1
|
Cools L, Van den Mooter G. A comprehensive overview of the role of intermolecular interactions in amorphous solid dispersions. Int J Pharm 2025; 674:125441. [PMID: 40089043 DOI: 10.1016/j.ijpharm.2025.125441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Many recent studies have indicated that drug-polymer intermolecular interactions are an important aspect of amorphous solid dispersions (ASDs) and determine many of the properties of this type of formulations. In this review, a comprehensive overview is given of the latest insights with respect to intermolecular interactions in ASDs. The thermodynamic properties and theoretical considerations of the interactions are discussed, followed by a detailed and critical overview of the various solid-state analysis techniques used to probe interactions at the disposal of the formulation scientist. As the physical stability and the pharmaceutical performance of the ASD are its most crucial properties, the most recent understanding of the influence of drug-polymer interactions on these aspects is addressed as well. It is clear that intermolecular interactions may provide many advantages for ASDs but need to be weighed against the possible disadvantages. Further investigation into the interplay and trade-off between physical stability and dissolution properties is necessary in order to be able to take full advantage of the possible benefits of the interactions.
Collapse
Affiliation(s)
- Lennert Cools
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921 3000 Leuven, Belgium; Applied and Analytical Chemistry, NMR Group, Institute for Materials Research (imo-imomec), UHasselt, 3590 Diepenbeek, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Woyna-Orlewicz K, Huszcza G, Pesta E, Strózik M, Kurek M, Antosik-Rogóż A, Jachowicz R, Dorożyński P, Mendyk A. Formulation development and scale-up of dutasteride liquisolid tablets. Drug Dev Ind Pharm 2025; 51:209-218. [PMID: 39862228 DOI: 10.1080/03639045.2025.2459184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.5 mg of water-insoluble dutasteride (DTS) according to the LS approach. METHODS We divided the study into two stages: developing a placebo formulation and producing LS tablets containing DTS on a pilot scale. We tested all the manufactured tablets for mass uniformity, resistance to crushing, disintegration time, dissolution, stability, and presence of impurities. RESULTS We demonstrated that a standard high-shear granulator mixer with a spraying system is effective for LS formulation development and transfer to the pilot scale. We were able to compress the system into tablets with the desired assay, content uniformity, dissolution, and mechanical strength. CONCLUSION Multiple operations can be performed on one piece of equipment - that is, pre-mixing a carrier, wetting of the carrier with a solution of an active ingredient in a nonvolatile liquid, mixing of the resulted mass with a coating agent, as well as additional excipients. Preparation of powder blends ready for tableting in line with the one-pot process approach is especially advantageous for the safety of staff engaged in the manufacturing of highly potent drug products.
Collapse
Affiliation(s)
- Krzysztof Woyna-Orlewicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Edyta Pesta
- Institute of Industrial Chemistry, Łukasiewicz Research Network, Warsaw, Poland
| | | | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Antosik-Rogóż
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Przemysław Dorożyński
- Department of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
4
|
Zhao MY, Shi XB, Chang JH, Wang RX, Zhou JY, Liu P. Amorphous Solid Dispersions of Glycyrrhetinic Acid: Using Soluplus, PVP, and PVPVA as the Polymer Matrix to Enhance Solubility, Bioavailability, and Stability. AAPS PharmSciTech 2024; 26:18. [PMID: 39707118 DOI: 10.1208/s12249-024-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients. The amorphous solid dispersions (ASDs) of GA were prepared with three different polymers (i.e., GA-S-ASD, GA-VA64-ASD, and GA-K30-ASD). The ASDs were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR spectroscopy), molecular docking, and contact angle measurement. Pharmacokinetics were evaluated in Beagle dogs, and long-term stability was examined. The solubility of GA increased with the rising weight of the polymer, and the optimal drug-to-carrier ratio was 1:5. In all ASDs, GA was amorphous, thus suggesting that a hydrogen bonding must have formed between GA and the polymers. The molecular docking showed that the binding energy was the highest and the hydrogen bonding was the strongest between GA and Soluplus. The dissolution of the ASDs was primarily driven by carrier-controlled dissolution, and there was minor influence from diffusion-limited release in the case of GA-S-ASD. The three ASDs significantly improved the bioavailability of GA. However, only GA-S-ASD passed the accelerated stability test. In the case of GA-VA64-ASD and GA-K30-ASD, due to serious moisture absorption, the originally fluffy ASDs became gels, and recrystallization occurred. Overall, GA-S-ASD presents promising potential for pharmaceutical applications due to its superior solubility, bioavailability, and stability.
Collapse
Affiliation(s)
- Meng-Yu Zhao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xian-Bao Shi
- Department of Pharmacy, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China. No. 5 Renmin Street, Jinzhou, 121001, China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| | - Pei Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
5
|
Luo C, Li R, Tang M, Gao Y, Zhang J, Qian S, Wei Y, Shen P. Amorphous solid dispersion to facilitate the delivery of poorly water-soluble drugs: recent advances on novel preparation processes and technology coupling. Expert Opin Drug Deliv 2024; 21:1807-1822. [PMID: 39484838 DOI: 10.1080/17425247.2024.2423813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Amorphous solid dispersion (ASD) technique has recently been used as an effective formulation strategy to significantly improve the bioavailability of insoluble drugs. The main industrialized preparation methods for ASDs are mainly hot melt extrusion and spray drying techniques; however, they face the limitations of being unsuitable for heat-sensitive materials and organic reagent residues, respectively, and therefore novel preparation processes and technology coupling for developing ASDs have received increasing attention. AREAS COVERED This paper reviews recent advances in ASD and provides an overview of novel preparation methods, mechanisms for improving drug bioavailability, and especially technology coupling. EXPERT COVERED As a mature pharmaceutical technology, ASD has broad application prospects and values. During the period from 2012 to 2024, the FDA has approved 49 formulation products containing ASDs. However, with the diversification of drug types and clinical needs, the traditional formulation technology of ASDs is gradually no longer sufficient to meet the needs of clinical medication. Therefore, this review summarizes the studies on both novel preparation processes and technology combinations; and provides a comprehensive overview of the mechanisms of ASD to improve drug bioavailability, in order to better select appropriate preparation methods for the development of ASD formulations.
Collapse
Affiliation(s)
- Chengxiang Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruipeng Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mi Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Jiangsu Litaier Pharma Ltd, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Ram Munnangi S, Narala N, Lakkala P, Kumar Vemula S, Narala S, Johnson L, Karry K, Repka M. Optimization of a Twin screw melt granulation process for fixed dose combination immediate release Tablets: Differential amorphization of one drug and crystalline continuance in the other. Int J Pharm 2024; 665:124717. [PMID: 39284422 DOI: 10.1016/j.ijpharm.2024.124717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Interest in Twin Screw Melt Granulation (TSMG) processes is rapidly increasing, along with the search for suitable excipients. This study aims to optimize the TSMG process for immediate-release tablets containing two different drugs. The hypothesis is that one poorly water-soluble drug requires amorphous conversion for improved dissolution, while the other water-soluble drug, with a higher melting point (Tm), remains more stable in its crystalline form. Ibuprofen (IBU) and Acetaminophen (APAP) were chosen as the model drug combination to test this hypothesis. Various diluents, binders, and disintegrating agents were assessed for their impact on processability, crystallinity, disintegration, and dissolution during development. The temperatures used during processing were below the Tm of all components, except for IBU. Melted IBU acted as a granulating aid in addition to the binders in the formulation, facilitating granule formation. Physicochemical analyses by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD) confirmed the complete conversion of IBU into an amorphous state and the preserved crystalline nature of APAP. Saturation solubility studies showed an improvement in IBU's solubility by ∼ 32-fold in 0.1 N HCl. Poor tablet disintegration performance led to the addition of disintegrating agents, where osmotic agents (sorbitol and NaCl) were found to significantly enhance disintegration compared to super disintegrants. The optimized formulation showed an enhanced IBU release (∼20 %) compared to the physical mixture (∼12.5) in 0.1 N HCl dissolution studies.
Collapse
Affiliation(s)
- Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | | | - Krizia Karry
- BASF Corporation, Pharma Solutions, Tarrytown, NY 10591
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
7
|
Lohmann CA, Bochmann E, Kyeremateng SO. Impact of surfactant raw material variability on extrudate clarity appearance (transparency) in HME continuous manufacturing. Pharm Dev Technol 2024; 29:684-690. [PMID: 38995216 DOI: 10.1080/10837450.2024.2378333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.
Collapse
|
8
|
Khizar N, Abbas N, Ahmed M, Ahmad M, Mustafa Z, Jehangir M, Mohammed Al-Ahmary K, Hussain A, Bukhari NI, Ali I. Amelioration of tableting properties and dissolution rate of naproxen co-grinded with nicotinamide: preparation and characterization of co-grinded mixture. Drug Dev Ind Pharm 2024; 50:537-549. [PMID: 38771120 DOI: 10.1080/03639045.2024.2358356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE AND SIGNIFICANCE Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Collapse
Affiliation(s)
- Nosheen Khizar
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Jehangir
- Department of Chemistry, FC College (A Chartered University), Lahore, Pakistan
| | | | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
9
|
Sánchez-Aguinagalde O, Sanchez-Rexach E, Polo Y, Larrañaga A, Lejardi A, Meaurio E, Sarasua JR. Physicochemical Characterization and In Vitro Activity of Poly(ε-Caprolactone)/Mycophenolic Acid Amorphous Solid Dispersions. Polymers (Basel) 2024; 16:1088. [PMID: 38675007 PMCID: PMC11054924 DOI: 10.3390/polym16081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The obtention of amorphous solid dispersions (ASDs) of mycophenolic acid (MPA) in poly(ε-caprolactone) (PCL) is reported in this paper. An improvement in the bioavailability of the drug is possible thanks to the favorable specific interactions occurring in this system. Differential scanning calorimetry (DSC) was used to investigate the miscibility of PCL/MPA blends, measuring glass transition temperature (Tg) and analyzing melting point depression to obtain a negative interaction parameter, which indicates the development of favorable inter-association interactions. Fourier transform infrared spectroscopy (FTIR) was used to analyze the specific interaction occurring in the blends. Drug release measurements showed that at least 70% of the drug was released by the third day in vitro in all compositions. Finally, preliminary in vitro cell culture experiments showed a decreased number of cancerous cells over the scaffolds containing MPA, presumably arising from the anti-cancer activity attributable to MPA.
Collapse
Affiliation(s)
- Oroitz Sánchez-Aguinagalde
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| | - Eva Sanchez-Rexach
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| | - Yurena Polo
- Polimerbio SL, Paseo Miramon 170, 20014 Donostia-San Sebastian, Spain;
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| | - Ainhoa Lejardi
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.S.-R.); (A.L.); (E.M.); (J.-R.S.)
| |
Collapse
|
10
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
11
|
Saatkamp RH, Dos Santos BM, Sanches MP, Conte J, Rauber GS, Caon T, Parize AL. Drug-excipient compatibility studies in formulation development: A case study with benznidazole and monoglycerides. J Pharm Biomed Anal 2023; 235:115634. [PMID: 37595356 DOI: 10.1016/j.jpba.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Monoglycerides (MGs) such as glycerol monolaurate (GML) and glycerol monostearate (GMS) have been used as excipients in oral formulations because of their emulsifying effect as well as their ability to inhibit the precipitation and intestinal efflux of drugs. Excipient-drug compatibility studies, however, have been underexplored. In this study, benznidazole (BNZ) was selected as a drug model due to the difficulty in improving its solubility and because of the potential impact on public health (it is the only drug currently used to treat Chagas disease). The effect of different processing conditions (maceration, ball milling, and melting) on the physical-chemistry properties of BNZ/MGs mixtures was investigated to guide the rational development of new solid formulations. GML was more effective in improving the solubility of BNZ, which could be due to its more malleable structure, less hydrophobic nature, and greater interaction with BNZ. The formation of hydrogen bonds between the imidazole group of BNZ and the polar region of GML was confirmed by spectroscopy analyses (IR, 1H NMR). The higher the monoglyceride content in the mixture, the higher the BNZ solubility. Regardless of the method of processing the mixture, the drug was found to be crystalline. Polarized light microscopy analysis showed the presence of spherulites. Overall, these findings suggest that preparation methods of BNZ:MGs formulations that involve thermal or/and mechanical treatment have a low impact on the solid properties of the material, and this allows for the production of formulations with reproducible performance.
Collapse
Affiliation(s)
- Rodrigo Henrique Saatkamp
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Bruna Mattos Dos Santos
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mariele Paludetto Sanches
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Julia Conte
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Gabriela Schneider Rauber
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 779 00 Olomouc, Czech Republic
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Alexandre Luis Parize
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Mandati P, Nyavanandi D, Narala S, Alzahrani A, Vemula SK, Repka MA. A Comparative Assessment of Cocrystal and Amorphous Solid Dispersion Printlets Developed by Hot Melt Extrusion Paired Fused Deposition Modeling for Dissolution Enhancement and Stability of Ibuprofen. AAPS PharmSciTech 2023; 24:203. [PMID: 37783961 DOI: 10.1208/s12249-023-02666-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
13
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Pajzderska A, Gonzalez MA. Molecular Dynamics Simulations of Selected Amorphous Stilbenoids and Their Amorphous Solid Dispersions with Poly(Vinylpyrrolidone). J Pharm Sci 2023; 112:2444-2452. [PMID: 36965843 DOI: 10.1016/j.xphs.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Amorphous solid dispersions (ASDs) are one of the promising strategies to improve the solubility and dissolution rate of poorly soluble compounds. In this study, Molecular Dynamics simulations were used to investigate the interactions between three selected stilbenoids with important biological activity (resveratrol, pinostilbene and pterostilbene) and poly(vinylpyrrolidone). The analysis of the pair distribution functions and hydrogen bond distributions reveals a significant weakening of the hydrogen bond network of the stilbenoids in ASDs compared to the pure (no polymer) amorphous systems. This is accompanied by an increase in the mobility of the stilbenoid molecules in the ASDs, both in the translational dynamics determined from the molecular mean square displacements, and in the molecular reorientations followed by analysing several torsional distributions.
Collapse
Affiliation(s)
- Aleksandra Pajzderska
- A. Mickiewicz University, Faculty of Physics, Uniwersytetu Poznanskiego 2, Poznan, Poland.
| | | |
Collapse
|
15
|
Dhondale MR, Nambiar AG, Singh M, Mali AR, Agrawal AK, Shastri NR, Kumar P, Kumar D. Current Trends in API Co-Processing: Spherical Crystallization and Co-Precipitation Techniques. J Pharm Sci 2023; 112:2010-2028. [PMID: 36780986 DOI: 10.1016/j.xphs.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Active Pharmaceutical Ingredients (APIs) do not always exhibit processable physical properties, which makes their processing in an industrial setup very demanding. These issues often lead to poor robustness and higher cost of the drug product. The issue can be mitigated by co-processing the APIs using suitable solvent media-based techniques to streamline pharmaceutical manufacturing operations. Some of the co-processing methods are the amalgamation of API purification and granulation steps. These techniques also exhibit adequate robustness for successful adoption by the pharmaceutical industry to manufacture high quality drug products. Spherical crystallization and co-precipitation are solvent media-based co-processing approaches that enhances the micromeritic and dissolution characteristics of problematic APIs. These methods not only improve API characteristics but also enable direct compression into tablets. These methods are economical and time-saving as they have the potential for effectively circumventing the granulation step, which can be a major source of variability in the product. This review highlights the recent advancements pertaining to these techniques to aid researchers in adopting the right co-processing method. Similarly, the possibility of scaling up the production of co-processed APIs by these techniques is discussed. The continuous manufacturability by co-processing is outlined with a short note on Process Analytical Technology (PAT) applicability in monitoring and improving the process.
Collapse
Affiliation(s)
- Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nalini R Shastri
- Consultant, Solid State Pharmaceutical Research, Hyderabad 500037, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
16
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
17
|
Development of Robust Tablet Formulations with Enhanced Drug Dissolution Profiles from Centrifugally-Spun Micro-Fibrous Solid Dispersions of Itraconazole, a BCS Class II Drug. Pharmaceutics 2023; 15:pharmaceutics15030802. [PMID: 36986664 PMCID: PMC10053999 DOI: 10.3390/pharmaceutics15030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Fibre-based oral drug delivery systems are an attractive approach to addressing low drug solubility, although clear strategies for incorporating such systems into viable dosage forms have not yet been demonstrated. The present study extends our previous work on drug-loaded sucrose microfibres produced by centrifugal melt spinning to examine systems with high drug loading and investigates their incorporation into realistic tablet formulations. Itraconazole, a model BCS Class II hydrophobic drug, was incorporated into sucrose microfibres at 10, 20, 30, and 50% w/w. Microfibres were exposed to high relative humidity conditions (25 °C/75% RH) for 30 days to deliberately induce sucrose recrystallisation and collapse of the fibrous structure into powdery particles. The collapsed particles were successfully processed into pharmaceutically acceptable tablets using a dry mixing and direct compression approach. The dissolution advantage of the fresh microfibres was maintained and even enhanced after humidity treatment for drug loadings up to 30% w/w and, importantly, retained after compression into tablets. Variations in excipient content and compression force allowed manipulation of the disintegration rate and drug content of the tablets. This then permitted control of the rate of supersaturation generation, allowing the optimisation of the formulation in terms of its dissolution profile. In conclusion, the microfibre-tablet approach has been shown to be a viable method for formulating poorly soluble BCS Class II drugs with improved dissolution performance.
Collapse
|
18
|
Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA, Fernández-García R, Bautista L, Ruiz HK, Lalatsa A. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023; 15:313. [PMID: 36839636 PMCID: PMC9967161 DOI: 10.3390/pharmaceutics15020313] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iván Yuste
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Diez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Liliana Bautista
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
19
|
Dhondale MR, Thakor P, Nambiar AG, Singh M, Agrawal AK, Shastri NR, Kumar D. Co-Crystallization Approach to Enhance the Stability of Moisture-Sensitive Drugs. Pharmaceutics 2023; 15:pharmaceutics15010189. [PMID: 36678819 PMCID: PMC9864382 DOI: 10.3390/pharmaceutics15010189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Stability is an essential quality attribute of any pharmaceutical formulation. Poor stability can change the color and physical appearance of a drug, directly impacting the patient's perception. Unstable drug products may also face loss of active pharmaceutical ingredients (APIs) and degradation, making the medicine ineffective and toxic. Moisture content is known to be the leading cause of the degradation of nearly 50% of medicinal products, leading to impurities in solid dose formulations. The polarity of the atoms in an API and the surface chemistry of API particles majorly influence the affinity towards water molecules. Moisture induces chemical reactions, including free water that has also been identified as an important factor in determining drug product stability. Among the various approaches, crystal engineering and specifically co-crystals, have a proven ability to increase the stability of moisture-sensitive APIs. Other approaches, such as changing the salt form, can lead to solubility issues, thus making the co-crystal approach more suited to enhancing hygroscopic stability. There are many reported studies where co-crystals have exhibited reduced hygroscopicity compared to pure API, thereby improving the product's stability. In this review, the authors focus on recent updates and trends in these studies related to improving the hygroscopic stability of compounds, discuss the reasons behind the enhanced stability, and briefly discuss the screening of co-formers for moisture-sensitive drugs.
Collapse
Affiliation(s)
- Madhukiran R. Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pradip Thakor
- Natco Research Center, Natco Pharma Limited, Hyderabad 500018, India
| | - Amritha G. Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish K. Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Correspondence:
| |
Collapse
|