1
|
Elariny HA, Atia HA, Abdallah MH, Khalifa AM, Abd Elmaaboud MA, Elkady MA, Kabel AM. Olmesartan attenuates doxorubicin-elicited testicular toxicity: The interaction between sirtuin-1, HMGB1/NLRP3 inflammasome/gasdermin D signaling, and AMPK/mTOR-driven autophagy. Life Sci 2025; 370:123545. [PMID: 40058574 DOI: 10.1016/j.lfs.2025.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND In the recent years, there has been an increased incidence of testicular toxicity associated with doxorubicin (DOX) use in cancer therapy. The mechanisms of this adverse effect may include induction of oxidative stress with augmentation of the inflammatory and the apoptotic signals in the testicular tissues. The ongoing research is directed towards the exploration of new agents that are capable of overcoming this health problem. This study was a trial to evaluate the efficacy of Olmesartan as a protective agent against DOX-induced testicular dysfunction in male rats. MATERIALS AND METHODS Forty adult male Sprague-Dawley rats were divided into control group, DOX-injected group, and three DOX-injected groups treated with olmesartan at 3 dose levels (1, 5, and 10 mg/kg/day). The effect of the different treatments was assessed at the biochemical and the morphological levels. KEY FINDINGS Olmesartan administered to DOX-treated rats induced dose-dependent restoration of the testicular weight and functions, normalization of the hormonal profile, augmentation of the antioxidant defenses, and potentiation of AMPK/mTOR-driven autophagy in comparison to rats treated with DOX alone. These effects were accompanied with a dose-dependent significant mitigation of the cellular events related to pyroptosis and inflammation and a significant amelioration of the testicular morphological changes induced by DOX. SIGNIFICANCE Olmesartan may represent a promising therapy for DOX-elicited testicular dysfunction, possibly via dose-dependent antioxidant, anti-pyroptotic, anti-inflammatory, and autophagy enhancing effects.
Collapse
Affiliation(s)
- Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Amany M Khalifa
- Department of Pathology, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | | | - Mennatallah A Elkady
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Zhu D, Pham QM, Wang C, Colonnello E, Yannas D, Nguyen BH, Zhang Y, Jannini EA, Sansone A. Erectile Dysfunction and Oxidative Stress: A Narrative Review. Int J Mol Sci 2025; 26:3073. [PMID: 40243750 PMCID: PMC11988752 DOI: 10.3390/ijms26073073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting male sexual health, characterized by the inability to achieve or maintain satisfactory erections. ED has a multifactorial pathogenesis in which psychological, hormonal, neurologic, cardiovascular, and lifestyle factors all contribute to a progressive decline of erectile function. A critical underlying mechanism involves oxidative stress (OS), an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, which disrupts endothelial function, reduces nitric oxide (NO) bioavailability, and contributes to vascular dysfunction. This narrative review explores the interplay between OS and ED, focusing on the roles of ROS sources such as NADPH oxidase, xanthine oxidase, uncoupled nitric oxide synthase, and mitochondrial dysfunction. It examines the impact of OS on chronic conditions like hypertension, diabetes mellitus, hyperlipidemia, hypogonadism, and lifestyle factors like smoking and obesity, which exacerbate ED through endothelial and systemic effects. Emerging research underscores the potential of antioxidant therapies and lifestyle interventions to restore redox balance, improve endothelial function, and mitigate ED's progression. This review also highlights gaps in understanding the molecular pathways linking ROS to ED, emphasizing the need for further research to develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dake Zhu
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
| | - Quan Minh Pham
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
- Department of Andrology and Sexual Medicine, Hanoi Medical University Hospital, Hanoi 100000, Vietnam
| | - Chunlin Wang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Elena Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Dimitri Yannas
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
| | - Bac Hoai Nguyen
- Department of Andrology and Sexual Medicine, Hanoi Medical University Hospital, Hanoi 100000, Vietnam
- Surgery Faculty, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Emmanuele A. Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (D.Z.); (Q.M.P.); (E.C.)
| |
Collapse
|
3
|
Manna PR, Yang S, Manna C, Waters H, Islam MA, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2025; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Oka S, Takii R, Fujimoto M, Nakai A, Shiraishi K. HSF1/HSP25 system protects mitochondria function from heat stress and assists steroidogenesis in MA-10 Leydig cells. Mol Cell Endocrinol 2025; 595:112391. [PMID: 39447861 DOI: 10.1016/j.mce.2024.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Heat shock response is characterized by the induction of heat shock proteins (HSPs) or molecular chaperones that maintain protein homeostasis. Heat shock transcription factor 1 (HSF1) plays a central role in heat shock response in mammalian cells. To investigate the impact of the heat shock response mechanism on steroidogenesis, we generated MA-10 mouse Leydig tumor cells deficient in HSF1 using CRISPR-Cas9 genome editing. Under heat stress conditions, the levels of StAR protein, but not its mRNA, decreased more in HSF1-knockout cells than in wild-type cells, confirming that HSF1 stabilizes StAR protein. Simultaneously, HSP110, HSP70, and HSP25 were markedly upregulated in a manner dependent on HSF1. Mitochondrial membrane potential (MMP) and ATP synthesis were decreased in HSF1-knockout cells under heat stress conditions, and mitochondrial fragmentation was enhanced. Furthermore, treatment with carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a disruptor of MMP, reduced the levels of StAR protein to a greater extent in HSF1-knockout cells than in wild-type cells, which was associated with decreased MMP and ATP synthesis. Unexpectedly, HSP25 expression was markedly increased in wild-type cells following CCCP treatment. HSP25 knockdown reduces MMP under heat stress conditions and decreases StAR protein levels and progesterone synthesis. HSP25 overexpression in HSF1KO cells restored StAR protein levels. These results show that the HSF1/HSP25 pathway protects mitochondrial function and maintains StAR synthesis.
Collapse
Affiliation(s)
- Shintaro Oka
- Department of Urology, Yamaguchi University School of Medicine, Ube, Japan; Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan.
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Koji Shiraishi
- Department of Urology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
5
|
Sampada MP, David M. Mercuric chloride induced reproductive toxicity associated with oxidative damage in male Wistar albino rat, Rattus norvegicus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03585-8. [PMID: 39738833 DOI: 10.1007/s00210-024-03585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 01/02/2025]
Abstract
In the field of toxicology, male reproductive hazards attributed to metal exposure is a fast-developing issue. Mercury has been identified as an environmental pollutant that causes potential adverse impacts on organisms. This study aimed to assess the reprotoxic consequences of mercuric chloride (HgCl2). Five groups of sexually mature albino rats were given oral mercuric chloride (HgCl2) treatment. (G1) control group received saline treatment; (G2) (5.25 mg/kg of HgCl2 for 30 days); (G3) (5.25 mg/kg of HgCl2 for 60 days); (G4) (10.5 mg/kg of HgCl2 for 30 days); (G5) (10.5 mg/kg of HgCl2 for 60 days). The hormonal levels, sperm count, sperm motility, sperm viability, and reproductive organ weight, including body weight, were substantially reduced, whereas the sperm abnormality rate was enhanced in rat groups treated with HgCl2. The analysis revealed that the effect size (Cohen's d) for sperm parameters, including sperm count, motility and viability, were extremely high across all groups, except for sperm abnormality in group 2 (d = 0.59) and group 3 (d = 0.18), where moderate and small effect sizes were observed respectively, and this suggests a significant impact of the intervention on sperm parameters. The administration of HgCl2 resulted in the induction of oxidative stress in testis that is manifested by substantially enhanced lipid peroxidation (MDA) with a substantial decrease in activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione peroxidase (GPx) in testes of mercury-treated groups. Concomitantly, there was downregulation in the mRNA levels of the genes involved in spermatogenesis, namely Hsp-70, insulin-like growth factor (IGF), glutathione-S-transferase, and p53 in the testis. The expression of antiapoptotic protein B cell lymphoma (Bcl-2) was decreased, and conversely, the expression of cell proliferative protein Ki-67 was increased in a dose- and duration-dependent manner. Histopathological studies showed degenerative changes in the testis, epididymis, prostate gland, and seminal vesicle, compared to the control group. All the evidence suggests that after mercury exposure, there may be an imbalance between the body's defenses against free radicals and antioxidants, making the testis more susceptible to oxidative damage. This imbalance could potentially have a detrimental effect on the function of the male reproductive system.
Collapse
Affiliation(s)
- M P Sampada
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India
| | - Muniswamy David
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
6
|
Pop RM, Gherman LM, Jianu EM, Roșian ȘH, Onofrei MM, Mocan LP, Chedea VS, Bocsan IC, Apostu D, Todea AR, Dulf EH, Cruceru J, Mihu CM, Pârvu AE, Buzoianu AD. Inflammation and oxidative stress processes in induced precocious puberty in rats. Heliyon 2024; 10:e40962. [PMID: 39759285 PMCID: PMC11699080 DOI: 10.1016/j.heliyon.2024.e40962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
This study aimed to assess the influence of different types of blue light sources on male and female rats' puberty onset, the morphologic-induced alterations in reproductive organs tissues, the impact on inflammation and oxidative stress markers, anxiety levels, and mathematical modeling for tissue data interpretation. Four groups of sixteen rats each (8 females and 8 males/group) were investigated: three groups were exposed to blue light from mobile phones (MP), computer screens (PC), or LED lamps (LED) versus the control group (CTRL). The rats in the CTRL group had no exposure while the other groups were exposed for 30 days to the blue light of MP, PC, and LED for 16 h per day. Serum levels of cortisol, TNF-α, IL-6, and MMP-2 and MMP-9 ovaries and testis tissue levels were analyzed using the ELISA technique. Total oxidative stress (TOS), nitric oxide (NO), and malondialdehyde (MDA) in serum were determined spectrophotometrically. Histomorphological examination was performed on both male and female genital organs. Rats of both sexes presented significant early onset of puberty secondary to blue light exposure. LED-emitted light significantly increased TNF-α and MMP-9 levels in both sexes. The MP and PC emitted light significantly affected the levels of MMP-2 in both females and males. Levels of TOS and NO were increased by LED, respectively by MP and LED exposure in female rats. The histopathological examination revealed no statistically significant differences in the ovaries and testes of rats across the different groups. Blue light exposure induces precocious puberty, by accelerating sexual maturation, and triggers the overproduction of MMPs that could promote organic alteration through tissue remodeling. Oxidative stress parameters were upregulated only in female rats, while cortisol levels were higher in male rats.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Luciana Mădălina Gherman
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
- Experimental Centre of "Iuliu Haţieganu" University of Medicine and Pharmacy, Louis Pasteur, No 6, 400349, Cluj-Napoca, Romania
| | - Elena-Mihaela Jianu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Ștefan Horia Roșian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților Street, 400001, Cluj-Napoca, Romania
- Department of Cardiology—Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street No. 19-21, 400001, Cluj-Napoca, Romania
| | - Mădălin Mihai Onofrei
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Lavinia Patricia Mocan
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400, Blaj, Romania
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Dragoș Apostu
- Orthopaedics and Traumatology, Department of Surgical Specialities, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Andreea Roxana Todea
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Street No. 28, 400014, Cluj-Napoca, Romania
| | - Eva Henrietta Dulf
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Street No. 28, 400014, Cluj-Napoca, Romania
| | - Jeanine Cruceru
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
8
|
Tripathi S, Maurya S, Singh A. Adropin promotes testicular functions by modulating redox homeostasis in adult mouse. Endocrine 2024; 86:428-440. [PMID: 38878191 DOI: 10.1007/s12020-024-03921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Adropin is an emerging metabolic hormone that has a role in regulating energy homeostasis. The present study aimed to explore the impact of adropin on redox homeostasis and its possible role in testicular functions in adult mouse testis. METHODS Western blot, flow-cytometry, and TUNEL assay were performed to explore the impact of intra-testicular treatment of adropin (0.5 μg/testis) on testicular functions of adult mice. Hormonal assay was done by ELISA. Further, antioxidant enzyme activities were measured. RESULTS Adropin treatment significantly increased the sperm count and testicular testosterone by increasing the expression of GPR19 and steroidogenic proteins. Also, adropin treatment reduced the oxidative/nitrosative stress by facilitating the translocation of NRF2 and inhibiting NF-κB into the nucleus of germ cells. Enhanced nuclear translocation of NRF2 leads to elevated biosynthesis of antioxidant enzymes, evident by increased HO-1, SOD, and catalase activity that ultimately resulted into declined LPO levels in adropin-treated mice testes. Furthermore, adropin decreased nuclear translocation of NF-κB in germ cells, that resulted into decreased NO production leading to decreased nitrosative stress. Adropin/GPR19 signaling significantly increased its differentiation, proliferation, and survival of germ cells by elevating the expression of PCNA and declining caspase 3, cleaved caspase 3 expression, Bax/Bcl2 ratio, and TUNEL-positive cells. FACS analysis revealed that adropin treatment enhances overall turnover of testicular cells leading to rise in production of advanced germ cells, notably spermatids. CONCLUSION The present study indicated that adropin improves testicular steroidogenesis, spermatogenesis via modulating redox potential and could be a promising target for treating testicular dysfunctions.
Collapse
Affiliation(s)
- Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Justin Margret J, Jain SK. L-Cysteine Upregulates Testosterone Biosynthesis and Blood-Testis Barrier Genes in Cultured Human Leydig Cells and THP-1 Monocytes and Increases Testosterone Secretion in Human Leydig Cells. Biomolecules 2024; 14:1171. [PMID: 39334937 PMCID: PMC11430594 DOI: 10.3390/biom14091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Leydig cells are the primary source of testosterone or androgen production in male mammals. The blood-testis barrier (BTB) maintains structural integrity and safeguards germ cells from harmful substances by blocking their entry into the seminiferous tubules. L-cysteine is essential to the production of glutathione, a powerful antioxidant crucial to protecting against oxidative stress-induced damage. Animal studies have demonstrated the protective effect of L-cysteine in preventing testicular damage caused by chemicals or radiation. This study examines whether L-cysteine enhances the expression of testosterone biosynthesis and the BTB genes in human Leydig cells and THP-1 monocytes. The Leydig cells and THP-1 monocytes were treated with L-cysteine for 24 h. RNA was extracted following treatment, and the gene expression was analyzed using quantitative RT-PCR. Testosterone levels in the cell supernatant were measured using an ELISA kit. L-cysteine treatment in Leydig cells significantly upregulated the expression of CYP11A1 (p = 0.03) and the BTB genes CLDN1 (p = 0.03), CLDN11 (p = 0.02), and TJP1 (p = 0.02). Similarly, L-cysteine significantly upregulated the expression of CYP11A1 (p = 0.03) and CYP19A1 (p < 0.01), and the BTB genes CLDN1 (p = 0.04), CLDN2 (p < 0.01), CLDN4 (p < 0.01), CLDN11 (p < 0.01), and TJP1 (p = 0.03) in THP-1 monocytes. Further, L-cysteine supplementation increased the testosterone secretion levels in human Leydig cells. The findings suggest that L-cysteine supplementation could be used as an adjuvant therapy to promote the integrity of the BTB genes, testosterone biosynthesis and secretion, and the maintenance of testicular functions, which in turn mitigates the risk of male infertility.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
10
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Jalilvand N, Baghcheghi Y, Fani M, Beheshti F, Ebrahimzadeh-Bideskan A, Marefati N, Moghimian M, Hosseini M. The effects of olibanum on male reproductive system damage in a lipopolysaccharide induced systemic inflammation model in rat. Heliyon 2024; 10:e36033. [PMID: 39224335 PMCID: PMC11366910 DOI: 10.1016/j.heliyon.2024.e36033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) as a particle of Gram-negative bacteria is a main contributer in the pathogenesis of the male reproductive system infectious. Male infertility due to LPS is reported to be related to overproduction reactive oxygen species. This study aimed to investigate the effects of olibanum on oxidative stress and apoptosis in testes and sperm dysfunction induced by LPS. METHODS The male (n = 28) rats were allocated in four groups: control, LPS (1 mg/kg, i.p., 14 days), LPS + Olibanum 100 (100 mg/kg, i.p., 14 days), and LPS + Olibanum 200 (200 mg/kg, i.p., 14 days). Germ cell apoptosis was determined by TUNEL assays and computed using the stereological method. Additionally, semen samples of the animals were analyzed for sperm count and morphology. Oxidative stress indicators were also determined. RESULTS The count of TUNEL-positive germ cells in LPS-treated rats was more than that in the controls. Treatment of the animals with olibanum significantly attenuated the number of apoptotic cells compared to the LPS group. The sperm count and those with a normal morphology in LPS-treated rats was lower than that in the controls. Administration of olibanum significantly improved the sperms with normal morphology and sperm count. Olibanum treatment also improved superoxide dismutase, catalase, and total thiol in testicular tissue and decreased malondialdehyde. CONCLUSION Administering both doses of olibanum in LPS-treated rats had potentially a therapeutic value in reducing germ cell apoptosis, as well as improving sperm parameters.
Collapse
Affiliation(s)
- Narjes Jalilvand
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoumeh Fani
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Moghimian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Nashed MS, Hassanen EI, Issa MY, Tohamy AF, Prince AM, Hussien AM, Soliman MM. The mollifying effect of Sambucus nigra extract on StAR gene expression, oxidative stress, and apoptosis induced by fenpropathrin in male rats. Food Chem Toxicol 2024; 189:114744. [PMID: 38782235 DOI: 10.1016/j.fct.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fenpropathrin (FNP) is a man-made insecticide of to the pyrethroid class, commonly employed in agricultural and horticultural practices. However, it has a prolonged persistence in the environment. Sambucus nigra, also referred to as SN, is a botanical species recognized for its notable antioxidant characteristics. The objective of this study was to examine if SN extract could mitigate the reproductive toxicity induced by FNP in rats. A total of thirty rats were categorized into six distinct groups: a control group with no treatment, two groups getting SN extract at varying doses, a group receiving FNP, and two groups receiving both FNP and SN extract. The exposure to FNP led to a decline in the number and movement of sperm, lowered levels of testosterone, and reduced the activity of the StAR gene in the FNP group compared to the control group (p < 0.05). In addition, FNP resulted in a significant increase in malondialdehyde levels with a significant drop in GSH content compared to the control group (p < 0.05). Also, a significant increase in the expression of caspase 3. Nevertheless, the administration of SN extract alleviated these effects and reinstated spermatogenesis, thereby bringing the parameters closer to those observed in the control group. The data indicate that FNP can induce testicular harm and infertility, but SN extract can mitigate these detrimental consequences.
Collapse
Affiliation(s)
- Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Bdeir R, Al-Sawalha NA, Al-Fawares O, Hamadeneh L, Khawaldeh A. Effects of empagliflozin on gonadal functions of hyperglycemic male wistar rats. PLoS One 2024; 19:e0305636. [PMID: 38885232 PMCID: PMC11182553 DOI: 10.1371/journal.pone.0305636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Empagliflozin (EMPA) showed antiapoptotic, oxidative and anti-inflammatory potential effect. EMPA attenuates the inflammation and oxidative stress biomarkers in patients with heart failure while significantly decreases the malondialdehyde (a lipid peroxidation marker) levels in the plasma of diabetic patients. The present study examined the effects of moderate hyperglycemia on reproductive function. Sixty male Wister rats were divided and randomly allocated into four groups of 15 animals each. Diabetes was induced by a single intraperitoneal injection of a prepared solution containing STZ diluted in 0.1 M sodium citrate buffer (pH 4.5) at a dosage of 40 mg/kg body weight in selected in groups II and III for seven days before starting the treatment with EMPA. The current study revealed that EMPA for eight weeks prevented testicular high glucose-induced oxidative stress markers such as penile nitric oxide (NO), glutathione peroxidase (GPX) and total anti-oxidant capacity (TAC) in STZ-induced hyperglycemia in a rat model. In addition, EMPA ameliorated the high levels of endogenous Interleukin-6 (IL-6) present in gonads in response to an acute inflammatory found in the hyperglycemic STZ-induced rats. The present study further suggested the protective effects of EMPA and how it has a beneficial role and can effectively attenuate hyperglycemia-induced testicular oxidative damage and inflammatory markers as well as androgen dependent testicular enzymes activity as a protective role against the consequences of hyperglycemia and male sub-infertility.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nour A. Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - O’la Al-Fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Lama Hamadeneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Alia Khawaldeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| |
Collapse
|
14
|
Afzal A, Zhang Y, Afzal H, Saddozai UAK, Zhang L, Ji XY, Khawar MB. Functional role of autophagy in testicular and ovarian steroidogenesis. Front Cell Dev Biol 2024; 12:1384047. [PMID: 38827527 PMCID: PMC11140113 DOI: 10.3389/fcell.2024.1384047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.
Collapse
Affiliation(s)
- Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Zhang
- Department of Obstetrics and Gynecology, 988 Hospital of People's Liberation Army, Zhengzhou, Henan, China
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
15
|
Lee S, Kim J, Kong H, Kim YS. Ameliorative effects of elderberry (Sambucus nigra L.) extract and extract-derived monosaccharide-amino acid on H2O2-induced decrease in testosterone-deficiency syndrome in a TM3 Leydig cell. PLoS One 2024; 19:e0302403. [PMID: 38662754 PMCID: PMC11045058 DOI: 10.1371/journal.pone.0302403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase(17β-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.
Collapse
Affiliation(s)
- Sujung Lee
- Gochang Food & Industry Institute, Gochang, Korea
- Department of Food Science & Technology Jeonbuk National University, Jeonju, Korea
| | | | - Hyunseok Kong
- College of Animal Biotechnology and Resource, Sahmyook University, Seoul, Korea
- PADAM Natural Material Research Institute, Sahmyook University, Seoul, Korea
| | - Yong-Suk Kim
- Department of Food Science & Technology Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
16
|
Pabisz P, Bazak J, Sabat M, Girotti AW, Korytowski W. Cholesterol Hydroperoxide Co-trafficking in Testosterone-generating Leydig Cells: GPx4 Inhibition of Cytotoxic and Anti-steroidogenic Effects. Cell Biochem Biophys 2024; 82:213-222. [PMID: 37995086 PMCID: PMC10866752 DOI: 10.1007/s12013-023-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Trafficking of intracellular cholesterol (Ch) to and into mitochondria of steroidogenic cells is required for steroid hormone biosynthesis. This trafficking is typically mediated by one or more proteins of the steroidogenic acute regulatory (StAR) family. Our previous studies revealed that 7-OOH, a redox-active cholesterol hydroperoxide, could be co-trafficked with Ch to/into mitochondria of MA-10 Leydig cells, thereby inducing membrane lipid peroxidation (LPO) which impaired progesterone biosynthesis. These negative effects of 7-OOH were inhibited by endogenous selenoperoxidase GPx4, indicating that this enzyme could protect against 7-OOH-induced oxidative damage/dysfunction. In the present study, we advanced our Leydig focus to cultured murine TM3 cells and then to primary cells from rat testis, both of which produce testosterone. Using a fluorescent probe, we found that extensive free radical-mediated LPO occurred in mitochondria of stimulated primary Leydig cells during treatment with liposomal Ch+7-OOH, resulting in a significant decline in testosterone output relative to that with Ch alone. Strong enhancement of LPO and testosterone shortfall by RSL3 (a GPx4 inhibitor) and reversal thereof by Ebselen (a GPx4 mimetic), suggested that endogenous GPx4 was playing a key antioxidant role. 7-OOH in increasing doses was also cytotoxic to these cells, RSL3 exacerbating this in Ebselen-reversable fashion. Moreover, GPx4 knockdown increased cell sensitivity to LPO with reduced testosterone output. These findings, particularly with primary Leydigs (which best represent cells in intact testis) suggest that GPx4 plays a key protective role against peroxidative damage/dysfunction induced by 7-OOH co-trafficking with Ch.
Collapse
Affiliation(s)
- Pawel Pabisz
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Michal Sabat
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
17
|
Matoba H, Fujii C, Maruyama K, Kawakubo M, Momose M, Sano K, Imamura H, Kurihara H, Nakayama J. Sirt3 Regulates Proliferation and Progesterone Production in Leydig Cells via Suppression of Reactive Oxygen Species. Endocrinology 2024; 165:bqae017. [PMID: 38354290 DOI: 10.1210/endocr/bqae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Sirt3 is a mitochondrial protein deacetylase functioning in energy metabolism, regulation of intracellular reactive oxygen species (ROS) levels, and aging. Although Sirt3 loss has negative effects on fertility of oocytes during in vitro fertilization and on progesterone production in granulosa cells, Sirt3's function in Leydig cells remains unclear. Therefore, we investigated Sirt3 activity in Leydig cells, focusing on androgen production. To do so, we performed immunohistochemistry to confirm Sirt3 localization in gonads and observed strong Sirt3 immunostaining in Leydig cells of human testes and of Sirt3+/+ and Sirt3+/- mouse testes, while Sirt3-/- mouse testis tissue was negative. In human ovary, hilus cells were strongly Sirt3-positive, theca cells showed weak positivity, and granulosa cells showed very weak or almost no immunostaining. Next, we used the murine Leydig tumor cell line MA-10 as a model. We overexpressed Sirt3 but observed no changes in proliferation, expression of Star, Cyp11a1 (p450scc gene), and Hsd3b, or progesterone production in MA-10 cells. Sirt3 knockdown significantly reduced proliferation, suppressed expressions of steroidogenic enzymes and of transcription factors Ad4bp (Sf-1 gene) and Gata4, and decreased progesterone production. Sirt3 knockdown in MA-10 cells also increased intracellular ROS levels based on CM-H2DCFDA fluorescence dye analysis and increased the proportion of both early and late apoptotic (necrotic) cells based on Annexin V/7AAD assays. These results indicate that Sirt3 has a potential function in androgen production in Leydig cells by regulating intracellular ROS levels.
Collapse
Affiliation(s)
- Hisanori Matoba
- Department of Infection and Host Defense, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku 113-8654, Tokyo, Japan
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu 514-0001, Japan
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanobu Momose
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Kenji Sano
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Hitomi Imamura
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku 113-8654, Tokyo, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Pathology, North Alps Medical Center Azumi Hospital, Ikeda-machi, Kitaazumi-gun 399-8695, Japan
| |
Collapse
|
18
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
19
|
Ji H, Fan W, Kakar M, Alajmi RA, Bashir MA, Shakir Y. Effect of cadmium on the regulatory mechanism of steroidogenic pathway of Leydig cells during spermatogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:31-40. [PMID: 37861072 DOI: 10.1002/jez.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3β-hydroxysteroid hydrogenase (3β-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3β-hydroxysteroid hydrogenase (3β-HSD) 17β-hydroxysteroid hydrogenase (17β-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3β-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3β-HSD, 17β-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.
Collapse
Affiliation(s)
- HengLi Ji
- Department of Nephrology, Huaian Cancer Hospital, Huai'an, Jiangsu, China
| | - Wei Fan
- Department of Laboratory Medicine, Huaian Cancer Hospital, Huai'an, Jiangsu, China
| | - Mohibullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine sciences, Uthal, Balochistan, Pakistan
| | - Reem Atalla Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
20
|
Tao S, Yao Z, Li H, Wang Y, Qiao X, Yu Y, Li Y, Ning Y, Ge RS, Li S. Exposure to 4-nonylphenol compromises Leydig cell development in pubertal male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115612. [PMID: 37866035 DOI: 10.1016/j.ecoenv.2023.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Exposure to 4-nonyl phenol (4-NP) on Leydig cell (LC) development and function remains poorly understood. We explored the effects of 4-NP on LC development and elucidate the underlying mechanisms. Male (28-day-old) mice received orally 4-NP (0.125, 0.25, and 0.5 mg/kg/day) for 28 days. We found that 4-NP at ≥ 0.125 mg/kg markedly compromised serum testosterone levels and LC numbers. Gene and protein expression analysis demonstrated downregulation of key genes and their proteins involved in LC steroidogenesis, including Star, Cyp11a1, Cyp17a1, Hsd17b3, Hsd3b6, and Scarb1. Furthermore, exposure to 4-NP induced oxidative stress, as evidenced by elevated reactive oxygen species (ROS) and malondialdehyde (MDA), as well as reduced superoxide dismutase 1/2 and catalase (CAT). Apoptosis was also observed in LCs following exposure to 4-NP, as shown by an increased BAX/BCL2 ratio and caspase-3. A TM3 mouse LC line further confirmed that 4-NP induced ROS and the expression of apoptosis-related genes and proteins. In conclusion, this study demonstrates that 4-NP exposure compromises LC development through multiple mechanisms.
Collapse
Affiliation(s)
- Shanhui Tao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Zhiang Yao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Huitao Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yiyan Wang
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Xinyi Qiao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yang Yu
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yang Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yangyang Ning
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Ren-Shan Ge
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China.
| | - Shijun Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
21
|
Aitken RJ. Male reproductive ageing: a radical road to ruin. Hum Reprod 2023; 38:1861-1871. [PMID: 37568254 PMCID: PMC10546083 DOI: 10.1093/humrep/dead157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
22
|
Chen H, Dong Y, Li H, Chen Z, Su M, Zhu Q, Ge RS, Miao X. Trichlorfon blocks androgen synthesis and metabolism in rat immature Leydig cells. Reprod Toxicol 2023; 120:108436. [PMID: 37419161 DOI: 10.1016/j.reprotox.2023.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Trichlorfon is a widely used organophosphorus insecticide. It has been reported that it has reproductive toxicity to animal models. However, whether trichlorfon affects testosterone biosynthesis and metabolism remains unclear. In this study, we explored the effects of trichlorfon on the steroidogenesis and the expression of genes in androgen biosynthetic and metabolic cascades in immature Leydig cells isolated from pubertal male rats. Immature Leydig cells were treated with trichlorfon (0.5-50 µM) for 3 h. Trichlorfon significantly inhibited total androgen output under basal condition at 5 and 50 μM, and under LH- and cAMP-stimulated conditions at 50 μM. Trichlorfon also downregulated the expression of Star, Sod2, and Gpx1 and their proteins at 5 and 50 μM and the expression of Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a1 at 50 μM. Trichlorfon significantly inhibited total androgen output at 50 μM, which was partially reversed by 400 μg/ml vitamin E, which alone had no effects on androgen output. In conclusion, trichlorfon downregulates the expression of steroidogenesis-related genes and antioxidants, which leads to a decrease in androgen production in rat immature Leydig cells.
Collapse
Affiliation(s)
- Huan Chen
- Department of Emergency, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yaoyao Dong
- Department of Pharmacy, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Pharmacy, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhili Chen
- Department of Emergency, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming Su
- Department of Pharmacy, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiqi Zhu
- Department of Pharmacy, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Pharmacy, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xinjun Miao
- Department of Emergency, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
23
|
Sheir MA, Serrapica F, Ahmed RA. An Innovative Use of Propolis in the Production of Dipping Sauce Powder as a Functional Food to Mitigate Testicular Toxicity Induced by Cadmium Chloride: Technological and Biological Evidence. Foods 2023; 12:3069. [PMID: 37628076 PMCID: PMC10453573 DOI: 10.3390/foods12163069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Propolis is a common natural ingredient used in food production, food packaging, and pharmaceutical products. Therefore, the aim of our study was to prepare dipping sauce powders as an innovative functional product with a regular and spicy taste from economical raw materials with high nutritional value. The developed products were fortified with propolis powder at 250, 500, and 750 mg/kg. All studied dipping sauces were subjected to a palatability test, a nutritional evaluation, and a microbiological assay performed during 6 months of storage. In addition, an in vivo study was designed to evaluate the efficacy of these products in preventing the testicular toxicity disorders induced by cadmium chloride (CdCl2) in albino rats. Based on the palatability test, the dipping sauces supplemented with propolis at 250 mg/kg and 500 mg/kg were preferred. Moreover, all samples were safe to consume within 6 months. Biological results showed that all investigated propolis-enriched dipping sauce samples caused an improvement in all CdCl2-induced testicular histopathological and biochemical changes, especially the spicy dipping sauce powder fortified with 500 mg/kg of propolis.
Collapse
Affiliation(s)
- Marwa A. Sheir
- Department of Special Food and Nutrition, Food Technology Research Institute, Agricultural Research Center, Giza 3725005, Egypt;
| | - Francesco Serrapica
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rania A. Ahmed
- Department of Zoology, Faculty of Science, Suez University, Suez 43511, Egypt;
| |
Collapse
|
24
|
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel) 2023; 12:1559. [PMID: 37627554 PMCID: PMC10451682 DOI: 10.3390/antiox12081559] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.
Collapse
Affiliation(s)
- Elizabeth Monageng
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Ugochukwu Offor
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Ndivhuho Beauty Takalani
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
25
|
Alyasari NKH, Selman WH. L-carnitine-loaded nanoparticle ameliorates cypermethrin-induced reproductive toxicity in adult male rats. J Adv Pharm Technol Res 2023; 14:147-154. [PMID: 37255872 PMCID: PMC10226707 DOI: 10.4103/japtr.japtr_46_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/01/2023] Open
Abstract
The objective of this investigation was to find out whether L-carnitine-loaded nanoparticle (LCn) could reduce the reproductive toxicity of cypermethrin (CYP), the widely used insecticide in veterinary medicine in male rats. Twenty male Wistar rats that weighed between 210 and 240 g were split into four groups and treated daily for 2 months. The control group was given 0.9% normal saline solution daily. The second group received CYP (3.83 mg/kg b. w. p. o.) daily. The third group was administered with LCn and CYP (50 mg/kg b. wt. p. o. and 3.83 mg/kg b. wt. p. o., respectively) daily, whereas the fourth group received LCn alone (50 mg/kg b. wt. p. o.) daily. On day 60, all rats were sacrificed and samples were collected. CYP-treated animals exhibited inhibition of testicular anti-oxidative stress mechanisms, testicular steroidogenesis enzyme activity (3β-hydroxysteroid dehydrogenase [3β-HSD] and 17β-HSD), and downregulation of steroidogenic acute regulatory (StAR) gene expression. In addition, it decreased testosterone, follicle-stimulating hormone, and LH levels and had detrimental consequences for sperm quality. LCn attenuated CYP-induced reproductive toxicity via the alleviation of testicular oxidative stress status, improvement of steroidogenic enzyme activity, and upregulation of StAR gene expression, which are probably responsible for the concomitant improvement in testicular hormonal levels and improvement in sperm properties. Intriguingly, LCn treatment alone could enhance the functions of the male reproductive system.
Collapse
Affiliation(s)
- Noora Kadhim Hadi Alyasari
- Department of Soil Science and Water Resources, College of Agriculture, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Wisam Hussein Selman
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Diwaniyah, Iraq
| |
Collapse
|
26
|
Shi W, Liu Y, Jin Q, Wu M, Sun Q, Li Z, Liu W. Effects of Aerobic Exercise Combined with Oyster Peptide Supplement on the Formation of CTX-induced Late-Onset Hypogonadism in Male Rats. Reprod Sci 2023; 30:1291-1305. [PMID: 36097247 DOI: 10.1007/s43032-022-01068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
The purpose of this study is to investigate the effect of aerobic exercise (AE) training and/or oyster peptide (OP) supplementation on the formation of late-onset hypogonadism (LOH). AE training and/or OP supplement was performed during Cytoxan (CTX)-induced LOH formation in male SD rats for 6 consecutive weeks. Low dose of CTX could decrease mating times, the levels of luteinizing hormone (LH), total testosterone (TT), free testosterone (FT) in serum and TT, androgen receptor (AR), androgen binding protein (ABP), and glutathione peroxidase (GSH-Px) in testicle, but increase capture latency, mating latency, and malondialdehyde, and downregulate the mRNA expression of steroidogenic acute regulatory (StAR), P450 cholesterol side chain cleavage enzyme (P450scc), and StAR-related lipid transfer domain 7 (StARD7) in testicle. Every change was altered by AE training combined with OP supplement significantly, except for serum LH. Moreover, the effect of AE training combined with OP supplement was better than that of AE training on serum TT, FSH, testicular TT, mating latency, capture times, and mating times. AE training combined with OP supplement during CTX-induced LOH formation can prevent the LOH development by enhancing pituitary-gonads axis's function and reducing testicular oxidative stress to promote testosterone synthesis and spermatogenesis.
Collapse
Affiliation(s)
- Wenting Shi
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Yu Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China.
| | - Meitong Wu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Qizheng Sun
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Zheng Li
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Wenying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
- China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, 100015, China.
| |
Collapse
|
27
|
Wang YX, Dai W, Li YZ, Wu ZY, Kan YQ, Zeng HC, He QZ. Bisphenol S induces oxidative stress-mediated impairment of testosterone synthesis by inhibiting the Nrf2/HO-1 signaling pathway. J Biochem Mol Toxicol 2023; 37:e23273. [PMID: 36541330 DOI: 10.1002/jbt.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities. Therefore, this study explored the effects of exposure to BPS on testosterone synthesis in adult male mice and its mechanisms with regard to the Nrf2/HO-1 signaling pathway. Adult male C57BL/6 mice were orally exposed to BPS (2, 20, and 200 mg/kg BW) with sesame oil as a vehicle (0.1 ml/10 g BW) per day for 28 consecutive days. The results showed that compared with the control group, serum testosterone levels were substantially reduced in the 20 and 200 mg/kg BPS treatment groups, and testicular testosterone levels were reduced in all BPS treatment groups. These changes were accompanied by a prominent decrease in the expression levels of testosterone synthesis-related enzymes (STAR, CYP11A1, CYP17A1, HSD3B1, and HSD17B3) in the mouse testis. In addition, BPS induced oxidative stress in the testis by upregulating the messenger RNA and protein levels of Keap1 and downregulating the levels of Nrf2, HO-1, and downstream antioxidant enzymes (CAT, SOD1, and Gpx4). In summary, our results indicate that exposure of adult male mice to BPS can inhibit Nrf2/HO-1 signaling and antioxidant enzyme activity, which induces oxidative stress and thereby may impair testosterone synthesis in testicular tissues, leading to reproductive damage.
Collapse
Affiliation(s)
- Yu-Xiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Wei Dai
- Yuecheng District Centers for Disease Control and Prevention, Shaoxing, Zhejiang, People's Republic of China
| | - Yi-Zhou Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Occupational and Environmental Health, Guilin Medical University, Guilin, People's Republic of China
| | - Qing-Zhi He
- School of Biotechnology, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
28
|
Shetty S, Kumar V, Ramesh V, Bharati S. Mito-TEMPO protects against Bisphenol-A-induced testicular toxicity: An in vivo study. Free Radic Res 2022; 56:427-435. [PMID: 36205519 DOI: 10.1080/10715762.2022.2133702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Bisphenol-A (BPA) is a common environmental toxin which alters testicular function in both animals and humans. BPA exerts its cytotoxic potential by altering mitochondrial oxidative stress and functioning. Therefore, protecting mitochondria from oxidative stress may prevent BPA-induced testicular damage. In the present study, modulation of BPA toxicity by mitochondria-targeted antioxidant, mito-TEMPO was studied in male wistar rats. Rats were administered mito-TEMPO (0.1 mg/kg b.w, i.p.) twice a week, followed by BPA (10 mg/kg b.w., orally) once a week for 4 weeks. After 4 weeks, sperm parameters were evaluated in the testis along with histopathological analysis. The mitochondrial oxidative stress, mitochondrial membrane potential (MMP) and enzymatic activity of mitochondrial complex II and IV were estimated in the testicular tissue. Pre-treatment of mito-TEMPO protected animals from toxic effect of BPA as indicated by the normalisation of sperm parameters and preserved histoarchitecture of testis. BPA treatment to animals significantly increased mitochondrial reactive oxygen species (ROS) and lipid peroxidation (LPO). A significant decrease in the activity of mitochondrial complex II was also observed after BPA exposure whereas, mitochondrial complex II activity was increased. In addition, an increase in MMP was also observed in BPA group. Mito-TEMPO successfully normalised mitochondrial ROS and LPO formation. Similar normalisation effect was also noted in the activity of mitochondrial complex II, complex IV and MMP. Results suggested that mito-TEMPO pre-treatment significantly protected BPA-induced oxidative stress and thereby mito-TEMPO effectively prevented testicular damage.
Collapse
Affiliation(s)
- Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Vinoth Kumar
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Vasumathi Ramesh
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| |
Collapse
|
29
|
Natural Astaxanthin Improves Testosterone Synthesis and Sperm Mitochondrial Function in Aging Roosters. Antioxidants (Basel) 2022; 11:antiox11091684. [PMID: 36139758 PMCID: PMC9495865 DOI: 10.3390/antiox11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.
Collapse
|
30
|
Park YW, Lee JH. Long-term efficacy of varicocele repair in middle-aged men with erectile dysfunction (ED) and low testosterone: Five cases with follow-up from 16 to 60 months. JOURNAL OF CLINICAL UROLOGY 2022. [DOI: 10.1177/20514158221078724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report five cases of middle-aged men with low testosterone levels and erectile dysfunction (ED) who were successfully treated with varicocelectomy with long-term follow-up. All five patients presented to our clinic with ED. Upon initial physical examination, each patient had varicoceles on his scrotum, and two consecutive morning samplings showed testosterone levels below 400 ng/mL. Age at varicocelectomy was from 40 to 53 years. Four patients underwent microscopic subinguinal varicocelectomy, whereas one patient underwent inguinal varicocelectomy. After surgery, testosterone increased in all cases, and the normal testosterone level was maintained during follow-up (16–60 months). In addition, all cases reported improvement of ED after surgery. In our clinical cases, microscopic varicocelectomy increased serum testosterone levels and improved erectile function, and this increase and improvement continued up to a follow-up of 60 months. Varicocelectomy would be a good option to treat testosterone deficiency in men with varicocele.
Collapse
Affiliation(s)
- Yeon Won Park
- Department of Urology, National Police Hospital, South Korea
| | - Jun Ho Lee
- Department of Urology, Nowon Eulji Medical Center, Eulji University, South Korea
| |
Collapse
|
31
|
Alterations in reproductive parameters and steroid biosynthesis induced by nickel oxide nanoparticles in male rats: The ameliorative effect of hesperidin. Toxicology 2022; 473:153208. [DOI: 10.1016/j.tox.2022.153208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
|
32
|
Gu X, Li SY, Matsuyama S, DeFalco T. Immune Cells as Critical Regulators of Steroidogenesis in the Testis and Beyond. Front Endocrinol (Lausanne) 2022; 13:894437. [PMID: 35573990 PMCID: PMC9096076 DOI: 10.3389/fendo.2022.894437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Steroidogenesis is an essential biological process for embryonic development, reproduction, and adult health. While specific glandular cells, such as Leydig cells in the testis, are traditionally known to be the principal players in steroid hormone production, there are other cell types that contribute to the process of steroidogenesis. In particular, immune cells are often an important component of the cellular niche that is required for the production of steroid hormones. For several decades, studies have reported that testicular macrophages and Leydig cells are intimately associated and exhibit a dependency on the other cell type for their proper development; however, the mechanisms that underlie the functional relationship between macrophages and Leydig cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as certain types of lymphocytes, are capable of steroid hormone production, thus highlighting the complexity and diversity that underlie steroidogenesis. In this review we will describe how immune cells are critical regulators of steroidogenesis in the testis and in extra-glandular locations, as well as discuss how this area of research offers opportunities to uncover new insights into steroid hormone production.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Satoko Matsuyama
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
33
|
Greifová H, Jambor T, Tokárová K, Knížatová N, Lukáč N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many studies have revealed that oxidative stress is a primary factor in the pathogenesis of male reproductive system dysfunctions. The strong antioxidant and cytoprotective effects of resveratrol have previously been demonstrated, but its effect in the context of the male reproduction
remains unconvincing. To observe the biological activity of resveratrol in protecting the male reproductive function, hydrogen peroxide-induced oxidative stress in Leydig cells was used as a cell model. The aim of the present study was to examine if resveratrol could induce changes in the
gap junction intercellular communication (GJIC), nitric oxide production, total oxidant status (TOS) and total antioxidant capacity (TAC) in TM3 Leydig cells subjected to H2O2. The Leydig cells were exposed to a resveratrol treatment (5, 10, 20, 50 and 100 μM) in the
presence or absence of H2O2 (300/600 μM) during a 24 h in vitro culture. The cell lysates to assess TOS and TAC, NO production were quantified in a culture medium using the Griess method, and the Scrape Loading/Dye Transfer (SL/DT) technique was used for the
determination of GJIC in the exposed TM3 Leydig cells. Treatment with higher doses of resveratrol alone led to a significantly increased TOS (p<0.05 with 100 μM) and NO production (p<0.05 with 50 μM and 100 μM), but significantly reduced TAC (p<0.01 with 100 μM) and GJIC
(p<0.05 with 100 μM), while the SL/DT evaluation in the cells exposed to resveratrol at concentrations 5 μM (p<0.05) and 10 μM (p<0.01) revealed a significant stimulation of GJIC. The most potent cytoprotective or stimulatory effect of resveratrol in the cells co-exposed
to oxidative stress (300 μM H2O2) was observed at a concentration of 10 μM in the case of GJIC, which was manifested by a significant increase in the values (p<0.05) compared to the control group treated with H2O2 alone.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
34
|
Huang X, Ma T, Chen X. Tributyltin inhibits development of pubertal Leydig cells in rats. Reprod Toxicol 2022; 111:49-58. [DOI: 10.1016/j.reprotox.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
35
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
36
|
Pabisz P, Bazak J, Girotti AW, Korytowski W. Anti-steroidogenic effects of cholesterol hydroperoxide trafficking in MA-10 Leydig cells: Role of mitochondrial lipid peroxidation and inhibition thereof by selenoperoxidase GPx4. Biochem Biophys Res Commun 2022; 591:82-87. [PMID: 34999258 DOI: 10.1016/j.bbrc.2021.12.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Steroid hormone synthesis in steroidogenic cells requires cholesterol (Ch) delivery to/into mitochondria via StAR family trafficking proteins. In previous work, we discovered that 7-OOH, an oxidative stress-induced cholesterol hydroperoxide, can be co-trafficked with Ch, thereby causing mitochondrial redox damage/dysfunction. We now report that exposing MA-10 Leydig cells to Ch/7-OOH-containing liposomes (SUVs) results in (i) a progressive increase in fluorescence probe-detected lipid peroxidation in mitochondrial membranes, (ii) a reciprocal decrease in immunoassay-detected progesterone generation, and ultimately (iii) loss of cell viability with increasing 7-OOH concentration. No significant effects were observed with a phospholipid hydroperoxide over the same concentration range. Glutathione peroxidase GPx4, which can catalyze lipid hydroperoxide detoxification, was detected in mitochondria of MA-10 cells. Mitochondrial lipid peroxidation and progesterone shortfall were exacerbated when MA-10 cells were treated with Ch/7-OOH in the presence of RSL3, a GPx4 inhibitor. However, Ebselen, a selenoperoxidase mimetic, substantially reduced RSL3's negative effects, thereby partially rescuing the cells from peroxidative damage. These findings demonstrate that co-trafficking of oxidative stress-induced 7-OOH can disable steroidogenesis, and that GPx4 can significantly protect against this.
Collapse
Affiliation(s)
- Pawel Pabisz
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
37
|
Wang S, Wei Y, Hu C, Liu F. Proteomic analysis reveals proteins and pathways associated with declined testosterone production in male obese mice after chronic high-altitude exposure. Front Endocrinol (Lausanne) 2022; 13:1046901. [PMID: 36531490 PMCID: PMC9748565 DOI: 10.3389/fendo.2022.1046901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Obesity is common in highland areas owing to lifestyle alterations. There are pieces of evidence to suggest that both obesity and hypoxia may promote oxidative stress, leading to hypogonadism in males. These findings indicate an increased risk of hypogonadism in obese males following hypoxia exposure. However, the mechanisms underlying the disease process remain unclear. The current study aims to explore the mechanism of testosterone production dysfunction in obese male mice exposed to a chronic high-altitude hypoxia environment. METHODS An obese male mouse model was generated by inducing obesity in mice via a high-fat diet for 14 weeks, and the obese mice were then exposed to a high-altitude hypoxia environment for 24 days. Sera and testicular tissues were collected to detect serum lipids, sex hormone level, and testicular oxidative stress indicators. Morphological examination was performed to assess pathological alterations in testicular tissues and suborganelles in leydig cells. Proteomic alterations in testicular tissues were investigated using quantitative proteomics in Obese/Control and Obese-Hypoxia/Obese groups. RESULTS The results showed that chronic high-altitude hypoxia exposure aggravated low testosterone production in obese male mice accompanied by increased testicular oxidative stress and histological damages. In total, 363 and 242 differentially expressed proteins (DEPs) were identified in the two comparison groups, Obese/Control and Obese-Hypoxia/Obese, respectively. Functional enrichment analysis demonstrated that several significant functional terms and pathways related to testosterone production were altered in the two comparison groups. These included cholesterol metabolism, steroid hormone biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, oxidative stress responses, as well as retinol metabolism. Finally, 10 representative DEPs were selected for parallel reaction monitoring verification. Among them, StAR, DHCR7, NSDHL, CYP51A1, FDPS, FDX1, CYP11A1, ALDH1A1, and GPX3 were confirmed to be downregulated in the two groups. CONCLUSIONS Chronic hypoxia exposure could exacerbate low testosterone production in obese male mice by influencing the expression of key proteins involved in steroid hormone biosynthesis, cholesterol biosynthesis, oxidative stress responses and retinol metabolism.
Collapse
Affiliation(s)
- Shuqiong Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| | - Youwen Wei
- Department of Plague Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Caiyan Hu
- Department of Laboratory Medicine, Baoding First Central Hospital, Baoding, China
| | - Fang Liu
- Department of Biochemistry, Medical College, Qinghai University, Xining, China
- *Correspondence: Fang Liu,
| |
Collapse
|
38
|
Leisegang K, Roychoudhury S, Slama P, Finelli R. The Mechanisms and Management of Age-Related Oxidative Stress in Male Hypogonadism Associated with Non-communicable Chronic Disease. Antioxidants (Basel) 2021; 10:1834. [PMID: 34829704 PMCID: PMC8615233 DOI: 10.3390/antiox10111834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Androgens have diverse functions in muscle physiology, lean body mass, the regulation of adipose tissue, bone density, neurocognitive regulation, and spermatogenesis, the male reproductive and sexual function. Male hypogonadism, characterized by reduced testosterone, is commonly seen in ageing males, and has a complex relationship as a risk factor and a comorbidity in age-related noncommunicable chronic diseases (NCDs), such as obesity, metabolic syndrome, type 2 diabetes, and malignancy. Oxidative stress, as a significant contributor to the ageing process, is a common feature between ageing and NCDs, and the related comorbidities, including hypertension, dyslipidemia, hyperglycemia, hyperinsulinemia, and chronic inflammation. Oxidative stress may also be a mediator of hypogonadism in males. Consequently, the management of oxidative stress may represent a novel therapeutic approach in this context. Therefore, this narrative review aims to discuss the mechanisms of age-related oxidative stress in male hypogonadism associated with NCDs and discusses current and potential approaches for the clinical management of these patients, which may include conventional hormone replacement therapy, nutrition and lifestyle changes, adherence to the optimal body mass index, and dietary antioxidant supplementation and/or phytomedicines.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, Bellville, Cape Town 7535, South Africa
| | | | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | | |
Collapse
|
39
|
Impact of Environmental and Lifestyle Use of Chromium on Male Fertility: Focus on Antioxidant Activity and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10091365. [PMID: 34572997 PMCID: PMC8468676 DOI: 10.3390/antiox10091365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Male reproductive tissues are strongly susceptible to several environmental and lifestyle stressors. In general, male reproductive health is highly sensitive to oxidative stress, which results in reversible and/or irreversible changes in testosterone-producing cells, spermatogenesis, and sperm quality. Chromium compounds are widely used in the +3 and +6 valence states, as food supplements, and in the industrial field, respectively. Chromium (III) compounds, i.e., Cr(III)-tris-picolinate, [Cr(pic)3], known as chromium picolinate, are used as nutritional supplements for the control of diabetes, body weight, and muscular growth. However, previous studies showed that animal models exposed to chromium picolinate experienced degenerative changes in spermatogenesis. Contradictory results are documented in the literature and deserve discussion. Furthermore, the long-term effects of chromium picolinate on the antioxidant system of treated subjects have not been properly studied. Comprehensive studies on the role of this compound will help to establish the safe and useful use of chromium supplementation. On the other hand, chromium (VI) compounds are widely used in several industries, despite being well-known environmental pollutants (i.e., welding fumes). Chromium (VI) is known for its deleterious effects on male reproductive health as toxic, carcinogenic, and mutagenic. Previous studies have demonstrated severe lesions to mouse spermatogenesis after exposure to chromium (VI). However, workers worldwide are still exposed to hexavalent chromium, particularly in electronics and military industries. Data from the literature pinpoints mechanisms of oxidative stress induced by chromium compounds in somatic and germ cells that lead to apoptosis, thus underlining the impairment of fertility potential. In this review, we analyze the benefits and risks of chromium compounds on male fertility, as well as the mechanisms underlying (in)fertility outcomes. Although supplements with antioxidant properties may maximize male fertility, adverse effects need to be investigated and discussed.
Collapse
|
40
|
Luqman EM, Ananda AT, Widjiati W, Hendrawan VF. Protective Effect of Apis dorsata Honey against Chronic Monosodium Glutamate-induced Testicular Toxicity in Mus musculus mice,. Turk J Pharm Sci 2021; 19:246-250. [DOI: 10.4274/tjps.galenos.2021.30737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Girotti AW, Korytowski W. Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case. Redox Biol 2021; 46:102096. [PMID: 34418596 PMCID: PMC8379493 DOI: 10.1016/j.redox.2021.102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 10/29/2022] Open
Abstract
Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
42
|
Tsao CW, Hsu YJ, Tseng XT, Chang TC, Tsao CH, Liu CY. Does Coenzyme Q10 Supplementation Improve Testicular Function and Spermatogenesis in Male Mice with Chronic Kidney Disease? BIOLOGY 2021; 10:biology10080786. [PMID: 34440017 PMCID: PMC8389647 DOI: 10.3390/biology10080786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Chronic kidney disease (CKD) is found to be linked to elevated apoptosis, oxidative stress and inflammation. Moreover, lower testosterone, poorer sperm quality and lower reproductive function have also been observed. Coenzyme Q10 (CoQ10), a widely used antioxidant involved in mitochondrial energy production, is indispensable for maintaining the efficient energy system of spermatozoa and protecting their membranes from lipid peroxidation, yet there are few studies focusing on the effects of CoQ10 on CKD-induced male infertility. This study suggests that CoQ10 increases testosterone levels and improves spermatogenesis in CKD mice. Abstract The aim of the study was to examine the potential effects of coenzyme Q10 (CoQ10) on reproductive function in a chronic kidney disease (CKD) mouse model. Nine-week-old mice were randomly assigned to two groups: sham surgery (n = 18) and CKD surgery (n = 18). After surgery, the study groups received CoQ10 (10 mg/kg body weight dissolved in corn oil by oral gavage) or corn oil as a vehicle daily for 8 weeks. The groups that underwent 5/6 nephrectomy developed significant elevations of serum BUN and creatinine levels. The CoQ10 treatment significantly increased the serum and testicular CoQ10 levels and alleviated the poor semen quality from incomplete spermatogenesis. The testosterone concentration, in addition to the protein expression of enzymes related to testosterone biosynthesis, was also elevated, and the CKD-induced decrease in antioxidant activity in the testes was significantly ameliorated. The results suggest that CoQ10 could act against CKD-induced testicular dysfunction through improvements in the sperm function, testicular morphology, testosterone levels and related biosynthesis pathways, in addition to antioxidant activity.
Collapse
Affiliation(s)
- Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Xiang-Ting Tseng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Centre, Taipei 11490, Taiwan;
| | - Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
- Correspondence:
| |
Collapse
|
43
|
Huang L, Xiao K, Zhang J, Zhang P, He W, Tang Y, Yang W, Huang X, Liu R, Liang X, Liu X, Fu Q, Lu Y, Zhang M. Comparative transcriptome analysis reveals potential testosterone function-related regulatory genes/pathways of Leydig cells in immature and mature buffalo (Bubalus bubalis) testes. Gene 2021; 802:145870. [PMID: 34363886 DOI: 10.1016/j.gene.2021.145870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/11/2021] [Accepted: 08/02/2021] [Indexed: 01/27/2023]
Abstract
Leydig cells (LCs) are testosterone-generating endocrine cells that are located outside the seminiferous tubules in the testis, and testosterone is fundamental for retaining spermatogenesis and male fertility. In buffalo, adult Leydig cells (ALCs) are developed by immature Leydig cells (ILCs) in the postnatal testes. However, the genes/pathways associated to the regulation of testosterone secretion function during the development of postnatal LCs remains comprehensively unidentified. The present study comparatively analyzed the transcriptome profiles of ILC and ALC in buffalo with significant differences in testosterone secretion. Differentially expressed genes (DEGs) analysis identified 972 and 1,091 annotated genes that were significantly up- and down-regulated in buffalo ALC. Functional enrichment analysis showed that cAMP signaling being the most significantly enriched pathway, and testosterone synthesis and lipid transport-related genes/pathways were upregulated in ALC. Furthermore, gene set enrichment analysis (GSEA) shows that cAMP signaling and steroid hormone biosynthesis were activated in ALC, demonstrating that cAMP signaling may serve as a positive regulatory pathway in the maintenance of testosterone function during postnatal development of LCs. Protein-protein interaction (PPI) networks analysis highlighted that ADCY8, ADCY2, POMC, CHRM2, SST, PTGER3, SSTR2, SSTR1, NPY1R, and HTR1D as hub genes in the cAMP signaling pathway. In conclusion, this study identified key genes and pathways associated in the regulation of testosterone secretion function during the ILC-ALC transition in buffalo based on bioinformatics analysis, and these key genes might be deeply involved in cAMP generation to influencing testosterone levels in LCs. The results suggest that ALCs might increase testosterone levels by enhancing cAMP production than ILCs. Our data will enhance the understanding of developmental mechanism studies related to testosterone function and provide preliminary evidence for molecular mechanisms of LCs regulating spermatogenesis.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Junjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Pengfei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Weihan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Runfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Xianwei Liang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Nanning 530001, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
44
|
Liu Y, Liu Y, Wang J, Huang F, Du P, Wu L, Guo F, Song Y, Qin G. LncRNA FENDRR promotes apoptosis of Leydig cells in late-onset hypogonadism by facilitating the degradation of Nrf2. Cell Tissue Res 2021; 386:379-389. [PMID: 34278519 DOI: 10.1007/s00441-021-03497-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the role of lncRNA FENDRR in apoptosis of Leydig cells and the further mechanism. The apoptosis of Leydig cells (TM3 cell line) was induced by H2O2-treatment and detected by flow cytometry. The function of FENDRR was determined by in vitro and in vivo silencing experiments. The mechanism of FENDRR in regulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was assessed by RNA immunoprecipitation, RNA pull-down, and ubiquitination assays. FENDRR expression was up-regulated in H2O2-treated TM3 cells. Knockdown of FENDRR augmented Nrf2 and HO-1 protein levels and testosterone production in H2O2-treated TM3 cells, whereas the apoptosis rate and caspase 3 activity were decreased. Mechanically, FENDRR bound to Nrf2 and promoted its ubiquitination and degradation. Nrf2 overexpression reversed the effects FENDRR overexpression on apoptosis, caspase 3 activity, and testosterone concentration in H2O2-treated TM3 cells. The in vivo experiments showed that FENDRR silence increased serum testosterone level and improved testosterone-related anti-depression behaviors of late-onset hypogonadism (LOH) mice. Our findings suggested that FENDRR could promote apoptosis of Leydig cells in LOH partly through facilitating Nrf2 degradation.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanxia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengjiao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peijie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lina Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
45
|
Ye Q, Zeng X, Wang S, Zeng X, Yang G, Ye C, Cai S, Chen M, Li S, Qiao S. Butyrate drives the acetylation of histone H3K9 to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells. FASEB J 2021; 35:e21316. [PMID: 33433947 DOI: 10.1096/fj.202000444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Maintaining ovarian steroidogenesis is of critical importance, considering that steroid hormones are required for successful establishment and maintenance of pregnancy and proper development of embryos and fetuses. Investigating the mechanism that butyrate modulates the ovarian steroidogenesis is beneficial for understanding the impact of lipid nutrition on steroidogenesis. Herein, we identified that butyrate improved estradiol and progesterone synthesis in rat primary ovarian granulosa cells and human granulosa KGN cells and discovered the related mechanism. Our data indicated that butyrate was sensed by GPR41 and GPR43 in ovarian granulosa cells. Butyrate primarily upregulated the acetylation of histone H3K9 (H3K9ac). Chromatin immune-precipitation and sequencing (ChIP-seq) data of H3K9ac revealed the influenced pathways involving in the mitochondrial function (including cellular metabolism and steroidogenesis) and cellular antioxidant capacity. Additionally, increasing H3K9ac by butyrate further stimulated the PPARγ/CD36/StAR pathways to increase ovarian steroidogenesis and activated PGC1α to enhance mitochondrial dynamics and alleviate oxidative damage. The improvement in antioxidant capacity and mitochondrial dynamics by butyrate enhanced ovarian steroidogenesis. Collectively, butyrate triggers histone H3K9ac to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| |
Collapse
|
46
|
Yang T, Deng L, Sun B, Zhang S, Xian Y, Xiao X, Zhan Y, Xu K, Buonocore JJ, Tang Y, Li F, Qiu Y. Semen quality and windows of susceptibility: A case study during COVID-19 outbreak in China. ENVIRONMENTAL RESEARCH 2021; 197:111085. [PMID: 33812874 PMCID: PMC8542995 DOI: 10.1016/j.envres.2021.111085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND To evaluate the impact of air pollution exposure on semen quality parameters during COVID-19 outbreak in China, and to identify potential windows of susceptibility for semen quality. METHODS A retrospective observational study was carried out on 1991 semen samples collected between November 23, 2019 and July 23, 2020 (a period covering COVID-19 lock-down in China) from 781 sperm donor candidates at University-affiliated Sichuan Provincial Human Sperm Bank. Multivariate mixed-effects regression models were constructed to investigate the relationship between pollution exposure, windows of susceptibility, and semen quality, while controlling for biographic and meteorologic confounders. RESULT(S) The results indicated multiple windows of susceptibility for semen quality, especially sperm motility, due to ambient pollution exposure. Exposure to particulate matters (PM2.5 and PM10), O3 and NO2 during late stages of spermatogenesis appeared to have weak but positive association with semen quality. Exposure to CO late in sperm development appeared to have inverse relationship with sperm movement parameters. Exposure to SO2 appeared to influence semen quality throughout spermatogenesis. CONCLUSION(S) Potential windows of susceptibility for semen quality varied depending on air pollutants. Sperm motility was sensitive to pollution exposure. Findings from current study further elucidate the importance of sensitive periods during spermatogenesis and provide new evidence for the determinants of male fertility.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Li Deng
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Boyu Sun
- Wuyuzhang Honors College, Sichuan University, Chengdu, PR China
| | - Shifu Zhang
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Yang Xian
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Xiao Xiao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Yu Zhan
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Kehui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China; Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Johnathan J Buonocore
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, USA
| | - Ya Tang
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China.
| | - Yang Qiu
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China.
| |
Collapse
|
47
|
Mohan UP, P B TP, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity - A review. Reprod Toxicol 2021; 102:80-89. [PMID: 33878324 DOI: 10.1016/j.reprotox.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
The anticancer drug doxorubicin has been associated with several adverse side-effects including reproductive toxicity in both genders. The current review has complied the mechanisms of doxorubicin induced reproductive toxicity. The articles cited in the review were searched using Google Scholar, PubMed, Scopus, Science Direct. Doxorubicin treatment has been found to cause a decrease in testicular mass along with histopathological deformities, oligospermia and abnormalities in sperm morphology. Apart from severely affecting the normal physiological role of both Leydig cells and Sertoli cells, doxorubicin also causes chromosome abnormalities and affects DNA methylase enzyme. Testicular lipid metabolism has been found to be negatively affected by doxorubicin treatment resulting in altered profile of sphingolipids glycerophospholipids and neutral lipids. Dysregulation of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β- hydroxysteroid dehydrogenase (17β-HSD) are strongly linked to testicular exposure to doxorubicin. Further, oxidative stress along with endoplasmic reticulum stress are also found to aggravate the male reproductive functioning in doxorubicin treated conditions. Several antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase (GPx) are downregulated by doxorubicin. It also disturbs the hormones of the hypothalamic-pituitary-gonadal (HPG)-axis including testosterone, luteinizing hormone, follicle stimulating hormone etc. In females, the drug disturbs folliculogenesis and oogenesis leading to failure of ovulation and uterine cycle. In rodent model the drug shortens pro-estrous and estrous phases. It was also found that doxorubicin causes mitochondrial dysfunction in oocytes with impaired calcium signaling along with ER stress. The goal of the present review is to comprehends various pathways due to which doxorubicin treatment promotes toxicity in male and female reproductive system.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India
| | | | | | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India.
| |
Collapse
|
48
|
Lunetti P, Capobianco L, Zara V, Ferramosca A. Physical Activity and Male Reproductive Function: A New Role for Gamete Mitochondria. Exerc Sport Sci Rev 2021; 49:99-106. [PMID: 33720911 DOI: 10.1249/jes.0000000000000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies demonstrated that some types of physical exercise might affect male reproductive potential, even though the potential mechanisms involved in the modulation of sperm quality remain poorly understood. Therefore, we propose a new role for gamete mitochondria as a key hub that coordinates molecular events related to the effects induced by physical exercise.
Collapse
Affiliation(s)
- Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | |
Collapse
|
49
|
Moringa protein drink increases testosterone and anabolic status of men with hyperlipidemia: A randomized controlled study. TURKISH JOURNAL OF KINESIOLOGY 2021. [DOI: 10.31459/turkjkin.851832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Jin QG, Shi WT, Wang YC, Li SY, Xue C, Xu HR, Wu MT, Wei Y. Oyster peptide prevents the occurrence of exercise-hypogonadal male condition by improving the function of pituitary gonadal axis in male rats. Andrologia 2021; 53:e14005. [PMID: 33565168 DOI: 10.1111/and.14005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
This study evaluates the protective role of oyster peptide (OP) on the occurrence of Exercise-Hypogonadal Male Condition. Male rats were given heavy-load swimming training and / or OP was supplemented for 6 consecutive weeks. After heavy-load training, sperm count, sperm viability and sperm motility in epididymis, testosterone in serum and testis, glutathione peroxidase (GSH-px) and androgen receptor (AR) in testis and mating times were remarkably decreased, malondialdehyde (MDA), capture latency and mating latency were significantly increased, mRNA expression of steroidogenic acute regulatory (StAR) and P450 cholesterol side-chain cleavage enzyme (P450scc) were obviously down-regulated, but serum follicle-stimulating hormone (FSH) and luteinising hormone (LH) were not statistically changed. Conversely, when OP was supplemented at heavy-load training, sperm count, sperm viability and sperm motility in epididymis, serum FSH, LH, testosterone, GSH-px, superoxide dismutase (SOD), testosterone, AR in testis and mating times were dramatically increased, while testicular MDA, capture latency and mating latency were significantly decreased, and mRNA expression of StAR, StARD7, P450scc and 3β-hydroxysteroid dehydrogenase (3β-HSD) were significantly up-regulated. In conclusion, heavy-load training causes testicular spermatogenic and steroidogenic disorders by enhancing the generation of reactive oxygen species (ROS), which can be protected by the co-administration of OP by enhancing the function of pituitary gonad axis and lowering ROS generation.
Collapse
Affiliation(s)
- Qi-Guan Jin
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Wen-Ting Shi
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yu-Chen Wang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Shu-Yan Li
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Chen Xue
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Hao-Ran Xu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Mei-Tong Wu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Ying Wei
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| |
Collapse
|