1
|
Elhassan YS, Hawley JM, Cussen L, Abbara A, Clarke SA, Kempegowda P, Dhillon-Smith RK, Thadani P, Busby M, Owusu-Darkwah L, Marrington R, Duncan WC, Semple RK, Quinton R, O'Reilly MW. Society for Endocrinology Clinical Practice Guideline for the Evaluation of Androgen Excess in Women. Clin Endocrinol (Oxf) 2025. [PMID: 40364581 DOI: 10.1111/cen.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
CONTEXT Androgen excess is common in women and refers to clinical or biochemical evidence of elevated androgenic steroids such as testosterone. It is associated with underlying polycystic ovary syndrome in the majority of cases. However severe androgen excess is less common and may indicate the presence of underlying adrenal or ovarian neoplasms, genetic disorders or severe insulin resistance syndromes. Currently there are few consensus guidelines to assist clinicians with a standardised management approach to the patient with severe androgen excess. DESIGN Clinical practice guideline. METHODS This guideline has been developed with expertise from colleagues in endocrinology, gynaecology, clinical biochemistry and nursing, and furthermore provides a unique patient perspective to guide clinicians. RESULTS The Society for Endocrinology commissioned this new guideline to collate multi-disciplinary guidance for clinical practitioners in the investigation of severe androgen excess. Recommendations have been made in the areas of clinical assessment, biochemical work up, dynamic testing and imaging, informed where possible by the best available evidence. CONCLUSION This guideline will provide guidance for clinicians in their approach to patients with severe androgen excess.
Collapse
Affiliation(s)
- Yasir S Elhassan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - James M Hawley
- Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester, UK
- Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Leanne Cussen
- Department of Medicine, Androgens in Health and Disease Research Group, Academic Division of Endocrinology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Sophie A Clarke
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Punith Kempegowda
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Rima K Dhillon-Smith
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Birmingham Women and Children's NHS Healthcare Trust, Birmingham, UK
| | - Puja Thadani
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | | - Rachel Marrington
- Birmingham Quality (UK NEQAS), University Hospitals NHS Foundation Trust, Birmingham, UK
| | - W Colin Duncan
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Richard Quinton
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
- Northern Regional Gender Dysphoria Service, Cumbria, Northumberland, Tyne & Wear NHS Foundation Trust, Newcastle-on-Tyne, UK
| | - Michael W O'Reilly
- Department of Medicine, Androgens in Health and Disease Research Group, Academic Division of Endocrinology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
2
|
Taşkin E, Eroğlu S. Investigation of associations between polycystic ovary syndrome and INSR gene polymorphisms rs2059806 and rs2252673. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2025; 71:e20241056. [PMID: 40105555 PMCID: PMC11918859 DOI: 10.1590/1806-9282.20241056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 03/20/2025]
Abstract
OBJECTIVE The etiology of polycystic ovary syndrome is still clearly unknown. Research results indicate that polycystic ovary syndrome may be a multifactorial disease whose inheritance pattern is potentially autosomal dominant. INSR gene polymorphisms are frequently seen among polycystic ovary syndrome patients who also have insulin resistance. The aim of this study was to investigate associations between INSR gene polymorphisms rs2059806 and rs2252673 with polycystic ovary syndrome. METHODS A total of 48 polycystic ovary syndrome and 50 control subjects were recruited in this case-control study. A real-time polymerase chain reaction method (particularly the cycle threshold method) was used for polymorphism genotyping. Genotype and allele frequencies as well as the effects of the genotypes on having polycystic ovary syndrome were evaluated by appropriate statistical methods. Also, differences between genotypes in terms of clinical characteristics were tested. RESULTS There was no difference in genotype and allele frequencies between the polycystic ovary syndrome and control groups when calculated under both additive and dominant models (p>0.05). The polycystic ovary syndrome group showed significantly higher mean testosterone levels (p<0.001) and significantly lower estradiol (p=0.006), follicle-stimulating hormone (p=0.021), and progesterone (p<0.001) levels compared to controls. The GG genotype (polymorphic) of the rs2252673 polymorphism in the polycystic ovary syndrome group showed significantly higher mean testosterone and progesterone levels compared to both GC and CC genotypes (p=0.004 and p=0.019, respectively). CONCLUSION Being the first of its kind that investigates associations between polycystic ovary syndrome and INSR gene rs2059806 and rs2252673 polymorphisms in a population from Turkey, the present study detected no association.
Collapse
Affiliation(s)
- Emre Taşkin
- Bandırma Onyedi Eylül University, Faculty of Medicine, Department of Medical Genetics – Balıkesir, Turkey
| | - Semra Eroğlu
- Samsun University, Samsun Practice Hospital, Faculty of Medicine, Department of Obstetrics and Gynecology – Samsun, Turkey
| |
Collapse
|
3
|
Luo M, Yang X, Zhou M, Zhang J, Yu B, Lian H, Ye J. Integrated single-cell and spatial transcriptomics reveal microenvironment disruptions by androgen in mouse ovary. iScience 2024; 27:111028. [PMID: 39429789 PMCID: PMC11490719 DOI: 10.1016/j.isci.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Elevated levels of androgen are risk factors for disrupted follicular maturation in the polycystic ovary syndrome (PCOS), a reproductive disease in women. As essential cell types for follicular maturation, granulosa and thecal cells respond to androgen, but their responses are unclear at the subpopulation level. Using single-cell RNA sequencing and spatial transcriptomics, we examined the subpopulation and function alterations in an androgen-induced PCOS-like mouse model. The results demonstrated that the granulosa cell subset 5 (GC5) was active in inflammation and the thecal cell subtype 2 (TC2) had an enhanced activity in lipid metabolism. The two subsets were expanded in population size and intercellular signaling pathways, such as Ptn-Ncl and Mdk-Ncl. The results reveal that androgen induced landscape and function shifts in the two cell types under the condition of impaired follicular maturation. The study characterizes the ovarian microenvironment in responses to androgen in PCOS mice.
Collapse
Affiliation(s)
- Man Luo
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Mengsi Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jing Zhang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
| | - Hongkai Lian
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jianping Ye
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key Laboratory for Obesity Research, Zhengzhou 450007, China
| |
Collapse
|
4
|
Handelsman DJ. Toward a Robust Definition of Sport Sex. Endocr Rev 2024; 45:709-736. [PMID: 38578952 DOI: 10.1210/endrev/bnae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Elite individual sports in which success depends on power, speed, or endurance are conventionally divided into male and female events using traditional binary definitions of sex. Male puberty creates durable physical advantages due to the 20- to 30-fold increase in circulating testosterone producing a sustained uplift in men's muscle, bone, hemoglobin, and cardiorespiratory function resulting from male puberty and sustained during men's lives. These male physical advantages provide strong justification for a separate protected category of female events allowing women to achieve the fame and fortune from success they would be denied if competing against men. Recent wider social acceptance of transgender individuals, together with the less recognized involvement of intersex individuals, challenge and threaten to defeat the sex classifications for elite individual female events. This can create unfair advantages if seeking inclusion into elite female events of unmodified male-bodied athletes with female gender identity who have gained the physical advantages of male puberty. Based on reproductive physiology, this paper proposes a working definition of sport sex based primarily on an individual's experience of male puberty and can be applied to transgender and various XY intersex conditions. Consistent with the multidimensionality of biological sex (chromosomal, genetic, hormonal, anatomical sex), this definition may be viewed as a multistrand cable whose overall strength survives when any single strand weakens or fails, rather than as a unidimensional chain whose strength is only as good as its weakest link.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Department, ANZAC Research Institute, University of Sydney, Concord Hospital, Syndey, NSW 2139, Australia
| |
Collapse
|
5
|
Hu Z, Zeng R, Tang Y, Liao Y, Li T, Qin L. Effect of oral glucose tolerance test-based insulin resistance on embryo quality in women with/without polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1413068. [PMID: 38978625 PMCID: PMC11228294 DOI: 10.3389/fendo.2024.1413068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Objective To explore the effects of insulin resistance (IR) on embryo quality and pregnancy outcomes in women with or without polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). Methods A retrospective cohort study concerning patients with/without PCOS who received gonadotropin-releasing hormone (GnRH)-antagonist protocol for IVF/ICSI from January 2019 to July 2022 was conducted. All the patients included underwent oral glucose tolerance test plus the assessment of insulin release within 6 months before the controlled ovarian stimulation. The Matsuda Index was calculated to diagnose IR. Two populations (PCOS and non-PCOS) were included and each was divided into IR and non-IR groups and analyzed respectively. The primary outcome was the high-quality day 3 embryo rate. Results A total of 895 patients were included (751 with PCOS and 144 without PCOS). For patients with PCOS, the IR group had a lower high-quality day 3 embryo rate (36.8% vs. 39.7%, p=0.005) and available day 3 embryo rate (67.2% vs. 70.6%, p<0.001). For patients without PCOS, there was no significant difference between the IR and non-IR groups in high-quality day 3 embryo rate (p=0.414) and available day 3 embryo rate (p=0.560). There was no significant difference in blastocyst outcomes and pregnancy outcomes for both populations. Conclusion Based on the diagnosis by the Matsuda Index, IR may adversely affect the day 3 embryo quality in patients with PCOS but not pregnancy outcomes. In women without PCOS, IR alone seems to have less significant adverse effects on embryo quality than in patients with PCOS. Better-designed studies are still needed to compare the differences statistically between PCOS and non-PCOS populations.
Collapse
Affiliation(s)
- Zhengyan Hu
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Rujun Zeng
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuanting Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingjun Liao
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kim RC, Goldberg I, Brunt TV, Tul-Bushra H, Batiste R, Lane AH, Hsieh H. Juvenile Granulosa Cell Tumor Mimicking HAIR-AN in a 4-year-old: A Case Report. J Clin Res Pediatr Endocrinol 2024; 16:200-204. [PMID: 36112066 PMCID: PMC11590726 DOI: 10.4274/jcrpe.galenos.2022.2022-4-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022] Open
Abstract
Predominantly androgen secreting juvenile granulosa cell tumors (JGCT) are uncommon and few reports have been published. We present a case of a JGCT that presented with signs of prepubertal hyperandrogenism and insulin resistance to highlight the possible interaction between hyperandrogenemia and hyperinsulinism. A 4-year-old girl presented with acanthosis nigricans and hyperinsulinism, mimicking the hyperandrogenism, insulin resistance and acanthosis nigricans syndrome at an age much younger than is typical for this diagnosis. Laboratory studies revealed elevated insulin, inhibin A and B, and total testosterone. All laboratory results normalized after unilateral salpingo-oophorectomy. The final diagnosis was Stage 1A JGCT. This case highlights the importance of including ovarian tumors in the differential diagnosis when considering causes of virilization and insulin resistance. This case also suggests a potential relationship between excess testosterone secretion and hyperinsulinemia and strengthens evidence that hyperandrogenemia may promote hyperinsulinism in ovarian disease.
Collapse
Affiliation(s)
- Rachel Choe Kim
- Stony Brook University, Renaissance Faculty of Medicine, New York, USA
| | - Ilya Goldberg
- Stony Brook University, Renaissance Faculty of Medicine, Department of Surgery, New York, USA
| | - Trevor Van Brunt
- Stony Brook University, Renaissance Faculty of Medicine, New York, USA
| | - Hamama Tul-Bushra
- Stony Brook University, Renaissance Faculty of Medicine, Department of Pathology, New York, USA
| | - Rebecca Batiste
- Stony Brook University, Renaissance Faculty of Medicine, Department of Pathology, New York, USA
| | - Andrew H. Lane
- Stony Brook Children’s Hospital, Clinic of Pediatrics, New York, USA
| | - Helen Hsieh
- Stony Brook University, Renaissance Faculty of Medicine, Department of Surgery, Division of Pediatric Surgery, New York, USA
| |
Collapse
|
7
|
Zhuang J, Wang S, Wang Y, Hu R, Wu Y. Association Between Triglyceride Glucose Index and Infertility in Reproductive-Aged Women: A Cross-Sectional Study. Int J Womens Health 2024; 16:937-946. [PMID: 38827929 PMCID: PMC11143446 DOI: 10.2147/ijwh.s461950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose In recent years, female infertility has become a research hotspot in the field of health management, and its cause may be related to insulin resistance (IR). We used a novel and practical IR indicator, the TyG index to explore its association with infertility. Patients and Methods We calculated the TyG index using data from adult women who participated in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2018. Then, we used multivariate logistic regression, smooth curve fitting, and subgroup analysis to examine the association between the TyG index and infertility in women. Results Logistic regression models showed a positive correlation between the TyG index and infertility, which remained significant even after adjusting for all confounders (OR=1.51,95% CI:1.14-2.00, p=0.005). This association was consistent in all subgroups (age, education level, marital status, BMI, smoking, alcohol consumption, hypertension, diabetes, pelvic inflammatory disease/PID treatment, and menstrual regularity in the past 12 months) (p>0.05 for all interactions). However, the diagnostic power of the TyG index for infertility was limited (AUC=0.56, 95% CI: 0.52-0.61). Conclusion The TyG index is positively correlated with infertility, but its diagnostic value is limited. Further research is needed on the TyG index as an early predictor of infertility.
Collapse
Affiliation(s)
- Jiaru Zhuang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Shan Wang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| | - Yuan Wang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Yibo Wu
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| |
Collapse
|
8
|
Donadille B, Janmaat S, Mosbah H, Belalem I, Lamothe S, Nedelcu M, Jannot AS, Christin-Maitre S, Fève B, Vatier C, Vigouroux C. Diagnostic and referral pathways in patients with rare lipodystrophy and insulin-resistance syndromes: key milestones assessed from a national reference center. Orphanet J Rare Dis 2024; 19:177. [PMID: 38678257 PMCID: PMC11056061 DOI: 10.1186/s13023-024-03173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Rare syndromes of lipodystrophy and insulin-resistance display heterogeneous clinical expressions. Their early recognition, diagnosis and management are required to avoid long-term complications. OBJECTIVE We aimed to evaluate the patients' age at referral to our dedicated national reference center in France and their elapsed time from first symptoms to diagnosis and access to specialized care. PATIENTS AND METHODS We analyzed data from patients with rare lipodystrophy and insulin-resistance syndromes referred to the coordinating PRISIS reference center (Adult Endocrine Department, Saint-Antoine Hospital, AP-HP, Paris), prospectively recorded between 2018 and 2023 in the French National Rare Disease Database (BNDMR, Banque Nationale de Données Maladies Rares). RESULTS A cohort of 292 patients was analyzed, including 208 women, with the following diagnosis: Familial Partial LipoDystrophy (FPLD, n = 124, including n = 67 FPLD2/Dunnigan Syndrome); Acquired lipodystrophy syndromes (n = 98, with n = 13 Acquired Generalized Lipodystrophy, AGL); Symmetric cervical adenolipomatosis (n = 27, Launois-Bensaude syndrome, LB), Congenital generalized lipodystrophy (n = 18, CGL) and other rare severe insulin-resistance syndromes (n = 25). The median age at referral was 47.6 years [IQR: 31-60], ranging from 25.2 (CGL) to 62.2 years old (LB). The median age at first symptoms of 27.6 years old [IQR: 16.8-42.0]) and the median diagnostic delay of 6.4 years [IQR: 1.3-19.5] varied among diagnostic groups. The gender-specific expression of lipodystrophy is well-illustrated in the FPLD2 group (91% of women), presenting with first signs at 19.3 years [IQR: 14.4-27.8] with a diagnostic delay of 10.5 years [IQR: 1.8-27.0]. CONCLUSION The national rare disease database provides an important tool for assessment of care pathways in patients with lipodystrophy and rare insulin-resistance syndromes in France. Improving knowledge to reduce diagnostic delay is an important objective of the PRISIS reference center.
Collapse
Affiliation(s)
- Bruno Donadille
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France.
| | - Sonja Janmaat
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Héléna Mosbah
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
- Saint-Antoine Research Center, Institute of CardioMetabolism and Nutrition (ICAN), Sorbonne University, Inserm UMR_S 938, Paris, France
| | - Inès Belalem
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Sophie Lamothe
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Mariana Nedelcu
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Anne-Sophie Jannot
- Banque Nationale de Données Maladies Rares, DSN-I&D, APHP, Paris, France
| | - Sophie Christin-Maitre
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
- Sorbonne Université, Inserm UMR_S 933, Paris, France
| | - Bruno Fève
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
- Saint-Antoine Research Center, Institute of CardioMetabolism and Nutrition (ICAN), Sorbonne University, Inserm UMR_S 938, Paris, France
| | - Camille Vatier
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France
- Saint-Antoine Research Center, Institute of CardioMetabolism and Nutrition (ICAN), Sorbonne University, Inserm UMR_S 938, Paris, France
| | - Corinne Vigouroux
- Saint-Antoine Hospital, Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), 184 rue du Faubourg Saint-Antoine, 75012, Paris, France.
- Saint-Antoine Research Center, Institute of CardioMetabolism and Nutrition (ICAN), Sorbonne University, Inserm UMR_S 938, Paris, France.
| |
Collapse
|
9
|
Liu H, Fang X, Ma Q, Wang M, Hao X, Wang G. Research hotspots of polycystic ovary syndrome and hyperandrogenism from 2008 to 2022: bibliometric analysis. Gynecol Endocrinol 2024; 40:2326102. [PMID: 38654639 DOI: 10.1080/09513590.2024.2326102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is the most frequent endocrine disorder in female adults, and hyperandrogenism (HA) is the typical endocrine feature of PCOS. This study aims to investigate the trends and hotspots in the study of PCOS and HA. METHODS Literature on Web of Science Core Collection (WoSCC) from 2008 to 2022 was retrieved, and bibliometric analysis was conducted using VOSviewer and CiteSpace software. RESULTS A total of 2,404 papers were published in 575 journals by 10,121 authors from 2,434 institutions in 86 countries. The number of publications in this field is generally on the rise yearly. The US, China and Italy contributed almost half of the publications. Monash University had the highest number of publications, while the University of Adelaide had the highest average citations and the Karolinska Institute had the strongest cooperation with other institutions. Lergo RS contributed the most to the field of PCOS and HA. The research on PCOS and HA mainly focused on complications, adipose tissue, inflammation, granulosa cells, gene and receptor expression. CONCLUSION Different countries, institutions, and authors should facilitate cooperation and exchanges. This study will be helpful for better understanding the frontiers and hotspots in the areas of PCOS and HA.
Collapse
Affiliation(s)
- Haijuan Liu
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoting Fang
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qianru Ma
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiufang Hao
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Wang
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Mosbah H, Vatier C, Andriss B, Belalem I, Delemer B, Janmaat S, Jéru I, Le Collen L, Maiter D, Nobécourt E, Vantyghem MC, Vigouroux C, Dumas A. Patients' perspective on the medical pathway from first symptoms to diagnosis in genetic lipodystrophy. Eur J Endocrinol 2024; 190:23-33. [PMID: 38128113 DOI: 10.1093/ejendo/lvad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Underdiagnosis is an important issue in genetic lipodystrophies, which are rare diseases with metabolic, cardiovascular, gynecological, and psychological complications. We aimed to characterize the diagnostic pathway in these diseases from the patients' perspective. DESIGN Cross-sectional study conducted through a self-reported patient questionnaire. METHODS Patients with genetic lipodystrophy were recruited throughout the French national reference network for rare diseases of insulin secretion and insulin sensitivity. Patients completed a self-reported questionnaire on disease symptoms, steps leading to the diagnosis, and healthcare professionals involved. Descriptive analyses were conducted. RESULTS Out of 175 eligible patients, 109 patients (84% women) were included; 93 had partial familial lipodystrophy and 16 congenital generalized lipodystrophy. Metabolic comorbidities (diabetes 68%, hypertriglyceridemia 66%, hepatic steatosis 57%), cardiovascular (hypertension 54%), and gynecologic complications (irregular menstruation 60%) were frequently reported. Median age at diagnosis was 30 years (interquartile range [IQR] 23-47). The overall diagnostic process was perceived as "very difficult" for many patients. It extended over 12 years (IQR 5-25) with more than five different physicians consulted by 36% of respondents, before diagnosis, for lipodystrophy-related symptoms. The endocrinologist made the diagnosis for 77% of the patients. Changes in morphotype were reported as the first symptoms by the majority of respondents. CONCLUSIONS Diagnostic pathway in patients with genetic lipodystrophy is rendered difficult by the multisystemic features of the disease and the lack of knowledge of non-specialized physicians. Training physicians to systematically include adipose tissue examination in routine clinical evaluation should improve diagnosis and management of lipodystrophy and lipodystrophy-associated comorbidities.
Collapse
Affiliation(s)
- Héléna Mosbah
- ECEVE UMR 1123, INSERM, Université Paris Cité, 75014 Paris, France
- Service Endocrinologie, Diabétologie, Nutrition, CHU La Milétrie, 86000 Poitiers, France
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Camille Vatier
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Béatrice Andriss
- Unité d'Epidémiologie Clinique, APHP, Hôpital Universitaire Robert Debré, 75019 Paris, France
| | - Inès Belalem
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Brigitte Delemer
- Service d'endocrinologie diabète nutrition, CHU de Reims, Hôpital Robert-Debré, 51100 Reims, France
| | - Sonja Janmaat
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Isabelle Jéru
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
- Département de Génétique Médicale, DMU BioGeM, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Institut Pasteur, EGID, Université Lille, 59000 Lille, France
- Service d'endocrinologie diabète nutrition, CHU de Reims, Hôpital Robert-Debré, 51100 Reims, France
- Service de Génétique clinique, Centre hospitalier de Reims, 51100 Reims, France
| | - Dominique Maiter
- Service d'Endocrinologie et Nutrition, Institut de Recherche Expérimentale et Clinique IREC, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1348 Brussels, Belgique
| | - Estelle Nobécourt
- Service d'endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France
| | - Marie-Christine Vantyghem
- Endocrinologie, diabétologie et métabolisme, CHU Lille, 59000 Lille, France
- Inserm U1190, Université Lille, Institut Pasteur, 59000 Lille, France
| | - Corinne Vigouroux
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Agnes Dumas
- ECEVE UMR 1123, INSERM, Université Paris Cité, 75014 Paris, France
| |
Collapse
|
11
|
Zhao S, Ma R, Jueraitetibaike K, Xu Y, Jing J, Tang T, Shi M, Zhang H, Ge X, Chen L, Yao B, Guo Z. ZDHHC17 participates in the pathogenesis of polycystic ovary syndrome by affecting androgen conversion to estrogen in granulosa cells. Mol Cell Endocrinol 2023; 578:112076. [PMID: 37769867 DOI: 10.1016/j.mce.2023.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age and is a significant cause of female subfertility. Our previous research demonstrated that the abnormal palmitoylation of heat shock protein-90α (HSP90α) plays a role in the development of PCOS. However, the palmitoyl acyltransferases in HSP90α palmitoylation remain poorly understood. Herein, we identified ZDHHC17 as a major palmitoyl acyltransferase for HSP90α palmitoylation in granulosa cells. ZDHHC17 protein expression was diminished under excess androgen conditions in vitro and in vivo. Consistently, ovarian ZDHHC17 expression was found to be attenuated in patients with PCOS. ZDHHC17 depletion decreased HSP90α palmitoylation levels and hampered the conversion of androgen to estrogen via CYP19A1. Furthermore, ZDHHC17-mediated regulation of CYP19A1 expression was dependent on HSP90α palmitoylation. Our findings reveal that the regulatory role of HSP90α palmitoylation by ZDHHC17 is critical in PCOS pathophysiology and provide insights into the role of ZDHHC17 in reproductive endocrinology.
Collapse
Affiliation(s)
- Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Yao Xu
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China.
| | - Li Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Bing Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
12
|
Gökçay Canpolat A, Aslan B, Şükür YE. A promising treatment for spontaneous ovarian hyperstimulation syndrome due to familial partial lipodystrophy: GnRH analogs combined with cyst aspiration. Hormones (Athens) 2023; 22:741-745. [PMID: 37491654 DOI: 10.1007/s42000-023-00469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE To present a patient with familial partial lipodystrophy (FPLD) and polycystic ovary syndrome (PCOS) who was admitted with spontaneous ovarian hyperstimulation syndrome (OHSS)-like extremely enlarged ovaries, which was successfully treated using gonadotropin-releasing hormone analogs and abdominal cyst aspiration in combination. METHOD This is a descriptive case report of a single patient with FPLD and PCOS. RESULTS Clinical improvement was achieved 6 months after therapy besides progressive reduction in total testosterone and DHEAS. Furthermore, there was a significant improvement in hyperinsulinemia and hypertriglyceridemia. Additionally, reduction in the size of ovarian cysts, reduction in the size and number of localizations of acanthosis nigricans, reduction in scores of mFGS, and weight loss were also observed. CONCLUSION Although there are few reports in the literature describing the association between PCOS with FPLD, management of this novel spontaneous OHSS-like condition has not yet been clearly defined. In the case of extremely enlarged multicystic ovaries and severe hyperandrogenemia, GnRH analogs may be considered to prevent ovarian enlargement and reduce hyperandrogenemia, especially when other treatment options are inappropriate.
Collapse
Affiliation(s)
- Asena Gökçay Canpolat
- Department of Endocrinology and Metabolism, Ankara University School of Medicine, Ankara, Turkey.
| | - Batuhan Aslan
- Department of Obstetrics and Gynaecology, Ankara University School of Medicine, Ankara, Turkey
| | - Yavuz Emre Şükür
- Department of Obstetrics and Gynaecology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Doyle LM, Cussen L, McDonnell T, O'Reilly MW. Clinical Utility of GnRH Analogues in Female Androgen Excess: Highlighting Diagnostic and Therapeutic Applications. JCEM CASE REPORTS 2023; 1:luad108. [PMID: 37908205 PMCID: PMC10580459 DOI: 10.1210/jcemcr/luad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 11/02/2023]
Abstract
Female androgen excess typically presents with hirsutism, acne, and frontotemporal alopecia. Although the majority of cases are due to underlying polycystic ovary syndrome, non-polycystic ovary syndrome pathology can present a diagnostic and therapeutic challenge. We present 3 cases highlighting the utility of GnRH analogues in diagnosis and treatment of ovarian hyperandrogenism. In case 1, we highlight the role of GnRH analogue testing to localize severe postmenopausal androgen excess, allowing full resolution of symptoms following resection of a benign ovarian steroid-cell tumor. Our second case demonstrates the dual utility of GnRH analogues as both a diagnostic and therapeutic agent for hyperandrogenism in a premenopausal woman with severe insulin resistance. We observed suppression of serum testosterone coupled with significant improvement in hirsutism scores. The final case describes GnRH analogue suppression as a therapeutic option for a postmenopausal woman with ovarian hyperthecosis wishing to avoid surgical intervention, with successful symptom resolution. This case series delineates the applications of GnRH analogue suppression in a variety of clinical contexts, in particular their potential role in controlling symptoms in cases of refractory androgen excess and an alternative to surgery in cases of benign ovarian hyperandrogenism.
Collapse
Affiliation(s)
- Lauren Madden Doyle
- Academic Division of Endocrinology, Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin 9, Ireland
| | - Leanne Cussen
- Academic Division of Endocrinology, Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin 9, Ireland
| | - Tara McDonnell
- Academic Division of Endocrinology, Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin 9, Ireland
| | - Michael W O'Reilly
- Academic Division of Endocrinology, Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
14
|
Halpin K, Paprocki E, Eickhoff P, Rivard DC, Habeebu SS, Priebe AM. Selective Venous Sampling Prompting Unilateral Oophorectomy in an Adolescent With PCOS and Markedly Elevated Testosterone. J Pediatr Adolesc Gynecol 2023; 36:103-106. [PMID: 37938054 DOI: 10.1016/j.jpag.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND For adolescents with suspected polycystic ovary syndrome (PCOS) and severely elevated testosterone concentrations, imaging is recommended to assess for neoplasm. Selective venous sampling (SVS) can be considered when imaging is nondiagnostic. CASE An adolescent female treated for PCOS had a peak testosterone of 344 ng/dL (11.9 nmol/L). Imaging did not localize a mass. SVS implicated the right ovary as the source of hyperandrogenism. Following laparoscopic right oophorectomy, pathology excluded a neoplasm and confirmed PCOS. She subsequently had rapid and persistent improvement in her hyperandrogenism. SUMMARY AND CONCLUSION Striking testosterone elevation can occur with adolescent PCOS. SVS is a tool for localizing the source of severe hyperandrogenism, yet unilaterality is not always diagnostic of a neoplasm. Unilateral oophorectomy could nonetheless be therapeutic for severe PCOS.
Collapse
Affiliation(s)
- Kelsee Halpin
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, Missouri; University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri.
| | - Emily Paprocki
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, Missouri; University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri
| | - Paige Eickhoff
- University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri
| | - Douglas C Rivard
- University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri; Department of Radiology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Sahibu Sultan Habeebu
- University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | - Anne-Marie Priebe
- University of Missouri-Kansas City - School of Medicine, Kansas City, Missouri; Division of Pediatric and Adolescent Gynecology, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
15
|
Xue T, Zhao S, Zhang H, Tang T, Zheng L, Jing J, Ge X, Ma R, Ma J, Ren X, Jueraitetibaike K, Guo Z, Chen L, Yao B. PPT1 regulation of HSP90α depalmitoylation participates in the pathogenesis of hyperandrogenism. iScience 2023; 26:106131. [PMID: 36879822 PMCID: PMC9984558 DOI: 10.1016/j.isci.2023.106131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian granulosa cells (GCs) in the follicle are the important mediator of steroidogenesis and foster oocyte maturation. Evidences suggested that the function of GCs could be regulated by S-palmitoylation. However, the role of S-palmitoylation of GCs in ovarian hyperandrogenism remains elusive. Here, we demonstrated that the protein from GCs in ovarian hyperandrogenism phenotype mouse group exhibits lower palmitoylation level compared with that in the control group. Using S-palmitoylation-enriched quantitative proteomics, we identified heat shock protein isoform α (HSP90α) with lower S-palmitoylation levels in ovarian hyperandrogenism phenotype group. Mechanistically, S-palmitoylation of HSP90α modulates the conversion of androgen to estrogens via the androgen receptor (AR) signalling pathway, and its level is regulated by PPT1. Targeting AR signaling by using dipyridamole attenuated ovarian hyperandrogenism symptoms. Our data help elucidate ovarian hyperandrogenism from perspective of protein modification and provide new evidence showing that HSP90α S-palmitoylation modification might be a potential pharmacological target for ovarian hyperandrogenism treatment.
Collapse
Affiliation(s)
- Tongmin Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China.,Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ting Tang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoyan Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Bing Yao
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| |
Collapse
|
16
|
Gosseaume C, Fournier T, Jéru I, Vignaud ML, Missotte I, Archambeaud F, Debussche X, Droumaguet C, Fève B, Grillot S, Guerci B, Hieronimus S, Horsmans Y, Nobécourt E, Pienkowski C, Poitou C, Thissen JP, Lascols O, Degrelle S, Tsatsaris V, Vigouroux C, Vatier C. Perinatal, metabolic, and reproductive features in PPARG-related lipodystrophy. Eur J Endocrinol 2023; 188:7049146. [PMID: 36806620 DOI: 10.1093/ejendo/lvad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE The adipogenic PPARG-encoded PPARγ nuclear receptor also displays essential placental functions. We evaluated the metabolic, reproductive, and perinatal features of patients with PPARG-related lipodystrophy. METHODS Current and retrospective data were collected in patients referred to a National Rare Diseases Reference Centre. RESULTS 26 patients from 15 unrelated families were studied (18 women, median age 43 years). They carried monoallelic PPARG variants except a homozygous patient with congenital generalized lipodystrophy. Among heterozygous patients aged 16 or more (n = 24), 92% had diabetes, 96% partial lipodystrophy (median age at diagnosis 24 and 37 years), 78% hypertriglyceridaemia, 71% liver steatosis, and 58% hypertension. The mean BMI was 26 ± 5.0 kg/m2. Women (n = 16) were frequently affected by acute pancreatitis (n = 6) and/or polycystic ovary syndrome (n = 12). Eleven women obtained one or several pregnancies, all complicated by diabetes (n = 8), hypertension (n = 4), and/or hypertriglyceridaemia (n = 10). We analysed perinatal data of patients according to the presence (n = 8) or absence (n = 9) of a maternal dysmetabolic environment. The median gestational age at birth was low in both groups (37 and 36 weeks of amenorrhea, respectively). As expected, the birth weight was higher in patients exposed to a foetal dysmetabolic environment of maternal origin. In contrast, 85.7% of non-exposed patients, in whom the variant is, or is very likely to be, paternally-inherited, were small for gestational age. CONCLUSIONS Lipodystrophy-related PPARG variants induce early metabolic complications. Our results suggest that placental expression of PPARG pathogenic variants carried by affected foetuses could impair prenatal growth and parturition. This justifies careful pregnancy monitoring in affected families.
Collapse
Affiliation(s)
- Camille Gosseaume
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
| | - Thierry Fournier
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marie-Léone Vignaud
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Missotte
- Department of Pediatrics, Territorial Hospital Center, Nouméa, New Caledonia, France
| | | | - Xavier Debussche
- Clinical Investigation and Clinical Epidemiology Center (CIC-EC INSERM/CHU/University), Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Céline Droumaguet
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris, Henri-Mondor Hospital, Créteil, France
| | - Bruno Fève
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sophie Grillot
- Department of Endocrinology and Diabetology, Pays du Mont Blanc Hospital, Sallanches, France
| | - Bruno Guerci
- Department of Endocrinology, Diabetology and Nutrition, Brabois Hospital, University of Lorraine, Vandoeuvre Lès Nancy, France
| | - Sylvie Hieronimus
- Department of Diabetology and Nutrition, Nice University Hospital, Nice, France
| | - Yves Horsmans
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Estelle Nobécourt
- Department of Endocrinology, Metabolism and Nutrition, Saint-Pierre Hospital, Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Catherine Pienkowski
- Reference Center for Rare Gynecologic Diseases, Endocrinology and Medical Gynecology Unit, Toulouse University Hospital, Toulouse, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Sorbonne University, Inserm, Reference Center for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Paris, France
| | - Jean-Paul Thissen
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Olivier Lascols
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Séverine Degrelle
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
- Inovarion, Paris, France
| | - Vassilis Tsatsaris
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| |
Collapse
|
17
|
Shi Y, Shi Y, He G, Wang G, Liu H, Shao X. Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2022; 20:169. [PMID: 36510316 PMCID: PMC9745937 DOI: 10.1186/s12958-022-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) is involved in inflammation and fertility in women with polycystic ovary syndrome (PCOS). This study aims to assess the role of ADAMTS level in the outcomes of in vitro fertilization and embryo transfer (IVF-ET) in women with PCOS, using a meta-analytic approach. METHODS We systematically searched Web of Science, PubMed, EmBase, and the Cochrane library to identify potentially eligible studies from inception until December 2021. Study assess the role of ADAMTS levels in patients with PCOS was eligible in this study. The pooled effect estimates for the association between ADAMTS level and IVF-ET outcomes were calculated using the random-effects model. RESULTS Five studies involving a total of 181 patients, were selected for final analysis. We noted that ADAMTS-1 levels were positively correlated to oocyte maturity (r = 0.67; P = 0.004), oocyte recovery (r = 0.74; P = 0.006), and fertilization (r = 0.46; P = 0.041) rates. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery (r = 0.91; P = 0.001), and fertilization (r = 0.85; P = 0.017) rates. Furthermore, downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture (ADAMTS-1: weighted mean difference [WMD], 7.24, P < 0.001; ADAMTS-4: WMD, 7.20, P < 0.001; ADAMTS-5: WMD, 7.20, P < 0.001; ADAMTS-9: WMD, 6.38, P < 0.001), oocytes retrieval (ADAMTS-1: WMD, 1.61, P < 0.001; ADAMTS-4: WMD, 3.63, P = 0.004; ADAMTS-5: WMD, 3.63, P = 0.004; ADAMTS-9: WMD, 3.20, P = 0.006), and Germinal vesicle oocytes levels (ADAMTS-1: WMD, 2.89, P < 0.001; ADAMTS-4: WMD, 2.19, P < 0.001; ADAMTS-5: WMD, 2.19, P < 0.001; ADAMTS-9: WMD, 2.89, P < 0.001). Finally, the oocytes recovery rate, oocyte maturity rate, fertilization rate, cleavage rate, good-quality embryos rate, blastocyst formation rate, and clinical pregnancy rate were not affected by the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 (P > 0.05). CONCLUSIONS This study found that the outcomes of IVF-EF in patients with PCOS could be affected by ADAMTS-1 and ADAMTS-4; further large-scale prospective studies should be performed to verify these results.
Collapse
Affiliation(s)
- Yanbin Shi
- School of Public Health, China Medical University, Shenyang, China
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Yang Shi
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guiyuan He
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guang Wang
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Hongbo Liu
- School of Public Health, China Medical University, Shenyang, China.
| | - Xiaoguang Shao
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China.
| |
Collapse
|
18
|
Semple RK. Insulin Resistance and Adrenal Androgen Synthesis Viewed Through a Monogenic Lens. J Clin Endocrinol Metab 2022; 107:e4326-e4327. [PMID: 35961312 PMCID: PMC9681616 DOI: 10.1210/clinem/dgac475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Robert K Semple
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
19
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Walzer D, Turcu AF, Jha S, Abel BS, Auchus RJ, Merke DP, Brown RJ. Excess 11-Oxygenated Androgens in Women With Severe Insulin Resistance Are Mediated by Adrenal Insulin Receptor Signaling. J Clin Endocrinol Metab 2022; 107:2626-2635. [PMID: 35696182 PMCID: PMC9387696 DOI: 10.1210/clinem/dgac365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Syndromes of severe insulin resistance (SIR) include insulin receptoropathy, in which all signaling downstream of the insulin receptor is lost, and lipodystrophy, in which some signaling pathways are impaired and others preserved. Women with SIR commonly have ovarian hyperandrogenemia; adrenal-derived 11-oxygenated androgens, produced by CYP11B1, have not been studied. OBJECTIVE We aimed to evaluate classic pathway androgens (androstenedione, testosterone) and 11-oxygenated androgens in women with SIR and hyperandrogenemia, and to elucidate the role of insulin receptor signaling for 11-oxygenated androgen production by comparing lipodystrophy and receptoropathy. METHODS Steroid hormones were quantified using LC-MS/MS in a cross-sectional study of 18 women with hyperandrogenemia and SIR (11 lipodystrophy, 7 receptoropathy) and 23 controls. To assess ovarian vs adrenal origin, steroids were compared in receptoropathy patients with (Ovary+) vs without (Ovary-) ovarian function. RESULTS Compared with controls, classic androgens were elevated in both lipodystrophy and receptoropathy, and 11-oxygenated androgens were increased in lipodystrophy (2.9-fold higher 11β-hydroxyandrostenedione (11OHA4), 2.4-fold higher 11-ketoandrostenedione (11KA4), 3.6-fold higher 11-ketotestosterone (11KT); P < 0.01), but not receptoropathy. Product-to-precursor ratios for CYP11B1 conversion of androstenedione to 11OHA4 were similar in lipodystrophy and controls but decreased in receptoropathy (6.5-fold lower than control; P = 0.001). Classic androgens were elevated in Ovary + but not Ovary- patients. CONCLUSIONS 11-Oxygenated androgens are elevated in lipodystrophy but not receptoropathy. In SIR, insulin receptor signaling is necessary for adrenal hyperandrogenemia but not ovarian hyperandrogenemia; excess classic androgens are derived from the ovaries. Insulin receptor signaling increases adrenal 19-carbon steroid production, which may have implications for more common disorders of mild IR.
Collapse
Affiliation(s)
- Dalia Walzer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Smita Jha
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brent S Abel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah P Merke
- The National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- Correspondence: Rebecca J. Brown, Building 10, Room 6-5940, 10 Center Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Coyle CS, Prescott M, Handelsman DJ, Walters KA, Campbell RE. Chronic androgen excess in female mice does not impact luteinizing hormone pulse frequency or putative GABAergic inputs to GnRH neurons. J Neuroendocrinol 2022; 34:e13110. [PMID: 35267218 PMCID: PMC9286661 DOI: 10.1111/jne.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with androgen excess and, frequently, hyperactive pulsatile luteinizing hormone (LH) secretion. Although the origins of PCOS are unclear, evidence from pre-clinical models implicates androgen signalling in the brain in the development of PCOS pathophysiology. Chronic exposure of female mice to dihydrotestosterone (DHT) from 3 weeks of age drives both reproductive and metabolic impairments that are ameliorated by selective androgen receptor (AR) loss from the brain. This suggests centrally driven mechanisms in hyperandrogen-mediated PCOS-like pathophysiology that remain to be defined. Acute prenatal DHT exposure can also model the hyperandrogenism of PCOS, and this is accompanied by increased LH pulse frequency and increased GABAergic innervation of gonadotrophin-releasing hormone (GnRH) neurons. We aimed to determine the impact of chronic exposure of female mice to DHT, which models the hyperandrogenism of PCOS, on pulsatile LH secretion and putative GABAergic input to GnRH neurons. To do this, GnRH-green fluorescent protein (GFP) female mice received either DHT or blank capsules for 90 days from postnatal day 21 (n = 6 or 7 per group). Serial tail-tip blood sampling was used to measure LH dynamics and perfusion-fixed brains were collected and immunolabelled for vesicular GABA transporter (VGAT) to assess putative GABAergic terminals associated with GFP-labelled GnRH neurons. As expected, chronic DHT resulted in acyclicity and significantly increased body weight. However, no differences in LH pulse frequency or the density of VGAT appositions to GnRH neurons were identified between ovary-intact DHT-treated females and controls. Chronic DHT exposure significantly increased the number of AR expressing cells in the hypothalamus, whereas oestrogen receptor α-expressing neuron number was unchanged. Therefore, although chronic DHT exposure from 3 weeks of age increases AR expressing neurons in the brain, the GnRH neuronal network changes and hyperactive LH secretion associated with prenatal androgen excess are not evident. These findings suggest that unique central mechanisms are involved in the reproductive impairments driven by exposure to androgen excess at different developmental stages.
Collapse
Affiliation(s)
- Chris S. Coyle
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - David J Handelsman
- Andrology LaboratoryANZAC Research InstituteConcord HospitalUniversity of SydneySydneyNSWAustralia
| | - Kirsty A. Walters
- Fertility and Research CentreSchool of Women’s and Children’s HealthUniversity of New South WalesSydneyNSWAustralia
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
22
|
Role of insulin resistance on fertility–focus on polycystic ovary syndrome. ANNALES D'ENDOCRINOLOGIE 2022; 83:199-202. [DOI: 10.1016/j.ando.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Pekic S, Stojanovic M, Popovic V. Pituitary tumors and the risk of other malignancies: is the relationship coincidental or causal? ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R1-R13. [PMID: 37435457 PMCID: PMC10259320 DOI: 10.1530/eo-21-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 07/13/2023]
Abstract
Pituitary adenomas are benign neoplasms of the pituitary. The most prevalent are prolactinomas and non-functioning pituitary adenomas, followed by growth hormone- and ACTH-secreting adenomas. Most pituitary adenomas seem to be sporadic and their persistent growth is very atypical. No molecular markers predict their behavior. The occurrence of pituitary adenomas and malignancies in the same patient can be either pure coincidence or caused by shared underlying genetic susceptibility involved in tumorigenesis. Detailed family history on cancers/tumors in the first, second and third generation of family members on each side of the family has been reported in a few studies. They found an association of pituitary tumors with positive family history for breast, lung and colorectal cancer. We have reported that in about 50% of patients with pituitary adenomas, an association with positive family history for cancer has been found independent of secretory phenotype (acromegaly, prolactinoma, Cushing's disease or non-functioning pituitary adenomas). We also found earlier onset of pituitary tumors (younger age at diagnosis of pituitary tumors) in patients with a strong family history of cancer. In our recent unpublished series of 1300 patients with pituitary adenomas, 6.8% of patients were diagnosed with malignancy. The latency period between the diagnosis of pituitary adenoma and cancer was variable, and in 33% of patients, it was longer than 5 years. Besides the inherited trophic mechanisms (shared underlying genetic variants), the potential influence of shared complex epigenetic influences (environmental and behavioral factors - obesity, smoking, alcohol intake and insulin resistance) is discussed. Further studies are needed to better understand if patients with pituitary adenomas are at increased risk for cancer.
Collapse
Affiliation(s)
- Sandra Pekic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Marko Stojanovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Vera Popovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Brierley GV, Semple RK. Insulin at 100 years - is rebalancing its action key to fighting obesity-related disease? Dis Model Mech 2021; 14:273551. [PMID: 34841432 PMCID: PMC8649170 DOI: 10.1242/dmm.049340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One hundred years ago, insulin was purified and administered to people with diabetes to lower blood glucose, suppress ketogenesis and save lives. A century later, insulin resistance (IR) lies at the heart of the obesity-related disease pandemic. Multiple observations attest that IR syndrome is an amalgamation of gain and loss of insulin action, suggesting that IR is a misnomer. This misapprehension is reinforced by shortcomings in common model systems and is particularly pronounced for the tissue growth disorders associated with IR. It is necessary to move away from conceptualisation of IR as a pure state of impaired insulin action and to appreciate that, in the long term, insulin can harm as well as cure. The mixed state of gain and loss of insulin action, and its relationship to perturbed insulin-like growth factor (IGF) action, should be interrogated more fully in models recapitulating human disease. Only then may the potential of rebalancing insulin action, rather than simply increasing global insulin signalling, finally be appreciated.
Collapse
Affiliation(s)
- Gemma V Brierley
- Biomedical Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK.,The University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
25
|
Gautheron J, Morisseau C, Chung WK, Zammouri J, Auclair M, Baujat G, Capel E, Moulin C, Wang Y, Yang J, Hammock BD, Cerame B, Phan F, Fève B, Vigouroux C, Andreelli F, Jeru I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 2021; 10:68445. [PMID: 34342583 PMCID: PMC8331186 DOI: 10.7554/elife.68445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.
Collapse
Affiliation(s)
- Jeremie Gautheron
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States.,Deparment of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Jamila Zammouri
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Auclair
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Genevieve Baujat
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Capel
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Celia Moulin
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Barbara Cerame
- Goryeb Children's Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States
| | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Corinne Vigouroux
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizio Andreelli
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Isabelle Jeru
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|