1
|
Sazhina T, Tsurugizawa T, Mochizuki Y, Saito A, Joji-Nishino A, Ouchi K, Yagishita S, Emoto K, Uematsu A. Time- and sex-dependent effects of juvenile social isolation on mouse brain morphology. Neuroimage 2025; 310:121117. [PMID: 40049304 DOI: 10.1016/j.neuroimage.2025.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
During early life stages, social isolation disrupts the proper brain growth and brain circuit formation, which is associated with the risk of mental disorders and cognitive deficits in adulthood. Nevertheless, the impact of juvenile social isolation on brain development, particularly regarding variations across age and sex, remains poorly understood. Here, we investigate the effects of social isolation stress (SIS) during early (3-5 weeks old) or late (5-7 weeks old) juvenile period on brain morphology in adult male and female mice using ultra high-field MRI (11.7 T). We found that both early and late SIS in female mice led to volumetric increases in multiple brain regions, such as the medial prefrontal cortex (mPFC) and hippocampus. Correlation tractography revealed that the fiber tracts in the right corpus callosum and right amygdala were positively correlated with SIS in female mice. In male mice, early SIS resulted in small volumetric increases in the isocortex, whereas late SIS led to reductions in the isocortex and hypothalamus. Furthermore, early SIS caused a negative correlation, while late SIS exhibited a positive correlation, with fiber tracts in the corpus callosum and amygdala in male mice. Using a Random Forest classifier, we achieved effective discrimination between socially isolated and control conditions in the brain volume of female mice, with the limbic areas playing a key role in the model's accuracy. Finally, we discovered that SIS led to context fear generalization in a sex-dependent manner. Our findings highlight the importance of considering both the time- and sex-dependent effects of juvenile SIS on brain development and emotional processing, providing new insights into its long-term consequences.
Collapse
Affiliation(s)
- Tatiana Sazhina
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Yuki Mochizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Aika Saito
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Joji-Nishino
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| | - Akira Uematsu
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Shamapari R, Nagaraj K. Upregulation of ACSL, ND75, Vha26 and sesB genes by antiepileptic drugs resulted in genotoxicity in drosophila. Toxicol Res (Camb) 2024; 13:tfae180. [PMID: 39507589 PMCID: PMC11535366 DOI: 10.1093/toxres/tfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
Clobazam (CLB) and Vigabatrin (VGB) are commonly used antiepileptic drugs (AEDs) in the treatment of epilepsy. Here, we have examined the genotoxic effect of these AEDs in Drosophila melanogaster. The Drosophila larvae were exposed to different concentrations of CLB and VGB containing food media. The assessment encompassed oxidative stress, DNA damage, protein levels, and gene expression profiles. In the CLB-treated group, a reduction in reactive oxygen species (ROS) and lipid peroxidation (LPO) levels was observed, alongside increased levels of superoxide dismutase (SOD), catalase (CAT), and nitric oxide (NO). Conversely, the VGB-treated group displayed contrasting results, with increased ROS and LPO and decreased SOD, CAT, and NO levels. However, both CLB and VGB induced DNA damage in Drosophila. Proteomic analysis (SDS-PAGE and OHRLCMS) in the CLB and VGB groups identified numerous proteins, including Acyl-CoA synthetase long-chain, NADH-ubiquinone oxidoreductase 75 kDa subunit, V-type proton ATPase subunit E, ADP/ATP carrier protein, malic enzyme, and DNA-binding protein modulo. These proteins were found to be associated with pathways like growth promotion, notch signaling, Wnt signaling, neuromuscular junction (NMJ) signaling, bone morphogenetic protein (BMP) signaling, and other GABAergic mechanisms. Furthermore, mRNA levels of ACSL, ND75, Vha26, sesB, and Men genes were upregulated in both CLB and VGB-treated groups. These findings suggest that CLB and VGB could have the potential to induce genotoxicity and post-transcriptional modifications in humans, highlighting the importance of monitoring their effects when used as AEDs.
Collapse
Affiliation(s)
- R Shamapari
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| | - K Nagaraj
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| |
Collapse
|
3
|
Xiong Q, Chen Y, Mo J, Yi C, Jiang S, Liu Y. Differences in corticospinal drive and co-activations of antagonist muscles during forward leaning and backward returning tasks between children and young adults. Brain Res 2024; 1846:149244. [PMID: 39293677 DOI: 10.1016/j.brainres.2024.149244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Postural control imposes higher demands on the central neural system (CNS), and age-related declines or incomplete CNS development often result in challenges performing tasks like forward postural leaning. Studies on older adults suggest increased variability in center of pressure (COP), greater muscle co-activations, and reduced corticospinal control during forward leaning tasks. However, the understanding of these features in children remains unclear. Specifically, it is uncertain whether forward leaning poses greater challenges for young children compared to adults, given the ongoing maturation of CNS during development. Understanding the distinct neuromuscular patterns observed during postural leaning could help optimize therapeutic strategies aimed at improving postural control in pediatric populations. METHODS 12 typically developing children (5.91 ± 1.37 years) and 12 healthy young adults (23.16 ± 1.52 years) participated in a dynamic leaning forward task aimed at matching a COP target in the anterior-posterior direction as steadily as possible. Participants traced a triangular trajectory involving forward leaning (FW phase) to 60 % of their maximum lean distance and backward returning (BW phase) to the neutral standing position. Surface electromyography (sEMG) from muscles including gastrocnemius medialis (GM), soleus (SOL), and tibialis anterior (TA) were collected during both phases. COP variability was assessed using the standard deviation (SD) of COP displacements. Muscle co-activation indexes (CI) for ankle plantar and dorsal flexors (SOL/TA, GM/TA) were derived from sEMG activities. Intermuscular coherence in the beta band (15-30 Hz) was also analyzed to evaluate corticospinal drive. RESULTS Children exhibited a significantly greater SD of COP compared to young adults (p < 0.01) during the BW phase. They also demonstrated higher CI (p < 0.05) and reduced coherence of SOL/TA (p < 0.05) compared to young adults during this phase. No significant group differences were observed during the FW phase. Within the children's group, COP variability was significantly higher in the BW phase compared to the FW phase (p < 0.01). Moreover, children displayed greater CI (p < 0.01) and reduced coherence of SOL/TA (p < 0.01) during the BW phase compared to the FW phase. Conversely, no significant phase effects were observed in the adult group. Furthermore, sEMG measures were significantly correlated with COP variability (p < 0.05). CONCLUSIONS The findings of this small study suggest that age-related differences in CNS development influence the modulation of corticospinal drive to ankle muscles (e.g., SOL/TA) during childhood, particularly supporting the existence of a separate pathway underlying the control of forward lean and backward returning.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China.
| | - Ying Chen
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Jieyi Mo
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Anderson S, Cavaletti G, Hood LJ, Polydefkis M, Herrmann DN, Rance G, King B, McMichael AJ, Senna MM, Kim BS, Napatalung L, Wolk R, Zwillich SH, Schaefer G, Gong Y, Sisson M, Posner HB. A phase 2a study investigating the effects of ritlecitinib on brainstem auditory evoked potentials and intraepidermal nerve fiber histology in adults with alopecia areata. Pharmacol Res Perspect 2024; 12:e1204. [PMID: 38969959 PMCID: PMC11226387 DOI: 10.1002/prp2.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 07/07/2024] Open
Abstract
Reversible axonal swelling and brainstem auditory evoked potential (BAEP) changes were observed in standard chronic (9-month) toxicology studies in dogs treated with ritlecitinib, an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor, at exposures higher than the approved 50-mg human dose. To evaluate the clinical relevance of the dog toxicity finding, this phase 2a, double-blind study assessed BAEP changes and intraepidermal nerve fiber (IENF) histology in adults with alopecia areata treated with ritlecitinib. Patients were randomized to receive oral ritlecitinib 50 mg once daily (QD) with a 4-week loading dose of 200 mg QD or placebo for 9 months (placebo-controlled phase); they then entered the active-therapy extension and received ritlecitinib 50 mg QD (with a 4-week loading dose of 200 mg in patients switching from placebo). Among the 71 patients, no notable mean differences in change from baseline (CFB) in Waves I-V interwave latency (primary outcome) or Wave V amplitude on BAEP at a stimulus intensity of 80 dB nHL were observed in the ritlecitinib or placebo group at Month 9, with no notable differences in interwave latency or Wave V amplitude between groups. The CFB in mean or median IENF density and in percentage of IENFs with axonal swellings was minimal and similar between groups at Month 9. Ritlecitinib treatment was also not associated with an imbalanced incidence of neurological and audiological adverse events. These results provide evidence that the BAEP and axonal swelling finding in dogs are not clinically relevant in humans.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Linda J. Hood
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Polydefkis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Gary Rance
- Department of Audiology and Speech PathologyThe University of MelbourneCarltonVictoriaAustralia
| | - Brett King
- Department of DermatologyYale University School of MedicineNew HavenConnecticutUSA
| | - Amy J. McMichael
- Department of DermatologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maryanne M. Senna
- Department of DermatologyLahey Hospital and Medical CenterBurlingtonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian S. Kim
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lynne Napatalung
- Pfizer IncNew YorkNew YorkUSA
- Mount Sinai HospitalNew YorkNew YorkUSA
| | | | | | | | | | | | | |
Collapse
|
5
|
Sanguino-Gómez J, Krugers HJ. Early-life stress impairs acquisition and retrieval of fear memories: sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age. Neurobiol Stress 2024; 31:100636. [PMID: 38883213 PMCID: PMC11177066 DOI: 10.1016/j.ynstr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/18/2024] Open
Abstract
The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent.
Collapse
Affiliation(s)
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
7
|
Xiong Q, Mo J, Yi C, Jiang S, Liu Y. Motor control differs for increasing and decreasing force production during ankle Isometric exercises in children. BMC Sports Sci Med Rehabil 2023; 15:120. [PMID: 37740224 PMCID: PMC10517481 DOI: 10.1186/s13102-023-00727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Performance of the central nervous system (CNS) in increased and decreasing muscle force around the ankle joint is essential for upright tasks of daily living. Previous studies have shown altered CNS control when they decrease force compared with when they increase force in young and older adults. But whether such alteration exists during childhood with incomplete maturation of CNS systems remain unclear. Therefore, this study aimed to evaluate the disparities in intramuscular EMG-EMG coherence, which serve as indicators of corticospinal drive to muscles during ankle isometric increasing and decreasing force generation in children. METHODS We measured intramuscular EMG-EMG coherence activity of the tibialis anterior (TA) and the associated ability to perform isometric efforts at the ankle in 12 typically developing children (mean ± SD age = 5.91±1.37 years) and 12 healthy young adults (mean ± SD age = 23.16±1.52 years). The participants maintained isometric contractions at 20% of their maximal voluntary contractions (MVC) during ankle dorsiflexion to match a triangle trajectory for 7 s, including ramping up in 3.5 s (increasing force phase) and then linearly ramping down to rest in 3.5 s (decreasing force phase). The variability of force control was characterized by the coefficient of variance (CoV) of force output. Intramuscular EMG-EMG coherence from TA in two frequency bands, the beta band (15-30 Hz) and gamma band (30-45) that could reflect the corticospinal drive, were calculated for the comparison. A repeated measures ANOVA with the within-subjects factor of force generation phase (increasing force vs. decreasing force)x between-subjects factor of the group (children and young adults) was used for statistical analysis. RESULTS Regarding the within-subjects difference, our results exhibited significantly higher CoV of force (p < 0.01) and lower EMG-EMG coherence of TA when they decrease force compared with when they increase force in both children and young adult groups. Regarding the between-subjects difference, the CoV of force was significantly higher (p < 0.01) in children compared to young adults, while the EMG-EMG coherence in children showed a significantly lower (p < 0.01) coherence compared with young adults. Furthermore, the EMG-EMG coherence measures were negatively correlated with the CoV of force. CONCLUSIONS The findings suggest that the age-related development would increase the corticospinal drive to TA muscle to deal with ankle isometric dorsiflexion during childhood, which could be also modulated with the force production phases, including increasing and decreasing force.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China.
| | - Jieyi Mo
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Rohner S, Gramer M, Wiesweg I, Scherf-Clavel O, Wohlsein P, Schmelz M, Siebert U, Richter F, Gernert M. Present in the Aquatic Environment, Unclear Evidence in Top Predators-The Unknown Effects of Anti-Seizure Medication on Eurasian Otters ( Lutra lutra) from Northern Germany. TOXICS 2023; 11:338. [PMID: 37112566 PMCID: PMC10142713 DOI: 10.3390/toxics11040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Emerging contaminants are produced globally at high rates and often ultimately find their way into the aquatic environment. These include substances contained in anti-seizure medication (ASM), which are currently appearing in surface waters at increasing concentrations in Germany. Unintentional and sublethal, chronic exposure to pharmaceuticals such as ASMs has unknown consequences for aquatic wildlife. Adverse effects of ASMs on the brain development are documented in mammals. Top predators such as Eurasian otters (Lutra lutra) are susceptible to the bioaccumulation of environmental pollutants. Still little is known about the health status of the otter population in Germany, while the detection of various pollutants in otter tissue samples has highlighted their role as an indicator species. To investigate potential contamination with pharmaceuticals, Eurasian otter brain samples were screened for selected ASMs via high-performance liquid chromatography and mass spectrometry. Via histology, brain sections were analyzed for the presence of potential associated neuropathological changes. In addition to 20 wild otters that were found dead, a control group of 5 deceased otters in human care was studied. Even though none of the targeted ASMs were detected in the otters, unidentified substances in many otter brains were measured. No obvious pathology was observed histologically, although the sample quality limited the investigations.
Collapse
Affiliation(s)
- Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martin Schmelz
- Aktion Fischotterschutz e.V, Otter-Zentrum Hankensbüttel, 29386 Hankensbüttel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| |
Collapse
|
9
|
Motion, Relation, and Passion in Brain Physiological and Cognitive Aging. Brain Sci 2022; 12:brainsci12091122. [PMID: 36138858 PMCID: PMC9496869 DOI: 10.3390/brainsci12091122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current paper was to present important factors for keeping the basic structures of a person’s brain function, i.e., the grey and white matter, intact. Several lines of evidence have shown that motion, relation, and passion are central factors for preserving the neural system in the grey and white matter during ageing. An active lifestyle has shown to contribute to the development of the central nervous system and to contrast brain ageing. Interpersonal relationships, and interactions, have shown to contribute to complex biological factors that benefit the cognitive resilience to decline. Furthermore, the current scientific literature suggests that passion, strong interest, could be the driving factor motivating individuals to learn new things, thus influencing the development and maintenance of the neural functional network over time. The present theoretical perspective paper aims to convey several key messages: (1) brain development is critically affected by lifestyle; (2) physical training allows one to develop and maintain brain structures during ageing, and may be one of the keys for good quality of life as an older person; (3) diverse stimuli are a key factor in maintaining brain structures; (4) motion, relation, and passion are key elements for contrasting the loss of the grey and white matter of the brain.
Collapse
|
10
|
Lum JAG, Clark GM, Bigelow FJ, Enticott PG. Resting state electroencephalography (EEG) correlates with children's language skills: Evidence from sentence repetition. BRAIN AND LANGUAGE 2022; 230:105137. [PMID: 35576738 DOI: 10.1016/j.bandl.2022.105137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Spontaneous neural oscillatory activity reflects the brain's functional architecture and has previously been shown to correlate with perceptual, motor and executive skills. The current study used resting state electroencephalography to examine the relationship between spontaneous neural oscillatory activity and children's language skills. Participants in the study were 52 English-speaking children aged around 10-years. Language was assessed using a sentence repetition task. The main analysis revealed resting state theta power negatively correlated with this task. No significant correlations were found in the other studied frequency bands (delta, alpha, beta, gamma). As part of typical brain development, spontaneous theta power declines across childhood and adolescence. The negative correlation observed in this study may therefore be indicating children's language skills are related to the maturation of theta oscillations. More generally, the study provides further evidence that oscillatory activity in the developing brain, even at rest, is reliably associated with children's language skills.
Collapse
Affiliation(s)
- Jarrad A G Lum
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia.
| | - Gillian M Clark
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| | - Felicity J Bigelow
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| | - Peter G Enticott
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| |
Collapse
|
11
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
12
|
Winkler CW, Clancy CS, Rosenke R, Peterson KE. Zika virus vertical transmission in interferon receptor1-antagonized Rag1 -/- mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathol Commun 2022; 10:46. [PMID: 35379362 PMCID: PMC8981715 DOI: 10.1186/s40478-022-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The mechanisms by which vertically transmitted Zika virus (ZIKV) causes postnatal brain development abnormalities and congenital disease remain poorly understood. Here, we optimized the established anti-IFNAR1 treated, Rag1-/- (AIR) mouse model of ZIKV infection to examine the consequence of vertical transmission on neonate survival and postnatal brain development. We found that modulating the infectious dose and the frequency of anti-IFNAR1 treatment of pregnant mice (termed AIRlow mice) prolonged neonatal survival allowing for pathogenesis studies of brain tissues at critical postnatal time points. Postnatal AIRlow mice all had chronic ZIKV infection in the brain that was associated with decreased cortical thickness and cerebellar volume, increased gliosis, and higher levels of cell death in many brain areas including cortex, hippocampus and cerebellum when compared to controls. Interestingly, despite active infection and brain abnormalities, the neurodevelopmental program remained active in AIRlow mice as indicated by elevated mRNA expression of critical neurodevelopmental genes in the brain and enlargement of neural-progenitor rich regions of the cerebellum at a developmental time point analogous to birth in humans. Nevertheless, around the developmental time point when the brain is fully populated by neurons, AIRlow mice developed neurologic disease associated with persistent ZIKV infection in the brain, gliosis, and increased cell death. Together, these data show that vertically transmitted ZIKV infection in the brain of postnatal AIRlow mice strongly influences brain development resulting in structural abnormalities and cell death in multiple regions of the brain.
Collapse
|
13
|
Patterns of Movement Performance and Consistency From Childhood to Old Age. Motor Control 2022; 27:258-274. [PMID: 36351427 DOI: 10.1123/mc.2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
It is widely accepted that the general process of aging can be reflected by changes in motor function. Typically, optimal performance of a given motor task is observed for healthy young adults with declines being observed for individuals at either end of the lifespan. This study was designed to examine differences in the average and variability (i.e., intraindividual variability) of chewing, simple reaction time, postural control, and walking responses. For this study, 15 healthy children, 15 young adults, and 15 older adults participated. Our results indicated the movement performance for the reaction time and postural sway followed a U shape with young adults having faster reaction times and decreased postural sway compared to the children and older adults. However, this pattern was not preserved across all motor tasks with no age differences emerging for (normalized) gait speed, while chewing rates followed a U-shaped curve with older adults and children chewing at faster rates. Taken together, these findings would indicate that the descriptive changes in motor function with aging are heavily influenced by the nature of the task being performed and are unlikely to follow a singular pattern.
Collapse
|
14
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Sullivan AJ, Romano ME, Karagas MR, Chen A, Yolton K, Lanphear BP, Braun JM. Chemical mixture exposures during pregnancy and cognitive abilities in school-aged children. ENVIRONMENTAL RESEARCH 2021; 197:111027. [PMID: 33744271 PMCID: PMC9022783 DOI: 10.1016/j.envres.2021.111027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Gestational exposure to chemical mixtures, which is prevalent among pregnant women, may be associated with adverse childhood neurodevelopment. However, few studies have examined relations between gestational chemical mixture exposure and children's cognitive abilities. METHODS In a cohort of 253 pregnant women and their children from Cincinnati, OH (enrolled 2003-2006), we quantified biomarker concentrations of 43 metals, phthalates, phenols, polybrominated diphenyl ethers, organophosphate and organochlorine pesticides, polychlorinated biphenyls, perfluoroalkyl substances, and environmental tobacco smoke in blood or urine. Using k-means clustering and principal component (PC) analysis, we characterized chemical mixtures among pregnant women. We assessed children's cognitive abilities using the Wechsler Preschool and Primary Scale of Intelligence-III and Wechsler Intelligence Scale for Children-IV at ages 5 and 8 years, respectively. We estimated covariate-adjusted differences in children's cognitive ability scores ]=cross clusters, and with increasing PC scores and individual biomarker concentrations. RESULTS Geometric mean biomarker concentrations were generally highest, intermediate, and lowest among women in clusters 1, 2, and 3, respectively. Children born to women in clusters 1 and 2 had 5.1 (95% CI: 9.4,-0.8) and 2.0 (95% CI: 5.5, 1,4) lower performance IQ scores compared to children in cluster 3, respectively. PC scores and individual chemical biomarker concentrations were not associated with cognitive abilities. CONCLUSIONS In this cohort, combined prenatal exposure to phenols, certain phthalates, pesticides, and perfluoroalkyl substances was inversely associated with children's cognition, but some individual chemical biomarker concentrations were not. Additional studies should determine if the aggregate impact of these chemicals on cognition is different from their individual effects.
Collapse
Affiliation(s)
- Geetika Kalloo
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | | | | | | | - Andreas Sjodin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam J Sullivan
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Megan E Romano
- Department of Epidemiology, Dartmouth College, Hanover, NH, USA
| | | | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Xu F, Liu M, Kim SY, Ge X, Zhang Z, Tang Y, Lin X, Toga AW, Liu S, Kim H. Morphological Development Trajectory and Structural Covariance Network of the Human Fetal Cortical Plate during the Early Second Trimester. Cereb Cortex 2021; 31:4794-4807. [PMID: 34017979 DOI: 10.1093/cercor/bhab123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
During the early second trimester, the cortical plate, or "the developing cortex", undergoes immensely complex and rapid development to complete its major complement of neurons. However, morphological development of the cortical plate and the precise patterning of brain structural covariance networks during this period remain unexplored. In this study, we used 7.0 T high-resolution magnetic resonance images of brain specimens ranging from 14 to 22 gestational weeks to manually segment the cortical plate. Thickness, area expansion, and curvature (i.e., folding) across the cortical plate regions were computed, and correlations of thickness values among different cortical plate regions were measured to analyze fetal cortico-cortical structural covariance throughout development of the early second trimester. The cortical plate displayed significant increases in thickness and expansions in area throughout all regions but changes of curvature in only certain major sulci. The topological architecture and network properties of fetal brain covariance presented immature and inefficient organizations with low degree of integration and high degree of segregation. Altogether, our results provide novel insight on the developmental patterning of cortical plate thickness and the developmental origin of brain network architecture throughout the early second trimester.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.,Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Sharon Y Kim
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Xinting Ge
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Zhonghe Zhang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Xiangtao Lin
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Hosung Kim
- Laboratory of Neuro Imaging (LONI), USC Steven Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Particulate Matter, an Intrauterine Toxin Affecting Foetal Development and Beyond. Antioxidants (Basel) 2021; 10:antiox10050732. [PMID: 34066412 PMCID: PMC8148178 DOI: 10.3390/antiox10050732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Air pollution is the 9th cause of the overall disease burden globally. The solid component in the polluted air, particulate matters (PMs) with a diameter of 2.5 μm or smaller (PM2.5) possess a significant health risk to several organ systems. PM2.5 has also been shown to cross the blood–placental barrier and circulate in foetal blood. Therefore, it is considered an intrauterine environmental toxin. Exposure to PM2.5 during the perinatal period, when the foetus is particularly susceptible to developmental defects, has been shown to reduce birth weight and cause preterm birth, with an increase in adult disease susceptibility in the offspring. However, few studies have thoroughly studied the health outcome of foetuses due to intrauterine exposure and the underlying mechanisms. This perspective summarises currently available evidence, which suggests that intrauterine exposure to PM2.5 promotes oxidative stress and inflammation in a similar manner as occurs in response to direct PM exposure. Oxidative stress and inflammation are likely to be the common mechanisms underlying the dysfunction of multiple systems, offering potential targets for preventative strategies in pregnant mothers for an optimal foetal outcome.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
- Correspondence: (H.C.); (S.S.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (A.P.); (P.P.)
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (B.G.O.); (A.O.)
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (A.P.); (P.P.)
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, Sydney, NSW 2065, Australia;
- Correspondence: (H.C.); (S.S.)
| |
Collapse
|
19
|
Volk HE, Perera F, Braun JM, Kingsley SL, Gray K, Buckley J, Clougherty JE, Croen LA, Eskenazi B, Herting M, Just AC, Kloog I, Margolis A, McClure LA, Miller R, Levine S, Wright R. Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO. ENVIRONMENTAL RESEARCH 2021; 196:110320. [PMID: 33098817 PMCID: PMC8060371 DOI: 10.1016/j.envres.2020.110320] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Air pollution exposure is ubiquitous with demonstrated effects on morbidity and mortality. A growing literature suggests that prenatal air pollution exposure impacts neurodevelopment. We posit that the Environmental influences on Child Health Outcomes (ECHO) program will provide unique opportunities to fill critical knowledge gaps given the wide spatial and temporal variability of ECHO participants. OBJECTIVES We briefly describe current methods for air pollution exposure assessment, summarize existing studies of air pollution and neurodevelopment, and synthesize this information as a basis for recommendations, or a blueprint, for evaluating air pollution effects on neurodevelopmental outcomes in ECHO. METHODS We review peer-reviewed literature on prenatal air pollution exposure and neurodevelopmental outcomes, including autism spectrum disorder, attention deficit hyperactivity disorder, intelligence, general cognition, mood, and imaging measures. ECHO meta-data were compiled and evaluated to assess frequency of neurodevelopmental assessments and prenatal and infancy residential address locations. Cohort recruitment locations and enrollment years were summarized to examine potential spatial and temporal variation present in ECHO. DISCUSSION While the literature provides compelling evidence that prenatal air pollution affects neurodevelopment, limitations in spatial and temporal exposure variation exist for current published studies. As >90% of the ECHO cohorts have collected a prenatal or infancy address, application of advanced geographic information systems-based models for common air pollutant exposures may be ideal to address limitations of published research. CONCLUSIONS In ECHO we have the opportunity to pioneer unifying exposure assessment and evaluate effects across multiple periods of development and neurodevelopmental outcomes, setting the standard for evaluation of prenatal air pollution exposures with the goal of improving children's health.
Collapse
Affiliation(s)
- Heather E Volk
- Department of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | | | - Kimberly Gray
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering and Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Megan Herting
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amy Margolis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Rachel Miller
- Department of Medicine, Department of Pediatrics, The College of Physicians and Surgeons, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sarah Levine
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind Wright
- Department of Environmental Medicine and Public Health, And Pediatrics, Institute for Exposomics Research, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To assess how the changing landscape of marijuana use affects the developing brain and mental health of college students. RECENT FINDINGS Legalization of cannabis may facilitate use in the college population, with 38% of college students, whose brains are still maturing, regularly using marijuana products. Earlier and increased use, higher potency, pre-existing issues, and genetic predispositions increase negative outcomes by precipitating or worsening mental illness and ultimately impacting academic success. In the USA, the sharpest increase in cannabis users following legalization has been in the college age population (18-25 years of age). This population is especially vulnerable to the negative impacts and risks associated with cannabis use, including risk for the onset of major psychiatric illness. College mental health practitioners should remain informed about health effects of cannabis use, assess patient use on a regular basis, provide education and be familiar with interventions to reduce harm.
Collapse
Affiliation(s)
- Ludmila De Faria
- Young Adult Clinic, University of Florida School of Medicine, Gainesville, FL, USA.
| | - Lillian Mezey
- Student Health, Counseling and Psychological Services, University of Virginia, Charlottesville, VA, USA
| | - Aaron Winkler
- College Mental Health Program, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Yeung MK. An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. Neuroimage 2020; 227:117672. [PMID: 33359349 DOI: 10.1016/j.neuroimage.2020.117672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Despite decades of research, our understanding of functional brain development throughout childhood and adolescence remains limited due to the challenges posed by certain neuroimaging modalities. Recently, there has been a growing interest in using functional near-infrared spectroscopy (fNIRS) to elucidate the neural basis of cognitive and socioemotional development and identify the factors shaping these types of development. This article, focusing on the fNIRS methods, presents an up-to-date systematic review of fNIRS studies addressing the effects of age and other factors on brain functions in children and adolescents. Literature searches were conducted using PubMed and PsycINFO. A total of 79 fNIRS studies involving healthy individuals aged 3-17 years that were published in peer-reviewed journals in English before July 2020 were included. Six methodological aspects of these studies were evaluated, including the research design, experimental paradigm, fNIRS measurement, data preprocessing, statistical analysis, and result presentation. The risk of bias, such as selective outcome reporting, was assessed throughout the review. A qualitative synthesis of study findings in terms of the factor effects on changes in oxyhemoglobin concentration was also performed. This unregistered review highlights the strengths and limitations of the existing literature and suggests directions for future research to facilitate the improved use of fNIRS in developmental cognitive neuroscience research.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
22
|
Morgan JE, Lee SS, Mahrer NE, Guardino CM, Davis EP, Shalowitz MU, Ramey SL, Dunkel Schetter C. Prenatal maternal C-reactive protein prospectively predicts child executive functioning at ages 4-6 years. Dev Psychobiol 2020; 62:1111-1123. [PMID: 32441781 PMCID: PMC7680271 DOI: 10.1002/dev.21982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/08/2022]
Abstract
This prospective longitudinal study evaluated multiple maternal biomarkers from the preconception and prenatal periods as time-sensitive predictors of child executive functioning (EF) in 100 mother-child dyads. Maternal glycated hemoglobin (HbA1C ), C-reactive protein (CRP), and blood pressure (BP) were assayed before pregnancy and during the second and third trimesters. Subsequently, children were followed from birth and assessed for EF (i.e. cognitive flexibility, response inhibition) at ages 4-6 years. Perinatal data were also extracted from neonatal records. Higher maternal CRP, but not maternal HbA1C or BP, uniquely predicted poorer child cognitive flexibility, even with control of maternal HbA1C and BP, relevant demographic factors, and multiple prenatal/perinatal covariates (i.e. preconception maternal body mass index, maternal depression, maternal age at birth, child birth weight, child birth order, child gestational age, and child birth/neonatal complications). Predictions from maternal CRP were specific to the third trimester, and third trimester maternal CRP robustly predicted child cognitive flexibility independently of preconception and second trimester CRP. Child response inhibition was unrelated to maternal biomarkers from all time points. These findings provide novel, prospective evidence that maternal inflammation uniquely predicts child cognitive flexibility deficits, and that these associations depend on the timing of exposure before or during pregnancy.
Collapse
Affiliation(s)
- Julia E Morgan
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Steve S Lee
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Nicole E Mahrer
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Madeleine U Shalowitz
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Sharon L Ramey
- Virginia Tech Carilion Research Institute, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
23
|
Evans DR, Larsen-Freeman D. Bifurcations and the Emergence of L2 Syntactic Structures in a Complex Dynamic System. Front Psychol 2020; 11:574603. [PMID: 33192875 PMCID: PMC7658482 DOI: 10.3389/fpsyg.2020.574603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
We report on a complex dynamic systems study of an untutored adult French learner’s development of English syntax, specifically two non-finite adverbial constructions. The study was conducted over one academic year of 30 weeks. From an analysis of L2 speech samples collected weekly, certain patterns in the flux emerged. The learner’s ensuing second language development is characterized by a series of bifurcations, stemming from forms competing for the same functional terrain. Each bifurcation is accompanied by turbulence as the system moves from one attractor state to another. The transition is characterized by loss of stability, an increase in variability, and a period of dysfluency. It is in the dynamic relationship of accuracy and fluency that novel syntactic forms emerge, both convergent with and divergent from dominant contextual patterns, with dominance established by consulting a well-known corpus of contemporary English. Non-linear development occurs with continuous and iterative exposure to and interaction in English—from relexification to adaptation and synchronization, animated by the learner’s perception and memory of regular sequential associations, to pruning of divergent forms. What results over time is a branching hierarchy, connecting online processing with over time development. Multiple competing forms continue to co-exist in the learner’s repertoire, which is likely more typical of adult L2 development than of L1 acquisition.
Collapse
Affiliation(s)
- D Reid Evans
- Office of Graduate Medical Education, University of Massachusetts Medical School, Worcester, MA, United States
| | - Diane Larsen-Freeman
- Department of Linguistics, School of Education, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Libero LE, Schaer M, Li DD, Amaral DG, Nordahl CW. A Longitudinal Study of Local Gyrification Index in Young Boys With Autism Spectrum Disorder. Cereb Cortex 2020; 29:2575-2587. [PMID: 29850803 DOI: 10.1093/cercor/bhy126] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Local gyrification index (LGI), a metric quantifying cortical folding, was evaluated in 105 boys with autism spectrum disorder (ASD) and 49 typically developing (TD) boys at 3 and 5 years-of-age. At 3 years-of-age, boys with ASD had reduced gyrification in the fusiform gyrus compared with TD boys. A longitudinal evaluation from 3 to 5 years revealed that while TD boys had stable/decreasing LGI, boys with ASD had increasing LGI in right inferior temporal gyrus, right inferior frontal gyrus, right inferior parietal lobule, and stable LGI in left lingual gyrus. LGI was also examined in a previously defined neurophenotype of boys with ASD and disproportionate megalencephaly. At 3 years-of-age, this subgroup exhibited increased LGI in right dorsomedial prefrontal cortex, cingulate cortex, and paracentral cortex, and left cingulate cortex and superior frontal gyrus relative to TD boys and increased LGI in right paracentral lobule and parahippocampal gyrus, and left precentral gyrus compared with boys with ASD and normal brain size. In summary, this study identified alterations in the pattern and development of LGI during early childhood in ASD. Distinct patterns of alterations in subgroups of boys with ASD suggests that multiple neurophenotypes exist and boys with ASD and disproportionate megalencephaly should be evaluated separately.
Collapse
Affiliation(s)
- Lauren E Libero
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - Marie Schaer
- Office Medico-Pedagogique, Universite de Geneve, Rue David Dafour 1, Geneva 8, Switzerland
| | - Deana D Li
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - David G Amaral
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - Christine Wu Nordahl
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| |
Collapse
|
25
|
Gross JP, Powell S, Zelko F, Hartsell W, Goldman S, Fangusaro J, Lulla RR, Smiley NP, Chang JHC, Gondi V. Improved neuropsychological outcomes following proton therapy relative to X-ray therapy for pediatric brain tumor patients. Neuro Oncol 2020; 21:934-943. [PMID: 30997512 DOI: 10.1093/neuonc/noz070] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Survivors of pediatric brain tumors are at risk for impaired development in multiple neuropsychological domains. The purpose of this study was to compare neuropsychological outcomes of pediatric brain tumor patients who underwent X-ray radiotherapy (XRT) versus proton radiotherapy (PRT). METHODS Pediatric patients who underwent either XRT or PRT and received posttreatment age-appropriate neuropsychological evaluation-including measures of intelligence (IQ), attention, memory, visuographic skills, academic skills, and parent-reported adaptive functioning-were identified. Multivariate analyses were performed to assess differences in neuropsychological outcomes and included tests for interaction between treatment cohort and follow-up time. RESULTS Between 1998 and 2017, 125 patients with tumors located in the supratentorial (17.6%), midline (28.8%), or posterior fossa (53.6%) compartments received radiation and had posttreatment neuropsychological evaluation. Median age at treatment was 7.4 years. The PRT patient cohort had higher estimated SES and shorter median time from radiotherapy completion to last neuropsychological evaluation (6.7 vs 2.6 y, P < 0.001). On multivariable analysis, PRT was associated with higher full-scale IQ (β = 10.6, P = 0.048) and processing speed (β = 14.4, P = 0.007) relative to XRT, with trend toward higher verbal IQ (β = 9.9, P = 0.06) and general adaptive functioning (β = 11.4, P = 0.07). Planned sensitivity analyses truncating follow-up interval in the XRT cohort re-demonstrated higher verbal IQ (P = 0.01) and IQ (P = 0.04) following PRT, with trend toward improved processing speed (P = 0.09). CONCLUSIONS PRT is associated with favorable outcomes for intelligence and processing speed. Combined with other strategies for treatment de-intensification, PRT may further reduce neuropsychological morbidity of brain tumor treatment.
Collapse
Affiliation(s)
- Jeffrey P Gross
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephanie Powell
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank Zelko
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Hartsell
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Radiation Oncology Consultants LLC, Chicago, Illinois.,Northwestern Medicine Chicago Proton Center, Warrenville, Illinois
| | - Stewart Goldman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine and the Aflac Cancer Center, Atlanta, Georgia
| | - Rishi R Lulla
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Natasha Pillay Smiley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Han-Chih Chang
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Radiation Oncology Consultants LLC, Chicago, Illinois.,Northwestern Medicine Chicago Proton Center, Warrenville, Illinois
| |
Collapse
|
26
|
Family nurture intervention alters relationships between preterm infant EEG delta brush characteristics and term age EEG power. Clin Neurophysiol 2020; 131:1909-1916. [PMID: 32599274 DOI: 10.1016/j.clinph.2020.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Family Nurture Intervention (FNI) facilitates mother/infant emotional connection, improves neurodevelopmental outcomes and increases electroencephalogram (EEG) power at term age. Here we explored whether delta brushes (DB), early EEG bursts that shape brain development, are altered by FNI and mediate later effects of FNI on EEG. METHODS We assessed DB characteristics in EEG data from a randomized controlled trial comparing infants with standard care (SC, n = 31) versus SC + FNI (n = 33) at ~35 and ~40 weeks GA. RESULTS Compared to SC infants, FNI infant DB amplitude increased more from ~35 to ~40 weeks, and FNI infants had longer duration DBs. DB parameters (rate, amplitude, brush frequency) at ~35 weeks were correlated with power at ~40 weeks, but only in SC infants. FNI effects on DB parameters do not mediate FNI effects on EEG power or coherence at term. CONCLUSIONS DBs are related to subsequent brain activity and FNI alters DB parameters. However, FNI's effects on electrocortical activity at term age are not dependent on its earlier effects on DBs. SIGNIFICANCE While early DBs can have important effects on later brain activity in preterm infants, facilitating emotional connection with FNI may allow brain maturation to be less dependent on early bursts.
Collapse
|
27
|
Cruz S, Lifter K, Barros C, Vieira R, Sampaio A. Neural and psychophysiological correlates of social communication development: Evidence from sensory processing, motor, cognitive, language and emotional behavioral milestones across infancy. APPLIED NEUROPSYCHOLOGY-CHILD 2020; 11:158-177. [PMID: 32449376 DOI: 10.1080/21622965.2020.1768392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article presents a literature review focusing on the neural and psychophysiological correlates associated with social communication development in infancy. Studies presenting evidence on infants' brain activity and developments in infant sensory processing, motor, cognitive, language, and emotional abilities are described in regard to the neuropsychophysiological processes underlying the emergence of these specific behavioral milestones and their associations with social communication development. Studies that consider specific age-related characteristics across the infancy period are presented. Evidence suggests that specific neural and physiological signatures accompany age-related social communication development during the first 18 months of life.
Collapse
Affiliation(s)
- Sara Cruz
- The Psychology for Positive Development Research Center, Lusíada University - North, Porto, Portugal.,Instituto de Neurodesenvolvimento (IND), Porto, Portugal
| | - Karin Lifter
- Department of Applied Psychology, Northeastern University, Boston, Massachusetts, USA
| | - Catarina Barros
- Psychological Neuroscience Laboratory, Research in Psychology Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory, Research in Psychology Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
28
|
Shah-Kulkarni S, Lee S, Jeong KS, Hong YC, Park H, Ha M, Kim Y, Ha EH. Prenatal exposure to mixtures of heavy metals and neurodevelopment in infants at 6 months. ENVIRONMENTAL RESEARCH 2020; 182:109122. [PMID: 32069757 DOI: 10.1016/j.envres.2020.109122] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to mixture of neurotoxic metals such as lead, mercury and cadmium occurs at a specific point of time. When exposed to metal mixtures, one metal may act as an agonist or antagonist to another metal. Thus, it is important to study the effects of exposure to a combination of metals on children's development using advance statistical methods. OBJECTIVES In this study, we explored the effects of prenatal metal exposure including lead, mercury and cadmium in early pregnancy (12-20 weeks), late pregnancy (>28 weeks), and at birth on neurodevelopment of infants at 6 months of age. METHODS We included 523 eligible mother-child pairs from the mothers and children environmental health (MOCEH) study, a prospective birth cohort study in Korea. We used linear regression, Bayesian kernel machine regression (BKMR) and generalized additive models (GAM), to evaluate the effects of exposure to metal mixtures on neurodevelopment of infants aged 6 months. The Korean version of Bayley scale of infant and toddler development-II was used to measure the child's neurodevelopment. RESULTS Linear regression models showed a significant negative effect of lead exposure during late pregnancy on the mental development index (MDI) [β = -2.51 (-4.92, -0.10)] scores of infants aged 6 months following co-exposure to mercury. Further, linear regression analysis showed a significant interaction between late pregnancy lead and mercury concentrations. BKMR analysis showed similar results as those obtained in linear regression models. These results were also replicated in the GAM. Stratification analysis showed that greater than 50 percentile concentration of mercury in late pregnancy potentiated the adverse effects of lead in late pregnancy on MDI [β = -4.33 (-7.66, -1.00)] and psychomotor development index (PDI) [β = -5.30 (-9.13, -1.46)] at 6 months of age. Prenatal cadmium exposure did not show a significant association with MDI and PDI at 6 months in the linear regression or BKMR analysis. CONCLUSION Based on all the statistical methods used, we demonstrated the effect of combined exposure to metals on the neurodevelopment of infants aged 6 months, with significant interaction between lead and mercury.
Collapse
Affiliation(s)
- Surabhi Shah-Kulkarni
- Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Seulbi Lee
- Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Sook Jeong
- Department of Occupational and Environmental Medicine, Hallym University Sacred Heart Hospital, Gyeonggido, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Eun-Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Ma R, Wang M, Gao S, Zhu L, Yu L, Hu D, Zhu L, Huang W, Zhang W, Deng J, Pan J, He H, Gao Z, Xu J, Han X. miR-29a Promotes the Neurite Outgrowth of Rat Neural Stem Cells by Targeting Extracellular Matrix to Repair Brain Injury. Stem Cells Dev 2020; 29:599-614. [PMID: 31885334 DOI: 10.1089/scd.2019.0174] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural stem cells (NSCs) can generate new neurons to repair brain injury and central nervous system disease by promoting neural regeneration. MicroRNAs (miRNAs) involve in neural development, brain damage, and neurological diseases repair. Recent reports show that several miRNAs express in NSCs and are important to neurogenesis. Neurites play a key role in NSC-related neurogenesis. However, the mechanism of NSC neurite generation is rarely studied. We surprisingly noticed that the neurites increased after bone morphogenetic protein (BMP) treatment in rat NSCs. This process was accompanied by the dynamic change of miRNA-29. Then we discovered that miR-29a regulated neural neurites in rat hippocampus NSCs. Overexpression of miR-29a reduced the cell soma area and promoted the neurite outgrowth of NSCs. Cell soma area became small, whereas the number of neurite increased. Moreover, neurite complexity increased dramatically, with more primary and secondary branches after miR-29a overexpression. In addition, miR-29a overexpression still maintained the stemness of NSCs. Besides, we identified that miR-29a can promote the neurite outgrowth by targeting extracellular matrix-related genes like Fibrillin 1 (Fbn1), Follistatin-like 1 (Fstl1), and laminin subunit gamma 2 (Lamc2). These findings may provide a novel role of miR-29a to regulate neurite outgrowth and development of NSCs. We also offered a possible theoretical basis to the migration mechanism of NSCs in brain development and damage repair.
Collapse
Affiliation(s)
- Rongjie Ma
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Wang
- School of Medicine, Jiaxing University, Jiaxing, China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Zhu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Yu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Daiyu Hu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, China
| | - Luying Zhu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Wei Huang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Weihua Zhang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jiajia Deng
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jie Pan
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Costa LG, Cole TB, Dao K, Chang YC, Garrick JM. Developmental impact of air pollution on brain function. Neurochem Int 2019; 131:104580. [PMID: 31626830 PMCID: PMC6892600 DOI: 10.1016/j.neuint.2019.104580] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Air pollution is an important contributor to the global burden of disease, particularly to respiratory and cardiovascular diseases. In recent years, evidence is accumulating that air pollution may adversely affect the nervous system as shown by human epidemiological studies and by animal models. Age appears to play a relevant role in air pollution-induced neurotoxicity, with growing evidence suggesting that air pollution may contribute to neurodevelopmental and neurodegenerative diseases. Traffic-related air pollution (e.g. diesel exhaust) is an important contributor to urban air pollution, and fine and ultrafine particulate matter (PM) may possibly be its more relevant component. Air pollution is associated with increased oxidative stress and inflammation both in the periphery and in the nervous system, and fine and ultrafine PM can directly access the central nervous system. This short review focuses on the adverse effects of air pollution on the developing brain; it discusses some characteristics that make the developing brain more susceptible to toxic effects, and summarizes the animal and human evidence suggesting that exposure to elevated air pollution is associated with a number of behavioral and biochemical adverse effects. It also discusses more in detail the emerging evidence of an association between perinatal exposure to air pollution and increased risk of autism spectrum disorder. Some of the common mechanisms that may underlie the neurotoxicity and developmental neurotoxicity of air pollution are also discussed. Considering the evidence presented in this review, any policy and legislative effort aimed at reducing air pollution would be protective of children's well-being.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
32
|
|
33
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
34
|
Zhao X, Wu Q, Chen Y, Song X, Ni H, Ming D. The Conjoint Analysis of Microstructural and Morphological Changes of Gray Matter During Aging. Front Neurol 2019; 10:184. [PMID: 30930828 PMCID: PMC6423803 DOI: 10.3389/fneur.2019.00184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
Macromorphological and microstructural changes of gray matter (GM) happen during brain normal aging. However, the mechanism of macro-microstructure association is still unclear, which is of guidance for understanding many neurodegenerative diseases. In this study, adopting structural magnetic resonance imaging (sMRI) and diffusion kurtosis imaging (DKI), GM aging pattern was characterized and its macro-microstructure associations were revealed. For 60 subjects among the ages of 47-79, the DKI and T1-weighted images were investigated with voxel-based analysis. The results showed age-related overlapped patterns between morphological and microstructural alterations during normal aging. It was worth noting that morphological changes and mean diffusivity (MD) indexes abnormalities mainly overlapped in the following regions, superior frontal gyrus, inferior frontal gyrus, cingulum gyrus, superior temporal gyrus, insula, and thalamus. Besides, overlapped with GM atrophies, mean kurtosis (MK) abnormalities were observed in superior frontal gyrus, inferior frontal gyrus, transverse temporal gyrus, insula, and thalamus. What important was that intrinsic aging independent associations between macrostructure and microstructure were found especially in media superior frontal gyrus, which revealed the potential mechanisms in the process of aging. The physiological mechanism may be associated with the elimination of neurons and synapses and the shrinkage of large neurons. Understanding the associations of GM volume changes and microstructural changes can account for the underlying mechanisms of aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Qiong Wu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Yuanyuan Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xizi Song
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
35
|
Bagheri A, Habibzadeh P, Razavipour SF, Volmar CH, Chee NT, Brothers SP, Wahlestedt C, Mowla SJ, Faghihi MA. HDAC Inhibitors Induce BDNF Expression and Promote Neurite Outgrowth in Human Neural Progenitor Cells-Derived Neurons. Int J Mol Sci 2019; 20:E1109. [PMID: 30841499 PMCID: PMC6429164 DOI: 10.3390/ijms20051109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Besides its key role in neural development, brain-derived neurotrophic factor (BDNF) is important for long-term potentiation and neurogenesis, which makes it a critical factor in learning and memory. Due to the important role of BDNF in synaptic function and plasticity, an in-house epigenetic library was screened against human neural progenitor cells (HNPCs) and WS1 human skin fibroblast cells using Cell-to-Ct assay kit to identify the small compounds capable of modulating the BDNF expression. In addition to two well-known hydroxamic acid-based histone deacetylase inhibitors (hb-HDACis), SAHA and TSA, several structurally similar HDAC inhibitors including SB-939, PCI-24781 and JNJ-26481585 with even higher impact on BDNF expression, were discovered in this study. Furthermore, by using well-developed immunohistochemistry assays, the selected compounds were also proved to have neurogenic potential improving the neurite outgrowth in HNPCs-derived neurons. In conclusion, we proved the neurogenic potential of several hb-HDACis, alongside their ability to enhance BDNF expression, which by modulating the neurogenesis and/or compensating for neuronal loss, could be propitious for treatment of neurological disorders.
Collapse
Affiliation(s)
- Amir Bagheri
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz, P.O. Box 7134767617, Iran.
| | - Seyedeh Fatemeh Razavipour
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Nancy T Chee
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Persian BayanGene Research and Training Center, Shiraz, P.O. Box 7134767617, Iran.
| |
Collapse
|
36
|
Licari MK, Finlay-Jones A, Reynolds JE, Alvares GA, Spittle AJ, Downs J, Whitehouse AJO, Leonard H, Evans KL, Varcin K. The Brain Basis of Comorbidity in Neurodevelopmental Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-0156-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Emberson LL. How does learning and memory shape perceptual development in infancy? PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
39
|
Abstract
Most neonatal seizures in preterm newborns are of acute symptomatic origin with a prevalence higher than in full-term infants. To date, recommendations for management of seizures in preterm newborns are scarce and do not differ from those in full-term newborns. Mortality in preterm newborns with seizures has significantly declined over the last decades, from figures of 84%-94% in the 1970s and 1980s to 22%-45% in the last years. However, mortality is significantly higher in those with a birth weight<1000g and a gestational age<28 weeks. Seizures are a strong predictor of unfavorable outcomes, including not only cerebral palsy, epilepsy, and intellectual disability, but also vision, hearing impairment, and microcephaly. The majority of patients with developmental delay are severely affected and this is usually associated with cerebral palsy. Furthermore, the incidence of epilepsy after neonatal seizures seems to be lower in preterm than in full-term infants but the risk is approximately 40 times greater than in the general population. Clinical studies cannot disentangle the specific and independent contributions of seizure-induced functional changes and the role of etiology and brain damage severity in determining the long-term outcomes in these newborns.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Department of Medicine & Surgery, University of Parma, Parma, Italy.
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Santa Maria Nuova Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
40
|
Li WH, Hu LF, Yuan L, Hao G, Zhu ZW. The Application of the First Year Inventory for ASD Screening in China. J Pediatr Nurs 2019; 44:e72-e78. [PMID: 30477945 DOI: 10.1016/j.pedn.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The First Year Inventory (FYI) is a parent-report instrument, and is developed to assess behaviors of 12-month-old infants that could suggest risk for an eventual diagnosis of autism. This study was designed to examine the application of the FYI in the Chinese community. DESIGN AND METHODS FYIs were completed at a community health center by 541 families during the child's physical examination at 12 months of age from 2013 to 2015. The weighted risk scores used in this study were based on US norms, and compared the FYI differences between China and the U.S. RESULTS The total risk scores ranged from 5 to 42 points; the 95th percentile cutoff was 27.00(9.8 points higher than the 95th percentile cutoff in the US), the 98th percentile cutoff was 29.66(7.04 points higher than the 98th percentile cutoff in the US), and the 99th percentile cutoff was 31.83. Higher risk scores were found for boys than girls. Mothers with a junior college education reported significantly higher FYI risk scores than other three groups including high school, college graduates and post-graduates. CONCLUSIONS There were no significant effects of birth parity, investigator, or investigation year on risk scores. Large-scale longitudinal research is encouraged in the future to develop an early detection model of autism in China.
Collapse
Affiliation(s)
- Wen-Hao Li
- Department of Developmental Behavioral Pediatric, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Fei Hu
- Department of Developmental Behavioral Pediatric, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Yuan
- Kaixuan community health center, Hangzhou, China
| | - Grace Hao
- Department of Allied Professions, North Carolina Central University, Durham, NC, USA.
| | - Zhi-Wei Zhu
- Department of Developmental Behavioral Pediatric, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Abstract
OBJECTIVES As surprisingly little is known about the developing brain studied in vivo in youth with Down syndrome (DS), the current review summarizes the small DS pediatric structural neuroimaging literature and begins to contextualize existing research within a developmental framework. METHODS A systematic review of the literature was completed, effect sizes from published studies were reviewed, and results are presented with respect to the DS cognitive behavioral phenotype and typical brain development. RESULTS The majority of DS structural neuroimaging studies describe gross differences in brain morphometry and do not use advanced neuroimaging methods to provide nuanced descriptions of the brain. There is evidence for smaller total brain volume (TBV), total gray matter (GM) and white matter, cortical lobar, hippocampal, and cerebellar volumes. When reductions in TBV are accounted for, specific reductions are noted in subregions of the frontal lobe, temporal lobe, cerebellum, and hippocampus. A review of cortical lobar effect sizes reveals mostly large effect sizes from early childhood through adolescence. However, deviance is smaller in adolescence. Despite these smaller effects, frontal GM continues to be largely deviant in adolescence. An examination of age-frontal GM relations using effect sizes from published studies and data from Lee et al. (2016) reveals that while there is a strong inverse relationship between age and frontal GM volume in controls across childhood and adolescence, this is not observed in DS. CONCLUSIONS Further developmentally focused research, ideally using longitudinal neuroimaging, is needed to elucidate the nature of the DS neuroanatomic phenotype during childhood and adolescence. (JINS, 2018, 24, 966-976).
Collapse
|
42
|
Coleman-Cowger VH, Oga EA, Peters EN, Mark K. Prevalence and associated birth outcomes of co-use of Cannabis and tobacco cigarettes during pregnancy. Neurotoxicol Teratol 2018; 68:84-90. [PMID: 29883744 PMCID: PMC6054553 DOI: 10.1016/j.ntt.2018.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023]
Abstract
Use of Cannabis and use of tobacco overlap, and co-use of Cannabis and tobacco has increased over the past decade among adults. The current study aims to document the prevalence and correlates of co-use of Cannabis and tobacco cigarettes among adult pregnant women utilizing secondary data from a larger study that compared and validated screeners for illicit and prescription drug use during pregnancy. Pregnant women (N = 500; 71% African American; 65% never married, average age of 28 years) were recruited from two urban University obstetric clinics between January and December 2017. Participants self-reported demographic, Cannabis, and tobacco cigarette use characteristics, and provided urine and hair samples for drug testing. Within two weeks after due date, research staff reviewed participants' electronic medical records to collect birth outcome data. Results showed that 9.0% reported co-use of Cannabis and tobacco, 12.1% reported Cannabis only use, 7.8% reported tobacco cigarette only use, and 71.1% reported no Cannabis or tobacco cigarette use in the past month. The birth outcomes to emerge as significant correlates of co-use of Cannabis and tobacco cigarettes were small head circumference, and the occurrence of birth defects, with the co-use group having the highest odds of a small head circumference [aOR: 5.7 (1.1-28.9)] and birth defects [aOR: 3.1 (1.2-8.3)] compared with other use groups. The Cannabis only group had 12 times higher odds of a stillbirth or miscarriage (aOR = 12.1). Screening and interventions to address concurrent Cannabis and tobacco use during pregnancy are needed, particularly among subpopulations with higher co-use rates. It is imperative to further explore and highlight the possible health implications of maternal co-use given the high prevalence rates found in this study sample.
Collapse
Affiliation(s)
| | | | | | - Katrina Mark
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, United States
| |
Collapse
|
43
|
Casamento-Moran A, Fleeman R, Chen YT, Kwon M, Fox EJ, Yacoubi B, Christou EA. Neuromuscular variability and spatial accuracy in children and older adults. J Electromyogr Kinesiol 2018; 41:27-33. [PMID: 29723799 DOI: 10.1016/j.jelekin.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022] Open
Abstract
Our ability to control movements is influenced by the developmental status of the neuromuscular system. Consequently, movement control improves from childhood to early adulthood but gradually declines thereafter. However, no study has compared movement accuracy between children and older adults. The purpose of this study was to compare endpoint accuracy during a fast goal-directed movement task in children and older adults. Ten pre-adolescent children (9.7 ± 0.67 yrs) and 19 older adults (71.95 ± 6.99 yrs) attempted to accurately match a peak displacement of the foot to a target (9° in 180 ms) with a dorsiflexion movement. We recorded electromyographic activity from the tibialis anterior (agonist) and soleus (antagonist) muscles. We quantified position error (i.e. spatial accuracy) as well as the coordination, magnitude, and variability of the antagonistic muscles. Children exhibited greater position error than older adults (36.4 ± 13.4% vs. 27.0 ± 9.8%). This age-related difference in spatial accuracy, was related to a more variable activation of the agonist muscle (R2: 0.358; P < 0.01). These results suggest that an immature neuromuscular system, compared to an aged one, affects the generation and refinement of the motor plan which increases the variability in the neural drive to the muscle and reduces spatial accuracy in children.
Collapse
Affiliation(s)
| | - Rebecca Fleeman
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, FL, USA.
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA; Department of Physical Therapy, University of Florida, FL, USA.
| |
Collapse
|
44
|
Tan KZ, Cunningham AM, Joshi A, Oei JL, Ward MC. Expression of kappa opioid receptors in developing rat brain - Implications for perinatal buprenorphine exposure. Reprod Toxicol 2018; 78:81-89. [PMID: 29635048 DOI: 10.1016/j.reprotox.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor (KOR) antagonist, is an emerging therapeutic agent for maternal opioid dependence in pregnancy and neonatal abstinence syndrome. However, the endogenous opioid system plays a critical role in modulating neurodevelopment and perinatal buprenorphine exposure may detrimentally influence this. To identify aspects of neurodevelopment vulnerable to perinatal buprenorphine exposure, we defined KOR protein expression and its cellular associations in normal rat brain from embryonic day 16 to postnatal day 23 with double-labelling immunohistochemistry. KOR was expressed on neural stem and progenitor cells (NSPCs), choroid plexus epithelium, subpopulations of cortical neurones and oligodendrocytes, and NSPCs and subpopulations of neurones in postnatal hippocampus. These distinct patterns of KOR expression suggest several pathways vulnerable to perinatal buprenorphine exposure, including proliferation, neurogenesis and neurotransmission. We thus suggest the cautious use of buprenorphine in both mothers and infants until its impact on neurodevelopment is better defined.
Collapse
Affiliation(s)
- Kathleen Z Tan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Anne M Cunningham
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| | - Anjali Joshi
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Ju Lee Oei
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia
| | - Meredith C Ward
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
45
|
Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S. MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. EBioMedicine 2018; 30:62-73. [PMID: 29580842 PMCID: PMC5952351 DOI: 10.1016/j.ebiom.2018.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022] Open
Abstract
Abnormalities in limbic neural circuits have been implicated in the onset of anxiety disorders. However, the molecular pathogenesis underlying anxiety disorders remains poorly elucidated. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) regulates amygdala circuitry to control the activity of the hypothalamic-pituitary-adrenal (HPA) axis, as well as induces anxiety-like behaviors in mice. MARCKSL1 expression was predominantly localized in the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala of the adult mouse brain. MARCKSL1 transgenic (Tg) mice exhibited anxiety-like behaviors dependent on corticotropin-releasing hormone. MARCKSL1 increased spine formation in the central amygdala, and downregulation of MARCKSL1 in the amygdala normalized both increased HPA axis activity and elevated anxiety-like behaviors in Tg mice. Furthermore, MARCKSL1 expression was increased in the PFC and amygdala in a brain injury model associated with anxiety-like behaviors. Our findings suggest that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors. MARCKSL1 induces spine formation in the amygdala, HPA axis activation, and anxiety-like behaviors. Downregulation of MARCKSL1 in the amygdala ameliorates anxiety-like behaviors MARCKSL1 is increased in a brain injury model associated with anxiety.
The molecular pathogenesis underlying anxiety disorders is still unclear. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) overexpression in mice increases spine formation in the amygdala and induces stress hormone upregulation and anxiety-like behaviors. Suppression of MARCKSL1 in the amygdala ameliorates both the increase in stress hormones and the elevated anxiety-like behaviors. Our results indicate that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors.
Collapse
Affiliation(s)
- Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaki Ueno
- Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
46
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
47
|
Huhdanpää H, Klenberg L, Westerinen H, Fontell T, Aronen ET. Sleep and psychiatric symptoms in young child psychiatric outpatients. Clin Child Psychol Psychiatry 2018; 23:77-95. [PMID: 28715946 DOI: 10.1177/1359104517718366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sleep may underlie psychiatric symptoms in young children. However, not many studies have reported on sleep and its associations with symptoms in young child psychiatric patients. OBJECTIVES To assess the amount and quality of sleep and how sleep associates with psychiatric symptoms in young child psychiatric patients. Furthermore, we evaluated how sleep and daytime somnolence differed in patients and their age- and gender-matched controls. METHOD The sample consisted of 139 3- to 7-year-old child psychiatric outpatients and 139 age- and gender-matched controls from community. We evaluated sleep and daytime somnolence with the Sleep Disturbance Scale for Children in all children and psychiatric symptoms with Child Behaviour Checklist (CBCL) in the patient group. Family background information was collected from the patients. RESULTS Of the patients, 31.6% had a significant sleep problem and 14.4% slept too little. The most typical sleep problems were restless sleep (31.7%), morning tiredness (21.6%) and difficulties getting to sleep at night (18.7%). All types of sleep problems were associated with CBCL total, internalising and externalising problems (all p-values < .01). We observed a strong association between all types of sleep problems and emotionally reactive subscale ( p-value < .001). Furthermore, parent-reported sleep problems increased significantly the risk of having high scores on total (odds ratio (OR) = 5.3, 95% confidence interval (CI) = [2.2, 12.6], p < .001), external (OR = 3.7, 95%, CI = [1.6, 8.5], p < .01) and internal (OR = 2.5, 95% CI = [1.1, 5.5], p < .05) scores after controlling for age, gender, family structure and parent's educational level. Even mild sleep disturbance increased the intensity of psychiatric symptoms. Compared to controls, patients slept less ( p < .001) and had significantly more frequent restless sleep, nightmares and morning and daytime somnolence. CONCLUSION Sleep problems and too little sleep are prevalent in young child psychiatric patients, and they relate strongly to the intensity of psychiatric symptoms. Identification and treatment of sleep problems should be a routine part of the treatment plan for young child psychiatric patients. The results emphasise the need for assessing sleep in young child psychiatric patients, as treating the sleep problem may reduce psychiatric symptoms.
Collapse
Affiliation(s)
- Hanna Huhdanpää
- 1 Laboratory of Developmental Psychopathology, Children's Hospital/Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Liisa Klenberg
- 2 Department of Psychology and Logopedics, University of Helsinki, Finland
| | - Hannu Westerinen
- 3 Department of Child Psychiatry, Helsinki University Hospital, Finland
| | - Tuija Fontell
- 3 Department of Child Psychiatry, Helsinki University Hospital, Finland
| | - Eeva T Aronen
- 1 Laboratory of Developmental Psychopathology, Children's Hospital/Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Finland
| |
Collapse
|
48
|
Hu R, Cao Q, Sun Z, Chen J, Zheng Q, Xiao F. A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. Int J Mol Med 2018; 41:195-201. [PMID: 29115371 PMCID: PMC5746309 DOI: 10.3892/ijmm.2017.3195] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
The PC12 cell line is a classical neuronal cell model due to its ability to acquire the sympathetic neurons features when deal with nerve growth factor (NGF). In the present study, the authors used a variety of different methods to induce PC12 cells, such as Opti-MEM medium containing different concentrations of fetal bovine serum (FBS) and horse serum compared with RPMI-1640 medium, and then observed the neurite length, differentiation, adhesion, cell proliferation and action potential, as well as the protein levels of axonal growth-associated protein 43 (GAP-43) and synaptic protein synapsin-1, among other differences. Compared with the conventional RPMI-1640 medium induction method, the new approach significantly improved the neurite length of induced cells (2.7 times longer), differentiation rate (30% increase), adhesion rate (21% increase) and expression of GAP-43 and synapsin-1 (three times), as well as reduced cell proliferation. The morphology of induced cells in Opti-MEM medium containing 0.5% FBS was more like that of neurons. Additionally, induced cells were also able to motivate the action potential after treatment for 6 days. Therefore, the research provided a novel, improved induction method of neural differentiation of PC12 cells using Opti-MEM medium containing 0.5% FBS, resulting in a better neuronal model cell line that can be widely used in neurobiology and neuropharmacology research.
Collapse
Affiliation(s)
- Rendong Hu
- Department of Pharmacology, School of Medicine, Jinan University
| | - Qiaoyu Cao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632
| | - Zhongqing Sun
- Department of Anesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, SAR
| | - Jinying Chen
- Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qing Zheng
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University
| |
Collapse
|
49
|
Affiliation(s)
- Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
50
|
Affiliation(s)
- Mandy Brown Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|