1
|
Esfandiari F, Bakhshi B, Shahbazi T, Derakhshan-nezhad E, Bahroudi M, Minaeeian S, Boustanshenas M, Alborzi F, Behboudi B, Fazeli MS. Significant difference in gut microbiota Bifidobacterium species but not Lactobacillus species in colorectal cancer patients in comparison with healthy volunteers using quantitative real-time PCR. PLoS One 2024; 19:e0294053. [PMID: 39602380 PMCID: PMC11602092 DOI: 10.1371/journal.pone.0294053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), with a growing incidence trend, is one of the most diagnosed cancers and the second cause of cancer-related deaths worldwide. The literature has frequently focused attention on the correlation between the gut microbiota imbalance and CRC. The genera Lactobacillus and Bifidobacterium have recently received increasing attention because of their potential in restoring alterations in the gut microflora. Therefore, this study aimed to quantitatively evaluate the presence of lactobacilli and bifidobacterial strains in the fecal samples of CRC patients compared to healthy volunteers. METHODS From 2018 to 2019, 25 confirmed CRC patients and 25 age- and gender-matched control subjects were enrolled in the study. Bacterial DNA was extracted from the fecal samples and the presence of lactobacilli and bifidobacterial strains were quantitatively determined using quantitative real-time PCR using genus-specific 16S rDNA primers. RESULTS A significant decline in the abundance of bifidobacteria in CRC patients compared to healthy individuals (p value<0.003) was observed; however, no significant difference was observed between the two groups regarding the abundance of lactobacilli (p value<0.163). Correlation analysis showed a positive association between the lack of genetic history of CRC and the numbers of gut bifidobacteria and lactobacilli. CONCLUSION As a putative gut probiotic, depletion of bifidobacteria showed significant correlation to the development and progression of CRC; therefore, therapeutic use of these probiotic bacteria could be considered a possible adjuvant approach in disease management through modulation of the microbiota.
Collapse
Affiliation(s)
- Fahime Esfandiari
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tayebe Shahbazi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Minaeeian
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Forough Alborzi
- Division of Gastroenterology, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Behboudi
- Division of Colon and Rectal Surgery, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Sadegh Fazeli
- Division of Colon and Rectal Surgery, Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
3
|
Uttarwar RG, Mekonnen SA, Van Beeck W, Wang A, Finnegan P, Roberts RF, Merenstein D, Slupsky CM, Marco ML. Effects of Bifidobacterium animalis subsp. lactis BB-12 and yogurt on mice during oral antibiotic administration. Microbiol Res 2024; 286:127794. [PMID: 38852301 DOI: 10.1016/j.micres.2024.127794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Probiotics have the potential to prevent disruptions to normal gastrointestinal function caused by oral antibiotic use. In this study, we examined the capacity of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) and yogurt, separately and combined, to mitigate the effects of the antibiotic amoxicillin-clavulanate (AMC) on the gut microbiota and metabolomes of C57BL/6 J mice. Male and female mice were administered either BB-12, yogurt, BB-12 in yogurt, or saline for 10 days concurrent with the inclusion of AMC in the drinking water. Male mice exposed to AMC exhibited significant reductions (p<0.05) in body weight over the course of the study compared to sham (no AMC) controls whereas no such effects were observed for female mice. AMC administration resulted in rapid alterations to the intestinal microbiota in both sexes irrespective of BB-12 or yogurt treatment, including significant (p<0.05) losses in bacterial cell numbers and changes in microbial alpha-diversity and beta-diversity in the feces and cecal contents. The effects of AMC on the gut microbiota were observed within one day of administration and the bacterial contents continued to change over time, showing a succession marked by rapid reductions in Muribaculaceae and Lachnospiraceae and temporal increases in proportions of Acholeplasmataceae (day 1) and Streptococcaceae and Leuconostocaceae (day 5). By day 10 of AMC intake, high proportions of Gammaproteobacteria assigned as Erwiniaceae or Enterobacteriaceae (average of 63 %), were contained in the stools and were similarly enriched in the cecum. The cecal contents of mice given AMC harbored significantly reduced concentrations of (branched) short-chain fatty acids (SCFA), aspartate, and other compounds, whereas numerous metabolites, including formate, lactate, and several amino acids and amino acid derivatives were significantly enriched. Despite the extensive impact of AMC, starting at day 7 of the study, the body weights of male mice given yogurt or BB-12 (in saline) with AMC were similar to the healthy controls. BB-12 (in saline) and yogurt intake was associated with increased Streptococcaceae and both yogurt and BB-12 resulted in lower proportions of Erwiniaceae in the fecal and cecal contents. The cecal contents of mice fed BB-12 in yogurt contained levels of formate, glycine, and glutamine that were equivalent to the sham controls. These findings highlight the potential of BB-12 and yogurt to mitigate antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Ruchita G Uttarwar
- Department of Food Science & Technology, University of California, Davis, USA
| | - Solomon A Mekonnen
- Department of Food Science & Technology, University of California, Davis, USA
| | - Wannes Van Beeck
- Department of Food Science & Technology, University of California, Davis, USA
| | - Aidong Wang
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Peter Finnegan
- Department of Food Science & Technology, University of California, Davis, USA
| | | | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA.
| |
Collapse
|
4
|
Moskova-Doumanova V, Vaseva A, Veleva R, Mladenova K, Melniska D, Doumanov J, Videv P, Topouzova-Hristova T, Dobreva L, Atanasova N, Danova S. In Vitro Effects of Postmetabolites from Limosilactobacillus fermentum 53 on the Survival and Proliferation of HT-29 Cells. Microorganisms 2024; 12:1365. [PMID: 39065133 PMCID: PMC11279320 DOI: 10.3390/microorganisms12071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Naturally fermented dairy products are an important component of the human diet. They are a valuable source of nutrients as well as vitamins and minerals. Their importance as a source of probiotic bacterial strains should not be overlooked. A number of studies highlight the positive effects of species of the probiotic lactic acid bacteria on the intestinal microbiome and the overall homeostasis of the body, as well as a complementary treatment for some diseases. However, data on the effects on the intestinal epithelial cells of postmetabolites released by probiotic bacteria are incomplete. This is likely due to the fact that these effects are species- and strain-specific. In the present study, we investigated the effects of postmetabolites produced by a pre-selected candidate probiotic strain Limosilactobacillus fermentum on HT-29 intestinal epithelial cells. Our data showed a pronounced proliferative effect, evaluated by flow cytometry, quantification of the cell population and determination of the mitotic index. This was accompanied by the stabilization of the cell monolayer, measured by an increase in TEER (transepithelial electric resistance) and the reorganization of actin filaments. The data obtained are a clear indication of the positive effects that the products secreted by L. fermentum strain 53 have on intestinal epithelial cells.
Collapse
Affiliation(s)
- Veselina Moskova-Doumanova
- Faculty of Biology, Department of Cell and Developmental Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (V.M.-D.); (T.T.-H.)
| | - Anita Vaseva
- Faculty of Biology, Department of Cell and Developmental Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (V.M.-D.); (T.T.-H.)
| | - Ralitsa Veleva
- Faculty of Biology, Department of Cell and Developmental Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (V.M.-D.); (T.T.-H.)
| | - Kirilka Mladenova
- Faculty of Biology, Department of Biochemistry, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (J.D.)
| | - Denitsa Melniska
- Faculty of Biology, Department of Cell and Developmental Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (V.M.-D.); (T.T.-H.)
| | - Jordan Doumanov
- Faculty of Biology, Department of Biochemistry, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (J.D.)
| | - Pavel Videv
- Faculty of Biology, Department of Biochemistry, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (J.D.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Department of Cell and Developmental Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (V.M.-D.); (T.T.-H.)
| | - Lili Dobreva
- Bulgarian Academy of Sciences, Stefan Angeloff Institute of Microbiology, 26, Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria; (L.D.); (N.A.)
| | - Nikoleta Atanasova
- Bulgarian Academy of Sciences, Stefan Angeloff Institute of Microbiology, 26, Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria; (L.D.); (N.A.)
| | - Svetla Danova
- Bulgarian Academy of Sciences, Stefan Angeloff Institute of Microbiology, 26, Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria; (L.D.); (N.A.)
| |
Collapse
|
5
|
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Rodríguez-Lagunas MJ, Collado MC, Pérez-Cano FJ. Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods 2024; 13:2058. [PMID: 38998564 PMCID: PMC11241808 DOI: 10.3390/foods13132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Garyfallia Kapravelou
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
| | - Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Manuel Bernabeu
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Karen Knipping
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | | | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Center for Biomedical Research Network for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Carmen Collado
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Francisco José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
6
|
Fernández-Lainez C, Logtenberg MJ, Tang X, Schols HA, López-Velázquez G, de Vos P. β(2→1) chicory and β(2→1)-β(2→6) agave fructans protect the human intestinal barrier function in vitro in a stressor-dependent fashion. Food Funct 2022; 13:6737-6748. [PMID: 35665791 DOI: 10.1039/d2fo00534d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary fibers such as fructans can protect the intestinal epithelial barrier integrity, but the mechanisms underlying this protection are not completely understood. We aimed to study the protective effect of β(2→1)-β(2→6) branched graminan-type fructans (GTFs) on gut epithelial barrier function that was disrupted by three different agents which impact the barrier function via different cellular mechanisms. The effects of GTFs were compared with those of linear β(2→1) inulin-type fructans (ITFs). T84 intestinal epithelial monolayers were incubated with GTFs and ITFs. Afterwards, the monolayers were challenged with the barrier disruptors calcium ionophore A23187, 12-myristate 13-acetate (PMA) and deoxynivalenol (DON). Transepithelial resistance was measured with an electric cell-substrate impedance sensing system. All fructans studied prevented the barrier disruption induced by A23187. ITF II protected from the disruptive effects of PMA. However, none of the studied fructans influenced the disruption induced by DON. As a measure of disruption-induced inflammation, interleukin-8 (IL-8) production by the intestinal epithelium was determined by ELISA. The production of IL-8 induced by A23187 was decreased by all fructans, whereas IL-8 production induced by DON decreased only upon pre-treatment with ITF II. None of the studied fructans prevented PMA induced IL-8 production. GTFs just like ITFs can influence the barrier function and inflammatory processes in gut epithelial cells in a structure-dependent fashion. These distinct protective effects are dependent on the different signaling pathways that lead to gut barrier disruption.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Av. Iman 1, 04530, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso. Circuito de Posgrados, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Madelon J Logtenberg
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Av. Iman 1, 04530, Cuidad de México, Mexico.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
7
|
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Arch Microbiol 2021; 204:61. [PMID: 34940898 PMCID: PMC8702511 DOI: 10.1007/s00203-021-02700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022]
Abstract
Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.
Collapse
|
8
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
9
|
Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Semin Cancer Biol 2021; 70:24-36. [PMID: 32574811 DOI: 10.1016/j.semcancer.2020.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota composition and dietary factors in our food along with the use of prebiotics and probiotics play an important role in the maintenance of human health. A well-balanced gut microbial population is necessary for the host and the microbiota to coexist in a mutually beneficial relationship maintaining homeostasis. Considering the potential of modern technological tools, it is possible nowadays to engineer prebiotic bacteria having a positive influence on the microbiome on one hand while on the other one may have the ease to get rid of the pathogenic proinflammatory microbes or elements causing dysbiosis. Past studies have seen that in cancer there is a loss of inter-microbial relationship cum interactions within microbiota members, the metabolic products produced by them and the host immune system in a microbial ecosystem, leading to dysbiosis. Current review highlights the importance of probiotics in the management of cancer by bringing together majority of the studies together at a single platform and moreover, stresses upon the need to maintain eubiosis in order to evade and inhibit the progression of cancer. Continuous expansion in knowledge about probiotics, their effect on various cancers and the underlying mechanism of action has raised the global scientific interest towards their possible use against different cancers. Furthermore, the article emphasizes upon the need to explore newer therapeutic targets comprising of the microbiome which could further pave the way to the concept of personalized medicines for various kinds of malignancies so as to derive maximum benefits of a treatment modality and to preserve the microbial homeostasis.
Collapse
Affiliation(s)
- Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Var Ruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT 160019, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
10
|
Mäkelä SM, Forssten SD, Kailajärvi M, Langén VL, Scheinin M, Tiihonen K, Ouwehand AC. Effects of Bifidobacterium animalis ssp. lactis 420 on gastrointestinal inflammation induced by a nonsteroidal anti-inflammatory drug: A randomized, placebo-controlled, double-blind clinical trial. Br J Clin Pharmacol 2021; 87:4625-4635. [PMID: 33908058 PMCID: PMC9291844 DOI: 10.1111/bcp.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/26/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022] Open
Abstract
Aims Use of nonsteroidal anti‐inflammatory drugs (NSAIDs) can cause damage to the gastric and duodenal mucosa. Some probiotics have proven useful in ameliorating the harmful side‐effects of NSAIDs. Our aim was to evaluate whether oral administration of Bifidobacterium animalis ssp. lactis 420 (B420) can attenuate the increase of calprotectin excretion into faeces induced by intake of diclofenac sustained‐release tablets. Methods A double‐blind, parallel‐group, placebo‐controlled and randomized clinical study was performed in 50 healthy male and female volunteers aged 20–40 years, in Finland. Study participation consisted of 4 phases: run‐in, intervention with B420 or placebo, B420 or placebo + NSAID treatment, and follow‐up. The primary outcome was the concentration of calprotectin in faeces. Secondary outcomes were haemoglobin and microbial DNA in faeces and blood haemoglobin levels. Results Intake of diclofenac increased the faecal excretion of calprotectin in both groups. The observed increases were 48.19 ± 61.55 μg/g faeces (mean ± standard deviation) in the B420 group and 31.30 ± 39.56 μg/g in the placebo group (difference estimate 16.90; 95% confidence interval: −14.00, 47.77; P = .276). There were no significant differences between the treatment groups in changes of faecal or blood haemoglobin. Faecal B. lactis DNA was much more abundant in the B420 group compared to the placebo group (ANOVA estimate for treatment difference 0.85 × 109/g faeces; 95% confidence interval: 0.50 × 109, 1.21 × 109; P < .0001). Conclusions Short‐term administration of the probiotic B420 did not protect the healthy adult study participants from diclofenac‐induced gastrointestinal inflammation as determined by analysis of faecal calprotectin levels.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Sofia D Forssten
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Marita Kailajärvi
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ville L Langén
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Scheinin
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Kirsti Tiihonen
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Arthur C Ouwehand
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| |
Collapse
|
11
|
Barbero-Becerra V, Juárez-Hernández E, Chávez-Tapia NC, Uribe M. Inulin as a Clinical Therapeutic Intervention in Metabolic Associated Fatty Liver Disease. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1867997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit., Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
12
|
Rai N, Singh AK, Keshri PK, Barik S, Kamble SC, Singh SK, Kumar R, Mishra P, Kotiya D, Gautam V. Probiotics for Management of Gastrointestinal Cancers. PROBIOTIC RESEARCH IN THERAPEUTICS 2021:191-209. [DOI: 10.1007/978-981-15-8214-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Cheng X, Zheng J, Lin A, Xia H, Zhang Z, Gao Q, Lv W, Liu H. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Svistunov AA, Osadchuk MA, Kireeva NV, Hudarova AA, Achkasov EE. NSAID-induced enteropathy: the current state of the problem. TERAPEVT ARKH 2019; 90:95-100. [PMID: 30701943 DOI: 10.26442/terarkh201890895-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The review analyzes the main etiological and pathogenetic mechanisms of the development of NSAID-enteropathy. Particular attention is paid to the role of intestinal microbiota in the manifestation and progression of NSAID-enteropathy. The special role of probiotics in the prevention and treatment of NSAIDs enteropathy is considered.
Collapse
Affiliation(s)
- A A Svistunov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - M A Osadchuk
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - N V Kireeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - A A Hudarova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - E E Achkasov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
16
|
Xu Y, Wan Q, Feng J, Du L, Li K, Zhou Y. Whole grain diet reduces systemic inflammation: A meta-analysis of 9 randomized trials. Medicine (Baltimore) 2018; 97:e12995. [PMID: 30412134 PMCID: PMC6221555 DOI: 10.1097/md.0000000000012995] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUNDS Observational studies had suggested an inverse association between whole grain consumption and concentration of inflammatory markers, but evidence from interventional studies was inconsistent. Therefore, we conducted a meta-analysis of randomized trials to have a better understanding of this issue. METHODS This study has been registered in PROSPERO (ID: CRD42018096533). We searched PubMed, Web of Science, Embase, Medline, and Cochrane Library for articles focusing on the topic from inception to 1 January, 2018. Summary standardized mean difference (SMD) and 95% confidence interval (CI) were calculated by using either random effect model or fixed effect model according to the heterogeneity of included studies. Subgroup analysis was also performed. RESULTS Totally 9 randomized trials included 838 participants were identified. In a pooled analysis of all studies, consumption of whole grains had an inverse association with inflammatory markers (SMD 0.16, 95% CI, 0.02-0.30), including C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β). Specific analyses for CRP and IL-6 yielded that whole grain diet was related with a significant decrease in the concentration of CRP (SMD 0.29, 95% CI, 0.08-0.50) and IL-6 (SMD 0.19, 95% CI, 0.03-0.36). CONCLUSIONS The evidence suggested that citizens could benefit from increased whole grain intake for reducing systemic inflammation. Further well-designed studies are required to investigate the mechanism under the appearance.
Collapse
Affiliation(s)
- Yujie Xu
- West China School of Nursing and Department of Nursing
| | | | - Jinhua Feng
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Liang Du
- Chinese Evidence-Based Medicine/Cochrane Center
| | - Ka Li
- Department of nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery
| |
Collapse
|
17
|
Nazir Y, Hussain SA, Abdul Hamid A, Song Y. Probiotics and Their Potential Preventive and Therapeutic Role for Cancer, High Serum Cholesterol, and Allergic and HIV Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3428437. [PMID: 30246019 PMCID: PMC6136537 DOI: 10.1155/2018/3428437] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The potential health benefits of probiotics have long been elucidated since Metchnikoff and his coworkers postulated the association of probiotic consumption on human's health and longevity. Since then, many scientific findings and research have further established the correlation of probiotic and gut-associated diseases such as irritable bowel disease and chronic and antibiotic-associated diarrhea. However, the beneficial impact of probiotic is not limited to the gut-associated diseases alone, but also in different acute and chronic infectious diseases. This is due to the fact that probiotics are able to modify the intestinal microbial ecosystem, enhance the gut barrier function, provide competitive adherence to the mucosa and epithelium, produce antimicrobial substances, and modulate the immune activity by enhancing the innate and adaptive immune response. Nevertheless, the current literature with respect to the association of probiotic and cancer, high serum cholesterol, and allergic and HIV diseases are still scarce and controversial. Therefore, in the present work, we reviewed the potential preventive and therapeutic role of probiotics for cancer, high serum cholesterol, and allergic and HIV diseases as well as providing its possible mechanism of actions.
Collapse
Affiliation(s)
- Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Syed Ammar Hussain
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
18
|
Metabolism of Caprine Milk Carbohydrates by Probiotic Bacteria and Caco-2:HT29⁻MTX Epithelial Co-Cultures and Their Impact on Intestinal Barrier Integrity. Nutrients 2018; 10:nu10070949. [PMID: 30041482 PMCID: PMC6073262 DOI: 10.3390/nu10070949] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The development and maturation of the neonatal intestine is generally influenced by diet and commensal bacteria, the composition of which, in turn, can be influenced by the diet. Colonisation of the neonatal intestine by probiotic Lactobacillus strains can strengthen, preserve, and improve barrier integrity, and adherence of probiotics to the intestinal epithelium can be influenced by the available carbon sources. The goal of the present study was to examine the role of probiotic lactobacilli strains alone or together with a carbohydrate fraction (CF) from caprine milk on barrier integrity of a co-culture model of the small intestinal epithelium. Barrier integrity (as measured by trans epithelial electrical resistance (TEER)), was enhanced by three bacteria/CF combinations (Lactobacillus rhamnosus HN001, L. plantarum 299v, and L. casei Shirota) to a greater extent than CF or bacteria alone. Levels of occludin mRNA were increased for all treatments compared to untreated co-cultures, and L. plantarum 299v in combination with CF had increased mRNA levels of MUC4, MUC2 and MUC5AC mucins and MUC4 protein abundance. These results indicate that three out of the four probiotic bacteria tested, in combination with CF, were able to elicit a greater increase in barrier integrity of a co-culture model of the small intestinal epithelium compared to that for either component alone. This study provides additional insight into the individual or combined roles of microbe–diet interactions in the small intestine and their beneficial contribution to the intestinal barrier.
Collapse
|
19
|
Nawaz A, Bakhsh Javaid A, Irshad S, Hoseinifar SH, Xiong H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. FISH & SHELLFISH IMMUNOLOGY 2018; 76:272-278. [PMID: 29510254 DOI: 10.1016/j.fsi.2018.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 05/24/2023]
Abstract
The gut immune system is, the main option for maintaining host's health, affected by numerous factors comprising dietary constituents and commensal bacteria. These dietary components that affect the intestinal immunity and considered as an alternative of antibiotics are called immunosaccharides. Fructooligosaccharide (FOS), Galactooligosaccharide (GOS), inulin, dietary carbohydrates, and xylooligosaccharide (XOS) are among the most studied prebiotics in human as well as in aquaculture. Although prebiotics and probiotics have revealed potential as treatment for numerous illnesses in both human and fish, a comprehensive understanding of the molecular mechanism behind direct and indirect effect on the intestinal immune response will help more and perhaps extra effective therapy intended for ailments. This review covers the most newly deep-rooted scientific outcomes about the direct and indirect mechanism through which these dietetic strategies can affect intestinal immunity of terrestrial and aquatic animals. Prebiotics exert an influence on gut immune system via the increase in lysozyme and phagocytic activity, macrophage activation and stimulation of monocyte-derived dendritic cells. Furthermore, these functional molecules also enhance epithelial barrier function, beneficial gut microbial population, and production of intermediate metabolites for example short chain fatty acids (SCFAs) that assist in balancing the immune system. Moreover, emphasis will be sited on the relationship among food/feed, the microbiota, and the gut immune system. In conclusion, further studies are nonetheless essential to confirm the direct effect of prebiotics on immune response.
Collapse
Affiliation(s)
- Asad Nawaz
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Allah Bakhsh Javaid
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sana Irshad
- School of Environmental Studies, China University of Geosciences, Wuhan 430070, China
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Effect of probiotics and synbiotics consumption on serum concentrations of liver function test enzymes: a systematic review and meta-analysis. Eur J Nutr 2017; 57:2037-2053. [PMID: 29119235 DOI: 10.1007/s00394-017-1568-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/14/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The gut-liver interaction suggests that modification of gut bacterial flora using probiotics and synbiotics may improve liver function. This systematic review and meta-analysis aimed to clarify the effect of probiotics and synbiotics consumption on the serum concentration of liver function enzymes. METHODS PubMed (MEDLINE), Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library (Central) were searched from 1980 to August 2017 for studies where adults consumed probiotics and/or synbiotics in controlled trials and changes in liver function enzymes were examined. RESULTS A total of 17 studies (19 trials) were included in the meta-analysis. Random effects meta-analyses were applied. Probiotics and synbiotics significantly reduced serum alanine aminotransferase [- 8.05 IU/L, 95% confidence interval (CI) - 13.07 to - 3.04; p = 0.002]; aspartate aminotransferase (- 7.79 IU/L, 95% CI: - 13.93 to - 1.65; p = 0.02) and gamma-glutamyl transpeptidase (- 8.40 IU/L, 95% CI - 12.61 to - 4.20; p < 0.001). Changes in the serum concentration of alkaline phosphatase and albumin did not reach a statistically significant level. Changes to bilirubin levels were in favour of the control group (0.95 μmol/L, 95% CI 0.48-1.42; p < 0.001). Subgroup analysis suggested the existence of liver disease at baseline, synbiotics supplementation and duration of supplementation ≥ 8 weeks resulted in more pronounced improvement in liver function enzymes than their counterparts. CONCLUSIONS Probiotics and synbiotics may be suggested as supplements to improve serum concentration of liver enzymes, especially when synbiotics administered for a period ≥ 8 weeks and in individuals with liver disease.
Collapse
|
21
|
Paparo L, Aitoro R, Nocerino R, Fierro C, Bruno C, Canani RB. Direct effects of fermented cow's milk product with Lactobacillus paracasei CBA L74 on human enterocytes. Benef Microbes 2017; 9:165-172. [PMID: 29065709 DOI: 10.3920/bm2017.0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cow's milk fermented with Lactobacillus paracasei CBA L74 (FM-CBAL74) exerts a preventive effect against infectious diseases in children. We evaluated if this effect is at least in part related to a direct modulation of non-immune and immune defence mechanisms in human enterocytes. Human enterocytes (Caco-2) were stimulated for 48 h with FM-CBAL74 at different concentrations. Cell growth was assessed by colorimetric assay; cell differentiation (assessed by lactase expression), tight junction proteins (zonula occludens1 and occludin), mucin 2, and toll-like receptor (TRL) pathways were analysed by real-time PCR; innate immunity peptide synthesis, beta-defensin-2 (HBD-2) and cathelicidin (LL-37) were evaluated by ELISA. Mucus layer thickness was analysed by histochemistry. FMCBA L74 stimulated cell growth and differentiation, tight junction proteins and mucin 2 expression, and mucus layer thickness in a dose-dependent fashion. A significant stimulation of HBD-2 and LL-37 synthesis, associated with a modulation of TLR pathway, was also observed. FM-CBAL74 regulates non-immune and immune defence mechanisms through a direct interaction with the enterocytes. These effects could be involved in the preventive action against infectious diseases demonstrated by this fermented product in children.
Collapse
Affiliation(s)
- L Paparo
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| | - R Aitoro
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| | - R Nocerino
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| | - C Fierro
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| | - C Bruno
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| | - R Berni Canani
- 1 Department of Translational Medical Science, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy.,2 European Laboratory for the Investigation of Food-Induced Diseases, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy.,3 CEINGE Advanced Biotechnologies, University of Naples 'Federico II', via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
22
|
The Effect of Probiotics in Prevention of Necrotising Enterocolitis in Preterm Neonates in Comparison with Control Group. IRANIAN JOURNAL OF PEDIATRICS 2017. [DOI: 10.5812/ijp.7663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Mundi M, Mikal KM, Ahmed OH, Sarbini SR. A review on the effects of prebiotics on cell toxicity and integrity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1326937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Morven Mundi
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Kathleen Michelle Mikal
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Osumanu Haruna Ahmed
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| |
Collapse
|
24
|
Yu AQ, Li L. The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr Cancer 2016; 68:535-44. [PMID: 27144297 DOI: 10.1080/01635581.2016.1158300] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut microbiota has a significant effect on many aspects of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including inflammatory bowel disease, obesity, asthma, psychiatric illnesses, and cancers. As a kind of functional foods, probiotics have been shown to play a protective role against cancer development in animal models. Clinical application of probiotics indicated that some probiotic strains could diminish the incidence of postoperative inflammation in cancer patients. Chemotherapy or radiotherapy-related diarrhea was relieved in patients who were administered oral probiotics. The present review summarizes the up-to-date studies on probiotic effects and the underlying mechanisms related to cancer. At present, it is commonly accepted that most commercial probiotic products are generally safe and can improve the health of the host. By modulating intestinal microbiota and immune response, some strains of probiotics can be used as an adjuvant for cancer prevention or/and treatment.
Collapse
Affiliation(s)
- Ai-Qun Yu
- a Institute of Psychology, Chinese Academy of Sciences , Beijing , China.,b Graduate School of Chinese Academy of Sciences , Beijing , China.,c Shanghai Lida Polytechnic Institute , Shanghai , China
| | - Lianqin Li
- d Department of Obstetrics and Gynecology , Yantai Affiliated Hospital of Binzhou Medical University , Yantai , China
| |
Collapse
|
25
|
Turunen KT, Pletsa V, Georgiadis P, Triantafillidis JK, Karamanolis D, Kyriacou A. Impact of β-glucan on the Fecal Water Genotoxicity of Polypectomized Patients. Nutr Cancer 2016; 68:560-567. [PMID: 27043932 DOI: 10.1080/01635581.2016.1156713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of the study was to determine the effect of β-glucan on the cytotoxicity and genotoxicity of polypectomized patient's fecal water (FW). Polypectomized volunteers (n = 69) were randomly assigned to consume bread with or without β-glucan, for 3 months. FW was collected at the beginning (t = 0), the 30th and 90th day and 2 wk after the intervention. Cytotoxicity and genotoxicity were estimated on Caco-2 cells, using trypan blue exclusion test and comet assay, respectively. Gastrointestinal symptoms were recorded and subjects kept a 3-day food diary at baseline and after completion. Trypan blue exclusion test revealed cell survival of approximately 87% after incubation with FW. The FW samples showed 49% genotoxicity at the baseline. Genotoxicity in the intervention group decreased during the trial reaching statistical significance on the 90th day compared to control. An increase was noticed 2 wk after the trial, but it still remained significantly lower compared to control. Group-specific analysis for β-glucan also revealed significant decrease in the genotoxicity on the 90th day compared to baseline. β-glucan ingestion in polypectomized patients significantly decreased the genotoxicity of their FW. Our findings suggest that β-glucan consumption could possibly provide protection against colon cancer development.
Collapse
Affiliation(s)
- Katja T Turunen
- a Laboratory of Biology, Biochemistry, Physiology and Microbiology, Harokopio University , 70, El Venizelou str., Kallithea , Greece
| | - Vasiliki Pletsa
- b Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens , Greece
| | - Panagiotis Georgiadis
- b Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens , Greece
| | | | | | - Adamantini Kyriacou
- a Laboratory of Biology, Biochemistry, Physiology and Microbiology, Harokopio University , 70, El Venizelou str., Kallithea , Greece
| |
Collapse
|
26
|
Park HJ, Lee GH, Jun J, Son M, Kang MJ. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1355-64. [PMID: 27103789 PMCID: PMC4827893 DOI: 10.2147/dddt.s103894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function.
Collapse
Affiliation(s)
- Hee Jun Park
- Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, Korea
| | - Ga Hyeon Lee
- Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, Korea
| | - Joonho Jun
- Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, Korea
| | - Miwon Son
- Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| |
Collapse
|
27
|
Formulation and in vivo evaluation of probiotics-encapsulated pellets with hydroxypropyl methylcellulose acetate succinate (HPMCAS). Carbohydr Polym 2016; 136:692-9. [DOI: 10.1016/j.carbpol.2015.09.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/07/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022]
|
28
|
Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS One 2015; 10:e0144854. [PMID: 26691591 PMCID: PMC4686753 DOI: 10.1371/journal.pone.0144854] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.
Collapse
Affiliation(s)
- Monica Vera-Lise Tulstrup
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Ellen Gerd Christensen
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Vera Carvalho
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Caroline Linninge
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Siv Ahrné
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Ole Højberg
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Tine Rask Licht
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Martin Iain Bahl
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
- * E-mail:
| |
Collapse
|
29
|
Sidira M, Kourkoutas Y, Kanellaki M, Charalampopoulos D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res Int 2015; 76:532-539. [DOI: 10.1016/j.foodres.2015.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 12/24/2022]
|
30
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
31
|
Christensen EG, Licht TR, Leser TD, Bahl MI. Dietary xylo-oligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res Notes 2014; 7:660. [PMID: 25238818 PMCID: PMC4179812 DOI: 10.1186/1756-0500-7-660] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/16/2014] [Indexed: 12/30/2022] Open
Abstract
Background Consumption of prebiotics may modulate gut microbiota, subsequently affecting the bacterial composition, metabolite profile, and human health. Previous studies indicate that also changes in intestinal integrity may occur. In order to explore this further we have investigated the effect of the putative prebiotic xylo-oligosaccharides (XOS) on the gut microbiota and intestinal integrity in male Wistar rats. As changes in intestinal integrity may be related to the expected bifidogenic effect of XOS, we additionally addressed effects of supplementation with a commensal Bifidobacterium pseudolongum (BIF) isolated from the same breed of laboratory rats. Results Changes in faecal and caecal bacterial composition determined by 16S rRNA gene sequencing and quantitative PCR for selected bacterial groups revealed that the overall bacterial composition did not differ markedly between the control (CON), XOS, and BIF groups, when correcting for multiple comparisons. However as hypothesised, the relative abundance of Bifidobacterium spp. was increased in XOS-fed rats as compared to CON in faecal samples after the intervention. Also Lactobacillus spp. was increased in both the XOS and BIF groups in caecum content compared to CON. Intestinal permeability determined in vivo by FITC-dextran permeability and in vitro using extracted caecum water in trans-epithelial resistance (TER) assay showed no effect on intestinal integrity in either the XOS or the BIF groups. However, the expression of occludin, which is part of the tight junction complex, was increased in the XOS group compared to the CON group. Conclusions Supplementation with XOS or a commensal Bifidobacterium pseudolongum had very limited effects on intestinal integrity in rats as only significant change in expression of a single tight junction protein gene was found for the XOS group.
Collapse
Affiliation(s)
| | | | | | - Martin Iain Bahl
- Division of Food Microbiology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, Søborg DK-2860, Denmark.
| |
Collapse
|
32
|
Zhou XL, Kong XF, Lian GQ, Blachier F, Geng MM, Yin YL. Dietary supplementation with soybean oligosaccharides increases short-chain fatty acids but decreases protein-derived catabolites in the intestinal luminal content of weaned Huanjiang mini-piglets. Nutr Res 2014; 34:780-8. [PMID: 25236424 DOI: 10.1016/j.nutres.2014.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
The improvement of gut health and function with prebiotic supplements after weaning is an active area of research in pig nutrition. The present study was conducted to test the working hypothesis that medium-term dietary supplementation with soybean oligosaccharides (SBOS) can affect the gut ecosystem in terms of microbiota composition, luminal bacterial short-chain fatty acid and ammonia concentrations, and intestinal expression of genes related to intestinal immunity and barrier function. Ten Huanjiang mini-piglets, weaned at 21 days of age, were randomly assigned to 2 groups. Each group received a standard diet containing either dietary supplementation with 0.5% corn starch (control group) or 0.5% SBOS (experimental group). The results showed that dietary supplementation with SBOS increased the diversity of intestinal microflora and elevated (P < .05) the numbers of some presumably beneficial intestinal bacteria (e.g., Bifidobacterium sp, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Roseburia). Soybean oligosaccharide supplementation also increased the concentration of short-chain fatty acid in the intestinal lumen, and it reduced (P < .05) the numbers of bacteria with pathogenic potential (e.g., Escherichia coli, Clostridium, and Streptococcus) and the concentration of several protein-derived catabolites (e.g., isobutyrate, isovalerate, and ammonia). In addition, SBOS supplementation increased (P < .05) expression of zonula occludens 1 messenger RNA, and it decreased (P < .05) expression of tumor necrosis factor α, interleukin 1β, and interleukin 8 messenger RNA in the ileum and colon. These findings suggest that SBOS supplementation modifies the intestinal ecosystem in weaned Huanjiang mini-piglets and has potentially beneficial effects on the gut.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, China
| | - Xiang-Feng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi 547100, China.
| | - Guo-Qi Lian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Francois Blachier
- INRA, CNRH-IdF, AgroParisTech, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris 75005, France
| | - Mei-Mei Geng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
33
|
Rangarajan S. Probiotics in neonates: What do we know? Nutrition 2014; 30:955-6. [DOI: 10.1016/j.nut.2014.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/25/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
34
|
The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms 2014; 2:92-110. [PMID: 27682233 PMCID: PMC5029483 DOI: 10.3390/microorganisms2020092] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/08/2014] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
This review presents selected data on the probiotic strain Bifidobacterium animalis subsp. lactis BB-12® (BB-12®), which is the world’s most documented probiotic Bifidobacterium. It is described in more than 300 scientific publications out of which more than 130 are publications of human clinical studies. The complete genome sequence of BB-12® has been determined and published. BB-12® originates from Chr. Hansen’s collection of dairy cultures and has high stability in foods and as freeze dried powders. Strain characteristics and mechanisms of BB-12® have been established through extensive in vitro testing. BB-12® exhibits excellent gastric acid and bile tolerance; it contains bile salt hydrolase, and has strong mucus adherence properties, all valuable probiotic characteristics. Pathogen inhibition, barrier function enhancement, and immune interactions are mechanisms that all have been demonstrated for BB-12®. BB-12® has proven its beneficial health effect in numerous clinical studies within gastrointestinal health and immune function. Clinical studies have demonstrated survival of BB-12® through the gastrointestinal tract and BB-12® has been shown to support a healthy gastrointestinal microbiota. Furthermore, BB-12® has been shown to improve bowel function, to have a protective effect against diarrhea, and to reduce side effects of antibiotic treatment, such as antibiotic-associated diarrhea. In terms of immune function, clinical studies have shown that BB-12® increases the body’s resistance to common respiratory infections as well as reduces the incidence of acute respiratory tract infections.
Collapse
|
35
|
Sunkata R, Herring J, Walker LT, Verghese M. Chemopreventive Potential of Probiotics and Prebiotics. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.518194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Christensen EG, Licht TR, Kristensen M, Bahl MI. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. Eur J Clin Nutr 2013; 67:1316-21. [DOI: 10.1038/ejcn.2013.207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2013] [Accepted: 09/14/2013] [Indexed: 12/13/2022]
|
37
|
Pastorelli L, De Salvo C, Mercado JR, Vecchi M, Pizarro TT. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front Immunol 2013; 4:280. [PMID: 24062746 PMCID: PMC3775315 DOI: 10.3389/fimmu.2013.00280] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/29/2013] [Indexed: 12/12/2022] Open
Abstract
The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier.
Collapse
Affiliation(s)
- Luca Pastorelli
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Department of Biomedical Sciences for Health, University of Milan , Milan , Italy ; Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato , San Donato Milanese , Italy
| | | | | | | | | |
Collapse
|
38
|
Allsopp P, Possemiers S, Campbell D, Oyarzábal IS, Gill C, Rowland I. An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe 2013; 22:38-44. [PMID: 23714623 DOI: 10.1016/j.anaerobe.2013.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
Linear inulin-type fructan (ITF) prebiotics have a putative role in the prevention of colorectal cancer, whereas relatively little is known about branched fructans. This study aims to investigate the fermentation properties and potential prebiotic activity of branched fructans derived from Agave angustifolia Haw, using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model. The proximal, transverse and distal vessels were used to investigate fructan fermentation throughout the colon and to assess the alterations of the microbial composition and fermentation metabolites (short chain fatty acids and ammonia). The influence on bioactivity of the fermentation supernatant was assessed by MTT, Comet and transepithelial electrical resistance (TER), respectively. Addition of Agave fructan to the SHIME model significantly increased (P < 0.05), bifidobacteria populations (proximal and transverse), SCFA concentrations (proximal, transverse and distal) and decreased ammonia concentrations in the distal vessel. Furthermore, the fermentation supernatant significantly (P < 0.05) increased the TER of a Caco-2 cell monolayer (%) and decreased fluorescein-based paracellular flux, suggesting enhanced barrier function and reduced epithelial barrier permeability (proximal and distal vessel). While cytotoxicity and genotoxicity remained unaltered in response to the presence of Agave fructans. To conclude, branched Agave fructans show indications of prebiotic activity, particularly in relation to colon health by exerting a positive influence on gut barrier function, an important aspect of colon carcinogenesis.
Collapse
Affiliation(s)
- Philip Allsopp
- Northern Ireland Centre for Food and Health, University of Ulster (Coleraine), Cromore Road, Coleraine, Co. Derry, N. Ireland BT52 1SA, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Langkamp-Henken B, Nieves C, Culpepper T, Radford A, Girard SA, Hughes C, Christman MC, Mai V, Dahl WJ, Boileau T, Jonnalagadda SS, Thielecke F. Fecal lactic acid bacteria increased in adolescents randomized to whole-grain but not refined-grain foods, whereas inflammatory cytokine production decreased equally with both interventions. J Nutr 2012; 142:2025-32. [PMID: 23014489 DOI: 10.3945/jn.112.164996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intake of whole-grain (WG) foods by adolescents is reported to be approximately one-third the recommended intake of 48 g/d. This 6-wk randomized interventional study determined the effect of replacing grains within the diet with refined-grain (RG; n = 42) or WG (n = 41) foods/d on gastrointestinal and immune health in adolescents (aged 12.7 ± 0.1 y). A variety of grain-based foods were delivered weekly to participants and their families. Participants were encouraged to eat 3 different kinds of study foods (e.g., bread, cereals, snacks)/d with goals of 0 g/d (RG) and 80 g/d (WG). Stool samples were obtained during the prebaseline and final weeks to measure bifidobacteria and lactic acid bacteria (LAB) using qPCR. Stool frequency was recorded daily. Blood was drawn at baseline and at final visits for immune markers. Across groups, total-grain intake increased by one serving. The intake of WG was similar at baseline (18 ± 3 g) between groups but increased to 60 ± 5 g in the WG group and decreased to 4 ± 1 g in the RG group. Fecal bifidobacteria increased from baseline with both interventions, but LAB increased (P < 0.05) from baseline [2.4 ± 0.2 log(10) genome equivalents (eq)] to wk 6 (3.0 ± 0.2 log(10) genome eq) in the WG group but not in the RG group (baseline: 2.9 ± 0.2 log(10) genome eq; wk 6: 3.0 ± 0.1 log(10) genome eq). There was no difference in stool frequency, serum antioxidant potential, or in vitro LPS-stimulated mononuclear cell production of inflammatory cytokines between groups. However, across both groups the number of daily stools tended to increase (P = 0.08) by 0.0034 stools/g WG or by 0.2 stools with 60 g WG, mean antioxidant potential increased by 58%, and mean production of TNF-α, IL-1β, and IL-6 decreased by 24, 22, and 42%, respectively, between baseline and wk 6. Overall, incorporating either WG or RG foods increased serum antioxidant concentrations and decreased inflammatory cytokine production; however, WG study foods had more of an effect on aspects of gastrointestinal health.
Collapse
Affiliation(s)
- Bobbi Langkamp-Henken
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Probiotics are micro-organisms that confer health benefits on the host. Postulated mechanisms include: increasing resistance of the mucosal barrier to migration of bacteria and their toxins by strengthening intestinal cell junctions, modification of host response to microbial products, augmentation of immunoglobulin A mucosal responses, enhancement of enteral nutrition to inhibit the growth of pathogens; production of antimicrobial proteins; and competitive exclusion of potential pathogens. Published meta-analyses and systematic reviews report the effects of probiotics on important clinical outcomes in neonates. This paper will review the evidence for probiotic supplementation in neonatology, with a focus on preterm infants.
Collapse
Affiliation(s)
- Leah Hickey
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
41
|
Bifidobacterium animalis ssp. lactis 420 Protects against Indomethacin-Induced Gastric Permeability in Rats. Gastroenterol Res Pract 2012; 2012:615051. [PMID: 22848210 PMCID: PMC3405648 DOI: 10.1155/2012/615051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/30/2012] [Accepted: 05/02/2012] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal (GI) adverse effects such as erosion and increased permeability are common during the use of nonsteroidal anti-inflammatory drugs (NSAIDs). Our objective was to assess whether Bifidobacterium animalis ssp. lactis 420 protects against NSAID-induced GI side effects in a rat model. A total of 120 male Wistar rats were allocated into groups designated as control, NSAID, and probiotic. The NSAID and probiotic groups were challenged with indomethacin (10 mg/kg(-1); single dose). The probiotic group was also supplemented daily with 10(10) CFU of B. lactis 420 for seven days prior to the indomethacin administration. The control group rats received no indomethacin or probiotic. The permeability of the rat intestine was analysed using carbohydrate probes and the visual damage of the rat stomach mucosa was graded according to severity. B. lactis 420 significantly reduced the indomethacin-induced increase in stomach permeability. However, the protective effect on the visual mucosal damage was not significant. The incidence of severe NSAID-induced lesions was, nevertheless, reduced from 50% to 33% with the probiotic treatment. To conclude, the B. lactis 420 supplementation protected the rats from an NSAID-induced increase in stomach permeability and may reduce the formation of more serious GI mucosal damage and/or enhance the recovery rate of the stomach mucosa.
Collapse
|
42
|
Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the "COPA" pilot randomized trial. Mucosal Immunol 2011; 4:554-63. [PMID: 21525866 PMCID: PMC3158294 DOI: 10.1038/mi.2011.15] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal mucosal immune system is an early target for human immunodeficiency virus type 1 (HIV-1) infection, resulting in CD4(+) T-cell depletion, deterioration of gut lining, and fecal microbiota composition. We evaluated the effects of a prebiotic oligosaccharide mixture in highly active antiretroviral therapy (HAART)-naive HIV-1-infected adults. In a pilot double-blind, randomized, placebo-controlled study, 57 HAART-naive HIV-1-infected patients received a unique oligosaccharide mixture (15 or 30 g short chain galactooligosaccharides/long chain fructooligosaccharides/pectin hydrolysate-derived acidic oligosaccharides (scGOS/lcFOS/pAOS) daily) or a placebo for 12 weeks. Microbiota composition improved significantly with increased bifidobacteria, decreased Clostridium coccoides/Eubacterium rectale cluster, and decreased pathogenic Clostridium lituseburense/Clostridium histolyticum group levels upon prebiotic supplementation. In addition, a reduction of soluble CD14 (sCD14), activated CD4(+)/CD25(+) T cells, and significantly increased natural killer (NK) cell activity when compared with control group were seen in the treatment group. The results of this pilot trial highly significantly show that dietary supplementation with a prebiotic oligosaccharide mixture results in improvement of the gut microbiota composition, reduction of sCD14, CD4(+) T-cell activation (CD25), and improved NK cell activity in HAART-naive HIV-infected individuals.
Collapse
|
43
|
Delzenne NM, Neyrinck AM, Cani PD. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb Cell Fact 2011; 10 Suppl 1:S10. [PMID: 21995448 PMCID: PMC3231917 DOI: 10.1186/1475-2859-10-s1-s10] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is increasingly considered as a symbiotic partner for the maintenance of health. The homeostasis of the gut microbiota is dependent on host characteristics (age, gender, genetic background...), environmental conditions (stress, drugs, gastrointestinal surgery, infectious and toxic agents...). Moreover, it is dependent on the day-to-day dietary changes. Experimental data in animals, but also observational studies in obese patients, suggest that the composition of the gut microbiota is a factor characterizing obese versus lean individuals, diabetic versus non diabetic patients, or patients presenting hepatic diseases such as non alcoholic steatohepatitis. Interestingly, the changes in the gut microbes can be reversed by dieting and related weight loss. The qualitative and quantitative changes in the intake of specific food components (fatty acids, carbohydrates, micronutrients, prebiotics, probiotics), have not only consequences on the gut microbiota composition, but may modulate the expression of genes in host tissues such as the liver, adipose tissue, intestine, muscle. This in turn may drive or lessen the development of fat mass and metabolic disturbances associated with the gut barrier function and the systemic immunity. The relevance of the prebiotic or probiotic approaches in the management of obesity in humans is supported by few intervention studies in humans up to now, but the experimental data obtained with those compounds help to elucidate novel potential molecular targets relating diet with gut microbes. The metagenomic and integrative metabolomic approaches could help elucidate which bacteria, among the trillions in human gut, or more specifically which activities/genes, could participate to the control of host energy metabolism, and could be relevant for future therapeutic developments.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium.
| | | | | |
Collapse
|
44
|
Ameliorative effects of konjac glucomannan on human faecal β-glucuronidase activity, secondary bile acid levels and faecal water toxicity towards Caco-2 cells. Br J Nutr 2010; 105:593-600. [PMID: 21144106 DOI: 10.1017/s0007114510004009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Konjac glucomannan (KGM) has been shown to increase human colon microbial ecology and reduce faecal toxicity in mice. The main goal of the present study was to assess the effects of a KGM supplement into a low-fibre diet on precancerous markers of colon cancer in a double-blind, placebo- and diet-controlled study. Adult volunteers consumed defined diets supplemented with konjac (4·5 g/d) or placebo (maize starch) for 4 weeks. Stools collected before and at the end of the supplementation were analysed for β-glucosidase, β-galactosidase and β-glucuronidase activities, microflora and bile acids. Faecal water was co-incubated with Caco-2 cells, a model of human colonocytes, to determine the cytotoxicity and DNA-damaging effect as assessed by the comet assay. The results indicated that the KGM supplement significantly decreased faecal β-glucuronidase activity by 25·6 (se 7·8) % and faecal secondary bile acid level by 42·4 (se 11·8) %. In contrast, consuming the defined diet supplemented with placebo for 4 weeks did not improve these determinants. The KGM-supplemented diet, but not the placebo diet, significantly increased the survival rate (%) of Caco-2 cells co-incubated with faecal water for 1 and 3 h, respectively. In addition, KGM significantly reduced the DNA damage induced by the faecal water alone or in combination with H2O2. The faecal bifidobacteria and lactobacilli levels increased only with the KGM-supplemented diet. Therefore, we conclude that supplementation of KGM into a low-fibre diet improved the faecal microbial ecology and metabolites, which may contribute to the reduced toxicity of faecal water and precancerous risk factors of human colon cancer.
Collapse
|
45
|
Abstract
This clinical report reviews the currently known health benefits of probiotic and prebiotic products, including those added to commercially available infant formula and other food products for use in children. Probiotics are supplements or foods that contain viable microorganisms that cause alterations of the microflora of the host. Use of probiotics has been shown to be modestly effective in randomized clinical trials (RCTs) in (1) treating acute viral gastroenteritis in healthy children; and (2) preventing antibiotic-associated diarrhea in healthy children. There is some evidence that probiotics prevent necrotizing enterocolitis in very low birth weight infants (birth weight between 1000 and 1500 g), but more studies are needed. The results of RCTs in which probiotics were used to treat childhood Helicobacter pylori gastritis, irritable bowel syndrome, chronic ulcerative colitis, and infantile colic, as well as in preventing childhood atopy, although encouraging, are preliminary and require further confirmation. Probiotics have not been proven to be beneficial in treating or preventing human cancers or in treating children with Crohn disease. There are also safety concerns with the use of probiotics in infants and children who are immunocompromised, chronically debilitated, or seriously ill with indwelling medical devices. Prebiotics are supplements or foods that contain a nondigestible food ingredient that selectively stimulates the favorable growth and/or activity of indigenous probiotic bacteria. Human milk contains substantial quantities of prebiotics. There is a paucity of RCTs examining prebiotics in children, although there may be some long-term benefit of prebiotics for the prevention of atopic eczema and common infections in healthy infants. Confirmatory well-designed clinical research studies are necessary.
Collapse
|
46
|
Abstract
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
Collapse
|
47
|
Tuohy KM, Brown DT, Klinder A, Costabile A. Shaping the human microbiome with prebiotic foods – current perspectives for continued development. ACTA ACUST UNITED AC 2010. [DOI: 10.1616/1476-2137.15989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Abstract
Probiotic bacteria have well-established beneficial effects in the management of diarrhoeal diseases. Newer evidence suggests that probiotics have the potential to reduce the risk of developing inflammatory bowel diseases and intestinal bacterial overgrowth after gut surgery. In liver health, the main benefits of probiotics might occur through preventing the production and/or uptake of lipopolysaccharides in the gut, and therefore reducing levels of low-grade inflammation. Specific immune stimulation by probiotics through processes involving dendritic cells might also be beneficial to the host immunological status and help prevent pathogen translocation. Hepatic fat metabolism also seems to be influenced by the presence of commensal bacteria, and potentially by probiotics; although the mechanisms by which probiotic might act on the liver are still unclear. However, this might be of major importance in the future because low-grade inflammation, hepatic fat infiltration, and hepatitis might become more prevalent as a result of high fat intake and the increased prevalence of obesity.
Collapse
|
49
|
Prisciandaro L, Geier M, Butler R, Cummins A, Howarth G. Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:1906-1914. [PMID: 19373788 DOI: 10.1002/ibd.20938] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/23/2009] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disorder that is increasing in prevalence in Western society and has been linked to the development of colorectal cancer. There remains no definitive treatment for IBD, hence recent investigations have focused on the development of new therapeutics, including probiotics, which can reduce intestinal inflammation and restore balance to the gastrointestinal microbiota. Probiotics are currently being studied in greater detail, albeit predominantly in animal models of IBD. Clinical studies have yielded promising findings and justify further investigation. Furthermore, the use of inactivated probiotics as well as the soluble products produced by these bacteria has demonstrated therapeutic potential, and may in fact be more suitable, as there is no risk of sepsis associated with their administration and they can be manufactured with greater quality control. Further research is essential to define the mechanism and source of probiotic action, and to identify more efficacious strains, while future clinical trials must focus on determining whether the bacterial and genetic profiles of IBD patients influence the effectiveness of treatment.
Collapse
Affiliation(s)
- Luca Prisciandaro
- Discipline of Agricultural and Animal Science, School of Agriculture, Food and Wine, University of Adelaide, (Roseworthy Campus), South Australia.
| | | | | | | | | |
Collapse
|
50
|
Pearson JR, Gill CIR, Rowland IR. Diet, fecal water, and colon cancer--development of a biomarker. Nutr Rev 2009; 67:509-26. [PMID: 19703259 DOI: 10.1111/j.1753-4887.2009.00224.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer incidence worldwide. Lifestyle factors, especially dietary intake, affect the risk of CRC development. Suitable risk biomarkers are required in order to assess the effect that specific dietary components have on CRC risk. The relationship between dietary intake and indicators of fecal water activity has been assessed using cell and animal models as well as human studies. This review summarizes the literature on fecal water and dietary components with a view to establishing further the potential role of fecal water as a source of CRC risk biomarkers. The literature indicates that fecal water activity markers are affected by specific dietary components linked with CRC risk: red meat, saturated fats, bile acids, and fatty acids are associated with an increase in fecal water toxicity, while the converse appears to be true for calcium, probiotics, and prebiotics. However, it must be acknowledged that the study of fecal water is still in its infancy and a number of issues need to be addressed before its usefulness can be truly gauged.
Collapse
Affiliation(s)
- Jennifer R Pearson
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster-Coleraine, Cromore Road, Coleraine, Northern Ireland, UK.
| | | | | |
Collapse
|