1
|
Golinelli G, Grisendi G, Dall'Ora M, Casari G, Spano C, Talami R, Banchelli F, Prapa M, Chiavelli C, Rossignoli F, Candini O, D'Amico R, Nasi M, Cossarizza A, Casarini L, Dominici M. Anti-GD2 CAR MSCs against metastatic Ewing's sarcoma. Transl Oncol 2022; 15:101240. [PMID: 34649148 PMCID: PMC8517927 DOI: 10.1016/j.tranon.2021.101240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Ewing's sarcoma (ES) is an aggressive cancer affecting children and young adults. We pre-clinically demonstrated that mesenchymal stromal/stem cells (MSCs) can deliver tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) against primary ES after local injection. However, ES is often metastatic calling for approaches able to support MSC targeting to the ES multiple remote sites. Considering that the disialoganglioside GD2 is expressed by ES and to optimise MSC tumour affinity, bi-functional (BF) MSCs expressing both TRAIL and a truncated anti-GD2 chimeric antigen receptor (GD2 tCAR) were generated and challenged against ES. METHODS The anti-GD2 BF MSCs delivering a soluble variant of TRAIL (sTRAIL) were tested in several in vitro ES models. Tumour targeting and killing by BF MSCs was further investigated by a novel immunodeficient ES metastatic model characterized by different metastatic sites, including lungs, liver and bone, mimicking the deadly clinical scenario. FINDINGS In vitro data revealed both tumour affinity and killing of BF MSCs. In vivo, GD2 tCAR molecule ameliorated the tumour targeting and persistence of BF MSCs counteracting ES in lungs but not in liver. INTERPRETATION We here generated data on the potential effects of BF MSCs within a complex ES metastatic in vivo model, exploring also the biodistribution of MSCs. Our BF MSC-based strategy promises to pave the way for potential improvements in the therapeutic delivery of TRAIL for the treatment of metastatic ES and other deadly GD2-positive malignancies.
Collapse
Affiliation(s)
- Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Rigenerand Srl, Medolla, Modena, Italy
| | | | - Giulia Casari
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Rebecca Talami
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Medical Statistic, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Rossignoli
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Roberto D'Amico
- Center of Medical Statistic, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy; National Institute for Cardiovascular Research - INRC, Bologna, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Rigenerand Srl, Medolla, Modena, Italy.
| |
Collapse
|
2
|
Hong SH, Tilan JU, Galli S, Acree R, Connors K, Mahajan A, Wietlisbach L, Polk T, Izycka-Swieszewska E, Lee YC, Cavalli LR, Rodriguez OC, Albanese C, Kitlinska JB. In Vivo Model for Testing Effect of Hypoxia on Tumor Metastasis. J Vis Exp 2016. [PMID: 28060251 DOI: 10.3791/54532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hypoxia has been implicated in the metastasis of Ewing sarcoma (ES) by clinical observations and in vitro data, yet direct evidence for its pro-metastatic effect is lacking and the exact mechanisms of its action are unclear. Here, we report an animal model that allows for direct testing of the effects of tumor hypoxia on ES dissemination and investigation into the underlying pathways involved. This approach combines two well-established experimental strategies, orthotopic xenografting of ES cells and femoral artery ligation (FAL), which induces hindlimb ischemia. Human ES cells were injected into the gastrocnemius muscles of SCID/beige mice and the primary tumors were allowed to grow to a size of 250 mm3. At this stage either the tumors were excised (control group) or the animals were subjected to FAL to create tumor hypoxia, followed by tumor excision 3 days later. The efficiency of FAL was confirmed by a significant increase in binding of hypoxyprobe-1 in the tumor tissue, severe tumor necrosis and complete inhibition of primary tumor growth. Importantly, despite these direct effects of ischemia, an enhanced dissemination of tumor cells from the hypoxic tumors was observed. This experimental strategy enables comparative analysis of the metastatic properties of primary tumors of the same size, yet significantly different levels of hypoxia. It also provides a new platform to further assess the mechanistic basis for the hypoxia-induced alterations that occur during metastatic tumor progression in vivo. In addition, while this model was established using ES cells, we anticipate that this experimental strategy can be used to test the effect of hypoxia in other sarcomas, as well as tumors orthotopically implanted in sites with a well-defined blood supply route.
Collapse
Affiliation(s)
- Sung-Hyeok Hong
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center
| | - Jason U Tilan
- Department of Nursing, Georgetown University, School of Nursing and Health Studies; Department of Human Science, Georgetown University, School of Nursing and Health Studies
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center
| | - Rachel Acree
- Department of Human Science, Georgetown University, School of Nursing and Health Studies
| | | | - Akanksha Mahajan
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center
| | - Larissa Wietlisbach
- Department of Human Science, Georgetown University, School of Nursing and Health Studies
| | - Taylor Polk
- Department of Human Science, Georgetown University, School of Nursing and Health Studies
| | | | - Yi-Chien Lee
- Department of Oncology, Georgetown University Medical Center
| | | | | | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center; Department of Pathology, Georgetown University Medical Center
| | - Joanna B Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center;
| |
Collapse
|
3
|
Coffman LG, Burgos-Ojeda D, Wu R, Cho K, Bai S, Buckanovich RJ. New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination. Transl Res 2016; 175:92-102.e2. [PMID: 27083386 PMCID: PMC5003680 DOI: 10.1016/j.trsl.2016.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Emerging evidence suggest that many high-grade serous "ovarian" cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here, we present 3 metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together, our data indicate that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore, our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and understand and target key steps in ovarian cancer metastasis.
Collapse
Affiliation(s)
- Lan G Coffman
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | - Daniela Burgos-Ojeda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Rong Wu
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Kathleen Cho
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Hong SH, Tilan JU, Galli S, Izycka-Swieszewska E, Polk T, Horton M, Mahajan A, Christian D, Jenkins S, Acree R, Connors K, Ledo P, Lu C, Lee YC, Rodriguez O, Toretsky JA, Albanese C, Kitlinska J. High neuropeptide Y release associates with Ewing sarcoma bone dissemination - in vivo model of site-specific metastases. Oncotarget 2016; 6:7151-65. [PMID: 25714031 PMCID: PMC4466675 DOI: 10.18632/oncotarget.3345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Sung-Hyeok Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Jason U Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington DC, USA.,Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | | | - Taylor Polk
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Meredith Horton
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - David Christian
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Shari Jenkins
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Rachel Acree
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Katherine Connors
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC, USA
| | - Phuong Ledo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Congyi Lu
- McGovern Institute, Massachusetts Institute of Technology, Boston, MA, USA
| | - Yi-Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| |
Collapse
|
5
|
Redini F, Heymann D. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma. Front Oncol 2015; 5:279. [PMID: 26779435 PMCID: PMC4688361 DOI: 10.3389/fonc.2015.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.
Collapse
Affiliation(s)
- Françoise Redini
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France; CHU Hôtel-Dieu, Nantes, France
| |
Collapse
|
6
|
Simmons JK, Hildreth BE, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ. Animal Models of Bone Metastasis. Vet Pathol 2015; 52:827-41. [PMID: 26021553 DOI: 10.1177/0300985815586223] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.
Collapse
Affiliation(s)
- J K Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B E Hildreth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - W Supsavhad
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - S M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B B Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - R E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Moore JB, Loeb DM, Hong KU, Sorensen PH, Triche TJ, Lee DW, Barbato MI, Arceci RJ. Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line. Front Cell Dev Biol 2015; 3:15. [PMID: 25806369 PMCID: PMC4353378 DOI: 10.3389/fcell.2015.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Developmental reprogramming techniques have been used to generate induced pluripotent stem (iPS) cells from both normal and malignant cells. The derivation of iPS cells from cancer has the potential to provide a unique scientific tool to overcome challenges associated with the establishment of cell lines from primary patient samples and a readily expandable source of cells that may be used to model the initial disease. In the current study we developmentally reprogrammed a metastatic Ewing sarcoma (EWS) cell line to a meta-stable embryonic stem (ES)-like state sharing molecular and phenotypic features with previously established ES and iPS cell lines. EWS-iPS cells exhibited a pronounced drug resistant phenotype despite persistent expression of the oncogenic EWS-FLI1 fusion transcript. This included resistance to compounds that specifically target downstream effector pathways of EWS-FLI1, such as MAPK/ERK and PI3K/AKT, which play an important role in EWS pathogenesis. EWS-iPS cells displayed tumor initiation abilities in vivo and formed tumors exhibiting characteristic Ewing histopathology. In parallel, EWS-iPS cells re-differentiated in vitro recovered sensitivity to molecularly targeted chemotherapeutic agents, which reiterated pathophysiological features of the cells from which they were derived. These data suggest that EWS-iPS cells may provide an expandable disease model that could be used to investigate processes modulating oncogenesis, metastasis, and chemotherapeutic resistance in EWS.
Collapse
Affiliation(s)
- Joseph B Moore
- Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA ; Department of Medicine, Institute of Molecular Cardiology, University of Louisville Louisville, KY, USA
| | - David M Loeb
- Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville Louisville, KY, USA
| | - Poul H Sorensen
- Molecular Oncology, BC Cancer Research Centre, University of British Columbia Vancouver, BC, Canada
| | - Timothy J Triche
- Department of Pathology, Children's Hospital of Los Angeles Los Angeles, CA, USA
| | - David W Lee
- Ron Matricaria Institute of Molecular Medicine, Phoenix Children's Hospital, University of Arizona Phoenix, AZ, USA
| | - Michael I Barbato
- Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA ; Medicine, Jefferson Medical College Philadelphia, PA, USA
| | - Robert J Arceci
- Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA ; Ron Matricaria Institute of Molecular Medicine, Phoenix Children's Hospital, University of Arizona Phoenix, AZ, USA
| |
Collapse
|
8
|
Vormoor B, Knizia HK, Batey MA, Almeida GS, Wilson I, Dildey P, Sharma A, Blair H, Hide IG, Heidenreich O, Vormoor J, Maxwell RJ, Bacon CM. Development of a preclinical orthotopic xenograft model of ewing sarcoma and other human malignant bone disease using advanced in vivo imaging. PLoS One 2014; 9:e85128. [PMID: 24409320 PMCID: PMC3883696 DOI: 10.1371/journal.pone.0085128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing.
Collapse
Affiliation(s)
- Britta Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Henrike K. Knizia
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A. Batey
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gilberto S. Almeida
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian Wilson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Petra Dildey
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Abhishek Sharma
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - I. Geoff Hide
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ross J. Maxwell
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Ewing sarcoma dissemination and response to T-cell therapy in mice assessed by whole-body magnetic resonance imaging. Br J Cancer 2013; 109:658-66. [PMID: 23839490 PMCID: PMC3738111 DOI: 10.1038/bjc.2013.356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Novel treatment strategies in Ewing sarcoma include targeted cellular therapies. Preclinical in vivo models are needed that reflect their activity against systemic (micro)metastatic disease. METHODS Whole-body magnetic resonance imaging (WB-MRI) was used to monitor the engraftment and dissemination of human Ewing sarcoma xenografts in mice. In this model, we evaluated the therapeutic efficacy of T cells redirected against the Ewing sarcoma-associated antigen GD2 by chimeric receptor engineering. RESULTS Of 18 mice receiving intravenous injections of VH-64 Ewing sarcoma cells, all developed disseminated tumour growth detectable by WB-MRI. All mice had lung tumours, and the majority had additional manifestations in the bone, soft tissues, and/or kidney. Sequential scans revealed in vivo growth of tumours. Diffusion-weighted whole-body imaging with background signal suppression effectively visualised Ewing sarcoma growth in extrapulmonary sites. Animals receiving GD2-targeted T-cell therapy had lower numbers of pulmonary tumours than controls, and the median volume of soft tissue tumours at first detection was lower, with a tumour growth delay over time. CONCLUSION Magnetic resonance imaging reliably visualises disseminated Ewing sarcoma growth in mice. GD2-retargeted T cells can noticeably delay tumour growth and reduce pulmonary Ewing sarcoma manifestations in this aggressive disease model.
Collapse
|
10
|
Rettinger E, Meyer V, Kreyenberg H, Volk A, Kuçi S, Willasch A, Koscielniak E, Fulda S, Wels WS, Boenig H, Klingebiel T, Bader P. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models. Front Oncol 2012; 2:32. [PMID: 22655268 PMCID: PMC3356002 DOI: 10.3389/fonc.2012.00032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients' relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc(-), NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity against AML and RMS cells without causing GvHD.
Collapse
Affiliation(s)
- Eva Rettinger
- Department of Pediatric Hematology, Oncology and Hemostaseology, University Children's Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer 2012; 106:1123-33. [PMID: 22374462 PMCID: PMC3304425 DOI: 10.1038/bjc.2012.57] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Novel treatment strategies are needed to cure disseminated Ewing sarcoma. Primitive neuroectodermal features and a mesenchymal stem cell origin are both compatible with aberrant expression of the ganglioside antigen GD2 and led us to explore GD2 immune targeting in this cancer. Methods: We investigated GD2 expression in Ewing sarcoma by immunofluorescence staining. We then assessed the antitumour activity of T cells expressing a chimeric antigen receptor specific for GD2 against Ewing sarcoma in vitro and in vivo. Results: Surface GD2 was detected in 10 out of 10 Ewing sarcoma cell lines and 3 out of 3 primary cell cultures. Moreover, diagnostic biopsies from 12 of 14 patients had uniform GD2 expression. T cells specifically modified to express the GD2-specific chimeric receptor 14. G2a-28ζ efficiently interacted with Ewing sarcoma cells, resulting in antigen-specific secretion of cytokines. Moreover, chimeric receptor gene-modified T cells from healthy donors and from a patient exerted potent, GD2-specific cytolytic responses to allogeneic and autologous Ewing sarcoma, including tumour cells grown as multicellular, anchorage-independent spheres. GD2-specific T cells further had activity against Ewing sarcoma xenografts. Conclusion: GD2 surface expression is a characteristic of Ewing sarcomas and provides a suitable target antigen for immunotherapeutic strategies to eradicate micrometastatic cells and prevent relapse in high-risk disease.
Collapse
|
12
|
Hsu W, Mohyeldin A, Shah SR, ap Rhys CM, Johnson LF, Sedora-Roman NI, Kosztowski TA, Awad OA, McCarthy EF, Loeb DM, Wolinsky JP, Gokaslan ZL, Quiñones-Hinojosa A. Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 2011; 115:760-9. [PMID: 21699479 PMCID: PMC4273567 DOI: 10.3171/2011.5.jns11185] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECT Chordoma is a malignant bone neoplasm hypothesized to arise from notochordal remnants along the length of the neuraxis. Recent genomic investigation of chordomas has identified T (Brachyury) gene duplication as a major susceptibility mutation in familial chordomas. Brachyury plays a vital role during embryonic development of the notochord and has recently been shown to regulate epithelial-to-mesenchymal transition in epithelial-derived cancers. However, current understanding of the role of this transcription factor in chordoma is limited due to the lack of availability of a fully characterized chordoma cell line expressing Brachyury. Thus, the objective of this study was to establish the first fully characterized primary chordoma cell line expressing gain of the T gene locus that readily recapitulates the original parental tumor phenotype in vitro and in vivo. METHODS Using an intraoperatively obtained tumor sample from a 61-year-old woman with primary sacral chordoma, a chordoma cell line (JHC7, or Johns Hopkins Chordoma Line 7) was established. Molecular characterization of the primary tumor and cell line was conducted using standard immunostaining and Western blotting. Chromosomal aberrations and genomic amplification of the T gene in this cell line were determined. Using this cell line, a xenograft model was established and the histopathological analysis of the tumor was performed. Silencing of Brachyury and changes in gene expression were assessed. RESULTS The authors report, for the first time, the successful establishment of a chordoma cell line (JHC7) from a patient with pathologically confirmed sacral chordoma. This cell line readily forms tumors in immunodeficient mice that recapitulate the parental tumor phenotype with conserved histological features consistent with the parental tumor. Furthermore, it is demonstrated for the first time that silencing of Brachyury using short hairpin RNA renders the morphology of chordoma cells to a more differentiated-like state and leads to complete growth arrest and senescence with an inability to be passaged serially in vitro. CONCLUSIONS This report represents the first xenograft model of a sacral chordoma line described in the literature and the first cell line established with stable Brachyury expression. The authors propose that Brachyury is an attractive therapeutic target in chordoma and that JHC7 will serve as a clinically relevant model for the study of this disease.
Collapse
Affiliation(s)
- Wesley Hsu
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ahmed Mohyeldin
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sagar R. Shah
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colette M. ap Rhys
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lakesha F. Johnson
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neda I. Sedora-Roman
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas A. Kosztowski
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ola A. Awad
- Department of Oncology and Pediatrics, Musculoskeletal Tumor Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward F. McCarthy
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David M. Loeb
- Department of Oncology and Pediatrics, Musculoskeletal Tumor Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jean-Paul Wolinsky
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ziya L. Gokaslan
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Basic fibroblast growth factor in the bone microenvironment enhances cell motility and invasion of Ewing's sarcoma family of tumours by activating the FGFR1-PI3K-Rac1 pathway. Br J Cancer 2010; 103:370-81. [PMID: 20606682 PMCID: PMC2920026 DOI: 10.1038/sj.bjc.6605775] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Ewing's sarcoma family of tumours (ESFT) is a malignant small round-cell tumour of the bone and soft tissues. It is characterised by a strong tendency to invade and form metastases. The microenvironment of the bone marrow is a large repository for many growth factors, including the basic fibroblast growth factor (bFGF). However, the role of bFGF in the invasive and metastatic phenotype of ESFT has not been investigated. Methods: The motility and invasion of ESFT cells were assessed by a wound-healing assay, chemotaxis assay, and invasion assay. The expression and activation of FGF receptors (FGFRs) in ESFT cell lines and clinical samples were detected by RT–PCR, western blotting, and immunohistochemistry. The morphology of ESFT cells was investigated by phase-contrast microscopy and fluorescence staining for actin. Activation of Rac1 was analysed by a pull-down assay. Results: bFGF strongly induced the motility and invasion of ESFT cells. Furthermore, FGFR1 was found to be expressed and activated in clinical samples of ESFT. Basic FGF-induced cell motility was mediated through the FGFR1–phosphatidylinositol 3-kinase (PI3K)–Rac1 pathway. Conditioned medium from bone marrow stromal cells induced the motility of ESFT cells by activating bFGF/FGFR1 signalling. Conclusion: The bFGF–FGFR1–PI3K–Rac1 pathway in the bone microenvironment may have a significant role in the invasion and metastasis of ESFT.
Collapse
|
14
|
Burdett E, Kasper FK, Mikos AG, Ludwig JA. Engineering Tumors: A Tissue Engineering Perspective in Cancer Biology. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:351-9. [DOI: 10.1089/ten.teb.2009.0676] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emily Burdett
- Department of Bioengineering, Rice University, Houston, Texas
| | | | | | - Joseph A. Ludwig
- Laboratory of Sarcoma Molecular Therapeutics, Division of Cancer Medicine, Department of Sarcoma Medical Oncology–Unit 450, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Abstract
Bone and soft tissue sarcomas are an infrequent and heterogeneous group of mesenchymal tumors including more than a hundred different entities attending to histologic patterns. Research into the molecular aspects of sarcomas has increased greatly in the last few years. This enormous amount of knowledge has allowed, for instance, to refine the classification of sarcomas, improve the diagnosis, and increase the number of therapeutical targets available, most of them under preclinical evaluation. However, other important key issues, such as sarcomagenesis and the cell of origin of sarcomas, remain unresolved. From a molecular point of view, these neoplasias are grouped into 2 main types: (a) sarcomas showing relatively simple karyotypes and translocations, which originate gene fusions (eg, EWS-FLI1 in Ewing sarcoma) or point mutations (eg, c-kit in the gastrointestinal tumors) and (b) sarcomas showing unspecific gene alterations, very complex karyotypes, and no translocations. The discovery of the early mechanisms involved in the genesis of sarcomas, the more relevant signaling pathways, and the development of genetically engineered mouse models could also provide a new individualized therapeutic strategy against these tumors. This review describes the clinical application of some of the molecular alterations found in sarcomas, some advances in the field of sarcomagenesis, and the development of animal models.
Collapse
|
16
|
Abstract
The concepts of tailored therapy according to genetic profiling and response based on minimal residual disease evaluation during therapy are attracting increasing interest in modern clinical oncology. Children with acute lymphoblastic leukemia are being stratified to various treatment arms with different intensities according to the genetic characteristics of their leukemia and their response to therapy as measured by real-time polymerase chain reaction. Our ability to quickly identify patients with Ewing sarcoma who have a poor prognosis, and to offer them aggressive therapeutic modalities, such as stem cell transplantation, may result in an improved cure rate. Based on the knowledge gained by gene expression profiling and gene silencing techniques we can expect the emergence of new specific drugs that will target malignant cells without causing damage to normal tissue, resulting in improved cancer therapy.
Collapse
Affiliation(s)
- Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Petah-Tikva, Israel.
| | | |
Collapse
|
17
|
Franzius C, Hotfilder M, Poremba C, Hermann S, Schäfers K, Gabbert HE, Jürgens H, Schober O, Schäfers M, Vormoor J. Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model. Eur J Nucl Med Mol Imaging 2006; 33:1432-41. [PMID: 16896672 DOI: 10.1007/s00259-006-0106-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 02/07/2006] [Indexed: 02/07/2023]
Abstract
PURPOSE As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model. METHODS Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2-7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) or 9.4 MBq (mean) [(18)F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions. RESULTS Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [(18)F]fluoride PET by virtue of decreased [(18)F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically. CONCLUSION Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.
Collapse
Affiliation(s)
- Christiane Franzius
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65:8984-92. [PMID: 16204072 DOI: 10.1158/0008-5472.can-05-0565] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of effective, systemic therapies for metastatic cancer is highly desired. We show here that the systemic delivery of sequence-specific small interfering RNA (siRNA) against the EWS-FLI1 gene product by a targeted, nonviral delivery system dramatically inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. The nonviral delivery system uses a cyclodextrin-containing polycation to bind and protect siRNA and transferrin as a targeting ligand for delivery to transferrin receptor-expressing tumor cells. Removal of the targeting ligand or the use of a control siRNA sequence eliminates the antitumor effects. Additionally, no abnormalities in interleukin-12 and IFN-alpha, liver and kidney function tests, complete blood counts, or pathology of major organs are observed from long-term, low-pressure, low-volume tail-vein administrations. These data provide strong evidence for the safety and efficacy of this targeted, nonviral siRNA delivery system.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Down-Regulation
- Female
- Gene Silencing
- Luciferases/biosynthesis
- Luciferases/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Metastasis
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- Proto-Oncogene Protein c-fli-1/biosynthesis
- Proto-Oncogene Protein c-fli-1/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/toxicity
- RNA-Binding Protein EWS
- Receptors, Transferrin/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
19
|
Hotfilder M, Sondermann P, Senß A, van Valen F, Jürgens H, Vormoor J. PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death. Br J Cancer 2005; 92:705-10. [PMID: 15685229 PMCID: PMC3216036 DOI: 10.1038/sj.bjc.6602384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml(-1) FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo.
Collapse
Affiliation(s)
- M Hotfilder
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - P Sondermann
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - A Senß
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - F van Valen
- Department of Orthopedics, 48129 Münster, Germany
| | - H Jürgens
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - J Vormoor
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
- Universitätsklinikum Münster, Klinik und Poliklinik für Kinderheilkunde – Pädiatrische Hämatologie/Onkologie, Albert-Schweitzer-Str. 33, 48149 Münster, Germany. E-mail:
| |
Collapse
|
20
|
Staege MS, Hansen G, Baersch G, Burdach S. Functional and molecular characterization of interleukin-2 transgenic Ewing tumor cells for in vivo immunotherapy. Pediatr Blood Cancer 2004; 43:23-34. [PMID: 15170886 DOI: 10.1002/pbc.20013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interleukin-2 (IL-2) is a potent cytokine with potential activity against several tumors including Ewing tumors (ET). Side effects of systemic IL-2 can be circumvented by the use of transgenic tumor cells. However, in vitro manipulation may change the overall gene expression profile of tumor cells unfavorably. Therefore, we assessed gene expression profiles, safety, and immunomodulatory efficacy of IL-2 transgenic (IL-2-tg) ET cells in vitro and in NOD/scid mice. PROCEDURE Viable wild type A673 tumor cells were co-cultured together with irradiated IL-2-tg or mock-transfected cells and HLA matched peripheral blood mononuclear cells. Activation of T and NK cells was assessed by FACS analysis. The effect of irradiated IL-2-tg cells on tumor growth in vivo was investigated by using NOD/scid mice. Gene expression profiles of wild type and transfected cells were analyzed with Affymetrix HG-U95A microarrays. RESULTS IL-2-tg cells activated and increased the number of T cells and NK cells in vitro. Co-culture with IL-2-tg but not with mock-transfected cells almost completely suppressed wild type tumor cell growth in vitro. Cell depletion experiments indicated a major contribution of NK cells to this tumor cell suppression. Co-transfer of irradiated IL-2-tg cells significantly reduced wild type tumor growth in NOD/scid mice. Side effects in the treated animals were not observed and no tumor growth was observed after injection of irradiated IL-2-tg cells alone. Gene expression profiling revealed a substantial degree of homogeneity of gene expression in transfected and wild type cells and suggests that transfection and selection procedures had no major impact on the gene expression profile. CONCLUSIONS Next to a high degree of homogeneity between transgenic and wild type cells, our data suggest that irradiated IL-2-tg ET cells can activate cytolytic effector cells. These cells may have therapeutic potential for ET patients.
Collapse
Affiliation(s)
- Martin S Staege
- Children's Cancer Research Center/BioCenter, and Division of Pediatric Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
21
|
Burdach S. Treatment of advanced Ewing tumors by combined radiochemotherapy and engineered cellular transplants. Pediatr Transplant 2004; 8 Suppl 5:67-82. [PMID: 15125708 DOI: 10.1111/j.1398-2265.2004.00186.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review will focus primarily on own recent work on the treatment of advanced Ewing tumors (AETs) and will attempt, in addition, to give a comprehensive overview of novel developments. The field under review has been shaped by investigators from both Europe and the United States of America in a scientific debate evolving over more than a decade at the meetings of the International Society of Pediatric Oncology and other scientific meetings. In the light of this debate, most oncologists will agree that patients with AETs are facing the worst prognosis of all patients with this disease and include both: (i) patients with primary metastatic disease with the worst prognosis as well as (ii) patients with relapse with the worst prognosis. The contributions of various investigators have lead to the identification of specific risk stratification criteria to overcome the heterogeneity of patients within the conventionally defined clinical stages of localized metastatic and relapsed disease. This review will address the following issues of treatment of AETs: (i) a definition of AET; (ii) risks and benefits of allogeneic vs. autologous stem cell transplantation; (iii) the role of total body irradiation; (iv) the number of involved bones as a risk factor in multifocal bone disease in AET; (v) the development of immunogene therapy in AET; (vi) the matching of radiochemo- and immunotherapy in AET; (vii) the future perspective of functional genomics and targeted therapy.
Collapse
Affiliation(s)
- Stefan Burdach
- Department of Pediatrics and Children's Hospital Medical Center, Munich University of Technology, München and Children's Cancer Research Center, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
22
|
Schaefer KL, Brachwitz K, Wai DH, Braun Y, Diallo R, Korsching E, Eisenacher M, Voss R, Van Valen F, Baer C, Selle B, Spahn L, Liao SK, Lee KAW, Hogendoorn PCW, Reifenberger G, Gabbert HE, Poremba C. Expression Profiling of t(12;22) Positive Clear Cell Sarcoma of Soft Tissue Cell Lines Reveals Characteristic Up-Regulation of Potential New Marker Genes Including ERBB3. Cancer Res 2004; 64:3395-405. [PMID: 15150091 DOI: 10.1158/0008-5472.can-03-0809] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clear cell sarcoma of soft tissue (CCSST), also known as malignant melanoma of soft parts, represents a rare lesion of the musculoskeletal system usually affecting adolescents and young adults. CCSST is typified by a chromosomal t(12;22)(q13;q12) translocation resulting in a fusion between the Ewing sarcoma gene (EWSR1) and activating transcription factor 1 (ATF1), of which the activity in nontransformed cells is regulated by cyclic AMP. Our aim was to identify critical differentially expressed genes in CCSST tumor cells in comparison with other solid tumors affecting children and young adults to better understand signaling pathways regulating specific features of the development and progression of this tumor entity. We applied Affymetrix Human Genome U95Av2 oligonucleotide microarrays representing approximately 12,000 genes to generate the expression profiles of the CCSST cell lines GG-62, DTC-1, KAO, MST2, MST3, and Su-CC-S1 in comparison with 8 neuroblastoma, 7 Ewing tumor, and 6 osteosarcoma cell lines. Subsequent hierarchical clustering of microarray data clearly separated all four of the tumor types from each other and identified differentially expressed transcripts, which are characteristically up-regulated in CCSST. Statistical analysis revealed a group of 331 probe sets, representing approximately 300 significant (P < 0.001) differentially regulated genes, which clearly discriminated between the CCSST and other tumor samples. Besides genes that were already known to be highly expressed in CCSST, like S100A11 (S100 protein) or MITF (microphthalmia-associated transcription factor), this group shows an obvious portion of genes that are involved in cyclic AMP response or regulation, in pigmentation processes, or in neuronal structure and signaling. Comparison with other expression profile analyses on neuroectodermal childhood tumors confirms the high robustness of this strategy to characterize tumor entities based on their gene expression. We found the avian erythroblastic leukemia viral oncogene homologue 3 (ERBB3) to be one of the most dramatically up-regulated genes in CCSST. Quantitative real-time PCR and Northern blot analysis verified the mRNA abundance and confirmed the absence of the inhibitory transcript variant of this gene. The protein product of the member of the epidermal growth factor receptor family ERBB3 could be shown to be highly present in all of the CCSST cell lines investigated, as well as in 18 of 20 primary tumor biopsies. In conclusion, our data demonstrate new aspects of the phenotype and the biological behavior of CCSST and reveal ERBB3 to be a useful diagnostic marker.
Collapse
MESH Headings
- Blotting, Northern
- Cell Line, Tumor
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 22/genetics
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, erbB/genetics
- Genetic Markers/genetics
- Humans
- Male
- Middle Aged
- Neuroblastoma/genetics
- Polymerase Chain Reaction/methods
- RNA-Binding Protein EWS/genetics
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Sarcoma, Clear Cell/genetics
- Sarcoma, Clear Cell/metabolism
- Sarcoma, Ewing/genetics
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/metabolism
- Translocation, Genetic
- Up-Regulation
Collapse
|