1
|
Nguyen TMD, Klett D, Combarnous Y. Undissociable chemically cross-linked and single-chain gonadotropins. Theriogenology 2023; 198:250-255. [PMID: 36621134 DOI: 10.1016/j.theriogenology.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Undissociable gonadotropins can be obtained either by chemical cross-linking of the natural heterodimeric hormones or by expressing recombinant single-chain molecules through the fusion of their α and β polypeptide sequences. These undissociable hormones are not more active than their natural heterodimeric counterparts indicating that the β-subunit seatbelt embracing the α-subunit ensures the αβ heterodimer stability in physiological conditions. The main interests of single-chain gonadotropins are that 1/only one single plasmid is required to produce an active recombinant hormone, 2/the two subunits' domains are constantly present in equal amounts and 3/they remain in close proximity even at low concentration for forming the hormone bioactive 3D structure. These undissociable gonadotropins have been shown to exhibit excellent stability and activity but they have not yet been commercialized probably because of immunogenicity risks and cost of production. Nevertheless, they might be used as a basis for the development of chemically simpler and cheaper ligands of LH and FSH receptors.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- INRAe, CNRS Unit of Reproductive Physiology and Behaviour, 37380, Nouzilly, France; Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 820000, Viet Nam
| | - Danièle Klett
- INRAe, CNRS Unit of Reproductive Physiology and Behaviour, 37380, Nouzilly, France
| | - Yves Combarnous
- INRAe, CNRS Unit of Reproductive Physiology and Behaviour, 37380, Nouzilly, France.
| |
Collapse
|
2
|
Ben-Menahem D. Preparation, characterization and application of long-acting FSH analogs for assisted reproduction. Theriogenology 2018; 112:11-17. [DOI: 10.1016/j.theriogenology.2017.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|
3
|
Wang H, May J, Butnev V, Shuai B, May JV, Bousfield GR, Kumar TR. Evaluation of in vivo bioactivities of recombinant hypo- (FSH 21/18) and fully- (FSH 24) glycosylated human FSH glycoforms in Fshb null mice. Mol Cell Endocrinol 2016; 437:224-236. [PMID: 27561202 PMCID: PMC5048586 DOI: 10.1016/j.mce.2016.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/21/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
The hormone - specific FSHβ subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHβ subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the β - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the β - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob May
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Viktor Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Kleinau G, Kalveram L, Köhrle J, Szkudlinski M, Schomburg L, Biebermann H, Grüters-Kieslich A. Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Mol Endocrinol 2016; 30:954-64. [PMID: 27387040 DOI: 10.1210/me.2016-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring thyrotropin (TSH) mutations are rare, which is also the case for the homologous heterodimeric glycoprotein hormones (GPHs) follitropin (FSH), lutropin (LH), and choriogonadotropin (CG). Patients with TSH-inactivating mutations present with central congenital hypothyroidism. Here, we summarize insights into the most frequent loss-of-function β-subunit of TSH mutation C105Vfs114X, which is associated with isolated TSH deficiency. This review will address the following question. What is currently known on the molecular background of this TSH variant on a protein level? It has not yet been clarified how C105Vfs114X causes early symptoms in affected patients, which are comparably severe to those observed in newborns lacking any functional thyroid tissue (athyreosis). To better understand the mechanisms of this mutant, we have summarized published reports and complemented this information with a structural perspective on GPHs. By including the ancestral TSH receptor agonist thyrostimulin and pathogenic mutations reported for FSH, LH, and choriogonadotropin in the analysis, insightful structure function and evolutionary restrictions become apparent. However, comparisons of immunogenicity and bioactivity of different GPH variants is hindered by a lack of consensus for functional analysis and the diversity of used GPH assays. Accordingly, relevant gaps of knowledge concerning details of GPH mutation-related effects are identified and highlighted in this review. These issues are of general importance as several previous and recent studies point towards the high impact of GPH variants in differential signaling regulation at GPH receptors (GPHRs), both endogenously and under diseased conditions. Further improvement in this area is of decisive importance for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Laura Kalveram
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Josef Köhrle
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Mariusz Szkudlinski
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Lutz Schomburg
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Annette Grüters-Kieslich
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| |
Collapse
|
5
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
6
|
On the pulmonary toxicity of oxygen. 4. The thyroid arena. Exp Mol Pathol 2011; 92:140-54. [PMID: 22138105 DOI: 10.1016/j.yexmp.2011.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/21/2022]
Abstract
Normally developed thyroid function is critical to the transition from fetal to neonatal life with the onset of independent thermoregulation, the most conspicuous of the many ways in which thyroid secretions act throughout the body. A role for thyroid secretions in growth and maturation of the lungs as part of the preparation for the onset of breathing has been recognized for some time but how this contributes to tissue and cell processes and defenses under the duress of respiratory distress has not been well examined. Extensive archival autopsy material was searched for thyroid and adrenal weights, first by gestational age, and then for changes during the first hours after birth as ratios to body weight. After a gestational age of 22 weeks the fetal thyroid and adrenal glands at autopsy in those with hyaline membrane disease are persistently half the size of those in "normal" infants dying with other disorders. When the thyroid is examined shortly after birth it reveals a post natal loss of mass per body weight of similar orders of magnitude which does not occur in the control group. A clinical sample of premature infants with (12) and without (14) hyaline membrane disease was tested for T(4), TSH, TBG, and total serum protein. The results also demonstrate a special subset with lower birth weights at the same gestational age, and lower serum T(4) and total serum protein. Ventilatory distress in newborn rabbits was induced by bilateral cervical vagotomy at 24 h post natal following earlier injection of thyroxine (T(4)) or thyroid stimulating hormone (TSH) and comparisons were made with untreated animals and by dose. Early life thyroidectomy was performed followed by exposure to either air or 100% oxygen. A final experiment in air was vagotomy after thyroidectomy. Composite analysis of these methods indicates that thyroid factors are both operative and important in the newborn animal with ventilatory distress. This work and the archival data indicate those infants destined to develop hyaline membrane disease through respiratory distress are a distinct developmental and clinical subset with the point of departure from otherwise normal development and maturation in the second or early third trimester. This interval is known to be a period of marked variation in the overview indicators of fetal progress through gestational time. The initiating factor or circumstance which then separates this special subset from normal future development is placed by these observations firmly into the period when human fetal TSH dramatically rises 7-fold (17.5-25.5 weeks) followed by a lesser 3 to 4-fold increase in T(4) which is extended into the early third trimester. The earlier part of this interval is characterized by the thyrotrophic action of chorionic gonadotropin (hCG). The possibility that abnormalities in the intrauterine environment secondary to maternal infection play a role within this time frame is indicated by the demonstration that interleukin-2 (IL-2) induces an anterior pituitary release of TSH. Since IL-2 has this property and is not an acute phase cytokine, some form of chronic infection or an immunopathic process seems more likely as a possible active factor in pathogenesis.
Collapse
|
7
|
Adams TE, Boime I. The Expanding Role of Recombinant Gonadotropins in Assisted Reproduction. Reprod Domest Anim 2008; 43 Suppl 2:186-92. [DOI: 10.1111/j.1439-0531.2008.01160.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Setlur SR, Dighe RR. Single chain human chorionic gonadotropin, hCGalphabeta: effects of mutations in the alpha subunit on structure and bioactivity. Glycoconj J 2007; 24:97-106. [PMID: 17143726 DOI: 10.1007/s10719-006-9016-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The strategy of translationally fusing the subunits of heterodimeric proteins into single chain molecules is often used to overcome the mutagenesis-induced defects in subunit interactions. The approach of fusing the alpha and beta subunits of human Chorionic Gonadotropin (hCG) to produce a single chain hormone (phCGalphabeta) was used to investigate roles of critical residues of the alpha subunit in hormone receptor interaction and biological activity. The alpha subunit was mutated using PCR-based site-directed mutagenesis, fused to the wild type beta subunit and the fusion protein was expressed using Pichia pastoris expression system. Following partial purification, the mutant proteins were extensively characterized using immunological probes, receptor assays, and in vitro bioassays. The mutation hCGalpha P38A, which disrupts subunit interaction in the heterodimeric molecule, produced a fusion molecule exhibiting altered subunit interactions as judged by the immunological criteria, but could bind to the receptor with lower affinity and elicit biological response. Mutation of hCGalpha T54A disrupting the glycosylation at Asparagine 52, believed to be important for bioactivity, also yielded a biologically active molecule suggesting that the glycosylation at this site is not as critical for bioactivity as it is in the case of the heterodimer. The fusion protein approach was also used to generate a superagonist of hormone action. Introduction of four lysine residues in the Loop 1 of the alpha subunit led to the generation of a mutant having higher affinity for the receptor and enhanced bioactivity. Immunological characterization of single chain molecules revealed that the interactions between the subunits were not identical to those seen in the heterodimeric hormone, and the subunits appeared to retain their isolated conformations, and also retained the ability to bind to the receptors and elicit response. These data suggest the plasticity of the hormone-receptor interactions.
Collapse
Affiliation(s)
- Sunita R Setlur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
9
|
Fares F. The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones: development of agonists and antagonists. Biochim Biophys Acta Gen Subj 2006; 1760:560-7. [PMID: 16527410 DOI: 10.1016/j.bbagen.2005.12.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/25/2005] [Accepted: 12/27/2005] [Indexed: 11/29/2022]
Abstract
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.
Collapse
Affiliation(s)
- Fuad Fares
- Department of Molecular Genetics, Carmel Medical Center and the Faculty of Medicine, Technion-Israel Institute of Technology, Haifa.
| |
Collapse
|
10
|
Kumar TR. What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 2005; 130:293-302. [PMID: 16123236 DOI: 10.1530/rep.1.00660] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A number of biochemical and physiological studies elucidated the roles of pituitary and placental glycoprotein hormones. Advances in the past two decades in manipulating the mouse genome by random or site-specific mutagenesis have heralded a new dimension to our understanding of the biology of gonadotropins. It is now possible to model many human reproductive disorders involving gonadotropins/gonadotropin-signaling in the mouse. Mutant mice selectively lacking either FSH or LH or their cognate receptors have been generated. The gonadotropin ligand and the corresponding receptor knockout mice mostly phenocopy each other. Analyses with these genetic models confirmed earlier physiological studies; in addition they also revealed novel roles for gonadotropins previously unrecognized. While FSH action seems dispensable for male but not female fertility, absence of LH causes infertility in both the sexes. While Sertoli cell number and germ cell carrying capacity of the Sertoli cells in compromised in FSH mutants, both somatic and germ cell lineages are affected in the LH mutants resulting in complete male infertility. FSH mutant females demonstrate a preantral stage block in folliculogenesis and FSH alone is not sufficient to promote full folliculogenesis in the absence of LH. Pre-ovulatory stage follicles do not form and most of the follicles undergo apoptosis in the absence of LH. Many extra-gonadal phenotypes have been described for the receptor knockout mice and whether these bear any resemblances to those in patients with similar inactivating mutations in the receptors for FSH and LH remains an open question. Thus the in vivo models will continue to have a significant impact in understanding gonadotropin physiology and pathophysiology and serve as novel genetic tools to study signaling mechanisms in the gonads.
Collapse
MESH Headings
- Animals
- Female
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Glycoprotein Hormones, alpha Subunit/genetics
- Glycoprotein Hormones, alpha Subunit/metabolism
- Gonadotropins, Pituitary/genetics
- Gonadotropins, Pituitary/metabolism
- Humans
- Infertility/metabolism
- Luteinizing Hormone, beta Subunit/genetics
- Luteinizing Hormone, beta Subunit/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Animal
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/metabolism
- Reproduction/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Chand HS, Chaudhary R, Muralidhar K. A Reference Preparation of Buffalo Pituitary Follicle Stimulating Hormone using Lectin Affinity Chromatography. Prep Biochem Biotechnol 2005; 35:331-45. [PMID: 16239197 DOI: 10.1080/10826060500218198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An improved and cost effective method to isolate FSH from buffalo pituitary glands is described here. The buFSH activity was monitored throughout by a highly sensitive heterologous radioimmunoassay (sensitivity 0.2 ng oFSH/mL) and the in vivo biological activity of the final preparation was also established. A biologically active buFSH-enriched preparation with a moderate recovery (42%) was obtained. The yield of the final buFSH-enriched preparation was 26.5 mg/kg of buffalo pituitary gland. In SDS-PAGE, the purified buFSH resolved as a heterodimer of 30 kDa molecular size, with a 21 kDa presumptive alpha-subunit. This preparation was also characterized in terms of biological and some of its physicochemical properties. A high-titer antiserum to buFSH was also raised in rabbit using this preparation. The reagents generated, buFSH and buFSH-specific polyclonal antisera, have possible diagnostic and therapeutic usage for improvement of reproductive health of water buffaloes.
Collapse
Affiliation(s)
- Hitendra S Chand
- Hormone Research Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | | | | |
Collapse
|
12
|
Kumar TR. Gonadotropin gene targeting and biological implications. Endocrine 2005; 26:227-33. [PMID: 16034176 DOI: 10.1385/endo:26:3:227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/27/2005] [Indexed: 11/11/2022]
Abstract
Pituitary gonadotropins FSH and LH are heterodimeric glycoproteins consisting of a common alpha and a hormone-specific beta subunit that are non-covalently linked. These hormones orchestrate gonadal growth, differentiation, and function by regulating both steroid-ogenesis and gametogenesis. Advances in the past two decades in manipulating the mouse genome by site-specific mutagenesis have heralded a new dimension to our understanding of the biology of gonadotropins. Using these gene-targeting approaches, knockout mice lacking the hormone-specific gonadotropin subunits, and hence the functional dimeric hormones, have been generated. These individual gonadotropin-deficient mice are useful to delineate the distinct in vivo biological roles of FSH and LH. These mice also serve as valuable genetic tools to study the signaling mechanisms within the gonads and help a better understanding of some forms of human infertility.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, 66160, USA.
| |
Collapse
|
13
|
Garcia-Campayo V, Boime I, Ma X, Daphna-Iken D, Kumar TR. A single-chain tetradomain glycoprotein hormone analog elicits multiple hormone activities in vivo. Biol Reprod 2004; 72:301-8. [PMID: 15385421 DOI: 10.1095/biolreprod.104.031732] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We previously demonstrated that genetically linking one or more of the glycoprotein hormone-specific beta subunit genes to the common alpha subunit resulted in single-chain analogues that were bioactive in vitro. The ability of such large structures to bind their cognate receptors with high affinity supported the hypothesis that extensive flexibility exists between the ligand and receptor to establish a functional complex. To further characterize the extent of this conformational flexibility, we engineered a single-chain analogue that consists of sequentially linked thyroid-stimulating hormone (TSH) beta, follicle-stimulating hormone (FSH) beta, and chorionic gonadotropin (CG) beta subunits to the alpha subunit and expressed this chimera in transfected CHO (Chinese hamster ovary) cells. Because the four subunits are genetically linked and expressed as a single-chain, this analogue presumably lacks significant native structural features of the individual heterodimers. However, it exhibited FSH, CG, and TSH activities in vitro. Here, we test whether this nonnative structure would be stable in vivo and thus biologically active. Using a variety of bioassay protocols, we demonstrate that the analogue elicits multihormone activities when injected in vivo. First, treatment with the analogue caused increases in ovarian and uterine weights and resulted in elevated serum estradiol. Second, the analogue-stimulated ovarian follicle growth and pharmacologically rescued in vivo FSH deficiency similar to recombinant human FSH or equine CG (eCG) as confirmed by induction of aromatase in the ovaries of FSHbeta knockout mice. Third, in a superovulation protocol, when primed with eCG, the analogue elicited a dose-dependent ovulatory response comparable with that by native heterodimeric human CG. Finally, the analogue-stimulated thyroxin production in hypothyroid mice similar to the pituitary-derived human TSH standard. Based on these data, we conclude that a single-chain tetradomain glycoprotein hormone analogue, despite its presumed altered conformation, is stable and biologically active in vivo. Our results establish the permissiveness and conformational plasticity with which the glycoprotein hormones are recognized in vivo by their target cell receptors.
Collapse
Affiliation(s)
- Vicenta Garcia-Campayo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Garcia-Campayo V, Jablonka-Shariff A, Boime I. A single-chain bifunctional gonadotropin analog is secreted from Chinese hamster ovary cells as two distinct bioactive species. J Biol Chem 2004; 279:44286-93. [PMID: 15308629 DOI: 10.1074/jbc.m408386200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major developments in exploring structure activity relationships of the glycoprotein hormone family was the genetic engineering of single chains comprised of the common alpha subunit and one or more of the hormone-specific beta subunits tandemly arranged. These studies indicate that there is a structural permissiveness in the quaternary relationships between the subunits and biological activity. However, the conformational relationships between the ligand and the receptor are unclear. Bifunctional triple-domain analogs represent an ideal model to address this issue. Does a single molecule possess the ability to simultaneously interact with both specific receptors or are there two functionally distinct species in the chimeric population? Here we show, using a preadsorption protocol comprised of Chinese hamster ovary cells expressing either the luteinizing hormone (LH)/chorionic gonadotropin (CG) or follicle-stimulating hormone (FSH) receptor, that at least two distinct bioactive populations of the dually active triple-domain chimera FSHbeta-CGbeta-alpha are synthesized, each corresponding to a single activity (CG or FSH). Furthermore, we show that these bioactive populations form distinct stable heterodimer-like contacts. That there is not a single biologically active species formed during synthesis of the chimera implies that in vivo the heterodimer exists in multiple conformations and is not a static rigid molecule.
Collapse
Affiliation(s)
- Vicenta Garcia-Campayo
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
15
|
Knudsen B, Farid NR. Evolutionary divergence of thyrotropin receptor structure. Mol Genet Metab 2004; 81:322-34. [PMID: 15059620 DOI: 10.1016/j.ymgme.2004.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 01/14/2004] [Indexed: 01/08/2023]
Abstract
The availability of 18 thyrotropin receptor (TSHR) sequences, including two recent entries for primates and seven from fish, have allowed us to investigate diversification of residues or domains during evolution. We used a likelihood ratio test for evolutionary rate shifts [Proc. Natl. Acad. Sci. 98 (2001) 14512] using LH/CGR sequences as an out-group. At each residue in the alignment, a statistical test was performed for a rate shift at the divergence between mammals and fish. Eighty-two rate shift sites were found, significantly more than was expected (p < 0.0001). The occurrence of rate shifts was highest in the intracellular tail, lowest in the transmembrane serpentine and intermediate in the ectodomain. In 52 mammalian sites, the rates were significantly faster than for the corresponding sites in fish. We have identified rate shift in sites important to TSHR function or in intimate proximity to such regions. The former category includes residues 53 and 55 (of LLR1 beta strand) and 253 and 255 (of LLR9 beta strand), crucial to TSH thyrotropic activity, residue 113, the site of N-linked glycosylation limited to humans, residue 310, an important switch in the hinge region for receptor binding and constitutive activity and residue 382 which centres a motif important for TSH-mediated receptor activation. The rate shifts positions close to functional region include a site proximal to a TSHR-specific motif on LLR3 beta strand, sites important in TM helix structure and homodimerization as well as, in the case of the third intracellular loop, to TSHR/G protein coupling. Rate shift analyses have identified residues whose manipulation in the human TSHR may lead to better understanding of receptor functions and help in the creation of designer analogues.
Collapse
Affiliation(s)
- Bjarne Knudsen
- Bioinformatics Research Center, University of Aarhus, 8000 Aarhus C, Denmark
| | | |
Collapse
|
16
|
Sohn J, Youn H, Jeoung M, Koo Y, Yi C, Ji I, Ji TH. Orientation of follicle-stimulating hormone (FSH) subunits complexed with the FSH receptor. Beta subunit toward the N terminus of exodomain and alpha subunit to exoloop 3. J Biol Chem 2003; 278:47868-76. [PMID: 12963710 DOI: 10.1074/jbc.m307751200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Follicle-stimulating hormone (FSH) comprises an alpha subunit and a beta subunit, whereas the FSH receptor consists of two halves with distinct functions: the N-terminal extracellular exodomain and C-terminal membrane-associated endodomain. FSH initially binds to exodomain, and the resulting FSH/exodomain complex modulates the endodomain and generates signal. However, it has been difficult to determine which subunit of FSH contacts the exodomain or endodomain and in what orientation FSH interacts with them. To address these crucial issues, the receptor was Ala-scanned and the hormone subunits were probed with photoaffinity labeling with receptor peptides corresponding to the N-terminal region of the exodomain and exoloop 3 of the endodomain. Our results show that both regions of the receptors are important for hormone binding and signal generation. In addition, the FSH beta subunit is specifically labeled with the N-terminal peptide, whereas the alpha subunit is labeled with the exoloop 3 peptide. These contrasting results show that the FSH beta subunit is close to the N-terminal region and that the alpha subunit is projected toward exoloop 3 in the endodomain. The results raise the fundamental question whether the alpha subunit, common among the glycoprotein hormones, plays a major role in generating the hormone signal common to all glycoprotein hormones.
Collapse
Affiliation(s)
- Johann Sohn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Schubert RL, Narayan P, Puett D. Specificity of cognate ligand-receptor interactions: fusion proteins of human chorionic gonadotropin and the heptahelical receptors for human luteinizing hormone, thyroid-stimulating hormone, and follicle-stimulating hormone. Endocrinology 2003; 144:129-37. [PMID: 12488338 DOI: 10.1210/en.2002-220829] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The family of glycoprotein hormones and their homologous heptahelical receptors represent an excellent system for comparative structure-function studies. We have engineered single chain molecules of human chorionic gonadotropin (hCG) fused to its cognate receptor, LH receptor (LHR), and to the noncognate receptors, TSH receptor (TSHR) and FSH receptor (FSHR; N-beta-alpha-receptor-C), to create the yoked (Y) complexes YCG/LHR, YCG/TSHR, and YCG/FSHR. The expression and bioactivity of these fusion proteins were examined in transiently transfected HEK 293 cells. Western blot analysis and antibody binding assays demonstrated that each of the proteins was expressed. In the case of YCG/LHR, minimal binding of exogenous hormone was observed due to the continued occupation of receptor by the fused ligand. The presence of hCG in the YCG/TSHR and YCG/FSHR, however, did not prevent binding of exogenous cognate ligand, presumably due to the lower affinity of hCG. The basal cAMP levels in cells expressing the YCG/LHR complex was approximately 20-fold higher than that in cells expressing LHR. Increases in basal cAMP production were also observed with YCG/TSHR and YCG/FSHR, e.g. 13- and 4-fold increases, respectively. Whereas the affinity and specificity of hCG for LHR are extraordinarily high, the hormone is capable of binding to and activating both TSHR and FSHR under these conditions that mimic high ligand concentrations. These findings were confirmed by adding high concentrations of hCG to cells expressing TSHR and FSHR. Although the functional interaction of hCG and TSHR has been recognized in gestational hyperthyroidism, there are no reports linking hCG to FSHR activation. This study, however, suggests that such a functional interaction is capable of occurring under conditions of high circulating levels of hCG, e.g. the first trimester of pregnancy and in patients with hCG-secreting tumors.
Collapse
Affiliation(s)
- Rebecca L Schubert
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|