-date summary of treatment options. The clinical presentation, laboratory findings, vascular pathology, and pathophysiology will also be discussed.
Collapse
|
11
|
Affiliation(s)
- G W Hall
- Paediatric Haematology/Oncology Unit, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 DU9, UK.
| |
Collapse
|
12
|
Affiliation(s)
- J B Mulliken
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|