1
|
Sharker MR, Sukhan ZP, Kim SC, Lee WK, Kho KH. Molecular Identification, Characterization, and Expression Analysis of a Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Pacific Abalone, Haliotis discus hannai. Molecules 2020; 25:molecules25122733. [PMID: 32545589 PMCID: PMC7355911 DOI: 10.3390/molecules25122733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
A full-length cDNA sequence encoding a GnRH receptor was cloned from the pleuropedal ganglion of the Pacific abalone, Haliotis discus hannai. The cloned sequence is 1499-bp in length encoding a protein of 460 amino acid residues, with a molecular mass of 52.22 kDa and an isoelectric point (pI) of 9.57. The architecture of HdhGnRH-R gene exhibited key features of G protein-coupled receptors (GPCRs), including seven membrane spanning domains, putative N-linked glycosylation motifs, and phosphorylation sites of serine and threonine residues. It shared 63%, 52%, and 30% sequence identities with Octopus vulgaris, Limulus polyphemus, and Mizuhopecten yessoensis GnRH-R II sequences, respectively. Phylogenetic analysis indicated that HdhGnRH-R gene was clustered with GnRH-R II of O. vulgaris and O. bimaculoides. qPCR assay demonstrated that the mRNA expression level of this receptor was significantly higher in the pleuropedal ganglion than that in any other examined tissue. Transcriptional activities of this gene in gonadal tissues were significantly higher in the ripening stage. The mRNA expression of this gene was significantly higher in pleuropedal ganglion, testis, and ovary at higher effective accumulative temperature (1000 °C). In situ hybridization revealed that HdhGnRH-R mRNA was expressed in neurosecretory cells of pleuropedal ganglion. Our results suggest that HdhGnRH-R gene synthesized in the neural ganglia might be involved in the control of gonadal maturation and gametogenesis of H. discus hannai. This is the first report of GnRH-R in H. discus hannai and the results may contribute to further studies of GPCRs evolution or may useful for the development of aquaculture method of this abalone species.
Collapse
Affiliation(s)
| | | | | | | | - Kang Hee Kho
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
2
|
Tzoupis H, Nteli A, Platts J, Mantzourani E, Tselios T. Refinement of the gonadotropin releasing hormone receptor I homology model by applying molecular dynamics. J Mol Graph Model 2019; 89:147-155. [DOI: 10.1016/j.jmgm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
3
|
Clulow J, Upton R, Trudeau VL, Clulow S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:413-463. [PMID: 31471805 DOI: 10.1007/978-3-030-23633-5_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphibians have experienced a catastrophic decline since the 1980s driven by disease, habitat loss, and impacts of invasive species and face ongoing threats from climate change. About 40% of extant amphibians are under threat of extinction and about 200 species have disappeared completely. Reproductive technologies and biobanking of cryopreserved materials offer technologies that could increase the efficiency and effectiveness of conservation programs involving management of captive breeding and wild populations through reduced costs, better genetic management and reduced risk of species extinctions. However, there are relatively few examples of applications of these technologies in practice in on-the-ground conservation programs, and no example that we know of where genetic diversity has been restored to a threatened amphibian species in captive breeding or in wild populations using cryopreserved genetic material. This gap in the application of technology to conservation programs needs to be addressed if assisted reproductive technologies (ARTs) and biobanking are to realise their potential in amphibian conservation. We review successful technologies including non-invasive gamete collection, IVF and sperm cryopreservation that work well enough to be applied to many current conservation programs. We consider new advances in technology (vitrification and laser warming) of cryopreservation of aquatic embryos of fish and some marine invertebrates that may help us to overcome factors limiting amphibian oocyte and embryo cryopreservation. Finally, we address two case studies that illustrate the urgent need and the opportunity to implement immediately ARTs, cryopreservation and biobanking to amphibian conservation. These are (1) managing the biosecurity (disease risk) of the frogs of New Guinea which are currently free of chytridiomycosis, but are at high risk (2) the Sehuencas water frog of Bolivia, which until recently had only one known surviving male.
Collapse
Affiliation(s)
- J Clulow
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | - R Upton
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - V L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - S Clulow
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Clulow J, Pomering M, Herbert D, Upton R, Calatayud N, Clulow S, Mahony MJ, Trudeau VL. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: A review. Gen Comp Endocrinol 2018; 265:141-148. [PMID: 29859744 DOI: 10.1016/j.ygcen.2018.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023]
Abstract
Most Australian frogs fall into two deeply split lineages, conveniently referred to as ground frogs (Myobatrachidae and Limnodynastidae) and tree frogs (Pelodryadidae). Species of both lineages are endangered because of the global chytrid pandemic, and there is increasing interest and research on the endocrine manipulation of reproduction to support the use of assisted reproductive technologies in conservation. Hormonal induction of gamete release in males and females is one such manipulation of the reproductive process. This paper reviews progress in temperate ground and tree frogs towards developing simple and efficient hormonal protocols for induction of spermiation and ovulation, and presents some new data, that together build towards an understanding of advances and obstacles towards progress in this area. We report that protocols for the non-invasive induction of sperm release, relying on single doses of gonadotropin-releasing hormone (GnRH) or human chorionic gonadotropin are very effective in both ground and tree frog species investigated to date. However, we find that, while protocols based on GnRH, and GnRH and dopamine antagonists, are moderately efficient in inducing ovulation in ground frogs, the same cannot be said for the use of such protocols in tree frogs. Although induced ovulation in the pelodryadid tree frogs has not been successfully implemented, and is difficult to explain in terms of the underlying endocrinology, we propose future avenues of investigation to address this problem, particularly the need for a source of purified or recombinant follicle-stimulating hormone and luteinising hormone for species from this group.
Collapse
Affiliation(s)
- John Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia.
| | - Melissa Pomering
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Danielle Herbert
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Rose Upton
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Natalie Calatayud
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | - Simon Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia
| | - Michael J Mahony
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Vu M, Trudeau VL. Neuroendocrine control of spawning in amphibians and its practical applications. Gen Comp Endocrinol 2016; 234:28-39. [PMID: 27013378 DOI: 10.1016/j.ygcen.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022]
Abstract
Across vertebrates, ovulation and sperm release are primarily triggered by the timed surge of luteinizing hormone (LH). These key reproductive events are governed by the action of several brain neuropeptides, pituitary hormones and gonadal steroids which operate to synchronize physiology with behaviour. In amphibians, it has long been recognized that the neuropeptide gonadotropin-releasing hormone (GnRH) has stimulatory effects to induce spawning. Extensive work in teleosts reveals an inhibitory role of dopamine in the GnRH-regulated release of LH. Preliminary evidence suggests that this may be a conserved function in amphibians. Emerging studies are proposing a growing list of modulators beyond GnRH that are involved in the control of spawning including prolactin, kisspeptins, pituitary adenylate cyclase-activating polypeptide, gonadotropin-inhibitory hormone and endocannabinoids. Based on these physiological data, spawning induction methods have been developed to test on selective amphibian species. However, several limitations remain to be investigated to strengthen the evidence for future applications. The current state of knowledge regarding the neuroendocrine control of spawning in amphibians will be reviewed in detail, the elements of which will have wide implications towards the captive breeding of endangered amphibian species for conservation.
Collapse
Affiliation(s)
- Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| |
Collapse
|
6
|
Roch GJ, Busby ER, Sherwood NM. GnRH receptors and peptides: skating backward. Gen Comp Endocrinol 2014; 209:118-34. [PMID: 25107740 DOI: 10.1016/j.ygcen.2014.07.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and its receptor are essential for reproduction in vertebrates. Although there are three major types of GnRH peptides and two major types of receptors in vertebrates, the pattern of distribution is unusual. Evidence is presented from genome mining that type I GnRHRs are not restricted to mammals, but can be found in the lobe-finned and cartilaginous fishes. This implies that this tail-less GnRH receptor emerged early in vertebrate evolution, followed by several independent losses in different lineages. Also, we have identified representatives from the three major GnRH peptide types (mammalian GnRH1, vertebrate GnRH2 and dogfish GnRH3) in a single cartilaginous fish, the little skate. Skate and coelacanth are the only examples of animals with both type I and II GnRH receptors and all three peptide types, suggesting this was the ancestral condition in vertebrates. Our analysis of receptor synteny in combination with phylogeny suggests that there were three GnRH receptor types present before the two rounds of whole genome duplication in early vertebrates. To further understand the origin of the GnRH peptide-receptor system, the relationship of vertebrate and invertebrate homologs was examined. Our evidence supports the hypothesis of a GnRH superfamily with a common ancestor for the vertebrate GnRHs, invertebrate (inv)GnRHs, corazonins and adipokinetic hormones. The invertebrate deuterostomes (echinoderms, hemichordates and amphioxus) have derived GnRH-like peptides, although one amphioxus GnRH with a syntenic relationship to human GnRHs has been shown to be functional. Phylogenetic analysis suggests that gene duplications in the ancestral bilaterian produced two receptor types, one of which became adipokinetic hormone receptor/GnRHR and the other corazonin receptor/invGnRHR. It appears that the ancestral deuterostome had both a GnRHR and invGnRHR, and this is still the case in amphioxus. During the transition to vertebrates both the invertebrate-type peptide and receptor were lost, leaving only the vertebrate-type system that presently exists.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Ellen R Busby
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
7
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Heterodimerization of mouse orexin type 2 receptor variants and the effects on signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:652-63. [PMID: 24368186 DOI: 10.1016/j.bbamcr.2013.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 02/03/2023]
Abstract
Orexin-A and Orexin-B play important roles in many physiological processes in which Orexins orchestrate diverse downstream effects via two G-protein coupled receptors: Orexin1R and Orexin2R. Two alternative C-terminus splice variants of the mouse Orexin receptors mOX2alphaR and mOX2betaR have recently been identified. This study explored the possibility of heterodimerization between mOX2alphaR and mOX2betaR, and investigated novel signal transduction characteristics after stimulation. The dimerization of mOX2alphaR and mOX2betaR was confirmed by BRET and co-immunoprecipitation assays. Meanwhile, in HEK293 cells, co-expression of mOX2alphaR and mOX2betaR resulted in a strengthened increase in activation of ERK1/2, with maximal activation at 5 min and 100 nM. Furthermore, heterodimerization also elicits stronger intracellular Ca2+ elevation after Orexin(s) stimulation, followed by a slower decline in intracellular Ca2+ to a steady endpoint Protein Kinase C Inhibitor significantly inhibited these downstream effects. In addition, the cAMP response element reporter activities were significantly reduced, whereas the serum response element luciferase and the T-lymphocyte activation of nuclear factor-responsive element reporter activity were significantly up-regulated after Orexin(s) stimulation. Besides, Orexin-A/-B induced a significantly higher rate of HEK293 cell proliferation in cells co-expressing mOX2alphaR/mOX2betaR compared to the control group. Taken together, we provide conclusive evidence that mOX2alphaR can form a functional heterodimer with mOX2betaR and this leads to increased PKC and decreased protein kinase A activity by ERK signal pathway leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of Orexin in the regulation of physiological processes including the homeostasis of feeding.
Collapse
|
9
|
Sefideh FA, Moon MJ, Yun S, Hong SI, Hwang JI, Seong JY. Local duplication of gonadotropin-releasing hormone (GnRH) receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor. PLoS One 2014; 9:e87901. [PMID: 24498396 PMCID: PMC3912137 DOI: 10.1371/journal.pone.0087901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/30/2013] [Indexed: 12/02/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) play an important role in vertebrate reproduction. Although many GnRHR genes have been identified in a large variety of vertebrate species, the evolutionary history of GnRHR in vertebrates is unclear. To trace the evolutionary origin of GnRHR we examined the conserved synteny of chromosomes harboring GnRHR genes and matched the genes to linkage groups of reconstructed vertebrate ancestor chromosomes. Consistent with the phylogenetic tree, three pairs of GnRHR subtypes were identified in three paralogous linkage groups, indicating that an ancestral pair emerged through local duplication before two rounds of whole genome duplication (2R). The 2R then led to the generation of six subtypes of GnRHR. Some subtypes were lost during vertebrate evolution after the divergence of teleosts and tetrapods. One subtype includes mammalian GnRHR and a coelacanth GnRHR that showed the greatest response to GnRH1 among the three types of GnRH. This study provides new insight into the evolutionary relationship of vertebrate GnRHRs.
Collapse
Affiliation(s)
| | - Mi Jin Moon
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Seongsik Yun
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung In Hong
- Department of East-West Integrated Medicine, College of Oriental Medicine, Gachon University, Incheon, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Burel D, Li JH, Do-Rego JL, Wang AF, Luu-The V, Pelletier G, Tillet Y, Taragnat C, Kwon HB, Seong JY, Vaudry H. Gonadotropin-releasing hormone stimulates the biosynthesis of pregnenolone sulfate and dehydroepiandrosterone sulfate in the hypothalamus. Endocrinology 2013; 154:2114-28. [PMID: 23554453 DOI: 10.1210/en.2013-1095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sulfated neurosteroids pregnenolone sulfate (Δ(5)PS) and dehydroepiandrosterone sulfate (DHEAS) are known to play a role in the control of reproductive behavior. In the frog Pelophylax ridibundus, the enzyme hydroxysteroid sulfotransferase (HST), responsible for the biosynthesis of Δ(5)PS and DHEAS, is expressed in the magnocellular nucleus and the anterior preoptic area, two hypothalamic regions that are richly innervated by GnRH1-containing fibers. This observation suggests that GnRH1 may regulate the formation of sulfated neurosteroids to control sexual activity. Double labeling of frog brain slices with HST and GnRH1 antibodies revealed that GnRH1-immunoreactive fibers are located in close vicinity of HST-positive neurons. The cDNAs encoding 3 GnRH receptors (designated riGnRHR-1, -2, and -3) were cloned from the frog brain. RT-PCR analyses revealed that riGnRHR-1 is strongly expressed in the hypothalamus and the pituitary whereas riGnRHR-2 and -3 are primarily expressed in the brain. In situ hybridization histochemistry indicated that GnRHR-1 and GnRHR-3 mRNAs are particularly abundant in preoptic area and magnocellular nucleus whereas the concentration of GnRHR-2 mRNA in these 2 nuclei is much lower. Pulse-chase experiments using tritiated Δ(5)P and DHEA as steroid precursors, and 3'-phosphoadenosine 5'-phosphosulfate as a sulfonate moiety donor, showed that GnRH1 stimulates, in a dose-dependent manner, the biosynthesis of Δ(5)PS and DHEAS in frog diencephalic explants. Because Δ(5)PS and DHEAS, like GnRH, stimulate sexual activity, our data strongly suggest that some of the behavioral effects of GnRH could be mediated via the modulation of sulfated neurosteroid production.
Collapse
Affiliation(s)
- Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Sante´ et de la Recherche Me´ dicale U982, Research Institute for Biomedecine (IRIB), International Associated Laboratory Samuel de Champlain, University of Rouen, 76821 Mont-Saint Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chianese R, Ciaramella V, Scarpa D, Fasano S, Pierantoni R, Meccariello R. Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. Am J Physiol Endocrinol Metab 2012; 303:E475-87. [PMID: 22669247 DOI: 10.1152/ajpendo.00086.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (either GnRH1 or GnRH2) exerts a local activity in vertebrate testis, including human testis. Relationships between endocannabinoid (eCB) and GnRH systems in gonads have never been elucidated in any species so far. To reveal a cross-talk between eCBs and GnRH at testicular level, we characterized the expression of GnRH (GnRH1 and GnRH2) as well as GnRH receptor (GnRH-R1, -R2, and -R3) mRNA in the testis of the anuran amphibian Rana esculenta during the annual sexual cycle; furthermore, the corresponding transcripts were localized inside the testis by in situ hybridization. The possible endogenous production of the eCB, anandamide (AEA), was investigated in testis by analyzing the expression of its biosynthetic enzyme, Nape-pld. Incubations of testis pieces with AEA were carried out in the postreproductive period (June) and in February, when a new spermatogenetic wave takes place. In June, AEA treatment significantly decreased GnRH1 and GnRH-R2 mRNA, stimulated the transcription of GnRH2 and GnRH-R1, and did not affect GnRH-R3 expression. In February, AEA treatment upregulated GnRH2 and GnRH-R3 mRNA, downregulated GnRH-R2, and did not affect GnRH1 and GnRH-R1 expression. These effects were mediated by type 1 cannabinoid receptor (CB1) since they were fully counteracted by SR141716A (Rimonabant), a selective CB1 antagonist. In conclusion, eCB system modulates GnRH activity in frog testis during the annual sexual cycle in a stage-dependent fashion.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez F. Bottazzi, Seconda Università di Napoli, via Costantinopoli 16, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Heterodimerization of human apelin and kappa opioid receptors: roles in signal transduction. Cell Signal 2011; 24:991-1001. [PMID: 22200678 DOI: 10.1016/j.cellsig.2011.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 11/27/2022]
Abstract
Apelin receptor (APJ) and kappa opioid receptor (KOR) are members of the family A of G protein-coupled receptors (GPCRs). These two receptors are involved in the central nervous system regulation of the cardiovascular system. Here, we explore the possibility of heterodimerization between APJ and KOR and investigate their novel signal transduction characteristics. Co-immunoprecipitation (Co-IP), co-localization and bioluminescence resonance energy transfer (BRET) assays confirmed the heterodimerization of APJ and KOR. In APJ and KOR stably transfected HEK293 cells, treatment with APJ ligand apelin-13 or KOR ligand dynorphinA (1-13) resulted in higher phosphorylation levels of extracellular-regulated kinases 1/2 (ERK1/2) compared to HEK293 cells transfected with either APJ or KOR alone. The siRNA knockdown of either APJ or KOR receptor in human umbilical vein endothelial cells (HUVECs) resulted in significant reduction of the apelin-13 induced ERK activation. Additionally both forskolin (FSK)-induced cAMP levels and cAMP response element reporter activities were significantly reduced, whereas the serum response element luciferase (SRE-luc) reporter activity was significantly upregulated. Moreover, the ERK phosphorylation and SRE-luc activity were abrogated by the protein kinase C (PKC) inhibitor. These results demonstrate for the first time that human APJ forms a heterodimer with KOR and leads to increased PKC and decreased protein kinase A activity leading to a significant increase in cell proliferation, which may translate to the regulation of diverse biological actions and offers the potential for the development of more selective and tissue specific drug therapies.
Collapse
|
13
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon. Gen Comp Endocrinol 2011; 173:389-95. [PMID: 21802420 DOI: 10.1016/j.ygcen.2011.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/17/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
In the hypothalamus, endocannabinoids affect neuroendocrine activity by means of Gonadotropin-Releasing-Hormone-I (GnRH-I) inhibition. Since most vertebrates, human included, possess at least two GnRH molecular forms, the aim of this work was to investigate the effect of endocannabinoids on GnRH molecular forms other than GnRH-I and on GnRHRs. Thus, we cloned GnRH precursors as well as GnRH receptors (GnRHR-I, GnRHR-II, GnRHR-III) from the diencephalons of the anuran amphibian, Rana esculenta. GnRH-II expression was evaluated in pituitary, whole brain, spinal cord, hindbrain, midbrain and forebrain during the annual sexual cycle. Then, in post-reproductive period (May), GnRH-I, GnRH-II and GnRHRs expression was evaluated by quantitative real time (qPCR) after incubation of diencephalons with the endocannabinoid anandamide (AEA). AEA significantly decreased GnRH-I and GnRH-II expression, up regulated GnRHR-I and GnRHR-II mRNA and it had no effect upon GnRHR-III expression. These effects were counteracted by SR141716A (Rimonabant), a selective antagonist of type I cannabinoid receptor (CB1). In conclusion our results demonstrate a CB1 receptor dependent modulation of GnRH system expression rate (both ligands and receptors) in frog diencephalons. In particular, we show that AEA, besides GnRH-I, also acts on GnRH-II expression.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez F. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | | | | | | | | |
Collapse
|
14
|
Chianese R, Chioccarelli T, Cacciola G, Ciaramella V, Fasano S, Pierantoni R, Meccariello R, Cobellis G. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011; 171:17-27. [PMID: 21192939 DOI: 10.1016/j.ygcen.2010.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
Many advances have been carried out on the estrogens, GnRH and endocannabinoid system that have impact in the reproductive field. Indeed, estrogens, the generally accepted female hormones, have performed an unsuspected role in male sexual functions thanks to studies on non-mammalian vertebrates. Similarly, these animal models have provided important contributions to the identification of several GnRH ligand and receptor variants and their possible involvement in sexual behavior and gonadal function regulation. Moreover, the use of non-mammalian animal models has contributed to a better comprehension about the endocannabinoid system action in several mammalian reproductive events. We wish to highlight here how non-mammalian vertebrate animal model research contributes to advancements with implications on human health as well as providing a phylogenetic perspective on the evolution of reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim DK, Cho EB, Moon MJ, Park S, Hwang JI, Kah O, Sower SA, Vaudry H, Seong JY. Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes. Gen Comp Endocrinol 2011; 170:68-78. [PMID: 21036176 DOI: 10.1016/j.ygcen.2010.10.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/19/2010] [Accepted: 10/23/2010] [Indexed: 12/11/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and its G protein-coupled receptor, GnRHR, play a pivotal role in the control of reproduction in vertebrates. To date, many GnRH and GnRHR genes have been identified in a large variety of vertebrate species using conventional biochemical and molecular biological tools in combination with bioinformatic tools. Phylogenetic approaches, primarily based on amino acid sequence identity, make it possible to classify these multiple GnRHs and GnRHRs into several lineages. Four vertebrate GnRH lineages GnRH1, GnRH2, GnRH3, and GnRH4 (for lamprey) are well established. Four vertebrate GnRHR lineages have also been proposed-three for nonmammalian GnRHRs and mammalian GnRHR2 as well as one for mammalian GnRHR1. However, these phylogenetic analyses cannot fully explain the evolutionary origins of each lineage and the relationships among the lineages. Rapid and vast accumulation of genome sequence information for many vertebrate species, together with advances in bioinformatic tools, has allowed large-scale genome comparison to explore the origin and relationship of gene families of interest. The present review discusses the evolutionary mechanism of vertebrate GnRHs and GnRHRs based on extensive genome comparison. In this article, we focus only on vertebrate genomes because of the difficulty in comparing invertebrate and vertebrate genomes due to their marked divergence.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 2009; 30:133-51. [PMID: 19176466 DOI: 10.1210/er.2008-0044] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TSH receptor (TSHR) together with the homologous lutropin/choriogonadotropin receptor and the follitropin receptor are glycoprotein hormone receptors (GPHRs). They constitute a subfamily of the rhodopsin-like G protein-coupled receptors with seven transmembrane helices. GPHRs and their corresponding hormones are pivotal proteins with respect to a variety of physiological functions. The identification and characterization of intra- and intermolecular signaling determinants as well as signaling mechanisms are prerequisites to gaining molecular insights into functions and (pathogenic) dysfunctions of GPHRs. Knowledge about activation mechanisms is fragmentary, and the specific aspects have still not been understood in their entirety. Therefore, here we critically review the data available for these receptors and bring together structural and functional findings with a focus on the important large extracellular portion of the TSHR. One main focus is the particular function of structural determinants in the initial steps of the activation such as: 1) hormone binding at the extracellular site; 2) hormone interaction at a second binding site in the hinge region; 3) signal regulation via sequence motifs in the hinge region; and 4) synergistic signal amplification by cooperative effects of the extracellular loops toward the transmembrane region. Comparison and consolidation of data from the homologous glycoprotein hormone receptors TSHR, follitropin receptor, and lutropin/choriogonadotropin receptor provide an overview of extracellular mechanisms of signal initiation, conduction, and regulation at the TSHR and homologous receptors. Finally, we address the issue of structural implications and suggest a refined scenario for the initial signaling process on GPHRs.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
17
|
Moon JS, Lee YR, Oh DY, Hwang JI, Lee JY, Kim JI, Vaudry H, Kwon HB, Seong JY. Molecular cloning of the bullfrog kisspeptin receptor GPR54 with high sensitivity to Xenopus kisspeptin. Peptides 2009; 30:171-9. [PMID: 18550222 DOI: 10.1016/j.peptides.2008.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
Abstract
Kisspeptin and its receptor, GPR54, play important roles in mammalian reproduction and cancer development. However, little is known about their function in nonmammalian species. In the present study, we have isolated the cDNA encoding the kisspeptin receptor, GPR54, from the bullfrog, Rana catesbeiana. The bullfrog GPR54 (bfGPR54) cDNA encodes a 379-amino acid heptahelical G protein-coupled receptor. bfGPR54 exhibits 45-46% amino acid identity with mammalian GPR54s and 70-74% identity with fish GPR54s. RT-PCR analysis showed that bfGPR54 mRNA is highly expressed in the forebrain, hypothalamus and pituitary. Upon stimulation by synthetic human kisspeptin-10 with Phe-amide residue at the C-terminus (h-Kiss-10F), bfGPR54 induces SRE-luc activity, a PKC-specific reporter, evidencing the PKC-linked signaling pathway of bfGPR54. Using a blast search, we found a gene encoding a kisspeptin-like peptide in Xenopus. The C-terminal decapeptide of Xenopus kisspeptin shows higher amino acid sequence identity to fish Kiss-10s than mammalian Kiss-10s. A synthetic Xenopus kisspeptin peptide (x-Kiss-12Y) showed a higher potency than mammalian Kiss-10s in the activation of bfGPR54. This study expands our understanding of the physiological roles and molecular evolution of kisspeptins and their receptors.
Collapse
Affiliation(s)
- Jung Sun Moon
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moon MJ, Oh DY, Moon JS, Kim DK, Hwang JI, Lee JY, Kim JI, Cho S, Kwon HB, Seong JY. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Mol Cell Endocrinol 2007; 277:51-60. [PMID: 17825479 DOI: 10.1016/j.mce.2007.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 07/07/2007] [Accepted: 07/27/2007] [Indexed: 11/22/2022]
Abstract
In mammals, apelin and its G protein-coupled receptor, APJ, regulate blood pressure, intake of food and water, and cardiac contractility. In this study, we report the cloning and functional characterization of APJ in the bullfrog, Rana catesbeiana. Bullfrog APJ (bfAPJ) cDNA contains an open reading frame of 1083 nucleotides encoding a protein of 360 amino acid residues. Sequence alignment reveals 75% amino acid identity with Xenopus, 63% identity with zebrafish and 40-42% identity with mammalian APJs. RT-PCR analysis and tissue binding assay reveal high expression of bfAPJ mRNA in the brain, particularly in the hypothalamus, and moderate expression in the pituitary, testis, adrenal gland and lung. Whereas [pGlu(1)]apelin-13 did not induce CRE-luc (protein kinase A-specific reporter) and SRE-luc (protein kinase C-specific reporter) activity in cells expressing bfAPJ, this apelin-13 decreased forskolin-induced CRE-luc activity and cAMP accumulation in a pertussis toxin-sensitive manner. This study indicates that bfAPJ may couple to G(i/o). [Pro(1)]apelin-13, a synthetic apelin based on the sequence of the putative apelin gene from many non-mammalian species, activates bfAPJ with 5-10-fold greater sensitivity/affinity than mammalian apelin-13. Collectively, this study expands our understanding of the physiological roles of this receptor system in non-mammalian species.
Collapse
Affiliation(s)
- Mi Jin Moon
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, Seong JY. Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen Comp Endocrinol 2007; 153:98-107. [PMID: 17286976 DOI: 10.1016/j.ygcen.2006.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/22/2006] [Accepted: 12/25/2006] [Indexed: 01/04/2023]
Abstract
Recently, we cloned many of the bullfrog neuropeptide G protein-coupled receptors (GPCRs), including receptors for vasotocin (VT), mesotocin, gonadotropin-releasing hormone (GnRH), neurotensin, apelin, and metastin. Bullfrog GPCRs usually have high affinity for bullfrog ligands but relatively low affinity for mammalian ligands. Reciprocally, synthetic agonists and antagonists developed based upon mammalian ligands display lower affinity at bullfrog receptors. Studies using chimeric or domain-swapped receptors indicate that the motifs responsible for differential ligand selectivity usually reside within transmembrane domain 6 (TMD6)-extracellular loop 3 (ECL3)-transmembrane domain 7 (TMD7). Triple mutation of mammalian V1aR (Phe(6.51) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) increases VT affinity but greatly reduces arginine vasopressin affinity. This binding profile is similar to that of bullfrog VT1R. Changing just three amino acids in the bullfrog GnRH receptor-1 (i.e. Ser-Gln-Ser in the ECL3) to those found in the type-I mammalian GnRH receptor (i.e. Ser-Glu-Pro) reverses GnRH selectivity. In conclusion, specific receptor motifs that govern ligand selectivity can be determined by comparative molecular analyses of GPCRs and their ligands. Such analysis provides clues for understanding how GPCRs maintain high affinity to their authentic ligands.
Collapse
Affiliation(s)
- Hyun Ju Cho
- Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Kleinau G, Claus M, Jaeschke H, Mueller S, Neumann S, Paschke R, Krause G. Contacts between Extracellular Loop Two and Transmembrane Helix Six Determine Basal Activity of the Thyroid-stimulating Hormone Receptor. J Biol Chem 2007; 282:518-25. [PMID: 17079233 DOI: 10.1074/jbc.m606176200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of alanine mutations in extracellular loop two (ECL2) of the thyroid-stimulating hormone receptor (TSHR) were found to increase or decrease basal activity when compared with the wild type receptor. K565A was identified as a mutant with decreased basal activity, and strongly impaired hormone induced signaling activity. To gain insights into how ECL2 mutants affect basal activity, we focused on constitutively activating pathogenic mutant I568V in ECL2, which exhibits elevated basal activity. Because our molecular model suggests that Ile-568 is embedded in an environment of hydrophobic residues provided by transmembrane helix bundle, we tested mutants in this region to identify potential interaction partner(s) for Ile-568. Indeed, the double mutant I568V/I640L (ECL2/TMH6) suppresses the increased basal activity exhibited by I568V alone. We suggest a spatial and functional relationship between ECL2 and TMH6 in which side chain interaction between Ile-568 and Ile-640 constrains the receptor in a conformation with low basal activity. Although the single mutant I640L exhibits basal activity lower than wild type, its differently branched and bulkier side chain complements the reduced side chain bulk in I568V, restoring wild type basal activity to the double mutant. This scenario is confirmed by the reciprocal double mutant I640V/I568L. The combination of basally increased activity of I640V and basally decreased activity of mutant I568L also restores basal activity of wild type TSHR. These and other mutant phenotypes reported here support a dynamic interface between TMH6 and ECL2. Disruption of this critical interface for signaling by introduction of mutations in TSHR can either increase or decrease basal activity.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:163-218. [PMID: 16984818 DOI: 10.1016/s0074-7696(06)52003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-707, Korea
| | | | | | | |
Collapse
|
23
|
Ikemoto T, Park MK. Identification and molecular characterization of three GnRH ligands and five GnRH receptors in the spotted green pufferfish. Mol Cell Endocrinol 2005; 242:67-79. [PMID: 16122867 DOI: 10.1016/j.mce.2005.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/18/2005] [Accepted: 07/21/2005] [Indexed: 02/03/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is thought to have diverse physiological functions. Understanding regulatory mechanisms of GnRH functions requires detailed knowledge of gene expressions of both GnRH ligands and receptors in a single species. This report concerns identification and molecular characterization of GnRH ligands and receptors in the spotted green pufferfish Tetraodon nigroviridis. It was identified that the pufferfish possessed three types of GnRH ligands and five types of GnRH receptors. All types of ligands and receptors showed different expression patterns, and were widely expressed both inside and outside the brain. Gonads expressed all the ligand and receptor subtypes. Two of five receptor subtypes could not be detected in the pituitary gland of reproductively active individuals, suggesting the existence of novel GnRH systems independent of hypothalamic-pituitary-gonadal axis. Alternative splicing was also observed for some receptor subtypes. The present results indicate that diversified gene expressions combined with molecular diversity contribute to the functional diversity of GnRH.
Collapse
Affiliation(s)
- T Ikemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
24
|
Tello JA, Rivier JE, Sherwood NM. Tunicate gonadotropin-releasing hormone (GnRH) peptides selectively activate Ciona intestinalis GnRH receptors and the green monkey type II GnRH receptor. Endocrinology 2005; 146:4061-73. [PMID: 15961566 DOI: 10.1210/en.2004-1558] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, GnRH binds to its receptor and stimulates predominantly G(q/11)-mediated signal transduction in gonadotropes. However, little is known about the GnRH receptor and its signaling pathway in tunicates, a group that arose before the vertebrates. Although tunicates have had duplications of a few genes in the last 600 million years, the early vertebrates had duplications of the full genome. Also unknown is the nature of GnRH signaling in the tunicate, which lacks both a pituitary gland and sex steroids. However, we know that tunicates have GnRH peptides because we previously reported six GnRH peptides encoded within the tunicate genome of Ciona intestinalis. Here we clone and sequence cDNAs for four putative GnRH receptors from C. intestinalis. These are the only invertebrate GnRH receptors found to date. Each Ciona GnRH receptor was expressed in COS-7 cells, incubated with each of the six C. intestinalis GnRHs and assayed for a signaling response. GnRH receptors 1, 2, and 3 responded to Ciona GnRH peptides to stimulate intracellular cAMP accumulation. In contrast, only GnRH receptor 1 activated inositol phosphate turnover in response to one of the Ciona GnRHs. The green monkey type II GnRH receptor cDNA was tested as a comparison and a positive control. In conclusion, the four GnRH receptors encoded within the C. intestinalis genome were all transcribed into messenger RNA, but only three of the Ciona GnRH receptors were biologically active in our assays. The Ciona GnRH receptors almost exclusively activated the cAMP pathway.
Collapse
Affiliation(s)
- Javier A Tello
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, British Columbia, Canada V8W 3N5
| | | | | |
Collapse
|
25
|
Silver MR, Nucci NV, Root AR, Reed KL, Sower SA. Cloning and characterization of a functional type II gonadotropin-releasing hormone receptor with a lengthy carboxy-terminal tail from an ancestral vertebrate, the sea lamprey. Endocrinology 2005; 146:3351-61. [PMID: 15878963 DOI: 10.1210/en.2005-0305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A full-length transcript encoding a functional type II GnRH receptor was cloned from the pituitary of the sea lamprey, Petromyzon marinus. The current study is the first to identify a pituitary GnRH receptor transcript in an agnathan, which is the oldest vertebrate lineage. The cloned receptor retains the conserved structural features and amino acid motifs of other known GnRH receptors and notably includes a C-terminal intracellular tail of approximately 120 amino acids, the longest C-terminal tail of any vertebrate GnRH receptor identified to date. The lamprey GnRH receptor was shown to activate the inositol phosphate (IP) signaling system; stimulation with either lamprey GnRH-I or lamprey GnRH-III led to dose-dependent responses in transiently transfected COS7 cells. Furthermore, analyses of serially truncated lamprey GnRH receptor mutants indicate perturbations of the C-terminal tail disrupts IP accumulation, however, the tailless lamprey GnRH receptor was not only functional but was also capable of stimulating IP levels equal to wild type. Expression of the receptor transcript was demonstrated in the pituitary and testes using RT-PCR, whereas in situ hybridization showed expression and localization of the transcript in the proximal pars distalis of the pituitary. The phylogenetic placement and structural and functional features of this GnRH receptor suggest that it is representative of an ancestral GnRH receptor. In addition to having an important role in lamprey reproductive processes, the extensive C-terminal tail of this lamprey GnRH receptor may have great significance for understanding the evolutionary change of this vital structural feature within the GnRH receptor family.
Collapse
Affiliation(s)
- Matthew R Silver
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | |
Collapse
|
26
|
Maiti K, Oh DY, Oh DY, Moon JS, Acharjee S, Li JH, Bai DG, Park HS, Lee K, Lee YC, Jung NC, Kim K, Vaudry H, Kwon HB, Seong JY. Differential effects of gonadotropin-releasing hormone (GnRH)-I and GnRH-II on prostate cancer cell signaling and death. J Clin Endocrinol Metab 2005; 90:4287-98. [PMID: 15870130 DOI: 10.1210/jc.2004-1894] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT GnRH is known to directly regulate prostate cancer cell proliferation, but the precise mechanism of action of the peptide is still under investigation. OBJECTIVE This study demonstrates differential effects of GnRH-I and GnRH-II on androgen-independent human prostate cancer cells. RESULTS Both GnRH-I and GnRH-II increased the intracellular Ca(2+) concentration ([Ca(2+)](i)) either through Ca(2+) influx from external Ca(2+) source or via mobilization of Ca(2+) from internal Ca(2+) stores. Interestingly, the [Ca(2+)](i) increase was mediated by activation of the ryanodine receptor but not the inositol trisphosphate receptor. Trptorelix-1, a novel GnRH-II antagonist but not cetrorelix, a classical GnRH-I antagonist, completely inhibited the GnRH-II-induced [Ca(2+)](i) increase. Concurrently at high concentrations, trptorelix-1 and cetrorelix inhibited GnRH-I-induced [Ca(2+)](i) increase, whereas at low concentrations they exerted an agonistic action, inducing Ca(2+) influx. High concentrations of trptorelix-1 but not cetrorelix-induced prostate cancer cell death, probably through an apoptotic process. Using photoaffinity labeling with (125)I-[azidobenzoyl-D-Lys(6)]GnRH-II, we observed that an 80-kDa protein specifically bound to GnRH-II. CONCLUSIONS This study suggests the existence of a novel GnRH-II binding protein, in addition to a conventional GnRH-I receptor, in prostate cancer cells. These data may facilitate the development of innovatory therapeutic drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Kaushik Maiti
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li JH, Choe H, Wang AF, Maiti K, Wang C, Salam A, Chun SY, Lee WK, Kim K, Kwon HB, Seong JY. Extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 of the mammalian type I and type II gonadotropin-releasing hormone (GnRH) receptors determine differential ligand selectivity to GnRH-I and GnRH-II. Mol Pharmacol 2005; 67:1099-110. [PMID: 15635044 DOI: 10.1124/mol.104.004887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe(7.38), Leu/Phe(7.43), Ala/Pro(7.46), and Pro/Cys(7.47) in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro(7.31)-Pro(7.32)-Ser(7.33) motif to Ser-Glu-Pro in EL3 and Leu(7.38), Leu(7.43), Ala(7.46), and Pro(7.47) to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp(7)]GnRH-I and [Trp(8)]GnRH-I but not [His(5)]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.
Collapse
Affiliation(s)
- Jian Hua Li
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Acharjee S, Do-Rego JL, Oh DY, Oh DY, Ahn RS, Choe H, Vaudry H, Kim K, Seong JY, Kwon HB. Identification of Amino Acid Residues That Direct Differential Ligand Selectivity of Mammalian and Nonmammalian V1a Type Receptors for Arginine Vasopressin and Vasotocin. J Biol Chem 2004; 279:54445-53. [PMID: 15475353 DOI: 10.1074/jbc.m408909200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine vasotocin (VT) is the ortholog in all nonmammalian vertebrates of arginine vasopressin (AVP) in mammals. We have previously cloned an amphibian V1atype vasotocin receptor (VT1R) that exhibited higher sensitivity for VT than AVP, while the mammalian V1a type receptor (V1aR) responded better to AVP than VT. In the present study, we identified the amino acid residues that confer differential ligand selectivity for AVP and VT between rat V1aR and bullfrog VT1R (bfVT1R). A chimeric rat V1aR having transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of bfVT1R showed a reverse ligand preference for AVP and VT, whereas a chimeric VT1R with TMD VI to the C-tail of rat V1aR showed a great increase in sensitivity for AVP. A single mutation (Ile(315(6.53)) to Thr) in TMD VI of V1aR increased the sensitivity for VT, while a single mutation (Phe(313(6.51)) to Tyr or Pro(334(7.33)) to Thr) reduced sensitivity toward AVP. Interestingly the triple mutation (Phe(313(6.51)) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) of V1aR increased sensitivity to VT but greatly reduced sensitivity to AVP, behaving like bfVT1R. Further, like V1aR, a double mutant (Tyr(306(6.51)) to Phe and Thr(327(7.33)) to Pro) of bfVT1R showed an increased sensitivity to AVP. These results suggest that Phe/Tyr(6.51), Ile/Thr(6.53), and Pro/Thr(7.33) are responsible for the differential ligand selectivity between rat V1aR and bfVT1R. This information regarding the molecular interaction of VT/AVP with their receptors may have important implications for the development of novel AVP analogs.
Collapse
Affiliation(s)
- Sujata Acharjee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
Collapse
Affiliation(s)
- Robert P Millar
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Ikemoto T, Enomoto M, Park MK. Identification and characterization of a reptilian GnRH receptor from the leopard gecko. Mol Cell Endocrinol 2004; 214:137-47. [PMID: 15062552 DOI: 10.1016/j.mce.2003.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a pivotal role in the regulation of reproductive functions through interactions with its specific receptor. We describe the first molecular cloning and characterization of a full-length GnRH receptor (GnRHR) from the leopard gecko Eublepharis macularius. It has a distinct genomic structure consisting of five exons and four introns, compared with all the other reported GnRHR genes. A native GnRH form, cGnRH-II, stimulated inositol phosphate (IP) production in COS-7 cells transiently transfected with the GnRHR, in a dose dependent manner. The mRNA was expressed in all the tissues and organs examined. Molecular phylogenetic analysis revealed that the cloned GnRHR belongs to the type 2/nonmammalian I GnRHR. Low-expression levels were observed from the pituitary glands of reproductively active leopard geckos, indicating the possibility that there is at least one more type of GnRHR highly expressed in the pituitary gland for the gonadotropin secretion in this reptile.
Collapse
Affiliation(s)
- T Ikemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
31
|
Wang AF, Li JH, Maiti K, Kim WP, Kang HM, Seong JY, Kwon HB. Preferential ligand selectivity of the monkey type-II gonadotropin-releasing hormone (GnRH) receptor for GnRH-2 and its analogs. Mol Cell Endocrinol 2003; 209:33-42. [PMID: 14604814 DOI: 10.1016/j.mce.2003.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) regulates the reproductive system through the cognate GnRH receptor (GnRHR) in vertebrates. In this study, we cloned a cDNA encoding the full-length open reading frame sequence for green monkey type-II GnRHR (gmGnRHR-2) from the genomic DNA of CV-1 cells. Transient transfection study showed that gmGnRHR-2 was able to induce both c-fos promoter- and cAMP responsive element-driven transcriptional activities, indicating that gmGnRHR-2 couples to both Gs- and Gq/11-linked signaling pathways. gmGnRHR-2 responded better to GnRH-2 ([His5, Trp7, Tyr8]GnRH) than GnRH-1 ([Tyr5, Leu7, Arg8]GnRH). Substitutions of His5, Trp7, and/or Tyr8 in GnRH-1 increased the potency to activate gmGnRHR-2, suggesting that individual His5, Trp7, and Tyr8 in GnRH-2 contributed to differential ligand sensitivity of gmGnRHR-2. Substitution of D-Ala for Gly6 in GnRH-2 increased the potency to activate the receptor, suggesting that GnRH-2 has a constrained conformation when it binds to the receptor. GnRH-induced gmGnRHR-2 activation was specifically inhibited by GnRH-2 antagonists, Trptorelix-1 and -2, but not by a GnRH-1 antagonist, Cetrorelix. In conclusion, gmGnRHR-2 revealed preferential ligand selectivity for GnRH-2 and its analogs, suggesting that gmGnRHR-2 has a functional activity that is different from mammalian type-I GnRHRs but similar to non-mammalian GnRHRs.
Collapse
Affiliation(s)
- Ai Fen Wang
- Hormone Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Oh DY, Wang L, Ahn RS, Park JY, Seong JY, Kwon HB. Differential G protein coupling preference of mammalian and nonmammalian gonadotropin-releasing hormone receptors. Mol Cell Endocrinol 2003; 205:89-98. [PMID: 12890570 DOI: 10.1016/s0303-7207(03)00204-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we have identified three distinct types of gonadotropin-releasing hormone receptor (GnRHR) in the bullfrog (designated bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we compared G protein coupling preference of mammalian and nonmammalian GnRHRs. In a transient expression system, stimulation of either bfGnRHRs or rat GnRHR by GnRH significantly increased both inositol phosphates (IP) and cAMP productions, but ratios of IP to cAMP induction levels were quite different among the receptors, indicating differential G protein coupling preference. Using cAMP-dependent protein kinase A (PKA)-specific (CRE-luc) or protein kinase C (PKC)-specific reporter (c-fos-luc) systems, we further examined G(s) and G(q/11) coupling preference of these GnRHRs. Since activities of CRE-luc and c-fos-luc were highly dependent on cell types, GnRH-induced CRE-luc or c-fos-luc activity was normalized by forskolin-induced CRE-luc or 12-O-tetradecanoylphenol-13-acetate (TPA)-induced c-fos-luc activity, respectively. This normalized result indicated that bfGnRHR-2 couples to G(s) more actively than G(q/11), while bfGnRHR-1 and -3 couple to G(s) and G(q/11) with similar strength. However, the rat GnRHR appeared to couple to G(q/11) more efficiently than G(s). This study was further confirmed by an experiment in which GnRH augmented CRE-driven luciferase activity in alphaT3-1 cells when CRE-luc was cotransfected with bfGnRHRs but not with vehicle or rat GnRHR. Collectively, these results indicate that mammalian and nonmammalian GnRHRs may induce diverse cellular and physiological responses through differential activation of PKA and PKC signaling pathways.
Collapse
Affiliation(s)
- Da Young Oh
- Hormone Research Center, Chonnam National University, 500-757 Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|