1
|
Bruhn H, Naess K, Ygberg S, Peña-Pérez L, Lesko N, Wibom R, Freyer C, Stranneheim H, Wedell A, Wredenberg A. Novel Synonymous and Deep Intronic Variants Causing Primary and Secondary Pyruvate Dehydrogenase Complex Deficiency. Hum Mutat 2024; 2024:1611838. [PMID: 40225937 PMCID: PMC11919216 DOI: 10.1155/2024/1611838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/15/2025]
Abstract
Pyruvate dehydrogenase complex deficiency (PDCD) is a defect of aerobic carbohydrate metabolism that causes neurological disorders with varying degrees of severity. We report the clinical, biochemical, and molecular findings in patients with primary and secondary PDCD caused by novel atypical genetic variants. Whole-genome sequencing (WGS) identified the synonymous variants c.447A>G, p.(Lys149=) and c.570C>T, p.(Cys190=) in pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), the deep intronic variants c.1023+2267G>A and c.1023+2302A>G in pyruvate dehydrogenase complex component X (PDHX), and c.185+15054G>A in thiamine pyrophosphokinase (TPK1). Analysis by Sanger and RNA sequencing of cDNA from patient blood and/or cultured fibroblasts showed that the synonymous variants in PDHA1 lead to aberrant splicing and skipping of exons 5 and 5-6 in one of the patients and transcripts lacking exon 6 in the other. The deep intronic variants in PDHX and TPK1 lead to insertion of intronic sequence in the corresponding transcripts. The splice defects in PDHA1 were more pronounced in cultured fibroblasts than in blood. Our findings expand the spectrum of pathogenic variants causing PDCD and highlight the importance of atypical variants leading to aberrant splicing. The severity of the splice defects and resulting biochemical dysfunction varied between tissues, stressing the importance of performing biochemical and transcript analysis in affected tissues. The two males with hemizygous synonymous PDHA1 variants have a mild phenotype and higher PDH enzyme activity than expected, which is consistent with aberrant but leaky splicing with a proportion of the transcripts remaining correctly spliced.
Collapse
Affiliation(s)
- Helene Bruhn
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Karin Naess
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sofia Ygberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Child Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Lucía Peña-Pérez
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nicole Lesko
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Henrik Stranneheim
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
2
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
3
|
Ma Y, Zhang Y, Zhang T, Man Z, Su X, Hao S, Wang T. Pyruvate dehydrogenase deficiency disease detected by the enzyme activity of peripheral leukocytes. Mol Genet Genomic Med 2021; 9:e1728. [PMID: 34156167 PMCID: PMC8404224 DOI: 10.1002/mgg3.1728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/10/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pyruvate dehydrogenase complex (PDHC) deficiency is a common neurodegenerative disease associated with abnormal mitochondrial energy metabolism. The diagnosis of PDHC is difficult because of the lack of a rapid, accurate, and cost-effective clinical diagnostic method. METHODS A 4-year-old boy was preliminarily diagnosed with putative Leigh syndrome based on the clinical presentation. PDHC activity in peripheral blood leukocytes and a corresponding gene analysis were subsequently undertaken. Sodium pyruvate 1-13 C was used for the analysis of PDHC activity in peripheral leukocytes. The genes encoding PDHC were then scanned for mutations. RESULTS The results showed that the corresponding PDHC activity was dramatically decreased to 10.5 nmol/h/mg protein as compared with that of healthy controls (124.6 ± 7.1 nmol/h/mg). The ratio of PDHC to citrate synthase was 2.1% (control: 425.3 ± 27.1). The mutation analysis led to the identification of a missense mutation, NM_000284.4:g214C>T, in exon 3 of PDHC. CONCLUSION The peripheral blood leukocyte PDHC activity assay may provide a practical enzymatic diagnostic method for PDHC-related mitochondrial diseases.
Collapse
Affiliation(s)
- YanYan Ma
- Central Laboratory of Qinghai University Affiliated Hospital, Xining, China.,ChinovoLaboratory, Beijing, P. R. China
| | - YaoGang Zhang
- Central Laboratory of Qinghai University Affiliated Hospital, Xining, China
| | - Tao Zhang
- Neurological Department of Qinghai University Affiliated Hospital, Xining, China
| | - Zhu Man
- Neurological Department of Qinghai University Affiliated Hospital, Xining, China
| | - XiaoMing Su
- Neurological Department of Qinghai University Affiliated Hospital, Xining, China
| | - ShuJing Hao
- ChinovoLaboratory, Beijing, P. R. China.,Clinical Laboratory of Zhongke, Beijing, P. R. China
| | - TianZe Wang
- ChinovoLaboratory, Beijing, P. R. China.,Clinical Laboratory of Zhongke, Beijing, P. R. China
| |
Collapse
|
4
|
Winters L, Van Hoof E, De Catte L, Van Den Bogaert K, de Ravel T, De Waele L, Corveleyn A, Breckpot J. Massive parallel sequencing identifies RAPSN and PDHA1 mutations causing fetal akinesia deformation sequence. Eur J Paediatr Neurol 2017; 21:745-753. [PMID: 28495245 DOI: 10.1016/j.ejpn.2017.04.641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Fetal akinesia deformation sequence (FADS) or arthrogryposis multiplex congenita (AMC) is characterized by clinical ambiguity and genetic heterogeneity, hampering genetic diagnosis via traditional sequencing methods. Next generation sequencing (NGS) of all known disease-causing genes offers an elegant solution to identify the genetic etiology of AMC/FADS in a diagnostic setting. METHODS An in-house developed disease-associated gene panel was conducted in two unrelated fetuses with FADS. First, a de novo analysis was performed on the entire disease-associated gene panel. If no pathogenic mutation was identified, analysis of variants retained in a specific subpanel with arthrogryposis/fetal akinesia-causing genes was performed. RESULTS In the first family, FADS relates to a homozygous c.484G > A (p.Glu162Lys) mutation in the gene RAPSN. The second case concerns a sporadic patient with brain anomalies and arthrogryposis due to a de novo hemizygous c.498C > T splice-site mutation in the pyruvate dehydrogenase-alpha 1 (PDHA1) gene. DISCUSSION NGS facilitated genetic diagnosis, and hence genetic counseling, for both families with AMC/FADS. Biallelic RAPSN mutations typically result in congenital myasthenia syndrome, or occasionally in FADS. This is the first report attributing the RAPSN mutation c.484G > A, identified in a homozygous state in patient 1, to FADS. The second patient represents the first case of AMC due to a PDHA1 mutation, advocating that pyruvate dehydrogenase deficiency should be considered in the differential diagnosis of fetal akinesia. This study illustrates the relevance of a disease-associated-gene panel as a diagnostic tool in pregnancies complicated by this genetically heterogeneous condition.
Collapse
Affiliation(s)
- Lore Winters
- Department of Pediatrics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Luc De Catte
- Division of Woman and Child, Clinical Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospitals Leuven, Leuven, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Quintana E, Gort L, Busquets C, Navarro-Sastre A, Lissens W, Moliner S, Lluch M, Vilaseca MA, De Meirleir L, Ribes A, Briones P. Mutational study in thePDHA1gene of 40 patients suspected of pyruvate dehydrogenase complex deficiency. Clin Genet 2010; 77:474-82. [DOI: 10.1111/j.1399-0004.2009.01313.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Woolfe A, Mullikin JC, Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol 2010; 11:R20. [PMID: 20158892 PMCID: PMC2872880 DOI: 10.1186/gb-2010-11-2-r20] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/03/2010] [Accepted: 02/16/2010] [Indexed: 12/21/2022] Open
Abstract
A comparative analysis of SNPs and their exonic and intronic environments identifies the features predictive of splice affecting variants. Background Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative. Results We assessed the features of single-nucleotide genomic variants verified to cause exon skipping and compared them to a large set of coding SNPs common in the human population, which are likely to have no effect on splicing. Our findings implicate a number of features important for their ability to discriminate splice-affecting variants, including the naturally occurring density of exonic splicing enhancers and exonic splicing silencers of the exon and intronic environment, extensive changes in the number of predicted exonic splicing enhancers and exonic splicing silencers, proximity to the splice junctions and evolutionary constraint of the region surrounding the variant. By extending this approach to additional datasets, we also identified relevant features of variants that cause increased exon inclusion and ectopic splice site activation. Conclusions We identified a number of features that have statistically significant representation among exonic variants that modulate splicing. These analyses highlight putative mechanisms responsible for splicing outcome and emphasize the role of features important for exon definition. We developed a web-tool, Skippy, to score coding variants for these relevant splice-modulating features.
Collapse
Affiliation(s)
- Adam Woolfe
- Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20892, USA.
| | | | | |
Collapse
|
7
|
Masuda A, Shen XM, Ito M, Matsuura T, Engel AG, Ohno K. hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum Mol Genet 2008; 17:4022-35. [PMID: 18806275 PMCID: PMC2638575 DOI: 10.1093/hmg/ddn305] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 12/28/2022] Open
Abstract
In humans and great apes, CHRNA1 encoding the muscle nicotinic acetylcholine receptor alpha subunit carries an inframe exon P3A, the inclusion of which yields a nonfunctional alpha subunit. In muscle, the P3A(-) and P3A(+) transcripts are generated in a 1:1 ratio but the functional significance and regulation of the alternative splicing remain elusive. An intronic mutation (IVS3-8G>A), identified in a patient with congenital myasthenic syndrome, disrupts an intronic splicing silencer (ISS) and results in exclusive inclusion of the downstream P3A exon. We found that the ISS-binding splicing trans-factor was heterogeneous nuclear ribonucleoprotein (hnRNP) H and the mutation attenuated the affinity of hnRNP for the ISS approximately 100-fold. We next showed that direct placement of hnRNP H to the 3' end of intron 3 silences, and siRNA-mediated downregulation of hnRNP H enhances recognition of exon P3A. Analysis of the human genome suggested that the hnRNPH-binding UGGG motif is overrepresented close to the 3' ends of introns. Pursuing this clue, we showed that alternative exons of GRIP1, FAS, VPS13C and NRCAM are downregulated by hnRNP H. Our findings imply that the presence of the hnRNP H-binding motif close to the 3' end of an intron is an essential but underestimated splicing regulator of the downstream exon.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xin-Ming Shen
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G. Engel
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Boichard A, Venet L, Naas T, Boutron A, Chevret L, de Baulny HO, De Lonlay P, Legrand A, Nordman P, Brivet M. Two silent substitutions in the PDHA1 gene cause exon 5 skipping by disruption of a putative exonic splicing enhancer. Mol Genet Metab 2008; 93:323-30. [PMID: 18023225 DOI: 10.1016/j.ymgme.2007.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND Synonymous mutations within exons may cause aberrant splicing by disrupting exonic splicing enhancer (ESE) motifs in the vicinity of non consensus splice sites. Mutational analysis of PDHA1 revealed only one silent single nucleotide substitution in exon 5 in two unrelated boys and a girl (c.483C>T and c.498C>T variants, respectively). For both patients, pyruvate dehydrogenase complex activity was low and the immunoreactive E1alpha protein was defective in cultured fibroblasts. METHODS AND RESULTS One of the boys was a somatic mosaic for the c.483C>T variant, as shown by the variable ratio of mutant to normal alleles in fibroblast, lymphocyte and single hair root DNA. Transcript analysis in fibroblasts from the three patients revealed the presence of both normal and truncated cDNAs, with the splicing out of exon 5 predicted to result in a frame shift and premature termination (p.Arg141AlafsX11). The treatment of fibroblasts with emetine before harvesting to prevent nonsense mRNA-mediated decay increased the amount of mutant mRNA. In silico analysis revealed that each variant disrupted a putative SRp55 binding site and that the intron 5 donor splice site (5'ss) contained a weak splicing signal. Transient transfection of COS-7 or Hela cells with hybrid minigene constructs containing wild-type or mutant PDHA1 exon 5, followed by RT-PCR demonstrated that each variant resulted in the incomplete inclusion of PDHA1 exon 5, and that this defect was corrected following the restoration of a perfect consensus sequence for the 5' splice site by site-directed mutagenesis. CONCLUSION These two synonymous mutations expand the spectrum of rare PDHA1 splicing mutations, all of which are located in non canonical splice sites.
Collapse
Affiliation(s)
- A Boichard
- Biochemistry laboratory, AP-HP hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gabut M, Miné M, Marsac C, Brivet M, Tazi J, Soret J. The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 2005; 25:3286-94. [PMID: 15798212 PMCID: PMC1069624 DOI: 10.1128/mcb.25.8.3286-3294.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex deficiency is a major cause of lactic acidosis and Leigh's encephalomyelopathies in infancy and childhood, resulting in early death in the majority of patients. Most of the molecular defects have been localized in the coding regions of the E1alpha PDH gene. Recently, we identified a novel mutation of the E1alpha PDH gene in a patient with an encephalopathy and lactic acidosis. This mutation, located downstream of exon 7, activates a cryptic splice donor and leads to the retention of intronic sequences. Here, we demonstrate that the mutation results in an increased binding of the SR protein SC35. Consistently, ectopic overexpression of this splicing factor enhanced the use of the cryptic splice site, whereas small interfering RNA-mediated reduction of the SC35 protein levels in primary fibroblasts from the patient resulted in the almost complete disappearance of the aberrantly spliced E1alpha PDH mRNA. Our findings open the exciting prospect for a novel therapy of an inherited disease by altering the level of a specific splicing factor.
Collapse
Affiliation(s)
- Mathieu Gabut
- UMR 5535, IFR122, CNRS-UMII, Institut de Génétique Moléculaire de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | | | |
Collapse
|
10
|
Miné M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. Splicing error in E1alpha pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem 2003; 278:11768-72. [PMID: 12551913 DOI: 10.1074/jbc.m211106200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An intronic point mutation was identified in the E1alpha PDH gene from a boy with delayed development and lactic acidosis, an X-linked disorder associated with a partial defect in pyruvate dehydrogenase (PDH) activity. Protein analysis demonstrated a corresponding decrease in immunoreactivity of the alpha and beta subunits of the PDH complex. In addition to the normal spliced mRNA product of the E1alpha PDH gene, patient samples contained significant levels of an aberrantly spliced mRNA with the first 45 nucleotides of intron 7 inserted in-frame between exons 7 and 8. The genomic DNA analysis found no mutation in the coding regions but revealed a hemizygous intronic G to A substitution 26 nucleotides downstream from the normal exon 7 5'-splice site. Splicing experiments in COS-7 cells demonstrated that this point mutation at intron 7 position 26 is responsible for the aberrant splicing phenotype, which involves a switch from the use of the normal 5'-splice site (intron 7 position 1) to the cryptic 5'-splice site downstream of the mutation (intron 7 position 45). The intronic mutation is unusual in that it generates a consensus binding motif for the splicing factor, SC35, which normally binds to exonic enhancer elements resulting in increased exon inclusion. Thus, the aberrant splicing phenotype is most likely explained by the generation of a de novo splicing enhancer motif, which activates the downstream cryptic 5'-splice site. The mutation documented here is a novel case of intron retention responsible for a human genetic disease.
Collapse
Affiliation(s)
- Manuèle Miné
- Laboratoire Centre de Recherche Thérapeutique en Ophtalmologie, Faculté de Médecine Necker, 156 rue de Vaugirard 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Milledge J, Shaw PJ, Mansour A, Williamson S, Bennetts B, Roscioli T, Curtin J, Christodoulou J. Allogeneic bone marrow transplantation: cure for familial Mediterranean fever. Blood 2002; 100:774-7. [PMID: 12130485 DOI: 10.1182/blood-2002-02-0651] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe data on a 7-year-old girl with congenital dyserythropoietic anemia (CDA), who also had familial Mediterranean fever (FMF). Repeated transfusions required since the age of 6 months to treat her CDA led to iron overload and a persistently high ferritin level. Her relapsing FMF made effective iron chelation therapy very difficult. Consequently, at the age of 4 years, she underwent allogeneic, sibling bone marrow transplantation (BMT). During conditioning for her BMT, symptoms of FMF, including splenomegaly, arthritis, and recurrent abdominal pain, began to resolve and she was gradually weaned off colchicine. Now, 2 years after the transplantation, she remains free from FMF symptomatology and is off all immunosuppressants. This case demonstrates that symptoms of FMF can be alleviated by the therapy used during allogeneic BMT. In this patient it is likely that the missing factor in FMF is now being provided by granulocytes derived from the stem cells within transplanted bone marrow.
Collapse
Affiliation(s)
- John Milledge
- Oncology Department, Royal Alexandra Hospital for Children, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Inherited diseases are associated with profound phenotypic variability, which is affected strongly by genetic modifiers. The splicing machinery could be one such modifying system, through a mechanism involving splicing motifs and their interaction with a complex repertoire of splicing factors. Mutations in splicing motifs and changes in levels of splicing factors can result in different splicing patterns. Changes in the level of normal transcripts or in the relative pattern of different mRNA isoforms affect disease expression, leading to phenotypic variability. Here, we discuss the splicing machinery in terms of its significance in disease severity and its potential role as a genetic modifier.
Collapse
Affiliation(s)
- Malka Nissim-Rafinia
- Dept of Genetics, The Life Sciences Institute, The Hebrew University, 91904, Jerusalem, Israel
| | | |
Collapse
|
13
|
Parra D, González A, Mugueta C, Martínez A, Monreal I. Laboratory approach to mitochondrial diseases. J Physiol Biochem 2001; 57:267-84. [PMID: 11800289 DOI: 10.1007/bf03179820] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dysfunction in mitochondrial processes has been related to several pathologies. In these disorders, the cell suffers oxidative imbalance that is mostly due to defects in pyruvate metabolism, mitochondrial fatty acids oxidation, the citric acid cycle or electron transport by the mitochondrial respiratory chain. These metabolic alterations produce mitochondrial diseases that have been related to inherited syndromes, such as MERRF or MELAS. The main affected organs are brain, skeletal muscle, kidney, heart and liver, because of the high energetic demand and the oxidative metabolism. Moreover, the relationship between mitochondrial dysfunction and neurodegenerative processes, such as Parkinson disease or Alzheimer disease, as well as ageing, has been shown. Because mitochondrias are the target of several xenobiotics, such as aspirin, AZT or alcohol consumption, mitochondrial impairment has also been proposed as a mechanism of toxicity. Most laboratory tests that are available in the diagnosis of mitochondrial illness are assayed in tissue biopsies and are usually difficult to interpret. Recently, it has been shown that non-invasive techniques, such as nuclear magnetic resonance or the 2-keto[1-(13)C]isocaproic acid breath test, may be useful to assess mitochondrial function. This article attempts to show the laboratory approach to mitochondrial diseases, reviewing new techniques that could be of great value in the research of mitochondrial function, such as the 2-keto[1-(13)C]isocaproic breath test.
Collapse
Affiliation(s)
- D Parra
- Department of Clinical Biochemistry, Clínica Universitaria de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|